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1.1 Introduction

A cloud consists of virtual computers that are accessed remotely for data
storage and processing. The cloud is emerging as an economically interest-
ing model for enterprises of all sizes, due to an undeniable added value and
compelling business drivers [11]. One such driver is elasticity: businesses pay
for computing resources when needed, instead of provisioning in advance with
huge upfront investments. New resources such as processing power or memory
can be added to a virtual computer on the fly, or an additional virtual com-
puter can be provided to the client application. Going beyond shared storage,
the main potential in cloud computing lies in its scalable virtualized frame-
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work for data processing. If a service uses cloud-based processing, its capacity
can be automatically adjusted when new users arrive. Another driver is agility:
new services can be deployed on the market quickly and flexibly at limited
cost. This allows a service to handle its users in a flexible manner without
requiring initial investments in hardware before the service can be launched.
Today, software is often designed while completely ignoring deployment or
based on very specific assumptions, e.g., the size of data structures, the amount
of random access memory, and the number of processors. For the software
developer, cloud computing brings new challenges and opportunities [21]:

e Empowering the Designer. The elasticity of software executed in
the cloud gives designers far reaching control over the execution envi-
ronment’s resource parameters, e.g., the number and kind of processors,
the amount of memory and storage capacity, and the bandwidth. In
principle, these parameters can even be adjusted at runtime. The owner
of a cloud service can not only deploy and run software, but also control
trade-offs between the incurred cost and the delivered quality-of-service.

e Deployment Aspects at Design Time. The impact of cloud com-
puting on software design goes beyond scalability. Deployment decisions
are traditionally made at the end of a software development process: the
developers first design the functionality of a service, then the required
resources are determined, and finally a service level agreement regulates
the provisioning of these resources. In cloud computing, this can have
severe consequences: a program which does not scale usually requires
extensive design changes when scalability was not considered a priori.

To realize cloud computing’s potential, software must be designed for scalabil-
ity. This leads to a new software engineering challenge: how can the validation
of deployment decisions be pushed up to the modeling phase of the software
development chain without convoluting the design with deployment details?

The EU project Envisage addresses this challenge by extending a design
by contract approach to service-level agreements for resource-aware virtual-
ized services. The functionality is represented in a client layer. A provisioning
layer makes resources available to the client layer and determines how much
memory, processing power, and bandwidth can be used. A service level agree-
ment (SLA) is a legal document that clarifies what resources the provisioning
layer should make available to the client service, what they will cost, and the
penalties for breach of agreement. A typical SLA covers two different aspects:
(i) the mutual legal obligations and consequences in case of a breach of con-
tract, which we call the legal contract; (ii) the technical parameters and cost
figures of the offered services, which we call the service contract.

This paper discusses some initial ideas about applying program verifica-
tion techniques to models of virtualized services. We consider response time
aspects of service contracts and extend JML-like interfaces with response time
annotations. This is formalized using pABS; pABS is a restricted version of
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ABS [25], an executable object-oriented modeling language used in the Envis-
age project to specify resource-aware virtualized services [4,26,27]. In partic-
ular, the work discussed in this paper is restricted to sequential computation
and synchronous method calls whereas ABS is based on concurrent objects
and asynchronous method calls. In future work, we hope to alleviate these
restrictions.

Paper organization. Section 1.2 introduces service interfaces with response-
time annotations; Sect. 1.3 introduces the syntax of pABS, the modeling lan-
guage considered in this paper; Sect. 1.4 demonstrates the approach on an
example; Sect. 1.5 develops a Hoare-style proof system for uABS; Sect. 1.6
discusses related work; and Sect. 1.7 concludes the paper.

1.2 Service-Level Interfaces

Service level agreements express non-functional properties of services (ser-
vice contracts), and their associated penalties (legal contracts). Examples are
high water marks (e.g., number of users), system availability, and service re-
sponse time. Our focus is on service contract aspects of client-level SLAs,
and on how these can be integrated in models of virtualized services. Such
an integration allows a formal understanding of service contracts and of their
relationship to the performance metrics and configuration parameters of the
deployed services. Today, client-level SLAs do not allow the potential resource
usage of a service to be determined or adapted when unforeseen changes to
resources occur. This is because user-level SLAs are not explicitly related to
actual performance metrics and configuration parameters of the services. The
integration of service contracts and configuration parameters in service mod-
els enables the design of resource-aware services which embody application-
specific resource management strategies [21].

The term design by contract was coined by Bertrand Meyer referring to the
contractual obligations that arise when objects invoke methods [33]: only if a
caller can ensure that certain behavioral conditions hold before the method is
activated (the precondition), it is ensured that the method results in a spec-
ified state when it completes (the postcondition). Design by contract enables
software to be organized as encapsulated services with interfaces specifying
the contract between the service and its clients. Clients can “program to in-
terfaces”; they can use a service without knowing its implementation. We
aim at a design by contract methodology for SLA-aware virtualized services,
which incorporates SLA requirements in the interfaces at the application-level
to ensure the QoS expectations of clients.

We consider an object-oriented setting with service-level interfaces given in
a style akin to JML [10] and Fresco [46]; requires- and ensures-clauses express
each method’s functional pre- and postconditions. In addition, a response time
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type Photo = Rat; // size of the file

interface PhotoService {
Q@requires V p:Photo - p € film && p < 4000;
Qensures reply == True;
@within 4xlength(film) + 10;
Bool request(List<Photo> film);

FIGURE 1.1: A photo printing shop in pABS.

guarantee is expressed in a within-clause associated with the method. The
specification of methods in interfaces is illustrated in Figure 1.1.

1.3 A Kernel Language for Virtualized Computing

The pABS language supports modeling the deployment of objects on vir-
tual machines with different processing capacities, simplifying ABS [4,25,27]:
conceptually, each object in uABS has a dedicated processor with a given
processing capacity. In contrast to ABS, execution in pABS is sequential and
the communication between named objects is synchronous, which means that
a method call blocks the caller until the callee finishes its execution. Objects
are dynamically created instances of classes, and share a common thread of
execution where at most one task is active and the others are waiting to
be executed on the task stack. pABS is strongly typed: for well-typed pro-
grams, invoked methods are understood by the called object. pABS includes
the types Capacity, Cost, and Duration which all extend Rat with an element
infinite: Capacity captures the processing capacity of virtual machines per time
interval, Cost the processing cost of executions, and Duration time intervals.

Figure 1.2 presents the syntax of pABS. A program P consists of interface
and class definitions, and a main block {T z; sr}. Interfaces IF have a name
I and method signatures Sg. Classes C'L have a name C, optional formal
parameters T %, and methods M. A method signature Sg has a list of spec-
ifications Spec, a return type T, a method name m, and formal parameters
7 of types T. In specifications (see Sect. 1.2), assertions ¢ express properties
of local variables in an assertion language extending the expressions e with
logical variables and operators in a standard way; a reserved variable reply
captures the method’s return value. A method M has a signature Sg, a list of
local variable declarations Z of types T, and statements sr. Statements may
access local variables and the formal parameters of the class and the method.

Statements are standard, except job(e) which captures an execution requir-
ing e processing cycles. A job abstracts from actual computations but may
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Syntactic categories Definitions

sr
s
rhs
e

s;return e | return e

s;s | @ =rhs | job(e) | if e{s} else {s}

e | new C(e) with e | e.m(T)

this | capacity | deadline |z |v | e op e
FIGURE 1.2: 4 ABS syntax for the object level. Terms € and T denote pos-
sibly empty lists over the corresponding syntactic categories.

C,I,m in Names P = IF CLA{T z; sr}

s in Statement T == (| I]| Capacity | Cost | Duration | Bool | Rat
z in Variables IF = interface 1{Sg}

k in Capacity Sg = Spec T m (T7Z)

c in Cost Spec ::= @requires ¢;| @ensures ¢; | @within ¢;

d in Duration CL == dassC(Tz){M}

b in Bool M = Sy {Tf, s,,.}

7 in Rat —

depend on state variables. Right-hand sides rhs include expressions e, object
creation new C (€) with e and synchronous method calls e.m(Z). Objects are
created with a given capacity, which expresses the processing cycles available
to the object per time interval when executing its methods. Method calls in
#ABS are blocking. Expressions e include operations over declared variables
z and values v. Among values, b has type Bool, ¢ has type Rat (e.g., 5/7), k
has type Capacity, ¢ has type Cost, and d has type Duration. Among binary
operators op on expressions, note that division ¢/k has type Duration. Expres-
sions also includes the following reserved read-only variables: this refers to the
object identifier, capacity refers to the processing speed (amount of resources
per time interval) of the object, and deadline refers to the local deadline of
the current method. (We assume that all programs are well-typed and include
further functional expressions and data types when needed in the example.)

Time. pABS has a dense time model, captured by the type Duration. The
language is not based on a (global) clock, instead each method activation
has an associated local counter deadline, which decreases when time passes.
Time passes when a statement job(e) is executed on top of the task stack.
The effect of executing this statement on an object with capacity k, is that
the local deadline of every task on the stack decreases by ¢/k, where c is the
value resulting from evaluating e. The initial value of the deadline counter
stems from the service contract; thus, a local counter which becomes negative
represents a breach of the local service contract. For brevity, we omit the
formal semantics.

1.4 Example: A Photo Printing Shop

Let us consider a photo shop service which retouches and prints photos.
It is cheaper for the photo shop service to retouch and print photos locally,
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[ FastEditimp
@...; Photo retouch(Photo p)

\
<<can realize>>
\

ry AY
<<interface>> \

PhotoService N\

@requires Y p:Photo, p € film && p < 4000; q
@ensures reply == True; . .
@within 4+length(film) + 10; @requires p < 4000 && capacity>=250;

Bool request(List<Photo> film) @eI!Sll.l‘ES reply == p + p/10;
A @within 2;
7 Photo retouch(Photo p)

! <<uses>>

<<interface>>
FastEdit

o <<interface>>
<<can realize>>
1

FastPrint
,‘ <<uses>> @requires p < 5000 && capacity>=300;
L @within 2;
PhotoSerylceImp Unit print(Photo p)
@...; Bool request(List<Photo> film) q
@...; Photo retouch(Photo p) L
@...; Unit _print(Photo p) <<can realize>>
= .

[ FastPrintimp
@...; Unit print(Photo p)

FIGURE 1.3: A class diagram for a photo printing shop

but it can only deal with low resolution photos in time. For larger photos, the
photo shop service relies on using a faster and more expensive laboratory in
order to guarantee that all processing deadlines are met successfully.

In this example, a film is represented as a list of photos and, for simplicity,
a photo by the size of the corresponding file. As shown in the class diagram of
Figure 1.3, an interface PhotoService provides a single method request which
handles customer requests to the photo shop service. The interface is imple-
mented by a class PhotoServicelmp, which has methods retouch for retouching
and print for printing a photo, in addition to the request method of the inter-
face. For faster processing, two interfaces FastEdit and FastPrint, which also
provide the methods retouch and print, may be used by PhotoServicelmp. The
sequence diagram in Figure 1.4 shows how a photo is first retouched, then
printed. The tasks of retouching and printing are done locally if possible, oth-
erwise they are forwarded to and executed by objects with higher capacities.

The pABS model of the example (Figure 1.5) follows the design by contract
approach and provides a contract for every method declaration in an interface
and method definition in a class. These specifications are intended to guarantee
that a request to a PhotoService object will not break the specified contract.
Looking closer at the contract for request, we see that the response time of a
request(film) call depends on the length of the film and assumes that the size of
every photo contained in the film is smaller than 4000. The implementation of
the request method is as follows: Take the first photo in the film (by applying
the function head(film)) and check if this photo is low resolution compared
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[ Capacity = 100 [ Capacity = 280 [ Capacity = 320

Main PhotoService FastEdit FastPrint
T

]
| request(film) >:

if possible
retouch(photo)
locally

else
retouch(photo)

if film is not
somewhere else

emptT

if possible
print(photo)
locally

1
I
I
I
1
I
I
I
I
I
I
I
I
N .
I
1
I
I
I
I
I
1
I
1
I
1

else
print(photo)

T somewhere else

g

FIGURE 1.4: A sequence diagram for a photo printing shop

to the capacity of the PhotoService object, represented by a size smaller than
500 and a capacity of at least 100, respectively. In this case, the retouch can
be done locally, otherwise retouch is done by an auxiliary FastEdit object. A
similar procedure applies to printing the retouched photos. Thus, photos of
small sizes are retouched and printed locally, while photos with bigger sizes
are sent to be retouched and printed externally. The implementations of the
different methods are abstractly captured using job statements.

1.5 Proof System

The proof system for pABS is formalized as Hoare triples [5,22] {¢} s {¢}
with a standard partial correctness semantics: if the execution of s starts in
a state satisfying the precondition ¢ and the execution terminates, the result
will be a state satisfying the postcondition 1. In this paper, we are particularly
interested in assertions about the deadline variables of method activations.

The reasoning rules for uABS are presented in Figure 1.6. Reasoning about
sequential composition, conditional, and assignment is standard, and captured
by the rules ComP, COND, and ASSIGN, respectively. Time passes when job(e)
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type Photo = Rat; // size of the file

interface FastEdit {
@requires p < 4000 && capacity>=250; Q@ensures reply == p + p/10; @within 2;
Photo retouch(Photo p);}

class FastEditImp {
@requires p < 4000 && capacity>=200; @ensures reply == p + p/10; @within 2;
Photo retouch(Photo p) {job(200); return (p + p/10)}}

interface FastPrint {
@requires p < 5000 && capacity>=300; @within 2;
Unit print(Photo p);}

class FastPrintlmp {
Q@requires p < 5000 && capacity>=250; @within 2
Unit print(Photo p) {job(250);return unit}}

interface PhotoService {
Q@requires V p:Photo, p € film && p < 4000;
@ensures reply == True; @within 4xlength(film) + 10;
Bool request(List<Photo> film);}

class PhotoServicelmp(FastEdit edit,FastPrint print) {
@requires V p:Photo, p € film && p < 4000;
@ensures reply == True; @within 4xlength(film)+1;
Bool request(List<Photo> film) {

Photo p = 0;
if (film 1= Nil){
p = head(film);

if (p < 500 && capacity>=100){ p = this.retouch(p);}
else{p = edit.retouch(p);}
if ( p < 600 && capacity>=100){this.print(p);}
else{print.print(p);}
this.request(tail(film));}

else{ job(1);}

return (deadline >= 0) }

@requires p < 500 && capacity>=100; @ensures reply == p + p/20; @within 1;
Photo retouch(Photo p) {job(100); return (p + p/20)}

@requires p < 600 && capacity()>=100; @within 1;
Unit print(Photo p) { job(100); return unit}}

FIGURE 1.5: A photo printing shop in uABS

is executed; job(e) has a duration e/cap on an object with capacity cap.
The assertion in Rule JOB ensures that this duration is included in the re-
sponse time after executing job(e). The subsumption rule allows to strengthen
the precondition and weaken the postcondition. For method definitions, the
premise of Rule METHOD assumes that the execution of sr starts in a state
where the requires-clause ¢ is satisfied and that the expected response time
(deadline) is larger than expression e, where e is the specified response time
guarantee from the within-clause. When the execution of sr terminates, the
result will satisfy the ensures-clause ¥ and the expected response time remains
non-negative. For method invocations in Rule CALL, the specification of the
method is updated by substituting the formal parameters fp by the input
expressions €. The logical variables for the return value of the method (reply)
and of the expected response time are renamed with fresh variables a and
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(METHOD)

{¢ A deadline > e} sr {y A deadline > 0} (RETURN)

{¢} s;reply = e {4y}
{¢} s;return e {y}

Q@requires ¢; Q@ensures 1»; @within e;
T m (T 7) {T' 2';sr}

(Cowmp) (Conb) (SUBSUMPTION)
{#}s1{v'} {o A b}si{v} {¢'} s {¢'}
{}s2{v} {o A —b}sa{ep} P =¢ Y=

{o}s1; s2{v} {¢} if b {s1} else {s2} {¢} {¢} s {¥}
(ASSIGN) (JoB)

{plx — €]} z=-¢ {¢} {¢[deadline — deadline — (e/cap)|} job(e) {¢}

(CaLL)
fresh(e, ) T = typeOf (e)
fresh(a) i IR
, ¢’ = requires(T,m)[fp > €]
¢ =¢leral ¢’ = ¢z — «a, deadline — deadline — 3]
T = typeOf (x) —
) ¢1 = ensures(T, m)[fp — €, reply — a
¢ = implements(C, T, ¢) ¢ = within(T, m)[fp — €, deadline — J]
{¢'} = =new C(e) with e {¢} 2= . P .

{¢ Ad1 A g2} = em(e) {o}

(NEW)

FIGURE 1.6: Proof system for uABS

(3, respectively. To avoid name clashes between scopes, we assume renaming
of of other variables as necessary. Object creation (in Rule NEW) is handled
similarly to assignment. The precondition ensures that the newly created ob-
ject of a class C' with capacity e correctly implements interface T', where T
is the type of z. (Note that the class instance may or may not implement an
interface, depending on its capacity.) If a method has a return value, expres-
sion e in the return statement will be assigned to the logical variable reply in
Rule RETURN, and can be handled by the standard assignment axiom in Rule
ASSIGN.

We show in Equation 1.3 the skeleton of the proof for the method request
in Figure 1.5 by using the proof system presented in Figure 1.6. Let sr refers
to the method body of request and s is sr without the return statement. In
addition,

¥ = reply == True, Y1 = ¢ A deadline > 0,
¢ =Vp: Photo, p € film N p <4000, and e =4=xlength(film)+ 10
(1.1)

We further assume that

o = reply == deadline > 0 A deadline > 0 (1.2)
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be the postcondition of the assignment reply = deadline > 0.

By Rule METHOD, the assertions ¢ and deadline > e serve as the pre-
condition of the whole method body sr, where ¢ and e are defined in the
requires- and within-clauses in the definition of the method request in Fig-
ure 1.5. The postcondition of the method body consists of 1, which is specified
in ensures-clause as reply == True, and the expression deadline > 0. Rule
RETURN converts the return statement into a statement where the expression
deadline > 0 is assigned to the logical variable reply. Then, by the assignment
axiom ASSIGN, and with the postcondition ¥ assumed in Equation 1.2, the
precondition 3 is the postcondition with the logical variable reply substi-
tuted with the expression deadline > 0, and thus ¥3 = True A deadline > 0.
By using Rule SUBSUMPTION, the postcondition 15 is weakened to the given
postcondition ;. By Rule CoMP, the assertion 3 is also the postcondition
of the statement s.

{3} reply = deadline > 0 {12} b2 = 11
{& A deadline > e} s {13} {3} reply = deadline > 0 {31}
{¢ A deadline > e} s; reply = deadline > 0 {11}
{¢ A deadline > e} s;return(deadline > 0) {¢1}

O@requires ¢; @ensures ; Owithin ¢;
Bool request(List(Photo) film){sr}
(1.3)

For brevity, the rest of the proof is omitted in the paper, which can be
completed by repeatedly applying the corresponding rules from the above
proof system.

1.6 Related Work

The work presented in this paper is related to the ABS modeling lan-
guage and its extension to virtualized computing on the cloud in the Envisage
project. The ABS [25] language and its extensions with time [9], deployment
component and resource-awareness [27] provide a formal basis for modeling
virtualized computing. ABS has been used in two larger case studies address-
ing resource management in the cloud by combining simulation techniques
and cost analysis, but not by means of deductive verification techniques; a
model of the Montage case study [13] is presented in [26] and compared to
results from specialized simulation tools and a large ABS model of the Fred-
hopper Replication Server has been calibrated using COSTABS [3] (a cost
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analysis tool for ABS) and compared to measurements on the deployed sys-
tem in [4,12]. Related techniques for modeling deployment may be found in
an extension of VDM++ for embedded real-time systems [45]. In this exten-
sion, static architectures are explicitly modeled using CPUs and buses. The
approach uses fixed resources targeting the embedded domain. Whereas ABS
has been designed to support compositional verification based on traces [14],
neither ABS nor VDM++ supports deductive verification of non-functional
properties today.

Assertional proof systems addressing timed properties, and in particular
upper bounds on execution times of systems, have been developed, the earliest
example perhaps being [41]. Another early example to reason about real-
time is Nielson’s extension of classical Hoare-style reasoning to verify timed
properties of a given program’s execution [36,37]. Soundness and (relative)
completeness for of the proof rules of a simple while-language are shown.
Shaw [40] presents Hoare logic rules to reason about the passage of time,
in particular to obtain upper and lower bounds on the execution times of
sequential, but also of concurrent programs.

Hooman employs assertional reasoning and Hoare logic [23] to reason about
concurrent programs, covering different communication and synchronization
patterns, including shared-variable concurrency and message passing using
asynchronous channels. The logic introduces a dense time domain (i.e., the
non-negative reals, including oco) and assumes conceptually, for the purpose
of reasoning, a single, global clock. The language for which the proof system
is developed, is a small calculus, focussing on time and concurrency, where
a delay-statement can be used to let time pass. This is comparable to the
job-expression in our paper, but directly associates a duration with the job.
In contrast, we associate a cost with the job, and the duration depends on the
execution capacity of the deployed object. Timed reasoning using Dijkstra’s
weakest-precondition formulation of Hoare logic can be found in [19]. Another
classical assertional formalism, Lamport’s temporal logic of actions TLA [1,
32], has likewise been extended with the ability to reason about time [31].
Similar to the presentation here, the logical systems are generally given by a
set of derivation rules, given in a classical pre-/post-condition style. Thus, the
approaches, in the style of Hoare-reasoning, are compositional in that timing
information for composed programs, including procedure calls, is derived from
that of more basic statements. While being structural in allowing syntax-
directed reasoning, these formalisms do not explore a notion of timed interfaces
as part of the programming calculus. Thus they do not support the notion
of design-by-contract compositionality for non-functional properties that has
been suggested in this paper.

Besides the theoretical development of proof systems for real-time prop-
erties, corresponding reasoning support has also been implemented within
theorem provers and proof-assistants, for instance for PVS in [15] (using the
duration calculus), and HOL [18]. An interesting approach for compositional
reasoning about timed system is developed in [16]. As its logical foundation,
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the methodology uses TRIO [17], a general-purpose specification language
based on first-order linear temporal logic. In addition, TRIO supports object-
oriented structuring mechanisms such as classes and interfaces, inheritance,
and encapsulation. To reason about open systems, i.e., to support modular or
compositional reasoning, the methodology is based on a rely/guarantee for-
malization and corresponding proof rules are implemented within PVS. Sim-
ilarly, a rely/guarantee approach for compositional verification in linear-time
temporal logics is developed in [28,44]. A further compositional approach for
the verification of real-time systems is reported in [24], but without making
use of a rely/guarantee framework.

Refinement-based frameworks are another successful design methodology
for complex system, orthogonal to compositional approaches. Aiming at a
correct-by-construction methodology, their formal underpinning often rests
on various refinement calculi [6, 34, 35]. Refinement-based frameworks have
also been developed for timed systems. In particular, Kaisa Sere and her co-
authors [8] extended the well-known formal modeling, verification, and re-
finement framework Event-B [2] with a notion of time, resulting in a formal
transformational design approach where the proof-obligations resulting from
the timing part in the refinement steps are captured by timed automata and
verified by the Uppaal tool [7].

The Java modeling language JML [10] is a well-known interface specifica-
tion language for Java which was used as the basis for the interface specifica-
tion of service contracts in our paper. Extensions of JML have been proposed
to capture timed properties and to support component-based reasoning about
temporal properties [29,30]. These extensions have been used to modularly
verify so-called performance correctness [42,43]). For this purpose, JML’s in-
terface specification language is extended with a special duration-clause, to
express timing constraints. The JML-based treatment of time is abstract in-
sofar as it formalizes the temporal behavior of programs in terms of abstract
“JVM cycles”. Targeting specifically safety critical systems programmed in
SCJ (Safety-critical Java), SafeJML [20] re-interprets the duration-clause to
mean the worst-case execution time of methods concretely in terms of ab-
solute time units. For a specific hardware implementation for the JVM for
real-time applications, [39] presents a different WCET analysis [38] for Java.
The approach does not use full-fledged logical reasoning or theorem proving,
but is a static analysis based on integer linear programming and works at the
byte-code level. We are not aware of work relating real-time proof systems to
virtualized software, as addressed in this paper.
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1.7 Concluding Remarks

Cloud computing provides an elastic but metered execution environment
for virtualized services. Services pay for the resources they lease on the cloud,
and new resources can be elastically added as required to offer the service
to a varying number of end users at an appropriate service quality. In order
to make use of the elasticity of the cloud, the services need to be scalable.
A service which does not scale well may require a complete redesign of its
business code. A wvirtualized service is able to adapt to the elasticity provided
by the cloud. We believe that the deployment strategy of virtualized services
and the assessment of their scalability should form an integral part of the
service design phase, and not be assessed a posteriori after the development
of the business code as it is done today. The design of virtualized services
provides new challenges for software engineering and formal methods.

Virtualization empowers the designer by providing far-reaching control
over the resource parameters of the execution environment. By incorporat-
ing a resource management strategy which fully exploits the elasticity of the
cloud into the service, resource-aware virtualized services are able to balance
the service contracts that they offer to their end users, to the metered cost
of deploying the services. For resource-aware virtualized services, the integra-
tion of resource management policies in the design of the service at an early
development stage seems even more important.

In this paper, we pursue a line of research addressing the formal veri-
fication of service contracts for virtualized services. We have considered a
very simple setting with an interface language which specifies services, in-
cluding their service contracts in the form of response time guarantees, and a
simple object-oriented language for realizing these services. To support non-
functional behavior, the language is based on a real-time semantics and asso-
ciates deadlines with method calls. Virtualization is captured by the fact that
objects are dynamically created with associated execution capacities. Thus,
the time required to execute a method activation depends not only on the
actual parameters to the method call, but also on the execution capacity of
the called object. This execution capacity reflects the processing power of
virtual machine instances, which are created from within the service itself.
The objective of the proof system proposed in this paper is to apply deduc-
tive verification techniques to ensure that all local deadlines are met during
the execution of a virtualized service. This proof system builds on previous
work for real-time systems, and recasts the deductive verification of timing
properties to a setting of virtualized programs. The extension of service in-
terfaces with response-time guarantees, as proposed in this paper, allows a
compositional design-by-contract approach to service contracts for virtualized
systems.

Several challenges to the proposed approach are left for future work, in par-
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ticular the extension to concurrency and asynchronous method calls, but also
the incorporation of code which reflects the actual computations (replacing the
job-statements of this paper). In this case, the abstraction to job-statements
could be done by incorporating a worst-case cost analysis [3] into the proof
system. Another interesting challenge, which remains to be investigated, is
how to incorporate the global requirements which we find in many service-
level agreements into a compositional proof system, such as the maximum
number of end users.
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