Automatic Translation of FBD-PLC-programs to NuSMV
for Model Checking Safety-Critical Control Systems

Jingyue Li* Altin Qerigi’ = Martin Steffen” Ingrid Chieh Yu'

Abstract

Programmable logic controllers (PLCs) are digital control systems, com-
monly used in industrial automation and safety-critical applications. Control
systems used in safety-critical areas must undergo an extensive and thorough
certification and verification process. In safety-critical applications, the PLC
programming standard IEC 61131-3 is widely accepted in industry. PLC pro-
grammers who develop control systems for safety-critical systems are often
required to verify the logic of PLCs by using formal methods such as model
checking. Translating manually from a PLC program to the input language of
a model checker takes times and is often error-prone.

We develop a compiler to automatically translate PLC programs in the
function block diagram (FBD) language, one of five industry standard PLC
programming notations, to the input language of the model checker NuSMV.
We have evaluated correctness, robustness, and performance of the PLC-
NuSMV compiler using a case study. Evaluation results show that the
compiler can translate the PLC programs correctly. The compiler can also
identify several input errors and can scale to relative large PLC programs.

Keywords: model-checking, system verification, function-block diagrams

1 Introduction

Programmable logic controllers (PLCs) are computer control systems used in industrial
automation. Such systems are complex and are often safety critical, meaning that failures
or malfunctioning may result in loss of human life, severe environmental damage, or
at least financial losses. Assuring their operational safety and mitigating critical risks
is a multi-disciplinary challenge, applying to all phases of the system life cycle, and
is generally heavily regulated by national or international bodies. The development of
safety-critical systems rely on high and long-standing safety and engineering standards,
and well-established empirical expert knowledge. To program PLCs in safety-critical
systems, IEC-61131-3 [135]] is one of the de-facto industry standard, that specifies five
different programming languages or notations.

This project was done as collaboration with an international certification society DN V-
GL (Det Norske Veritas — Germanischer Lloyd) and is the result of a Master thesis
[21]]. DNV-GL is often involved in certifying PLC-based safety-critical control systems.

*DNV-GL and Norwegian University of Science and Technology
TUniversity of Oslo, Institute for Informatics

This paper was presented at the NIK-2016 conference; see http.//www.nik.no/.

https://www.dnvgl.com/
https://www.dnvgl.com/

To certify safety-critical system, one formal method DNV-GL wants to pilot is model-
checking [11][3]. Model checking explores exhaustively a model of the system under
investigation in an attempt to verify it formally as correct with respect to a specification.
The specification is often presented using a truth table. One BDD-based symbolic model
checking tool is a model checker called NuSMV [8] [10].

The use of model-checking to analyze PLC-based control systems, however, is
hampered by the fact that, for a given PLC-based design, the formal modeling is actually
often done manually. This not only requires a non-negligible effort, but also a non-trivial
amount of specialist knowledge and familiarity with the model checker tool. With the high
demands on robustness of the PLC software, a case-by-case manual treatment is not cost-
effective. So, to integrate model-checking better into the development and certification
process, this work presents a compiler from one of the five official PLC languages,
namely FBD (“function block diagrams”), to the input language of the NuSMV model
checker. Besides that, we apply the compiler to a case study “Falcon controller”, which
specification is publicly available [16]. The compiler does currently not cover the whole
FBD language, but to the extent needed for the case study. The compiler is designed to
run on standard platforms, using the cross-platform application framework Qt.

The rest of the paper is organized as follows. We introduce necessary background
of PLCs and model checking in Section @, we sketch the design, structure, and
implementation of the PLC-NuSMV compiler in Section [3] Section {] evaluates the
robustness and performance of the PLC-NuSMYV compiler on a case study. We conclude
in Section [3| by discussing related and future work. More details of the tool and the case
study can be found in the Master thesis [21].

2 Background

This section gives a brief overview of the concepts and terms relevant to this work,
discussing PLCs, model checking, and also the case study.

2.1 Related work

Formal methods, as one important aspect of assuring correct system functioning, gained
traction in industry. Studies [14, 5] present extensive overviews over industrial use of
formal methods. As PLCs are often used in safety-critical sectors of industry, it should
be not surprising that various formal methods have been applied and tailored towards the
verification of PLCs and PLC programs. A study [13] gives a short overview over formal
and semi-formal methods specifically for the validation and verification PLCs. Similarly
study [17]], concentrates on SFC and LD (sequential function charts and ladder diagrams).
In that area, the considered (sub-)systems are often hardware-close, of relatively simple
and rigid structure, and relatively homogeneous (at least compared to some of nowadays
software applications running on distributed, heterogeneous, dynamic platforms, building
upon layers of abstractions and composing various artifacts, written by many people and
in different languages, and communicating and interacting in various ways). That makes
PLC programs well-suited for automated, formal verification techniques such as model
checking.

A study [23] uses equivalence checking based on boolean satisfiability (SAT) for
the verification of PLC programs written in the instruction lists IL language. Study
[7] presents an approach of verifying so-called simple programs written in (a significant
fragment of) the IL language via model-checking, using Cadence SMV. “Simple” refers

to restrictions on available data types, —booleans and bounded integers, only— and
considering only single-module programs. The restrictions on the data types are similar
to the ones in the case study in this paper.

A study [1] presents a compiler from ST (structured text) to NuSMV’s modeling
language.The framework is extended in [2,|12] covering other PLC languages, as well. An
overview of model checking PLCs is presented in [[18].There are also compilers (e.g.[[19])
that can automatically convert PLC code into input of NuSMV’s. We decided to develop a
compiler ourselves from scratch because a certification body (e.g. DNV-GL) needs a tool
that is simple but very reliable when using the tool to certify safety-critical systems. If the
tool is not reliable, results of certification can be misleading. If the tool is too complex, it
will be difficult to verify reliability of the tool itself.

2.2 Programmable Logic Controllers

A programmable logic controller (PLC) is a specialized digital industrial control system
used in automation, i.e., for operating equipment such as machinery, processes in
factories, communication switches, and several other types of control systems.

PLCs were originally developed in the late 60s to replace electromechanical relay-
based control systems [9]. The old and complicated systems were inflexible and they
often had to be rewired or completely replaced every time the production requirements
changed and the systems had to be adapted or updated. Unlike these systems, PLCs could
be programmed easily with dedicated programming languages. This flexibility was a big
motivation to replace the old machines with microprocessor based programmable logic
controllers.

PLCs consist usually of a single microprocessor (CPU), memory, and electrical
input/output-ports [6]. The ports are connected to sensors (receiving environmental input)
and actuators (effecting the environment using valves, motors, relays etc). Compiled PLC
programs are typically kept in the non-volatile memory of the programmable controller,
and consist of series of instructions which are executed sequentially on each CPU.

PLC scan cycle

As typical for reactive systems, PLC programs are usually executed cyclically. Each
scan cycle consists of 3 steps [16]: 1) Reading the input and storing it in a specific area
of memory reserved for inputs. 2) Executing PLC code as reaction to the input, thus
generating a new internal state and new output values [15]], again using a dedicated area
of memory, before 3) passing the output values to the actuators. The time to complete
an entire cycle is known as the scan time, typically a few milliseconds. After the output
values are passed to the actuators, a new cycle starts.

PLC program structure

A PLC program consists of encapsulated blocks of code called POUs (program
organization units) defined by the IEC 61131-3 standard. A POU can be compiled
independently and can be linked together with other POUs to form a complete program.
This independence of POUs makes it possible to reuse them in different PLC programs
and projects. There are three types of POUs: functions, function blocks, and programs.
All three types consist of a declaration part where the input and local variables are
declared and a code or instruction part where we find the program instructions. They
are similar to subroutines in general purpose high-level programming languages in that
they can be called with arguments.

Functions are the simplest type of POUs. They take input parameters and return an
output value. Functions are “state-less” in that they can not retain their data, i.e., the
values declared in this POU are lost when the function has finished executing its code.
Functions can not access external/global variables, that is, variables declared outside its
POU. This means, that functions invoked with the same input parameters yield the same
output value.

Function blocks can be thought of as both a function and as an object when comparing
them to object-oriented general purpose programming languages. They can have static
variables which will not lose their values when the function blocks have finished
executing. Function blocks can access external/global variables.

Programs represent the main POUs in PLC programs. They are very similar to
function blocks. The only difference between function blocks and programs is that in
programs global and external variables can be declared and variables declared in programs
can be assigned to physical addresses like memory addresses for PLC inputs and outputs.

IEC 61131-3 and PLC languages

The International Electrotechnical Commission (IEC), an international standards organi-
zation for all fields of electrotechnology, published the common standard IEC 61131-3
for PLC languages [[15]. The standard serves as a guideline for PLC programming but
PLC manufacturers are not expected to implement the entire standard. There can still
be some differences between programming systems but projects should easily be ported
from a programming system to another. The IEC 61131-3 standard states that functions
and functions blocks have to be hardware-independent as far as possible to achieve re-
usability across PLC projects and vendors.

The IEC 61131-3 standard provides five different programming languages, namely
instruction list (IL), structured text (ST), ladder diagram (LD), function block diagram
(FBD) and sequential function chart (SFC) [15]. IL and ST are textual programming
languages and the rest are graphical programming languages. Programs in graphical
languages are represented by diagrams, representing the connections between POUs with
other POUs or external variables. Textual languages are like common (rather low-level)
programming languages where declarations and instructions are typed in textual form.
Some of these languages are more suited for specific kind of control tasks and application
areas.

Instruction list (IL) is a low-level machine-oriented language similar to assembly
languages. Figure shows a very simple example of a boolean function written in
IL. IEC 61131-3 defines many basic standard functions (e.g., SQRT, LOG, ADD, and COS)
and a few standard function blocks (e.g., counters and timers).

A function block diagram (FBD) is a type of graph where the nodes represent
variables, functions, or function blocks, and the edges represent the connections between
the variables in the graph and the input/output variables in POUs. FBDs are sometimes
divided into several networks which makes it easier to structure the control flow of
POUs. Like, IL, PLC programs in FBD contains a declaration part and a code part. The
declaration part is usually written in textual form and the code part is the actual graph.
Figure shows the same boolean function in the function block diagram language.
The two big boxes represent functions, indicating also their parameters and the output
variable(s).

FUNCTION FuncTest: BOOL
VAR_INPUT
a: BOOL
b: BOOL
c¢: BOOL
END_VAR OR
LD a IN1 QUT

OR(b N2
AND
IN1 OUT

AND ¢
IMZ2

)
ST FuncTest
END_FUNCTION

I

(a) Represented in IL (b) Represented in FBD

Figure 1: Boolean expression x = a V (b A ¢)

2.3 Model checking

Model checking [[11][3] is a formal method which is especially attractive for verifying
the correctness of hardware circuits and hardware-close system descriptions. Model
checking, generally, amounts to exhaustively and automatically check if a model of
a system satisfies a given specification. The model describes the system behavior
in a mathematically precise and unambiguous manner and the verification is done by
systematically checking all reachable states of the model. Many different techniques
and tools have been developed and used for different application areas and languages.
sometimes in combination with other formal analysis techniques.

Different techniques have been investigated and implemented to deal with the
notorious state-space explosion problem. One successful approach is known as symbolic
model-checking. In contrast to explicit-state model checkers, sets of system states and
transitions between those sets, are presented symbolically, in particular using efficient
(symbolic) graph-representation of binary functions, binary decision diagrams (BDDs).
We make use of NuSMV [8]] [[10], a prominent state-of the art representative of BDD-
based symbolic model-checkers. Specifications in SMV and its variants are expressed in
temporal logic, classically in CTL (computation tree logic), but NuSMV supports also
linear-time temporal logic (LTL), which is what we use in our compiler. LTL in NuSMV
is extended with past operators, but these operators are not relevant to our compiler.

For a flavor of the NuSMV input language, Figure 2] shows the representation of the
(rather trivial) example used in Figure |}

2.4 The case study

As mentioned, we use the case study “Falcon-controller” as described in a technical report
by Matti Koskimies [16]. The case study in that report is an example of translating PLC
code to the input language of NuSMV. The PLC programs are quite simple in that they can
only contain Boolean variables, Boolean function calls (which are basically logic gates,
e.g., and, or and xor), connections between the logic gates and input/output variables.
The PLC program is a simplified PLC programs a certification body (e.g. DNV-GL) may
see in its certification work.

Figure [3| taken from [16], shows the PLC logic of the case study and describes the
control logic of one of the components in the Falcon protection system which is used to
protect electrical instrumentation and switchgear from electric arcs. We can see in this
figure several input ports (CH1-CH4 and F8.01-F8.16), output ports (Triac 1-4
and Relay 1-6) and the logic gates AND (&) and OR (> 1).

MODULE FBD_Program(a, b, c)
VAR
x : boolean;
DEFINE
and_gate0 = b & c; MODULE main
or_gate(:= a | and_gate0; VAR
ASSIGN a : boolean;
init (x) := FALSE; b : boolean;
next(x) := or_gate0; c : boolean;
MODULE TruthTable(a, b, c) fbd : FBD_Program(a, b, c);
VAR truth_table : TruthTable(a, b, ¢);
X : boolean; ASSIGN
ASSIGN init(a) := {FALSE, TRUE};
init(x) := FALSE; init(b) := {FALSE, TRUE};
init(c) := {FALSE, TRUE};
next(x) 1=
case next(a) := {FALSE, TRUE};
la & !'b & !¢ : FALSE; next(b) := {FALSE, TRUE};
la & !'b & ¢ : FALSE; next(c) := {FALSE, TRUE};
la& b &!lc : FALSE;
TRUE : TRUE; — Specification —
esac; LTLSPEC G (fbd.x <—> truth_table .x)
(a) Module declarations (b) Main module and spec.

Figure 2: An example of a NuSMV program

FALCON MASTER

Triac 1

CHt b3
CH2
CH3 b H

CHA P2

Triac 2

Triac 3

Triac &

Relay 1

BRI

Relay 2
F8.16
Relay 3

A

Relay &

A

Relay 5

F8.01

A

Relay 6

Remote

il

Figure 3: The PLC logic of the master unit of the Falcon system [16]

3 PLC-NuSMYV compiler

This section will sketch the design and implementation of the PLC-NuSMV compiler.

Modular design: The compiler follows established practice, separating the compiler into
a sequence of distinct phases with clearly define interfaces. See Figure 4| for an
overview over the phases.

Extensibility: The implementation currently supports only (a subset of) the FBD
language, basically to the extent as needed for the case studies. In important goal,
hand in hand with the modular design and in particular distinguishing front-end
and back-end, is the possibility to extend the compiler, either with further PLC
languages and/or other model-checking back-ends.

Portability: The implementation is done in C**, making use of the widely used cross-
platform application framework. The compiler thus runs on all platforms on which
the NuSMV-compiler is available (Linux/Windows/MacQOS).

PLC code
editor

PLCopen
XML
Truth table

XML parser

POU data

structure NuSMV Code

NuSMV AST generator NuSMV
code

NuSMV AS < > O
- I —
builder

Figure 4: Schematic architecture and compilation phases of the compiler

Standard compliance and openness: In line with the other goals, the compiler takes as
input PLC-descriptions in the open exchange format PLCopen [20] (a “domain-
specific” XML format), which is supported by many PLC manufacturers. In this
work, we use the PLC graphical editor Beremiz [4] for describing PLC programs,
which generates PLCopen-code, but the compiler is independent from the choice of
the editor, as long as it supports the open XML-standard for PLCs.

4 Evaluation

In this chapter, we will discuss the efficiency and the correctness of the compiler. We will
also discuss some scalability limitations of the compiler. The scalability issue is common
in general in model-checking approaches.

4.1 Validation of the compiler

The case study from the technical report by Matti Koskimies [[16] is used as a benchmark
to test the practicality and usability of the compiler. It was used also to validate that the
compiler produces the correct NuSMV code. In the case study, the PLC program from
Figure [3 has been translated to a NuSMV model and then verified by the NuSMV tool.
The PLC-NuSMV compiler should translate from a PLC program in the FBD language
that is equivalent to the PLC logic of the case study, to a NuSMV model that is the same
as the one in the same case study. Before being able to verify the compiler with the PLC
program from the case study, the PLC program was first translated to the FBD language
by hand.

The case study was not the only PLC program example that was created to verify
the correctness of the compiler. Several other PLC programs were also created and their
correct translation manually verified against “expected” SVM models. Several simple
PLC programs containing various combinations of functions were created to verify that
they were correctly implemented.

Results

All the PLC programs created by hand were translated by the PLC-NuSMV compiler
to the expected NuSMV models. Every NuSMV model description produced by the

compiler was carefully and thoroughly reviewed before the final verification with the
NuSMYV model checker. NuSMV confirmed that the LTL specification in all the NuSMV
models were true in all states.

The testing of the case study and all other PLC program examples confirmed that the
compiler can correctly translate PLC programs in the FBD language to the input language
of NuSMV.

4.2 Robustness

The ability for a program to cope with errors and erroneous input is critical for a robust
program. The PLC-NuSMYV compiler should display intuitive and clear error and warning
messages to help the user localizing and ultimately repairing the error.

A class was implemented to simplify error messaging in the program. It is used
mainly for displaying error and warning messages to the user of the program. This
centralization of logging and message displaying makes it easier to extend the software.
For example, if the program is integrated with a PLC code editor, the error message can
be sent to the editor which can then show them. For an overview of possible extensions
and improvements to the compiler, see Section [5}

Command-line option validation

The compiler validates the arguments to the command-line options it receives on start-up.
If it detects invalid input, it gives the user an error message. It will also suggest to the
user to use the ——help command-line option. This option contains usage information
about all the possible command-line options for the PLC-NuSMV compiler. Both the
PLC program and the truth table files must be given as arguments to the program. The
program informs the user about that if the PLC program or the truth table is missing.

Detection of errors during execution

The PLC-NuSMV compiler validates all the files given as input to the program. It tries
first to read the file that contains the PLC program and the truth table file. If they are
not readable, the compilation process will abort and an appropriate error message will be
displayed. The XML file is then validated against the PLCopen XML schema. The XML
schema file should be included with the compiler. If the XML file is valid, the truth table
file is then validated. The compilation process aborts if any of these files are not valid.
During the parsing of the XML file, the program can detect logical errors, e.g., the PLC
program does not contain output variables or it does not contain one program element. It’s
not possible to proceed the compilation process for most of theses cases, so the compiler
displays an error message and aborts.

The compiler ignores some non-critical errors, e.g., the input variables of a POU
function is not connected to anything or an output variable is not connected to a POU
function block or an input variable. In these cases, the program simply just gives a
warning message to the user.

Most of the possible errors should be detected during the parsing of the input files,
but there are some cases where this doesn’t happen before the actual translation of PLC
code to NuSMV starts. Most of them are related to cases where the truth table does not
correlate with the PLC program. Before the NuSMV code generations starts, all errors
related to the PLC program and the truth table has been found. Only the inability to write
the NuSMYV code to a file can cause the program to abort.

There are some errors the user may not be able to do anything about without
changing the source code. For example, a PLC program might contain function blocks or
unsupported Boolean functions. An appropriate error message is displayed for some of
these situations.

4.3 Performance evaluation

We evaluated not only the performance of the compiler itself, but also the resulting
efficiency of the approach as a whole, i.e. evaluating the efficiency of the used NuSMV-
model checker on the used test inputs. Besides that, we implemented a small “test-
case generator”’, which allowed to generate “synthetic” test cases, i.e., schematic FBD
programs whose size can be scaled arbitrarily. The critical parameter for the size of those
programs is the number of input variables, as it determines the size of the state space.
For profiling we used the Valgrind Function Profiler, or callgrind. It was was used to get
a detailed statistics, e.g., over the number of instructions executed on each function and
how many times each function where called.

Test bed

The experiments have been done in an Intel Core 15-3570 3.4 GHz processor and 8 GB of
RAM, under Linux, Debian 8. The timing of all test runs were done with the command-
line tool time.

Results end evaluation

All the PLC programs created manually including the case study, are compiled very
quickly. It takes about 100 milliseconds for the PLC-NuSMV compiler to read the case
study PLC program example, translate it to NuSMV models and write the NuSMV code
to a file.

When running the compiler with the test case generator option, the compilation time
increases linearly with the size of the input program. That is to be expected, as the
compiler currently does not perform any extensive optimizations. As mentioned, the
crucial parameter for the synthetic test cases is the number of variables. The test cases
mimics the spirit of the case study insofar that the specification of the PLC program is
given in the form of a truth table. That, however, means that not just the size of the logical
state-space increases exponentially —an instance of the well-known state-space explosion
problem— but also the model description in the form of a exponentially growing truth-
table. This the compilation time grows exponentially with the number of input variables
(i.e., linear in the size of the program description). The same holds the amount of memory
used by the compiler. Most of the processing time (about 87% for 17 input variables and
1 output variable) seem to be the part of the program where the truth table is created by
traversing the graph of the POU data structure.

The time to generate the NuSMV model seem to also increase exponentially. About
10% of the total processing time is related to writing the NuSMYV code. The reason for this
is because each of the switch-case expressions in the truth table module of the NuSMV
model contains part of the truth table.

Possible performance improvements

Instead of creating a truth table to use as a specification for a PLC program, we can
use Boolean formulas/functions. The compiler has been implemented with the ability of

NUSMV verification time (s)

0
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

Number of input variables

Figure 5: NuSMV verification times

skipping the creation of the NuSMV truth table module and instead use Boolean formulas
to create the specifications to verify PLC programs. The option —o (--optimize) makes the
compiler do exactly this.

As expected, the memory consumption and the execution time of the PLC-NuSMV
compiler now increases linearly in the number of input variables.

The compiler and the NuSMV model checker has only been tested with up to 10
thousand input variables. It takes about 1 minute to compile a PLC program with that
amount of input variables.

Running NuSMV

The time and memory consumption for verifying such NuSMV models with the model
checker also doesn’t increase as it did with the truth table approach of verification. The
chart in Figure [5] shows the execution time it took NuSMV to verify various synthetic
PLC programs generated with the built-in optimization option. 20 tests were done. In
each new test, the input variable was increased by 200. Based on the tests we ran, it looks
like the verification time increases linearly as the number of input variables increases. It
increases faster than the compilation time of the PLC-NuSMYV compiler.

This modification to the compiler was done to show that using the truth table approach
fails after a certain level of complexity of PLC programs. To verify very large real-life
PLC program examples, the compiler can be extended with the ability to takes Boolean
formulas as input.

5 Conclusion

The paper reported the design, implementation, and evaluation of a compiler from the
FBD-PLC programming language to the input language of NuSMV. The compiler has
been thoroughly tested with (automatically generated) PLC programs to test its robustness
and performance, The compiler, while handling the case study and the range of test cases
adequately is still a proof-of-concept: it currently supports only the part of FDB. For
PLC programs that are similarly sized to the one in the case study, or slightly bigger, the
PLC-NuSMYV compiler itself shows adequate run-times, and also the model-checker is
able to analyze the resulting model. The size of PLC programs is limited by the choice of
expressing the specifications of PLC programs in the truth-table approach.

As for future work, we plan to extend the range of features supported by the compiler.
Similarly, one increases the applicability by re-targeting the front-end to support other
PLC languages. We suspect, though, that NuSMV will still be a natural choice for
PLC programs in the targeted application domain, since BDD-based model checking
has shown its strength in particular in hardware-close applications. Besides increasing
the scope of the tool, the compiler itself can be improved. As of now, the compilation
is rather straightforward. While taking care that the user is warned about questionable
inputs (such as unused variables and the like) and adequately informed about errors about
(yet) unsupported features. There should be room for optimizing the compilation. It
is known that the efficiency of BDD-based model checking is sensitive to the actually
(internal) representation of the model, in particular the variable order used for the BDD-
representation. Different logically equivalent representations can differ, in the worst
case, in their performance. Further experiments would be needed to find heuristics
or compilation strategies, which, in conjunction with NuSMYV, leads to efficient model
checking, at least on the average case. Methodologically, the case study shown in [16]
uses a truth-table approach: the desired behavior of the control program is given via
tabulating the boolean input-output behavior. While that might seem natural enough, it
is certainly not a scalable approach (independent from the aspect of model checking). It
also raises the question in which way the specification itself, being a big truth table, is
free of errors. It also seems that spelling out the specification in such a combinatorial
manner might prevent NuSMYV to play out its strength of compact and efficient symbolic
representations of models, but further experiments would be needed here. In any case, we
consider a more symbolic way of specifying the behavior of the program as advantageous.
Another our future work is to compare our compilers with similar ones (e.g. [19])
quantitatively and qualitatively, in order to improve our compiler further.

References

[1] B. F. Adiego, D. Darvas, J.-C. Tournier, E. B. Vifuela, , J. O. Blech, and V. M. G. Suarez.
Automated generation of formal models from ST programs for verification purposes. Internal
Note CERN-ACC-NOTE-2014-0037, CERN, 2014.

[2] B.F. Adiego, D. Darvas, E. B. Vifiuela, J.-C. Tournier, S. Bliudze, J. O. Blech, and V. M. G.
Sudrez. Applying model checking to industrial-sized PLC programs. IEEE Transactions in
Industrial Informatics, 11(6), Dec. 2015.

[3] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, May 2008.

[4] Beremiz home page, 2016. http://www.beremiz.org.

[5] J.-L. Boulanger, editor. Formal Methods: Industrial use from Model to the Code. Wiley,
2012.

[6] L. W. Brittian. Programmable logic controllers. In Audel Electrical Trades Pocket Manual,
chapter 10, pages 89-97. John Wiley & Sons, Inc., Hoboken, New Jersey, April 2012.

[7] G. Canet, S. Couffin, J.-J. Lesage, A. Petit, and P. Schnoebelen. Towards the automatic
verification of PLC programs written in instruction list. In SMC [22]], pages 2449-2454.

[8] R. Cavada, A. Cimatti, C. A. Jochim, G. Keighren, E. Olivetti, M. Pistore, M. Roveri, and
A. Tchaltsev. NuSMV 2.5 User Manual, 2011.

[9] P. Chevtsov, S. Higgins, and D. Seidman. PLC Support Software at Jefferson Lab, October
2002.

[10] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,
and A. Tacchella. NuSMYV version 2: BDD-based + SAT-based symbolic model checking.
In E. Brinksma and K. G. Larsen, editors, Proceedings of CAV 02, volume 2404 of Lecture
Notes in Computer Science. Springer Verlag, 2002.

http://www.beremiz.org

[11]
[12]

[13]
[14]

[15]

[16]

[17]
[18]
[19]
[20]
(21]
(22]

(23]

E. M. Clarke, O. Grumberg, and D. Peled. Mode! Checking. MIT Press, 1999.

D. Darvas, 1. Majzik, and E. B. Vifiuela. Formal verification of safety PLC based control
software. In E. Abrahdm and M. Huisman, editors, Proc. of the [2th International
Conference on integrated Formal Methods (iFM 2010), volume 6396 of Lecture Notes in
Computer Science, pages 508-522. Springer Verlag, 2016.

G. Frey and L. Litz. Formal methods in PLC programming. In SMC [22], pages 3333-3339.
M. G. Hinchey and J. P. Bowen, editors. Industrial-Strength Formal Methods. International
Series in Formal Methods. Springer Verlag, 1999.

K.-H. John and M. Tiegelkamp. IEC 61131-3: Programming Industrial Automation Systems.
Springer Verlag, 2010.

M. Koskimies. Applying model checking to analysing safety instrumented systems.
Research Report TKK-ICS-RS, Helsinki University of Technology, Department of
Information and Computer Science, Espoo, Finland, June 2008.

S. Lamériere, O. Rossi, J.-M. Roussel, and J.-J. Lesage. Formal validation of PLC programs:
A survey. In 1999 European Control Conference (ECC), 1999.

T. Ovatman, A. Aral, D. Polat, and A. O. Unver. An overview of model checking practices
on verification of PLC software. Software System Modelling, 2014.

O. Pavlovi¢ and H.-D. Ehrich. Model checking PLC software written in function block
diagram. International Conference on Software Testing, Verification and Validation, 00:439—
448, 2010.

PLCopen XML, 2016.

A. Qeriqi. A PLC-NuSMYV compiler for model checking safety critical control systems.
Master’s thesis, Faculty of Mathematics and Natural Sciences, University of Oslo, May 2016.
Proceedings of the IEEE Intl. Conference on Systems, Man, and Cybernetics (SMC). IEEE,
2000.

A. Siilflow and R. Drechsler. Verification of PLC programs using formal proof techniques.
In FORMS/FORMAT 2008. I’ Harmattan Hongrie, 2008.

	Introduction
	Background
	Related work
	Programmable Logic Controllers
	PLC scan cycle
	PLC program structure
	IEC 61131-3 and PLC languages

	Model checking
	The case study

	PLC-NuSMV compiler
	Evaluation
	Validation of the compiler
	Results

	Robustness
	Command-line option validation
	Detection of errors during execution

	Performance evaluation
	Test bed
	Results end evaluation
	Possible performance improvements
	Running NuSMV

	Conclusion

