
Effect-Polymorphic Behaviour Inference
for Deadlock CheckingI,†

Ka I Puna, Martin Steffena, Volker Stolza,b

aDept. of Informatics, University of Oslo, Norway
bBergen University College, Norway

Abstract

We present a constraint-based effect inference algorithm for deadlock checking.
The static analysis is developed for a concurrent calculus with higher-order func-
tions and dynamic lock creation, where the locks are summarised based on their
creation-site. The analysis is context-sensitive and the resulting effects can be
checked for deadlocks using state space exploration. We use a specific deadlock-
sensitive simulation relation to show that the effects soundly over-approximate the
behaviour of a program, in particular that deadlocks in the program are preserved
in the effects.

Keywords: deadlock detection, simulation, type and effect system, concurrency,
formal method

1. Introduction

Deadlocks are a common problem for concurrent programs with shared re-
sources. According to the classic characterization from [11], a deadlocked state
is marked by a number of processes, which forms a cycle where each process
is unwilling to release its own resource, and is waiting on the resource held by

IPartly funded by the EU projects FP7-610582 ENVISAGE: Engineering Virtu-
alized Services (http://www.envisage-project.eu) and FP7-612985 UPSCALE:
From Inherent Concurrency to Massive Parallelism through Type-based Optimizations
(http://www.upscale-project.eu).

†This article is a full version of the extended abstract presented at the 25th Nordic Workshop
on Programming Theory, NWPT 2013, in Tallinn.

Email addresses: violet@ifi.uio.no (Ka I Pun), msteffen@ifi.uio.no (Martin
Steffen), stolz@ifi.uio.no (Volker Stolz)

Preprint submitted to Elsevier May 23, 2016

1 INTRODUCTION 2

its neighbour. The inherent non-determinism makes deadlocks, as other errors
in the presence of concurrency, hard to detect and to reproduce. We present a
static analysis using behavioural effects to detect deadlocks in a higher-order con-
current calculus. Deadlock freedom, an important safety property for concurrent
programs, is a thread-global property, i.e., the blame for a deadlock in a defec-
tive program cannot be put on a single thread, it is two or more processes that
share the responsibility; the somewhat atypical situation, where a process forms
a deadlock with itself, cannot occur in our setting, as we assume re-entrant locks.
The presented approach works in two stages. The first stage, which is the focus
of this paper, corresponds to model extraction: an effect-type system uses a static
behavioural abstraction of the codes’ behaviour, concentrating on the lock interac-
tions. To analyse the consequences on the global level, in particular for detecting
deadlocks, the combined individual abstract thread behaviours are explored in the
second stage.

Two challenges need to be tackled to make the approach applicable in prac-
tice. For the first stage on the thread local level, the model extraction, the static
analysis must be able to derive the abstract behaviour, not just check compli-
ance of the code with a user-provided description. This is the problem of type
and effect inference or reconstruction. As usual, the abstract behaviour needs
to over-approximate the concrete one, i.e., concrete and abstract descriptions are
connected by some simulation relation: everything the concrete system does, the
abstract one can do as well (modulo some abstraction function relating the con-
crete and abstract states). For the second stage, exploring the (abstract) state space
on the global level, obtaining finite abstractions is crucial. In our setting, there are
four principal sources of infinity: the calculus allows 1) recursion, supports 2)
dynamic thread creation, as well as 3) dynamic lock creation, and 4) with re-
entrant locks, where the lock counters are unbounded. To allow static checking,
appropriated abstractions, especially to tame the unbounded size of the mentioned
dynamic aspects of the language. Our paper focuses on the model extraction in the
first stage and how to infer the behavioural model and the role of polymorphism.
This model extraction stage includes dealing with dynamic lock creation, as well.
The model exploration in the second stage is covered in our previous work [43],
which offers sound abstractions for lock counters and for recursion (but not for dy-
namic thread creation). See also the concluding remarks for a further discussion
of how the earlier results carry over. Next, we shortly present in a non-technical
manner the ideas behind the abstractions before giving the formal theory.

1 INTRODUCTION 3

1.1. Effect inference on the thread local level
In the first stage of the analysis, a behavioural type and effect system is used

to over-approximate the lock-interactions of a single thread. To force the user to
annotate the program with the expected behaviour in the form of effects is imprac-
tical, so the type and especially the behaviour should be inferred automatically.
Effect inference, including inferring behavioural effects, has been studied earlier
and applied to various settings, including obtaining static over-approximations of
behaviour for concurrent languages in the monograph by Amtoft, Nielson, and
Nielson [5]. See also the shorter accounts in [38, 39]. We apply effect inference
to deadlock detection and as is standard (cf. e.g., [36, 50, 5]), the inference system
is constraint-based, where the constraints in particular express an approximate or-
der between behaviours. Besides being able to infer the behaviour, it is important
that the static approximation is as precise as possible. For that it is important that
the analysis may distinguish different instances of a function body depending on
their calling context, i.e., the analysis should be polymorphic or context-sensitive.
This can be seen as an extension of let-polymorphism to effects and using con-
straints. The effect reconstruction resembles the known type-inference algorithm
for let-polymorphism by Damas and Milner [14, 13] and this has been used for
effect-inference in various settings, e.g., in the works mentioned above.

Deadlock checking in our earlier work [43] was not polymorphic (and we did
not address effect inference). The extension in this paper leads to an increase
in precision with respect to checking for deadlocks, as illustrated by the small
example below, where the two lock creation statements are labelled by π1 and π2:

Listing 1: Deadlock analysis and polymorphism
l e t x1 = newπ1 L in l e t x2 = newπ2 L in
l e t f = fn x : L . (x . l o ck ; x . l o ck)
in spawn (f (x2)) ; f (x1)

The main thread, after creating two locks and defining function f , spawns a
thread, and afterwards, the main thread and the child thread run in parallel, each
one executing an instance of f with different actual lock parameters. In a set-
ting with re-entrant locks, the program is obviously deadlock-free. Part of the
type system of [43] determines the potential origin of locks by data-flow analysis.
When analysing the body of the function definition, the analysis cannot distin-
guish the two instances of f (the analysis is context-insensitive). This inability to
distinguish the two call sites —the “context”— forces that the type of the formal
parameter is, at best, L{π1,π2}, which means that the lock-argument of the function
is potentially created at either point. Based on that approximate information, a

1 INTRODUCTION 4

deadlock looks possible through a “deadly embrace” [16] where one thread takes
first lock π1 and then π2, and the other thread takes them in reverse order, i.e.,
the analysis would report a (spurious) deadlock. The context-sensitive analysis
presented here correctly analyses the example as deadlock-free.

1.2. Deadlock preserving abstractions on the global level
Lock abstraction

A standard abstraction for dynamically allocated data is to summarize all data
allocated at a given program point into one abstract representation. We apply this
idea to dynamically allocated locks. In general, this mapping from concrete data
items, here locks, to their abstract representation is non-injective. For concrete,
ordinary programs it is clear that identifying locks may change the behaviour of
the program. Identification of locks is in general tricky (and here in particular
in connection with deadlocks): on the one hand, comparing the operational be-
haviour of the programs, identifying locks may lead to less execution steps, in
that lock-protected critical sections may become larger. On the other hand it may
lead to more steps at the same time, as deadlocks may disappear when identifying
(re-entrant) locks. This form of summarizing lock abstraction is problematic when
analysing properties of concurrent programs, and has been observed elsewhere as
well, cf. e.g., Kidd et al. in [30].

For a sound abstraction when identifying locks, one faces the following dilemma:
a) the abstract level needs to exhibit at least the behaviour of the concrete level,
i.e., we expect that concrete and abstract levels are related by a form of simulation.
On the other hand, to preserve deadlocks, the following condition must hold: b) a
concrete program waiting on a lock and unable to make a step thereby, must imply
an analogous situation on the abstract level, lest we should miss deadlocks. Let’s
write l, l1, l2, . . . for concrete lock references and π,π ′, . . . for program points of
lock creation, i.e., abstract locks. To satisfy a): when a concrete program takes a
lock, the abstract one must be able to “take” the corresponding abstract lock, say
π . A consequence of a) is that taking an abstract lock is always enabled. That is
consistent with the abstraction as described where the abstract lock π confuses an
arbitrary number of concrete locks including, for example those freshly created,
which may be taken.

Thus, abstract locks lose their “mutual exclusion” capacity: whereas a con-
crete heap is a mapping which associates to each lock reference the number of
times that at most one process is holding it, an abstract heap σ̂ records how many
times an abstract lock π is held by the various processes, e.g., thrice by one process
and twice by another. The corresponding natural number abstractly represents the

1 INTRODUCTION 5

sum of the lock values of all concrete locks (per process). Without ever blocking,
the abstraction leads to more possible steps, but to cater for b), the abstraction still
needs to appropriately define, given an abstract heap and an abstract lock π , when
a process waits on the abstract lock, as this may indicate a deadlock. The defini-
tion has to capture all possibilities of waiting on one of the corresponding concrete
locks (see Definition 4.19 later). The sketched intuitions to obtain a sound abstract
summary representation for locks and correspondingly for heaps lead also to a cor-
responding refinement of “over-approximation” in terms of simulation: not only
must the a) positive behaviour be preserved as in standard simulation, but also the
b) possibility of waiting on a lock and ultimately the possibility of deadlock needs
to be preserved. For this we introduce the notion of deadlock sensitive simulation
(see Definition 4.24). The definition is analogous to the one from [43]. However,
it takes into account now that the analysis is polymorphic and the definition is no
longer based on a direct operational interpretation of the behaviour of the effects.
Instead it is based on the behavioural constraints used in the inference systems.

The points discussed are illustrated in Fig. 1, where the left diagram Fig. 1a
depicts two threads running in parallel and trying to take two concrete locks, l1
and l2 while Fig. 1b illustrates an abstraction of the left one where the two concrete
locks are summarized by the abstract lock π (typically because being created at the
same program point). The concrete program obviously may run into a deadlock
by reaching commonly the states q01 and q11, where the first process is waiting on
l2 and the second process on l1. With the abstraction sketched above, the abstract
behaviour, having reached the corresponding states q̂01 and q̂11, can proceed (in
two steps) to the common states q̂02 and q̂12, reaching an abstract heap where the
abstract lock π is “held” two times by each process. In the state q̂01 and q̂11,
however, the analysis will correctly detect that, with the given lock abstraction,
the first process may actually wait on π , resp. on one of its concretizations, and
dually for the second process, thereby detecting the deadly embrace.

Allowing this form of lock abstraction, summarizing concrete locks into an
abstract one, improves our earlier analysis [43], which could therefore deal only
with a static number of locks.

Counter abstraction and further behaviour abstraction
Two remaining causes of an infinite state space are the values of lock coun-

ters, which may grow unboundedly, and the fact that for each thread, the effect
behaviour abstractly represents the stack of function calls for that thread. Sequen-
tial composition as construct for abstract behavioural effects allows to represent
non-tail-recursive behaviour (corresponding to the context-free call-and-return be-

1 INTRODUCTION 6

p0

q00start

q01

q02

p1

q10start

q11

q12

l1.lock

l2.lock

l2.lock

l1.lock

(a) Concrete

p0

q̂00start

q̂01

q̂02

p1

q̂10start

q̂11

q̂12

π.lock

π.lock

π.lock

π.lock

(b) Abstract

Figure 1: Lock abstraction

haviour of the underlying program). To curb that source of infinity, we allow for
replacing the behaviour by a tail-recursive over-approximation. The precision of
the approximation can be adapted in choosing the depth of calls after which the
call-structure collapses into an arbitrary, chaotic behaviour. A finite abstraction for
the lock-counters is achieved similarly by imposing an upper bound on the consid-
ered lock counter, beyond which the locks behave non-deterministically. Again,
for both abstractions it is crucial, that the abstraction preserves also deadlocks,
which we capture again using the notion of deadlock-sensitive simulation. These
two abstractions have been formulated and proven in the non-context-sensitive
setting of [43].

It is indeed straightforward to carry over that part of the deadlock checking
to the polymorphic analysis presented here. The polymorphic treatment here is a
result from the fact that the analysis is compositional and is able to yield the most
general type and effect per function. The model-exploration on the abstracted
behaviour in the second stage does not work on open systems, but the abstract be-
haviour of all threads must be present. Consequently, the model exploration does
not have to deal with generic, polymorphic behaviour, but with concrete instances,
only, which allows to carry over the results and the abstractions developed on [43]
unchanged. Thus, also the prototype implementation for the state-exploration part
in the monomorphic setting of [43] carries over.

To summarize, compared to [43], the paper makes the following contribu-
tions: 1) the effect analysis is generalized to a context-sensitive formulation, us-
ing constraints, for which we provide 2) an inference algorithm. Finally, 3) we
allow summarizing multiple concrete locks into abstract ones, while still preserv-
ing deadlocks.

2 CALCULUS 7

The rest of the paper is organized as follows. After presenting syntax and
semantics of the concurrent calculus in Section 2, the specification of the be-
havioural type system is presented in Section 3. We then convert the type system
into an algorithm in Section 4, which also includes the soundness result in the
form of subject reduction. The conclusion in Section 5 discusses related and fu-
ture work.

2. Calculus

This section presents the syntax and semantics for our calculus with higher-
order functions for lock-based concurrency. The abstract syntax is given in Table 1
(the types T will be covered in more detail in Section 3). A program P consists
of processes p〈t〉 running in parallel, where p is a process identifier and t is a
thread, i.e., the code being executed. The empty program is represented by /0.
We assume, as usual, parallel composition ‖ to be associative and commutative.
The code is categorized into threads t and expressions e. A thread t is either a
value v, where values includes the truth values, the unit value, leaving further
values such as integers etc. unspecified, as they are irrelevant to the analysis. A
thread let x:T = e in t represents the sequential composition of first e followed
by t, where the let-construct binds the local variable x in t. We use the sequential
composition operator ; as abbreviation when the let-bound variable x does not oc-
cur free in t. Expressions include function applications and conditionals. Threads
are created with the expression spawn t. For lock manipulation, new L yields
the reference to a newly created lock (initially free), and the operations v. lock
and v. unlock deal with acquiring and releasing a lock. Values which are evalu-
ated expressions are variables, lock references, and function abstractions, where
fun f :T.x:T.t represents recursive function definitions.

P ::= /0 | p〈t〉 | P ‖ P program
t ::= v | let x:T = e in t thread
e ::= t | v v | if v then e else e | spawn t | new L
| v. lock | v. unlock expr.

v ::= x | l | () | true | false | fn x:T.t | fun f :T.x:T.t values

Table 1: Abstract syntax

2 CALCULUS 8

Semantics
The small-step operational semantics, presented next, distinguishes between

local and global steps (cf. Tables 2 and 3). The local steps are straightforward.
Rule R-RED is the basic evaluation step, replacing in the continuation thread t
the local variable by the value v (where [v/x] is understood as capture-avoiding
substitution). Rule R-LET restructures a nested let-construct. As the let-construct
generalizes sequential composition, the rule expresses associativity of that con-
struct. Thus it corresponds to transforming (e1; t1); t2 into e1;(t1; t2). Note that the
grammar insists that, e.g., in an application, both the function and the arguments
are values, analogously when acquiring a lock, etc. This form of representation
is known as a-normal form [18]. Together with the rest of the rules, which per-
form a case distinction on the first non-let expression (e.g., spawn, new L, etc.)
in a let construct, that ensures a deterministic left-to-right evaluation within each
thread. The two R-IF-rules cover the two branches of the conditional and the
R-APP-rules deals with function application, of non-recursive, resp., recursive
functions. Global configurations are of the form σ ` P where P is a program and

let x:T = v in t −→ t[v/x] R-RED

let x2:T2 = (let x1:T1 = e1 in t1) in t2 −→let x1:T1 = e1 in (let x2:T2 = t1 in t2) R-LET

let x:T = if true then e1 else e2 in t −→let x:T = e1 in t R-IF1

let x:T = if false then e1 else e2 in t −→let x:T = e2 in t R-IF2

let x:T = (fn x′:T ′.t ′) v in t −→let x:T = t ′[v/x′] in t R-APP1

let x:T = (fun f :T1.x′:T2.t ′) v in t −→let x:T = t ′[v/x′][fun f :T1.x′:T2.t ′/ f] in t R-APP2

Table 2: Local steps

the heap σ is a finite mapping from lock identifiers, denoted as σ(l), to the status
of each lock, which can be either free or a tuple indicating the number of times
a lock has been taken by a thread, written as p(n). When relating the concrete
heap with its abstraction later, we allow ourselves also to write σ(l, p) = n+ 1
if σ(l) = p(n+ 1) (indicating the pair of process identifier p and lock count n)
and σ(l, p) = 0, otherwise. Note that for certain situations, σ +p l and σ −p l
are undefined. The premises of R-LOCK and R-UNLOCK, however, prevent that
the definitions are used in these undefined situations. Note that as a consequence,
there is no rule covering an attempt by a process to unlock a lock the process does

2 CALCULUS 9

not currently own, meaning that the process “block” in that case. In a real pro-
gramming language, a more realistic behaviour in the unlocking case would be to
throw an exception instead. Our results concerning detecting deadlocks are not
affected by this choice of behaviour, as the definition of deadlock later will not
count such a process as deadlocked.

The global steps are given as transitions between global configurations. It
will be handy later to assume the transitions appropriately labelled (cf. Table 3).
Thread-local transition steps are lifted to the global level by rule R-LIFT. A global
step is a thread-local step made by one of the individual threads sharing the same
σ (cf. rule R-PAR). R-SPAWN creates a new thread with a fresh identity running
in parallel with the parent thread. All the identities are unique at the global level.
Creating a new lock, which is initially free, allocates a fresh lock reference l in
the heap (cf. rule R-NEWL). The locking step (cf. rule R-LOCK) takes a lock
when it is either free or already being held by the requesting process. To update
the heap, we define: If σ(l) = free, then σ +p l = σ [l 7→ p(1)] and if σ(l) = p(n),
then σ +p l = σ [l 7→ p(n+ 1)]. Dually σ −p l is defined as follows: if σ(l) =
p(n+1), then σ−p l = σ [l 7→ p(n)], and if σ(l) = p(1), then σ−p l = σ [l 7→ free].
Unlocking works correspondingly, i.e., it sets the lock as being free resp. decreases
the lock count by one (cf. rule R-UNLOCK).

t1 −→ t2
R-LIFT

σ ` p〈t1〉 −→ σ ` p〈t2〉

σ ` P1 −→ σ ′ ` P′1
R-PAR

σ ` P1 ‖ P2 −→ σ
′ ` P′1 ‖ P2

p2 fresh
R-SPAWN

σ ` p1〈let x:T = spawn t2 in t1〉 −→ σ ` p1〈let x:T = () in t1〉 ‖ p2〈t2〉

σ ′ = σ [l 7→ free] l is fresh
R-NEWL

σ ` p〈let x:T = new L in t〉 −→ σ
′ ` p〈let x:T = l in t〉

σ(l) = free∨σ(l) = p(n) σ ′ = σ +p l
R-LOCK

σ ` p〈let x:T = l. lock in t〉 −→ σ
′ ` p〈let x:T = l in t〉

σ(l) = p(n) σ ′ = σ −p l
R-UNLOCK

σ ` p〈let x:T = l. unlock in t〉 −→ σ
′ ` p〈let x:T = l in t〉

Table 3: Global steps

3 TYPE SYSTEM 10

To later relate the operational behaviour to its behavioural abstraction, we la-
bel the transition of the operational semantics appropriately. In particular, steps
for lock manipulations are labelled to indicate which process has taken or released
which lock. For instance, the labelled transition step

p〈l.lock〉−−−−→ means that a process
p takes a lock labelled l. We discuss further details about the labels in Section 3.1
and the labelled transition steps in Section 4.2.

Before defining the notion of deadlock, we first characterize the situation in
which one thread in a program attempts to acquire a lock which is not available as
follows:

Definition 2.1 (Waiting for a lock). Given a configuration σ ` P, a process p
waits for a lock l in σ ` P, written as waits(σ ` P, p, l), if it is not the case that
σ ` P

p〈l.lock〉−−−−→, and if furthermore there exists a σ ′ s.t. σ ′ ` P
p〈l.lock〉−−−−→ σ ′′ ` P′.

The notion of (resource) deadlock used is rather standard, where a number of
processes waiting for each other’s locks in a cyclic manner constitute a deadlock
(see also [43]). In our setting with re-entrant locks, a process cannot deadlock “on
itself”.

Definition 2.2 (Deadlock). A configuration σ ` P is deadlocked if σ(li) = pi(ni)
and furthermore waits(σ ` P, pi, li+k1), for all 0 ≤ i ≤ k− 1 (and where k ≥ 2
for some k). The +k represents addition modulo k. A configuration σ ` P con-
tains a deadlock, if, starting from σ ` P, a deadlocked configuration is reachable;
otherwise, it is deadlock free.

3. Type system

Next we present an effect type system to derive behavioural information which
can be used, in a second step, to detect potential deadlocks. The type system de-
rives flow information about which locks may be used at various points in the
program. Additionally, it derives an abstract, i.e., approximate representation of
the code’s behaviour. The representation extends our earlier system [43] by mak-
ing the analysis context-sensitive and furthermore by supporting type and effect
inference, both important from a practical point of view. Being context-sensitive,
making the effect system polymorphic, increases the precision of the analysis.
Furthermore, inference removes the burden from the programmer to annotate the
program appropriately to allow checking for potential deadlock. These extensions
follow standard techniques for behaviour inference, see for instance Amtoft, Niel-
son, and Nielson [5] and type-based flow analysis, see e.g., Mossin [36]. Unlike

3 TYPE SYSTEM 11

the presentation in [43], and following the mentioned standard techniques, the
system here makes use of explicit constraints. Type systems are, most commonly,
formulated in a syntax-directed manner, i.e., analyzing the program code in a
divide-and-conquer manner. That obviously results in an efficient analysis of the
code. However, a syntax-directed formulation of the deduction rules of the type
system, which forces to analyze the code following the syntactic structure of the
program, may have disadvantages as well. Using constraints in a type system de-
couples the syntax-directed phase of the analysis, which collects the constraints,
from the task of actually solving the constraints. Formulations of type systems
without relying on constraints can be seen as solving the underlying constraints
“on-the-fly”, while recurring through the structure of the code. For illustration: in
connection with (conventional) unification-based type inference, instead of inte-
grating unification into the rule system, as is often done for instance in presenta-
tions of the most well-known type-inference algorithm of Hindley-Milner-Damas
[14, 13, 27, 35], one may collect the need to unify types as a set of unification
constraints left to be solved later.

3.1. Types, effects, and constraints
The analysis performs a data flow analysis to track the usage of locks. For that

purpose, the lock creation statements are equipped with labels, writing newπ L,
where π is taken from a countably infinite set of labels. As usual, the labels π are
assumed unique in a given program. The grammar for annotations, types, and ef-
fects is given in Tables 4 and 5. As said, the annotation π is used to label program
points where locks are created, r denotes sets of πs with ρ representing corre-
sponding variables. Types include basic types, represented by B, such as the unit
type Unit, booleans, integers, etc., functional types with latent effect ϕ , and lock
types Lr where the annotation r captures the flow information about the potential
places at which the lock is created. This information will be reconstructed, and
the user writes types without annotations (the “underlying” types) in the program.
We write T (and its syntactic variants) as meta-variables for the underlying types,
and T̂ (and its syntactic variants) for the annotated types, as given in the grammar.
The universally quantified types, represented by Ŝ, capture functions which are
polymorphic in locations and effects.

Whereas the type of an expression captures the results of the computations of
the expression if it terminates, the effect captures the behaviour during the com-
putations. For the deadlock analysis, we capture the lock interactions as effects,
i.e., which locks are accessed during execution and in which order. The effects (cf.
Table 5) are split between a (thread-) local level ϕ and a global level Φ. The empty

3 TYPE SYSTEM 12

Y ::= ρ | X type-level variables
r ::= ρ | {π} | rt r lock/label sets

T̂ ::= B | Lr | T̂
ϕ−→ T̂ types

Ŝ ::= ∀~Y :C. T̂
ϕ−→ T̂ | T̂ type schemes

C ::= /0 | ρ w r,C | X w ϕ,C simple constraints

Table 4: Types and type schemes

effect is denoted by ε , representing behaviour without lock operations. Sequential
composition is represented by ϕ1;ϕ2. The choice between two effects ϕ1 +ϕ2, as
well as recursive effects recX .ϕ , is actually not generated by the algorithm; they
would show up when solving the constraints generated by the algorithm. We in-
cluded their syntax for completeness. Note also that recursion is not polymorphic.
Labels a capture the three basic effects: spawning a new process with behaviour
ϕ is represented by spawn ϕ , while r. lock and r. unlock respectively capture
lock manipulations, acquiring and releasing a lock, where r refers to the possible
points of creation. Silent transitions are represented by τ . Lock-creation has no
corresponding effect, as newly created locks are initially free, i.e., with a lock-
count of 0. On the abstract level, locks are summarized by the sum of all locks
created at a given point. Hence, lock creation will be represented by a τ-transition.
Simple constraints C finally are finite sets of in-equations of the form ρ w r or

Φ ::= 0 | p〈ϕ〉 | Φ ‖Φ effects (global)
ϕ ::= ε | ϕ;ϕ | ϕ +ϕ | α | X | recX .ϕ effects (local)
α ::= a | τ transition labels
a ::= spawn ϕ | r.lock | r.unlock labels/basic effects

Table 5: Effects

of X w ϕ , where ρ is, as mentioned, a flow variable and X an effect or behaviour
variable. The constraints are called simple as their form is restricted in that on
the “larger” side of the inequalities, only a variable is allowed. Later, we also
will make use of a more general form of constraints, which consists of “sets” of
constraints of the forms r1 w r2 and ϕ1 w ϕ2. We also use the meta-variable C for

3 TYPE SYSTEM 13

those more general constraints. Whether or not the constraints at hand are simple
should be clear from the context, and type schemes always use simple constraints,
only, as given in the grammar. To allow polymorphism we use type schemes Ŝ,
i.e., prefix-quantified types of the form ∀~Y :C. T̂ , where Y are variables ρ or X .
The qualifying constraints C in the type scheme impose restrictions on the bound
variables. Note that T̂ can only be a function type T̂

ϕ−→ T̂ in a type scheme Ŝ.
The formal system presented in this paper uses a constraint-based flow analysis as
proposed by Mossin [36] for lock information. Likewise, the effects captured as a
sequence of behaviour are formulated using constraints.

3.2. Type and effect system
This section presents the specification of the type and effect system used to de-

rive information about the lock usage. The typing part contains the flow informa-
tion about locks, which keeps track of the use of locks with respect to their point of
creation. In addition to the flow information, the effect part captures an abstraction
of the behaviour of a program. The static analysis is a standard constraint-based
analysis (see e.g., [50, 5]). To enhance the precision of the analysis, the type and
effect analysis is context-sensitive with the support of universally polymorphic
types. As is standard when capturing a form of subtyping in the presence of uni-
versal polymorphism, type schemes do not quantify unrestrictedly over type-level
variables, but are of an extended form where the universally quantified variables
range over all instances satisfying a given constraint (as part of the type scheme).

Besides constraints over the quantified variables, also the judgments of the
type and effect system are formulated using constraints and are of the following
form

C;Γ ` e : Ŝ :: ϕ (1)

where C are simple constraints and with the intended meaning that given the con-
straint C and the context Γ, expression e is of type Ŝ and has effect ϕ . As the types
and the effects contain variables ρ and X , the judgment is interpreted relative to
solutions of the constraint set C. The rules of the type and effect system to derive
such judgments are presented in Table 6.

A variable has no effect and its type (scheme) corresponds to its declaration in
the context Γ (cf. T-VAR). Similarly, lock references have no effect. As a general
observation, values have no effect as they cannot be evaluated further. Also, lock

3 TYPE SYSTEM 14

Γ(x) = Ŝ
T-VAR

C;Γ ` x : Ŝ :: ε

T-LREF

C;Γ ` lρ : Lρ :: ε

C ` ρ w {π}
T-NEWL

C;Γ ` newπ L: Lρ :: ε

bT̂1c= T1 C;Γ,x:T̂1 ` e : T̂2 :: ϕ

T-ABS1

C;Γ ` fn x:T1.e : T̂1
ϕ−→ T̂2 :: ε

bT̂1
ϕ−→ T̂2c= T1→ T2 C;Γ, f :T̂1

ϕ−→ T̂2,x:T̂1 ` e : T̂2 :: ϕ

T-ABS2

C;Γ ` fun f :T1→ T2.x:T1.e : T̂1
ϕ−→ T̂2 :: ε

C;Γ ` v1 : T̂2
ϕ−→ T̂1 :: ε C;Γ ` v2 : T̂2 :: ε

T-APP

C;Γ ` v1 v2 : T̂1 :: ϕ

C;Γ ` v : Bool:: ε C;Γ ` e1 : T̂ :: ϕ C;Γ ` e2 : T̂ :: ϕ

T-COND

C;Γ ` if v then e1 else e2 : T̂ :: ϕ

C;Γ ` e1 : Ŝ1 :: ϕ1 bŜ1c= T1 C;Γ,x:Ŝ1 ` e2 : T̂2 :: ϕ2
T-LET

C;Γ ` let x:T1 = e1 in e2 : T̂2 :: ϕ1;ϕ2

C;Γ ` t : T̂ :: ϕ C ` X wspawn ϕ

T-SPAWN

C;Γ `spawn t : Unit:: X

C;Γ ` v : Lρ :: ε C ` X w ρ.lock
T-LOCK

C;Γ ` v. lock: Lρ :: X

C;Γ ` v : Lρ :: ε C ` X w ρ.unlock
T-UNLOCK

C;Γ ` v. unlock: Lρ :: X

C1,C2;Γ ` e : T̂ :: ϕ ~Y not free in Γ,C1,ϕ ∀~Y :C2.T̂ solvable from C1 ∀~Y :C2.T̂ ` wf
T-GEN

C1;Γ ` e : ∀~Y :C2.T̂ :: ϕ

C1;Γ ` e : ∀~Y :C2.T̂ :: ϕ ∀~Y :C2.T̂ solvable from C1 by θ

T-INST

C1;Γ ` e : θ T̂ :: ϕ

C;Γ ` e : T̂ :: ϕ C ` T̂ ≤ T̂ ′,ϕ v ϕ ′

T-SUB

C;Γ ` e : T̂ ′ :: ϕ
′

Table 6: Type and effect system (specification)

3 TYPE SYSTEM 15

creation in T-NEWL has no effect.1 As for the flow, the constraint C ` ρ w {π}
in the premise ensures that the annotation ρ of the lock type contains π , which
labels the point of creation of the lock. In anticipation of the subject reduction
proof later, the conclusion of the rule can be understood to document our pick of
the flow variable ρ . Likewise, we will soon record the effect that has been derived
for a spawned thread in annotation to spawn.

For function abstraction (cf. T-ABS1), the type of the formal parameters is de-
clared as underlying type T , i.e., without any annotation. The declaration is then
annotated as T̂ and remembered in the context as the binding x:T̂ where T = bT̂c.
The operator b c removes all the annotations (including quantifications of type
schemes) and returns the corresponding un-annotated type. The premise checks
the function body e with the extended context. Rule T-ABS2 for recursive func-
tions works analogously. For function application in rule T-APP, both function
and argument have no effect as they are values. The effect of the function appli-
cation is the latent effect of the function body. The treatment of conditionals (cf.
T-COND) is standard: both types and effects of the two branches have to agree
with each other. The effect of the let-construct in rule T-LET is the sequential
composition of the effect of e1 and e2. As for the type, the derived (annotated)
type scheme Ŝ1 of e1 must be compatible with the declared underlying type T1.
The type is remembered and is used to extend the context to check expression e2.
The overall type of the let-construct is the type of e2. For spawning a thread, the
premise of T-SPAWN checks the well-typedness and the effect of the thread being
spawned. The constraint C ` X w spawn ϕ ensures that the effect variable X is an
upper bound of the effect of spawning a thread with effect ϕ . The two rules (cf.
T-LOCK and T-UNLOCK) dealing with locking and unlocking work similarly by
using a constraint in the premise to guarantee the effect ρ.lock resp. ρ.unlock is
contained in the effect variable X .

There are three non-syntax directed rules in the system, generalization, instan-
tiation, and subsumption. For the latter, we need the following definition:

Definition 3.1 (Subtyping and subeffecting). Let C be a set of simple constraints.
Then the subtyping relation C ` T̂1 ≤ T̂2 is defined in Table 7. Furthermore, the
relations C ` ϕ1 v ϕ2 and C ` r1 v r2 are given in Table 8. Note that the single
constraints on the right-hand sides of the ` are not necessarily simple constraints.

We generalize C1 ` ϕ1 v ϕ2 and C1 ` r1 v r2 to C1 `C2 as follows, where C1

1That is different from the account in [43]. That paper uses a different abstraction for the locks,
disallowing that different concrete lock references could be abstracted into one abstract one.

3 TYPE SYSTEM 16

is still a simple constraint set: C1 `C2 if C1 ` r1 v r2 for all r1 v r2 from C2 and
C1 ` ϕ1 v ϕ2 for all ϕ1 v ϕ2 from C2.

In the following we adopt the convention that for C1 ` C2, it’s required that
fv(C2) ⊆ fv(C2), analogously for the other judgments. This can always been as-
sumed by adding C1 variables and trivial constraints (for instance, adding X v X).

C ` T̂ ≤ T̂ S-REFL
C ` T̂1 ≤ T̂2 C ` T̂2 ≤ T̂3

S-TRANS

C ` T̂1 ≤ T̂3

C ` r1 v r2
S-LOCK

C ` Lr1 ≤ Lr2

C ` T̂ ′1 ≤ T̂1 C ` T̂2 ≤ T̂ ′2 C ` ϕ v ϕ ′

S-ARROW

C ` T̂1
ϕ−→ T̂2 ≤ T̂ ′1

ϕ ′−→ T̂ ′2

Table 7: Subtyping

Substitutions are defined, as usual, as finite mappings from variables to terms,
where the variables here are type-level variables ρ and X and the terms are label
sets r resp. effects ϕ (cf. Table 4 and 5). We say a substitution θ solves or satisfies
a constraint set C, written θ |=C, if /0 ` θC.

For the type system, we will put some general well-formedness restrictions on
the form of allowed type schemes, basically restricting which sets of variables can
be quantified over. Remember that constraints c ∈C need to be of the form ρ w r
or X w ϕ , i.e., for upper bounds, only variables are allowed. Correspondingly, in a
type scheme ∀~Y :C.T̂ and for a constraint for instance of the form X w ϕ ∈C, if a
variable Y1 occurring free in ϕ is bound by ∀~Y , then also its direct upper bound X
needs to be bound (analogously for constraints concerning ρ-variables). In other
words, the set of variables used in the quantification needs to be upward closed,
as defined in Definition 3.2(1). The dual definition for downward closure is given
in 3.2(2) while the upward-downward closure is given in 3.2(3).

Definition 3.2 (Closure). 1. A set of variables ~Y is upward closed wrt. C, if
the following implication holds: if Y ∈ ~Y and Y ∈ fv(ϕ) or Y ∈ fv(r) for
a constraint ϕ v Y ′ ∈ C resp. r v Y ′ ∈ C, then also Y ′ ∈ ~Y . The upward
closure of a set of variables~Y wrt. a constraint set C (written close↑(~Y ,C))
is the smallest set~Y ′ s.t.~Y ′ ⊇~Y and~Y ′ is upward closed wrt. C.

2. A set of variables ~Y is downward closed wrt. C if the following implication
holds: if Y ∈~Y , and a constraint ϕ vY ∈C or rvY ∈C, then also fv(ϕ)⊆

3 TYPE SYSTEM 17

C,r v ρ ` r v ρ S-AXL C ` r v r S-REFLL

C ` r1 v r2 C ` r2 v r3
S-TRANSL

C ` r1 v r3

C ` r1 v r1 t r2 S-LUB1
L

C ` r1 v r C ` r2 v r
S-LUB2

L
C ` r1 t r2 v r

C ` r1 t r2 v r2 t r1 S-COMML C ` r1 t (r2 t r3)v (r1 t r2)t r3 S-ASSOCL

ε;ϕ ≡ ϕ EE-UNIT ϕ1;(ϕ2;ϕ3)≡ (ϕ1;ϕ2);ϕ3 EE-ASSOC

C,ϕ v X ` ϕ v X S-AXE

ϕ1 ≡ ϕ2
S-REFLE

C ` ϕ1 v ϕ2

C ` ϕ1 v ϕ2 C ` ϕ2 v ϕ3
S-TRANSE

C ` ϕ1 v ϕ3

C ` ϕ1 v ϕ ′1 C ` ϕ2 v ϕ ′2
S-SEQ

C ` ϕ1;ϕ2 v ϕ
′
1;ϕ

′
2

C ` ϕ1 v ϕ2
S-SPAWN

C `spawn ϕ1 vspawn ϕ2

C ` r1 v r2
S-LOCK

C ` r1.lock v r2.lock

C ` r1 v r2
S-UNLOCK

C ` r1.unlock v r2.unlock

Table 8: Orders on behaviours

~Y resp. fv(r) ⊆ ~Y . The downward closure of a set of variables ~Y wrt. a
constraint set C (written close↓(~Y ,C)) is the smallest set ~Y ′ s.t. ~Y ′ ⊇~Y and
~Y ′ is downward closed wrt. C.

3. A set of variables ~Y is upward-downward closed wrt. C if the following
implication holds: if Y ∈~Y , and c ∈C with Y ∈ fv(c) and Y ′ ∈ fv(c), then
also Y ′ ∈~Y . The upward-downward closure of a set of variables ~Y wrt. a
constraint set C (written close↑↓(~Y ,C)) is the smallest set~Y ′ s.t.~Y ′ ⊇~Y and
~Y ′ is upward-downward closed wrt. C.

Besides the mentioned closure condition on the set of quantified variables,
each constraint used in the type scheme should contain at least one quantified
variable (otherwise there would be no need to put the corresponding condition

3 TYPE SYSTEM 18

into the qualifying constraints, the condition may equally well be captured by
the global constraints). Finally, at least one of the quantified variables should
actually occur in the type and all quantified variables should actually occur in the
qualifying constraints.

Definition 3.3 (Well-formedness). A type scheme ∀~Y :C.T̂ is well-formed if the
following holds

1. ~Y is upward closed wrt. C.
2. if c ∈C, then fv(c)∩~Y 6= /0.
3. /0 6= (~Y ∩ fv(T̂)) and~Y ⊆ fv(C).

The generic instance relation between two type schemes is defined as follows:

Definition 3.4 (Generic instance). A type scheme ∀~Y1:C1.T̂1 is a generic instance
of ∀~Y2:C2.T̂2 wrt. a constraint C, written as C ` ∀~Y1:C1.T̂1 .g ∀~Y2:C2.T̂2, iff there
exists a substitution θ where dom(θ)⊆ ~Y2 such that

1. C,C1 ` θC2,
2. C,C1 ` θ T̂2 ≤ T̂1, and
3. No Y in ~Y1 is free in ∀~Y2:C2.T̂2.

The two dual rules T-GEN and T-INST, which are not syntax-directed, intro-
duce resp. eliminate type schemes. While both rules require the type scheme to
be solvable from the constraint set C1 (see Definition 3.5) in the conclusion, the
generalization rule also ensures that the resulting type is well-formed.

Definition 3.5 (Solvable). A type scheme ∀~Y :C1.T̂ is solvable from C2 by substi-
tution θ , if dom(θ) ⊆~Y and C2 ` θC1. The type scheme is called solvable from
C2 if there exists a substitution that solves it.

The typing rules from Table 6 on page 14 are thread-local. To later detect
deadlocks, which are global phenomena as they involve more than one thread, we
need also well-typedness of a global system. The corresponding rules are given in
Table 9 on the next page, straightforwardly lifting the results of the local analysis
to the global level. In particular, a global program is well-typed as soon as all
its threads are. In abuse of notation, we use Φ to abbreviate p1〈ϕ1;C1〉 ‖ . . . ‖
pn〈ϕn;Cn〉.

4 TYPE INFERENCE 19

C; /0 ` t : T :: ϕ

T-THREAD

` p〈t〉 : ok :: p〈ϕ;C〉

` P1 : ok :: Φ1 ` P2 : ok :: Φ2
T-PAR

` P1 ‖ P2 : ok :: Φ1 ‖Φ2

Table 9: Type and effect system (global)

4. Type inference

Next we develop an algorithm for the type system in Section 3.2, which derives
types and effects and generates corresponding constraints (see Table 11 below). It
is formulated in a rule-based manner, with judgments of the form:

Γ ` e : T̂ :: ϕ;C . (2)

The system is syntax-directed, i.e., algorithmic, where Γ and e are considered as
“input”, and the annotated type T̂ , the effect ϕ , and the set of constraints C as
“output”. Concentrating on the flow information and the effect part, expressions
e, in particular the let-expression and function definitions, are type-annotated with
the underlying types, as given in Table 4. In contrast, e contains no flow or ef-
fect annotations; those are derived by the algorithmic type system. It would be
straightforward to have the underlying types reconstructed as well, using stan-
dard type inference à la Hindley/Milner/Damas [14, 13, 27]. For simplicity, we
focus on the type annotations and the effect part. The intended meaning of the
typing judgment in Equation (2) is that, relative to a typing context Γ and for
expression e: if evaluating e terminates, the corresponding values are elements
of the domain represented by T̂ (more precisely by the underlying type T). For
locks, the flow annotation over-approximates the point of lock creation, and fi-
nally, ϕ over-approximates the lock-interactions while evaluating e. As usual,
the behavioural over-approximation is a form of simulation. For our purpose, we
will define a particular, deadlock-sensitive form of simulation. These intended
over-approximations are understood relative to the generated constraints C, i.e.,
all solutions of C give rise to a sound over-approximation in the mentioned sense.

Ultimately, one is interested in the minimal solution of the constraints, as it
provides the most precise information. Solving the constraints is done after the
algorithmic type system, but to allow for the most precise solution afterward, each
rule should generate the most general constraint set, i.e., the one which allows the
maximal set of solutions. This is achieved using fresh variables for each additional
constraint. In the system below, new constraints are generated from requesting

4 TYPE INFERENCE 20

that types are in a “subtype” relationship. Without subtyping on the underlying
types, e.g., stipulating relationships between basic types such as Int ≤ Real,
“subtyping” here concerns the flow annotations on the lock types and the latent
effects on function types. Instead of requesting that, for instance in rule TA-APP

in Table 11, the argument of a function of type T̂2
ϕ−→ T̂1 is of a subtype T̂ ′2 of T̂2, i.e.,

instead of requiring T̂ ′2 ≤ T̂2 in that situation, the corresponding rule will generate
new constraints in requiring the subtype relationship to hold (see Definition 4.1).
As an invariant, the type system makes sure that lock types are always of the form
Lρ , i.e., using flow variables and similarly that only variables X are used for the
latent effects for function types.

Definition 4.1 (Constraint generation). The judgment T̂1 ≤ T̂2 `a C (read as “re-
quiring T̂1 ≤ T̂2 generates the constraints C”) is inductively given as follows:

B≤ B `a /0 C-BASIC Lρ1 ≤ Lρ2 `a {ρ1 v ρ2} C-LOCK

T̂ ′1 ≤ T̂1 `a C1 T̂2 ≤ T̂ ′2 `a C2 C3 = {X v X ′}
C-ARROW

T̂1
X−→ T̂2 ≤ T̂ ′1

X ′−→ T̂ ′2 `a C1,C2,C3

In the presence of subtyping/sub-effecting, the overall type of a conditional
needs to be an upper bound on the types/effects of the two branches (resp. the
least upper bound in case of a minimal solution). To generate the most general
constraints, fresh variables are used for the result type. This is captured in the
following definition. Note that given T̂ by T̂1 ∨ T̂2 `a T̂ ;C, type T̂ in itself does
not represent the least upper bound of T̂1 and T̂2. The use of fresh variables assures,
however, that the minimal solution of the generated constraints makes T̂ into the
least upper bound.

Definition 4.2 (Least upper bound). The partial operation ∨ on annotated types
(and in abuse of notation, on effects), giving back a set of constraints plus a type
(resp. an effect) is inductively given by the rules of Table 10. The operation ∧ is
defined dually.

The rules for the type and effect system then are given in Table 11. A vari-
able has no effect and its type (scheme) is looked up from the context Γ. The
constraints C that may occur in the type scheme, are given back as constraints of
the variable x, replacing the ∀-bound variables ~Y in C by fresh ones. Lock cre-
ation at point π (cf. TA-NEWL) is of the type Lρ , has an empty effect and the

4 TYPE INFERENCE 21

B1 = B2
LT-BASIC

B1 ∨ B2 = B1; /0

ρ fresh Lρ1 ≤ Lρ `a C1 Lρ2 ≤ Lρ `a C2
LT-LOCK

Lρ1 ∨ Lρ2 = Lρ ;C1,C2

T̂ ′1 ∧ T̂ ′′1 = T̂1;C1 T̂ ′2 ∨ T̂ ′′2 = T̂2;C2 X1 tX2 = X ;C3
LT-ARROW

T̂ ′1
X1−→ T̂ ′2 ∨ T̂ ′′1

X2−→ T̂ ′′2 = T̂1
X−→ T̂2;C1,C2,C3

X fresh C = {ϕ1 v X ,ϕ2 v X}
LE-EFF

ϕ1 tϕ2 = X ;C

Table 10: Constraints for least upper bound

generated constraint requires ρ w {π}, using a fresh ρ . As values, abstractions
have no effect (cf. TA-ABS rules) and again, fresh variables are appropriately
used. In rule TA-ABS1, the latent effect of the result type is represented by X
under the generated constraint X w ϕ , where ϕ is the effect of the function body
checked in the premise. The context in the premise is extended by x:dTea, where
the operation dTea annotates all occurrences of lock types L with fresh variables
and introduces fresh effect variables for the latent effects. Rule TA-ABS2 for re-
cursive functions works analogously, with an additional constraint generated by
requiring T̂2 ≥ T̂ ′2, where T̂ ′2 is the type of function body e checked in the premise.
For applications (cf. TA-APP), both the function and the arguments are values
and therefore have no effect. As usual, the type of the argument needs to be a
subtype of the input type of the function, and corresponding constraints C3 are
generated by T̂ ′2 ≤ T̂2 `a C3. For the overall effect, again a fresh effect variable
is used which is connected with the latent effect of the function by the additional
constraint X w ϕ . For conditionals, rule TA-COND ensures both the resulting
type and the effect are upper bounds of the types resp. effects of the two branches
by generating two additional constraints C and C′ (cf. Table 10 from Definition
4.2). The let-construct (cf. TA-LET) for the sequential composition has an effect
ϕ1;ϕ2. To support context-sensitivity (corresponding to let-polymorphism), the
let-rule is where the generalization over the type-level variables happens, i.e., the
introduction of ∀-quantified types in the binding for x when extending Γ. In the
first approximation, given e1 is of T̂1, variables which do not occur free in Γ can
be generalized over to obtain Ŝ1. To make the rule deterministic and to use the
most “polymorphic” representation for Ŝ, which is necessary for an algorithmic
formulation, Ŝ quantifies over the maximal number of variables for which such

4 TYPE INFERENCE 22

generalization is sound. In the setting here, the quantification affects not type
variables, but only flow variables ρ and effect variables X . As those variables are
connected by the v-relations in the constraints, also variables which do not liter-
ally occur in Γ and ϕ may indirectly affect the variables which do and thus cannot
be generalized over either (see Amtoft, Nielson, and Nielson [5]). The close-
operation close(Γ,ϕ,C, T̂) first computes the set of all “relevant” free variables in
a type T̂ and the constraint C by the operation close↑↓(fv(T̂1),C1)(cf. Definition
3.2(3)). Among the set of free variables, those that are free in the context or in the

Γ(x) = ∀~Y :C.T̂ ~Y ′ fresh θ = [~Y ′/~Y]
TA-VAR

Γ ` x : θ T̂ :: ε;θC

ρ fresh
TA-NEWL

Γ ` newπ L : Lρ :: ε;ρ w {π}

T̂1 = dT1ea Γ,x:T̂1 ` e : T̂2 :: ϕ;C X fresh
TA-ABS1

Γ ` fn x:T1.e : T̂1
X−→ T̂2 :: ε;C,X w ϕ

dT1→ T2ea = T̂1
X−→ T̂2 Γ, f :T̂1

X−→ T̂2,x:T̂1 ` e : T̂ ′2 :: ϕ;C1 T̂ ′2 ≤ T̂2 `a C2
TA-ABS2

Γ ` fun f :T1→ T2,x:T1.e : T̂1
X−→ T̂2 :: ε;C1,C2,X w ϕ

Γ ` v1 : T̂2
ϕ−→ T̂1 :: ε;C1 Γ ` v2 : T̂ ′2 :: ε;C2 T̂ ′2 ≤ T̂2 `a C3 X fresh

TA-APP

Γ ` v1 v2 : T̂1 :: X ;C1,C2,C3,X w ϕ

bT̂c= bT̂1c= bT̂2c T̂1 ∨ T̂2 = T̂ ;C ϕ1 tϕ2 = X ;C′

Γ ` v : Bool:: ε;C0 Γ ` e1 : T̂1 :: ϕ1;C1 Γ ` e2 : T̂2 :: ϕ2;C2
TA-COND

Γ ` if v then e1 else e2 : T̂ :: X ;C0,C1,C2,C,C′

Γ ` e1 : T̂1 :: ϕ1;C1 bT̂1c= T1

Ŝ1 = close(Γ,ϕ1,C1, T̂1) Γ,x:Ŝ1 ` e2 : T̂2 :: ϕ2;C2
TA-LET

Γ ` let x:T1 = e1 in e2 : T̂2 :: ϕ1;ϕ2;C1,C2

Γ ` t : T̂ :: ϕ;C X fresh
TA-SPAWN

Γ `spawn t : Unit:: X ;C,X wspawn ϕ

Γ ` v : Lρ :: ε;C X fresh
TA-LOCK

Γ ` v. lock: Lρ :: X ;C,X w ρ.lock

Γ ` v : Lρ :: ε;C X fresh
TA-UNLOCK

Γ ` v. unlock: Lρ :: X ;C,X w ρ.unlock

Table 11: Algorithmic effect inference

4 TYPE INFERENCE 23

effect, as well as the corresponding downward closure (cf. Definition 3.2(2)), are
non-generalizable and are excluded.

Definition 4.3 (Closure). The closure close(Γ,ϕ,C, T̂) of a type T̂ wrt. a context
Γ, an effect ϕ , and constraints C is given as type scheme ∀~Y :C′.T̂ , where ~Y =
close↑↓(fv(T̂),C)\ close↓(fv(Γ,ϕ),C) and C′ is the largest set where C′ ⊆C with
for all constraints c ∈C′, fv(c)∩~Y 6= /0.

The spawn expression is of unit type (cf. TA-SPAWN) and again a fresh vari-
able is used in the generated constraint. Finally, rules TA-LOCK and TA-UNLOCK

deal with locking and unlocking an existing lock created at the potential program
points indicated by ρ . Both expressions have the same type Lρ , while the effects
are ρ. lock and ρ. unlock.

The type and effect system works on the thread local level. The definition
for the global level is straightforward. If all the processes are well-typed, so is
the corresponding global program. A process p is well-typed, denoted as ` p〈t〉 ::
p〈ϕ;C〉, if ` t : T̂ :: ϕ;C. In abuse of notation, we use Φ to abbreviate p1〈ϕ1;C1〉 ‖
. . . ‖ pn〈ϕn;Cn〉.

Example 4.4. This example revisits the motivating example in Listing 1, and il-
lustrates the corresponding derivation by using the algorithmic type and effect
system in Table 11. As mentioned, we use t1; t2 as a shorthand for let x:T =
t1 in t2, where x does not occur free in t2. In the derivation, let t abbreviate
the code in Listing 1, and t0 be t1; t2 where t1 , fn x: L .(x. lock;x. lock) and
t2 , spawn (f (x2)); f (x1). The derivation starts with an empty context Γ0:

ρ1 fresh

Γ0 ` newπ1 L : Lρ1 :: ε;Cρ1

ρ2 fresh

Γ0 ` newπ2 L : Lρ2 :: ε;Cρ2

...

Γ1 ` t0 : T̂0 :: ϕ0;C0

Γ0 ` t : T̂ :: ϕ;C

where Cρ1 = ρ1 w {π1} and Cρ2 = ρ2 w {π2}. The derivation continues as shown
in the third subgoal as above with the extended context Γ1 which is of the form:

Γ1 = x1:Lρ1,x2:Lρ2 .

4 TYPE INFERENCE 24

ρ,Xf fresh

Γ1,x:Lρ ` x : Lρ :: ε; /0 X f1 fresh

Γ1,x:Lρ ` x. lock: Lρ :: X f1 ;X f1 w ρ. lock

...

Γ1,x:Lρ ` x. lock : . . .

Γ1,x:Lρ ` x. lock;x. lock: Lρ :: (X f1 ;X f2); X f1 w ρ .lock,X f2 w ρ. lock

Γ1 `fn x: L .(x. lock;x. lock) : Lρ
Xf−→ Lρ :: ε;C f

...

Γ2 ` t2 : T̂1 :: ϕ1;C1

Γ1 ` t0 : T̂0 :: ϕ0;C0

The derivation of the second locking expression is analogous, where the effect
is captured by another fresh effect variable X f2 with the constraint X f2 w ρ. lock.
We abbreviate the effect of the function body as ϕ f =X f1;X f2 , and the accumulated
constraints of the function abstraction as C f =X f1 w ρ. lock,X f2 w ρ. lock,X f w
X f1;X f2 . The typing context is then extended with a binding for the variable f ,
which corresponds to the function abstraction above, in the following form:

Γ2 = Γ1, f :Ŝ f ,

where Ŝ f = ∀ρ,X f ,X f1 ,X f2:C f .L
ρ

X f−→ Lρ .

cf. eq (3)
Γ2(f) = Ŝ f

Γ2 ` f : Lρ̃
X̃ f−→ Lρ̃ :: ε; θ̃2C f

Γ2(x2) = Lρ2

Γ2 ` x2 : Lρ2 :: ε; /0 Lρ̃ ≥ Lρ2 `a ρ̃ w ρ2

Γ2 ` f (x2) : Lρ̃ :: X2;C2

Γ2 `spawn (f (x2)) : Unit:: X3;C2,X3 wspawn X2

...

Γ ` f (x1) : Lρ̃ ′ :: X1;C′1

Γ2 ` spawn (f (x2)); f (x1) : T̂1 :: ϕ1;C1

where X2 and X3 are fresh. In addition,

ρ̃, X̃ f , X̃ f1, X̃ f2 fresh, and θ̃2 = [ρ̃, X̃ f , X̃ f1, X̃ f2/ρ,X f ,X f1 ,X f2] . (3)

Furthermore, we abbreviate the constraints generated for the function application
f (x2) as C2 = θ̃2C f , ρ̃ w ρ2,X2 w X̃ f . The type, effect and contraints for f (x1) are
derived analogously. With

ρ̃
′, X̃ ′f , X̃

′
f1, X̃

′
f2 fresh, and θ̃1 = [ρ̃ ′, X̃ ′f , X̃

′
f1, X̃

′
f2/ρ,X f ,X f1 ,X f2] , (4)

4 TYPE INFERENCE 25

we summarise the constraints generated throughout the derivation in the following
table:

C = Cρ1 ,Cρ2,C0
Cρ1 = ρ1 w {π1}
Cρ2 = ρ2 w {π2}
C0 = C f ,C1
C f = X f1 w ρ. lock,X f2 w ρ. lock,X f w X f1;X f2
C1 = C2,X3 wspawn X2,C′1
C′1 = θ̃1C f , ρ̃

′ w ρ1,X1 w X̃ ′f
= X̃ ′f1 w ρ̃ ′. lock, X̃ ′f2 w ρ̃ ′. lock, X̃ ′f w X̃ ′f1; X̃ ′f2, ρ̃

′ w ρ1,X1 w X̃ ′f
C2 = θ̃2C f , ρ̃ w ρ2,X2 w X̃ f

= X̃ f1 w ρ̃. lock, X̃ f2 w ρ̃. lock, X̃ f w X̃ f1; X̃ f2 , ρ̃ w ρ2,X2 w X̃ f

(5)

The overall type, effect, and constraints of Listing 1 is

t : Lρ̃ ′ :: X3;X1, C . (6)

With the minimal solution of the constraints C, the type Lρ̃ ′ and effect X3;X1 can
be interpreted as follows:

t : L{π1} :: spawn ({π2}.lock;{π2}.lock);{π1}.lock;{π1}.lock (7)

which reflects the structure of the flow information in the concrete program. ut

4.1. Equivalence of the two formulations
Before we show that the static analysis is correct with respect to the opera-

tional semantics, that is, it correctly over-approximates the behaviour of a pro-
gram at runtime, we prove that the two alternative formulations of the analysis
are equivalent in terms of soundness and completeness. We use `s to denote the
judgments and derivations of the formulation in Section 3.2 and `a for the ones
which generate constraints. As usual, the formulation of soundness is straightfor-
ward. The algorithmic formulation (`a) is sound with respect to the specification
(`s) if everything derivable in `a has a valid derivation in `s. Before proving
the equivalence, the following lemma relates constraint checking with constraint
generation.

Lemma 4.5 (Constraint generation).

1. (a) T̂1 ≤ T̂2 `a C, then C ` T̂1 ≤ T̂2.

4 TYPE INFERENCE 26

(b) ϕ v X `a C, then C ` ϕ v X.
2. (a) If C ` θ T̂1 ≤ θ T̂2, then T̂1 ≤ T̂2 `a C′ with C ` θC′.

(b) If C ` θϕ v θX, then ϕ v X `a C′ with C ` θC′.

Proof. Part 1 is straightforward. For part 2a, since C are a set of simple con-
straints, C is always consistent. Therefore, C ` θ T̂1 ≤ θ T̂2 implies T̂1 ≤ T̂2 `a C′

for some constraint set C. C ` θC′ is then followed by induction on T̂1 ≤ T̂2 `a C′.
Part 2b works analogously. ut

Theorem 4.6 (Soundness). Given Γ `a t : T̂ :: ϕ;C, then C;Γ `s t : T̂ :: ϕ .

Proof. By straightforward induction on the derivation by the rules in Table 11.
Case: TA-Var
We are given Γ `a x : θ T̂ :: ε;θC where Γ(x) = ∀~Y :C.T̂ and θ = [~Y ′/~Y] for some
fresh variables~Y ′. The case follows by T-VAR and T-INST.
Case: TA-NewL
We are given in this case that Γ `a newπ L : Lρ :: ε;ρ w {π} with ρ is fresh. The
case follows immediately from T-NEWL.
Case: TA-Abs1
We are given

T̂1 = dT1ea Γ,x:T̂1 `a e : T̂2 :: ϕ;C X fresh

Γ `a fn x:T1.e : T̂1
X−→ T̂2 :: ε;C′

where C′ =C,X w ϕ . By induction on the second premise, we get C;Γ,x:T̂1 `s e :
T̂2 :: ϕ . Then, we strengthen the constraint set from C to C′. This together with
bdT1ec= T1, and by T-SUB and T-ABS1, the case follows:

C′;Γ,x:T̂1 `s e : T̂2 :: ϕ C′ ` X w ϕ
T-SUB

C′;Γ,x:T̂1 `s e : T̂2 :: X bT̂1c= T1
T-ABS1

C′;Γ `sfn x:T1.e : T̂1
X−→ T̂2 :: ε

The case for TA-ABS2 works analogously.

4 TYPE INFERENCE 27

Case: TA-App
In this case, we assume

Γ `a v1 : T̂2
ϕ−→ T̂1 :: ε;C1 Γ `a v2 : T̂ ′2 :: ε;C2 T̂ ′2 ≤ T̂2 `a C3 X fresh

TA-APP
Γ `a v1 v2 : T̂1 :: X ;C

where C =C1,C2,C3,X w ϕ . Induction on the first premise and strengthening the
constraint set from C1 to C gives C;Γ `s v1 : T̂2

ϕ−→ T̂1 :: ε;. Similarly, induction
on the second premise and strengthening the constraint set from C2 to C yields
C;Γ `s v2 : T̂ ′2 :: ε . The case then follows by T-SUB and T-APP:

C;Γ `s v1 : T̂2
ϕ−→ T̂1 :: ε C ` X w ϕ

T-SUB
C;Γ `s v1 : T̂2

X−→ T̂1 :: ε

C;Γ `s v2 : T̂ ′2 :: ε C ` T̂2 ≥ T̂ ′2
T-SUB

C;Γ `s v2 : T̂2 :: ε

C;Γ `s v1 v2 : T̂1 :: X

Case: TA-Cond
By assumption, we are given

bT̂c= bT̂1c= bT̂2c T̂ ;C3 = T̂1 ∨ T̂2 X ;C4 = ϕ1tϕ2
Γ `a v : Bool:: ε;C0 Γ `a e1 : T̂1 :: ϕ1;C1 Γ `a e2 : T̂2 :: ϕ2;C2

Γ `a if v then e1 else e2 : T̂ :: X ;C0,C1,C2,C3,C4

where C = C0,C1,C2,C3,C4. By induction and also strengthening the constraint
sets to C, we get

C;Γ `s v :Bool:: ε, C;Γ `s e1 : T̂1 :: ϕ1 and C;Γ `s e2 : T̂2 :: ϕ2 . (8)

Since C ` T̂ ≥ T̂1 and C ` T̂ ≥ T̂2 as well as C ` ϕ w ϕ1 and C ` ϕ w ϕ2 (cf.
Definition 4.2), the case is concluded by T-SUB and T-COND:

C;Γ `s v :Bool:: ε, C;Γ `s e1 : T̂ :: ϕ C;Γ `s e2 : T̂ :: ϕ

C;Γ `s if v then e1 else e2 : T̂ :: ϕ

Case: TA-Let
We are given in this case

Ŝ1 = close(Γ,ϕ1,C1, T̂1) bT̂1c= T1
Γ `a e1 : T̂1 :: ϕ1;C1 Γ,x:Ŝ1 `a e2 : T̂2 :: ϕ2;C2

Γ `a let x:T1 = e1 in e2 : T̂2 :: ϕ1;ϕ2;C

4 TYPE INFERENCE 28

where C = C1,C2. Induction on the left lower premise, we get C1;Γ `s e1 : T̂1 ::
ϕ1, which by T-GEN further implies C1;Γ `s e1 : Ŝ1 :: ϕ1. The constraint set
is strengthened from C1 to C. This together with the induction on the right lower
premise and strengthening the constraint set to C, we conclude the case by T-LET:

C;Γ `s e1 : Ŝ1 :: ϕ1 C;Γ,x:Ŝ1 `s e2 : T̂2 :: ϕ2

Γ `s let x:T1 = e1 in e2 : T̂2 :: ϕ1;ϕ2;C

Case: TA-Spawn
Straightforward.
Case: TA-Lock
By assumption, we have

Γ `a v : Lρ :: ε;C X fresh

Γ `a v. lock: Lρ :: X ;C′

where C′ =C,X w ρ.lock. Induction on the premise and strengthening the con-
straint set from C to C′ yields C′;Γ `s v : Lρ :: ε . We conclude the case by T-LOCK

and T-SUB:

C′;Γ `s v : Lρ :: ε
T-LOCK

C′;Γ `s v. lock: Lρ :: ρ.lock C′ ` X w ρ.lock

C′;Γ `s v. lock: Lρ :: X

The unlocking case is analogous. ut

Completeness is, in general, the opposite of soundness, and the formulation is
more involved. While constraints in `s are given as assumption, `a generates as
little constraints as possible. Thus, one cannot expect that both formulations use
the same set of constraints because the ones generated by `a are weaker and less
restrictive than those assumed in `s. Similar relationships also apply to the types
and effects. To prove `a is complete with respect to `s, we first tackle the sources
of non-determinism in the specification in Section 3.2, namely, instantiation, gen-
eralisation, and weakening the result by subsumption. As a first step, we find a
variant of the specification, where the use of the mentioned non-syntax-directed
rules is restricted to specific points in a derivation; derivations adhering to that
more disciplined use of the rules are called normalized. As for generalization/spe-
cialization: a normalized derivation uses instantiation as “early” as possible and

4 TYPE INFERENCE 29

generalization as “late” as possible: Instantiation is done only directly after an ap-
plication of rule T-VAR, i.e., when looking up a variable from the typing context,
and generalization is used only preceding an application of T-LET, i.e., before
extending the typing context with a variable. The normalized system of the type
system in Table 6 on page 14 is defined in Table 12. We use `n to distinguish the
judgments and derivations from the other two formulations (`s and `a). We write
Γ1 .θ Γ2 for Γ1 = θΓ2.

Γ(x) = ∀~Y :C′.T̂ ∀~Y :C′.T̂ solvable from C by θ

T-VAR

C;Γ ` x : θ T̂ :: ε

T-LREF

C;Γ ` lρ : Lρ :: ε

C ` ρ w {π}
T-NEWL

C;Γ ` newπ L L : Lρ :: ε

bT̂1c= T1 C;Γ,x:T̂1 ` e : T̂2 :: ϕ

T-ABS1

C;Γ ` fn x:T1.e : T̂1
ϕ−→ T̂2 :: ε

bT̂1
ϕ−→ T̂2c= T1→ T2 C;Γ, f :T̂1

ϕ−→ T̂2,x:T̂1 ` e : T̂2 :: ϕ

T-ABS2

C;Γ ` fun f :T1→ T2,x:T1.e : T̂1
ϕ−→ T̂2 :: ε

C;Γ ` v1 : T̂2
ϕ−→ T̂1 :: ε C;Γ ` v2 : T̂ ′2 :: ε C ` T̂2 ≥ T̂ ′2

T-APP

C;Γ ` v1 v2 : T̂1 :: ϕ

C ` T̂ ≥ T̂1 C ` T̂ ≥ T̂2 C ` ϕ w ϕ1 C ` ϕ w ϕ2

C;Γ ` v : Bool:: ε C;Γ ` e1 : T̂1 :: ϕ1 C;Γ ` e2 : T̂2 :: ϕ2
T-COND

C;Γ ` if v then e1 else e2 : T̂ :: ϕ

~Y not free in Γ,C1,ϕ1 ∀~Y :C2.T̂1 solvable from C1 ∀~Y :C2.T̂1 ` wf

C1,C2;Γ ` e1 : T̂1 :: ϕ1 bT̂1c= T1 C1;Γ,x:∀~Y :C2.T̂1 ` e2 : T̂2 :: ϕ2
T-LET

C1;Γ ` let x:T1 = e1 in e2 : T̂2 :: ϕ1;ϕ2

C;Γ ` t : T̂ :: ϕ C ` X wspawn ϕ

T-SPAWN

C;Γ `spawn t : Unit:: X

C;Γ ` v : Lρ :: ε C ` X w ρ.lock
T-LOCK

C;Γ ` v. lock: Lρ :: X

C;Γ ` v : Lρ :: ε C ` X w ρ.unlock
T-UNLOCK

C;Γ ` v. unlock: Lρ :: X

Table 12: Type and effect system (syntax-directed)

In the following, we collect some additional lemmas, needed in particular for

4 TYPE INFERENCE 30

the proof of completeness and later subject reduction.

Lemma 4.7. If dom(θ)⊆ fv(C), then fv(ran(θ))⊆ fv(θC).

Proof. Straightforward. ut

Lemma 4.8. Assume C1 ` θC2 and ~Y ∩ fv(C1) = /0, and furthermore dom(θ) ⊆
fv(C2) and dom(θ)⊆~Y . Then

1. dom(θ)∩ fv(C1) = /0.
2. dom(θ)∩ fv(ran(θ)) = /0.
3. If~Y ⊆ fv(C2), then dom(θ) =~Y .
4. ~Y = fv(C2)\ fv(C1).

Proof. For part 1: the conditions dom(θ) ⊆ ~Y and ~Y ∩ fv(C1) = /0 immediately
imply the result. For part 2: The condition C1 ` θC2 implies by convention

fv(C1)⊇ fv(θC2) . (9)

We have by assumption that dom(θ) ⊆ C2 and thus Lemma 4.7 gives ran(θ) ⊆
fv(θC2). Together with equation (9), this means ran(θ)⊆ fv(C1). Thus the result
follows with part 1. For part 3, the inclusion dom(θ)⊆~Y is given as assumption.
For the opposite direction, assume for a contradiction there exists a variable Y ′ ∈~Y
but Y ′ /∈ dom(θ). The assumption ~Y ⊆ fv(C2) implies Y ′ ∈ fv(C2). Since Y ′ /∈
dom(θ), this implies Y ′ ∈ fv(θC2), as well. Equation (9) implies that also Y ′ ∈
fv(C1). This contradicts the condition that fv(C1)∩~Y = /0. For part 4: that ~Y ⊆
fv(C2)\ fv(C1) follows from part 3 and the fact that dom(θ)⊆C2. For the opposite
direction, assume for a contradiction that there exists a Y ′ ∈ fv(C2)\ fv(C1) and
Y ′ /∈~Y . Since Y ′ ∈ fv(C2) but Y ′ /∈ dom(θ), Y ′ ∈ fv(θC2)⊆C1, which contradicts
above assumption. ut

The following lemmas (about occurrence of free variables in connection with
sub-effecting and upward closure) will be needed in the proof of completeness as
well as subject reduction later in the paper.

Lemma 4.9. Given C ` ϕ2 w ϕ1 and let~Y be upward closed wrt. C. If y1 ∈~Y and
y1 ∈ fv(ϕ1), then y2 ∈ fv(ϕ2) for some y2 ∈~Y .

Proof. Straightforward. ut

Lemma 4.10. Given two constraint sets C and C′ and a set of variables ~Y with
~Y ∩ fv(C) = /0. If~Y is upward closed wrt. C′, then it is upward closed wrt. C,C′ as
well.

4 TYPE INFERENCE 31

Proof. Straightforward. ut

Lemma 4.11. Assume C,C′ ` ϕ2 w ϕ1 and further~Y is upward closed wrt. C′ and
~Y ∩ fv(C) = /0. If fv(ϕ2)∩~Y = /0, then~Y ∩ fv(ϕ1) = /0.

Proof. Immediate by Lemma 4.9 and 4.10. ut

Lemma 4.12. If C,C′ ` ϕ2 w ϕ1, C ` θC′, and dom(θ)∩ fv(C,ϕ1,ϕ2) = /0, then
C ` ϕ2 w ϕ1.

Proof. Straightforward. ut

Lemma 4.13. Assume C1,C′1 `C2, and furthermore C1 ` θC′1 for some substitu-
tion θ with dom(θ)∩ fv(C1,C2) = /0. Then C1 `C2.

Proof. Straightforward. ut

Lemma 4.14. If C,C2 ` θ1C1 and C ` θ2C2 for some substitutions θ1 and θ2,
where dom(θ2)∩ fv(C) = /0, then C ` θC1, for some substitution θ .

Proof. Applying θ2 to the first assumption gives θ2(C,C2)` θ2θ1C1, i.e., θ2C,θ2C2 `
θ2θ1C1. Since dom(θ2)∩ fv(C) = /0, this further gives C,θ2C2 ` θ2θ1C1. The as-
sumption C ` θ2C2 thus implies with Lemma 4.13 C ` θ2θ1C1, as required. ut

Lemma 4.15 (Characterization of subtypes). If C ` T̂ ≤ T̂1
ϕ−→ T̂2, then T̂ = T̂ ′1

ϕ ′−→
T̂ ′2 with C ` T̂1 ≤ T̂ ′1, C ` T̂ ′2 ≤ T̂2, and C ` ϕ ′ v ϕ .

Proof. The C ` T̂ ≤ T̂1
ϕ−→ T̂2 is given by a derivation of the corresponding rules

from Table 7. The proof follows then by straightforward induction on the deriva-
tion: the case for S-REFL is immediate, the one for S-ARROW follows by inspec-
tion of the premises of the S-ARROW rule, and S-TRANS follows by induction,
using transitivity of the ≤-relation on types and on abstract states. ut

Lemma 4.16 (Weakening (type schemes)). Assume C;Γ,x:Ŝ1 `n e : T̂2 :: ϕ and
C1 ` Ŝ1 .g Ŝ′1. Then, C;Γ,x:Ŝ′1 `n e : T̂2 :: ϕ .

Proof. By induction on the derivation in the specification of Table 12. ut

The next theorem formulates completeness of the algorithm with respect to the
normalized system: everything that is derivable in `n is derivable algorithmically
in `a. To be precise, the algorithm in general derives more specific type with
respect to subtyping, infers more precise effects, and generates weaker constraints;
thus, ultimately derives a “more general” judgment.

4 TYPE INFERENCE 32

Theorem 4.17 (Completeness). Assume Γ .θ Γ′, and C;Γ `n t : T̂ :: ϕ , then Γ `a
t : T̂ ′ :: ϕ ′;C′ such that

1. C ` θ ′C′,
2. C ` θ ′T̂ ′ ≤ T̂ , and
3. C ` θ ′ϕ ′ v ϕ ,

where θ ′ = θ ,θ ′′ for some θ ′′.

Proof. Case: e = x
We are given

Γ(x) = ∀~Y :C̃.T̂ ∀~Y :C̃.T̂ solvable from C by θ̃

C;Γ `n x : θ̃ T̂ :: ε

(10)

The assumption Γ .θ Γ′ implies Γ′(x) = ∀~Y :C̃′.T̂ ′ for some C̃′ and T̂ ′ where C̃ =
θC̃′ and T̂ = θ T̂ ′.

Γ
′(x) = ∀~Y :C̃′.T̂ ′ θ̃

′ = [~Y ′/~Y] ~Y ′ fresh
TA-VAR

Γ `a x : θ̃
′T̂ ′ :: ε; θ̃

′C̃′

By definition 3.5, the premise ∀~Y :C̃.T̂ solvable from C by θ̃ in equation (10) im-
plies that dom(θ̃) ⊆ ~Y and C ` θC̃. Since θ̃C̃ = θ̃θC̃′ = θ̃θ θ̃ ′−1θ̃ ′C′ 2, letting
θ ′ = θ̃θ θ̃ ′−1 gives C ` θ ′θ̃ ′C̃′, as required. Futhermore, θ ′θ̃ ′T̂ ′ = θ̃θ θ̃ ′−1θ̃ ′T̂ ′ =
θ̃θ T̂ ′ = θ̃ T̂ and hence, by reflexivity C ` θ ′θ̃ ′T̂ ′ ≤ θ̃ T̂ , as required. It is immedi-
ate for the effect part.
Case: e = newπ L

We are given C;Γ `n newπ L: Lρ :: ε where C ` ρ w {π}. In the algorithm,

ρ
′ fresh

Γ `a newπ L : Lρ ′ :: ε;ρ
′ w {π}

and by setting θ ′ = θ , [ρ/ρ ′], the case is immediate, using reflexivity. The case
for references works similarly.

2Note that the left-inverse of θ̃ ′ exists because θ̃ ′ is an injective mapping.

4 TYPE INFERENCE 33

Case: fn x:T1.e′

We are given
bT̂1c= T1 C;Γ,x:T̂1 `n e′ : T̂2 :: ϕ

C;Γ `n fn x:T1.e′ : T̂1
ϕ−→ T̂2 :: ε

and furthermore, Γ .θ Γ′. Let T̂ ′1 = dT̂1ea, i.e., T̂1 is T1 annotated with fresh
variables. Thus, T̂1 = θ1T̂ ′1 where dom(θ1) = fv(T̂ ′1). We then let θ̃ = θ ,θ1 and
hence

Γ,x:T̂1 .θ̃
Γ
′,x:T̂ ′1 . (11)

By induction we get Γ′,x:T̂ ′1 `a e′ : T̂ ′2 :: ϕ ′;C′, where in addition

C ` θ̃
′C′, C ` θ̃

′T̂ ′2 ≤ T̂2, C ` θ̃
′
ϕ
′ v ϕ and θ̃

′ = θ̃ , θ̃ ′′ (12)

for some θ̃ ′′. Using TA-ABS1 gives

dT̂1ea = T̂ ′1 Γ
′,x:T̂ ′1 `a e′ : T̂ ′2 :: ϕ

′;C′ X fresh

Γ
′ `a fn x:T1.e′ : T̂ ′1

X−→ T̂ ′2 :: ε;C′,ϕ ′ v X

For the constraint condition of the completeness formulation, let θ ′ = θ̃ ′, [ϕ/X],
and the induction (cf. equation (12)) gives C ` θ̃ ′ϕ ′vϕ , which implies C ` θ ′ϕ ′v
θ ′X . This together with C ` θ̃ ′C′ from the induction in equation (12) gives C `
θ ′(C′,ϕ ′v X), as required. For the typing part, we have θ ′T̂ ′1 = θ̃ ′T̂ ′1 = θ1T̂ ′1 = T̂1.
By reflexivity, we have C ` θ ′T̂ ′1 ≥ T̂1. Similarly, we have θ ′T̂ ′2 = θ̃ ′T̂ ′2. Given by
induction that C ` θ̃ ′T̂ ′2 ≤ T̂2 in equation (12), we get C ` θ ′T̂ ′2 ≤ T̂2. Finally, for
the latent effect, we have θ ′X = ϕ which implies C ` θ ′X v ϕ by reflexivity. We
conclude the case by having:

C ` θ
′T̂ ′1 ≥ T̂1 C ` θ

′T̂ ′2 ≤ T̂2 C ` θ
′X v ϕ

C ` θ
′(T̂ ′1

X−→ T̂ ′2)≤ T̂1
ϕ−→ T̂2

The case for recursive function works analogously.
Case: e = v1v2
By assumption, we are given in this case

C;Γ `n v1 : T̂2
ϕ−→ T̂1 :: ε C;Γ `n v2 : T̂ ′2 :: ε C ` T̂ ′2 ≤ T̂2

C;Γ `n v1 v2 : T̂1 :: ϕ

(13)

where Γ .θ Γ′. Induction on v1 yields Γ′ `a v1 : T̂ ′ :: ϕ ′;C′1 where

C ` θ
′
1C′1, C ` θ

′
1T̂ ′ ≤ T̂2

ϕ−→ T̂1, θ
′
1 = θ ,θ ′′1 (14)

4 TYPE INFERENCE 34

for some θ ′′1 . By the characterization of subtyping from Lemma 4.15, θ ′1T̂ ′ =
˜̂T2

ϕ̃−→ ˜̂T1 = θ ′1T̂ ′′2
θ ′1ϕ ′′
−−→ θ ′1T̂ ′′1 where

C ` T̂2 ≤ θ
′
1T̂ ′′2 , C ` θ

′
1T̂ ′′1 ≤ T̂1, C ` θ

′
1ϕ
′′ v ϕ . (15)

Induction on v2 gives Γ′ `a v2 : T̂ ′′′2 :: ε;C′2 where

C ` θ
′
2C′2, C ` θ

′
2T̂ ′′′2 ≤ T̂ ′2, θ

′
2 = θ ,θ ′′2 (16)

for some θ ′′2 . Wlog. dom(θ ′′1) ∩ dom(θ ′′2) = /0. Let θ̃ = θ ,θ ′′1 ,θ
′′
2 , then by tran-

sitvity, the first judgment of equation (15), the second judgment of equation (16)
and the last premise of equation (13) yields C ` θ ′2T̂ ′′′2 ≤ θ ′1T̂ ′′2 , which implies

C ` θ̃ T̂ ′′′2 ≤ θ̃ T̂ ′′2 . (17)

By Lemma 4.5, this means

θ̃ T̂ ′′′2 ≤ θ̃ T̂ ′′2 `C′3 with C ` θ̃C′3 . (18)

Applying TA-APP gives

θ̃ T̂ ′′′2 ≤ θ̃ T̂ ′′2 `a C′3 X fresh

Γ′ `a v1 : T̂ ′′2
ϕ ′′−→ T̂ ′′1 :: ϕ ′;C′1 Γ′ `a v2 : T̂ ′′′2 :: ε;C′2

Γ
′ `a v1v2 : T̂ ′′1 :: X ;C′

(19)

where C′ =C′1,C
′
2,C
′
3,ϕ
′′ v X . Setting θ̃ ′ = θ̃ , [ϕ/X], together with the last judg-

ment in equation (15) give C ` θ̃ ′ϕ ′′ v θ̃ ′X . The condition concerning the con-
straints C can be summed up as follows:

C ` θ̃
′C′1, C ` θ̃

′C′2 C ` θ̃
′C′3, and C ` θ̃

′(ϕ ′′ v X) (20)

which implies C ` θ̃ ′C′, as required in part 1. For part 2, C ` θ̃ T̂ ′′1 ≤ T̂1 follows
from the second judgment of equation (15). Finally, for part 3, we conclude by
reflexivity and the definition of θ̃ ′, [ϕ/X], which gives C ` θ̃ ′X v ϕ .
Case: e = if v then e1 else e2
In this case, we are given

C ` T̂ ≥ T̂1 C ` T̂ ≥ T̂2 C ` ϕ w ϕ1 C ` ϕ w ϕ2
C;Γ `n v : Bool:: ε C;Γ `n e1 : T̂1 :: ϕ1 C;Γ `n e2 : T̂2 :: ϕ2

C;Γ `n if v then e1 else e2 : T̂ :: ϕ

(21)

4 TYPE INFERENCE 35

and furthermore Γ .θ Γ′. Induction on the subterm v gives Γ′ `a v : Bool :: ε;C′0,
where

C ` θ
′
0C′0, C ` θ0 Bool ≤ Bool, C ` θ0ε v ε, and θ

′
0 = θ ,θ ′′0 (22)

for some substitution θ ′′0 . Induction the second subterm gives Γ′ `a e1 : T̂ ′1 :: ϕ ′1;C′1
where

C ` θ
′
1C′1, C ` θ

′
1T̂ ′1 ≤ T̂1, C ` θ

′
1ϕ
′
1 v ϕ1, and θ

′
1 = θ ,θ ′′1 (23)

for some substitution θ ′′1 . By transitivity, the second resp. the third judgment of
equation (23), and the first resp. the third premise of equation (21) give

C ` θ
′
1T̂ ′1 ≤ T̂ , resp. C ` θ

′
1ϕ
′
1 v ϕ . (24)

Similarly, induction on the last subterm e2 gives Γ′ `a e2 : T̂ ′2 :: ϕ ′2;C′2, where

C ` θ
′
2C′2, C ` θ

′
2T̂ ′2 ≤ T̂2, C ` θ

′
2ϕ
′
2 v ϕ2, and θ

′
2 = θ ,θ ′′2 (25)

for some substitution θ ′′2 . By transitivity, the seond resp. the third judgment of
equation (25), and the second resp. the forth premise of equation (21) give

C ` θ
′
2T̂ ′2 ≤ T̂ , resp. C ` θ

′
2ϕ
′
2 v ϕ . (26)

By rule TA-COND, we get

bT̂c= bT̂ ′1c= bT̂ ′2c T̂ ′1 ∨ T̂ ′2 = T̂ ′;C′3 ϕ ′1tϕ ′2 = X ′;C′4
Γ′ `a v : Bool :: ε;C′0 Γ′ `a e1 : T̂ ′1 :: ϕ ′1;C′1 Γ′ `a e2 : T̂ ′2 :: ϕ ′2;C′2

Γ `a if v then e1 else e2 : T̂ ′ :: X ′;C′

where C′ = C′0,C
′
1,C
′
2,C
′
3,C
′
4 with T̂ ′1 ≤ T̂ ′, T̂ ′2 ≤ T̂ ′ ` C′3 and ϕ ′1 v X ′,ϕ ′2 v X ′ `

C′4. Wlog. the domains of the substitutions θ ′′0 ,θ
′′
1 , and θ ′′2 are pairwise disjoint.

By the definition of ∨ on types, T̂ ′ is annotated with fresh variables, and hence
(dom(θ)∪dom(θ ′′0)∪dom(θ ′′1)∪dom(θ ′′2))∩ fv(T̂ ′) = /0. Furthermore, T̂ = θ̃ ′T̂ ′1
where dom(θ̃ ′) = fv(T̂ ′). Similarly, by the definition of t, X ′ is a fresh variable.
Hence, (dom(θ)∪dom(θ ′′0)∪dom(θ ′′1)∪dom(θ ′′2))∩ fv(X ′)= /0. We further know
that ϕ = θ̃ ′′X ′ where dom(θ̃ ′′) = fv(X ′). Now setting θ ′ = θ ,θ ′′0 ,θ

′′
1 ,θ

′′
2 , θ̃

′, θ̃ ′′,
the first judgment of equation (24) resp. equation (26) implies

C ` θ
′T̂1 ≤ θ

′T̂ ′ resp. C ` θ
′T̂ ′2 ≤ θ

′T̂ ′ (27)

4 TYPE INFERENCE 36

By Lemma 4.5, that means

T̂ ′1 ≤ T̂ ′, T̂ ′2 ≤ T̂ ′ `C′3 with C ` θ
′C′3 (28)

Similarly, the second judgment of equation (24) resp. equation (26) implies

C ` θ
′
ϕ
′
1 v θ

′X ′ resp. C ` θ
′
ϕ
′
2 v θ

′X ′ (29)

which implies again by Lemma 4.5 that

ϕ
′
1 v X ′,ϕ ′2 v X ′ `C′4 with C ` θ

′C′4 . (30)

Furthermore, the first judgments of the equations (22), (23) and (24) gives

C ` θ
′C′0, C ` θ

′C′1 and C ` θ
′C′2 . (31)

Hence, equations (28), (30) and (31) imply C ` θ ′C′, as required for part 1. For
part 2 resp. 3, C ` θ ′T̂ ′ ≤ T̂ by induction resp. C ` θ ′X ′ v ϕ by reflexivity, as
required.
Case: e = let x:T1 = e1 in e2
We are given

~Y not free in Γ,C1,ϕ1 ∀~Y :C2.T̂1 solvable from C1 ∀~Y :C2.T̂1 ` wf
C1,C2;Γ `n e1 : T̂1 :: ϕ1 bT̂1c= T1 C1;Γ,x:∀~Y :C2.T̂1 `n e2 : T̂2 :: ϕ2

C1;Γ `n let x:T1 = e1 in e2 : T̂2 :: ϕ1;ϕ2
(32)

and further Γ .θ Γ′. Induction on e1 gives Γ′ `a e1 : T̂ ′1 :: ϕ ′1;C′1, where in addition

C1,C2 ` θ1C′1, C1,C2 ` θ1T̂ ′1 ≤ T̂1, C1,C2 ` θϕ
′
1 v ϕ1 and θ1 = θ ,θ ′1

(33)
for some substitution θ ′1. Now let Ŝ1 = ∀~Y :C2.T̂1 and Ŝ2 = close(Γ′,ϕ ′1,C

′
1, T̂
′

1) =

∀~Y ′:C′′1 .T̂ ′1. By the definitions 4.3, C′′1 ⊆ C′1, the first judgment in equation (33)
implies C1,C2 ` θ1C′′1 . Then, by definition 3.4 and equation (33), as well as the
well-formedness definition 3.3, C1 ` Ŝ1 .g Ŝ2. The lower second premise of equa-
tion (32) can be weakend with Lemma 4.16 to

C1;Γ,x:Ŝ2 `n e2 : T̂2 :: ϕ2 (34)

The assumption Γ.θ Γ′ implies Γ,x:Ŝ2 .θ Γ′Ŝ2. Then, induction on the judgment
in equation (34) gives Γ′,x:Ŝ2 `a e2 : T̂ ′2 :: ϕ ′2;C′2, where in addition

C1 ` θ2C′2, C1 ` θ2T̂ ′2 ≤ T̂2, C1 ` θ2ϕ
′
2 v ϕ2 and θ2 = θ ,θ ′2 (35)

4 TYPE INFERENCE 37

for some substitution θ ′2. By TA-LET, we get, with Ŝ2 = close(Γ′,ϕ ′1,C
′
1, T̂
′

1), as
described above,

Γ
′ `a e1 : T̂ ′1 :: ϕ

′
1;C′1 Γ

′,x:Ŝ2 `a e2 : T̂ ′2 :: ϕ
′
2;C′2

Γ
′ `a let x:T1 = e1 in e2 : T̂ ′2 :: ϕ

′
1;ϕ
′
2;C′

where C′ =C′1,C
′
2. By definition 3.5, the second upper judgment in equation (35)

implies C1 ` θ̃C2 where dom(θ̃) ⊆ ~Y . The first judgment of the same equation
further implies

dom(θ̃)∩ fv(C1,ϕ1) = /0 (36)

This together with the first judgment in equation (33) gives by Lemma 4.14 that
C1 ` θ̃ ′C′1 with θ̃ ′ = θ̃ ,θ1. Wlog. the domains of the substitutions θ ′1 and θ ′2 are
pairwise disjoint. We then set θ ′= θ̃ ,θ ,θ ′1,θ

′
2, and C1 ` θ̃ ′C′1 gives C1 ` θ ′C′1 resp.

C1 ` θ2C′2 in equation (35) gives C1 ` θ ′C′2 which yields C1 ` θ ′C′, as required for
part 1. For the typing part, we have C1 ` θ ′T̂ ′2 ≤ T̂2 by induction. For the effect
part, the second judgment in equation (33) resp. equation (35) gives

C1,C2 ` θ
′
ϕ
′
1 v ϕ1 resp. C1 ` θ

′
ϕ
′
2 v ϕ2 . (37)

By the well-formedness of ∀~Y :C2.T̂1, ~Y is upward closed with respect to C2.
Then, by Lemma 4.11, equation (36) and the first judgment in equation (36) im-
ply dom(θ̃)∩ fv(θ ′ϕ ′1) = /0, where dom(θ̃) ⊆ ~Y . Since C1 ` θ̃C2 and dom(θ̃)∩
fv(C1,ϕ1,θ

′ϕ ′1) = /0, Lemma 4.12 implies C1 ` θ ′ϕ ′1 v ϕ1. This together with the
second judgment in equation (37), and by S-SEQ in Table 8 yield C ` θ ′(ϕ ′1;ϕ ′2)v
ϕ1;ϕ2, which concludes the case.
Case: e = spawn e′

In this case, we have by assumption

C;Γ `n t : T̂ :: ϕ C ` X wspawn ϕ

C;Γ `nspawn tϕ : Unit:: X
(38)

and furthermore Γ.θ Γ′. By induction on e′, Γ′ `a e′ : T̂ ′ :: ϕ ′;C′ where in addition

C ` θ
′C′, C ` θ

′T̂ ′ ≤ T̂ , C ` θ
′
ϕ
′ v ϕ, and θ

′ = θ ,θ ′′ (39)

for some substituion θ ′′. By applying TA-SPAWN we get

Γ `a t : T̂ ′ :: ϕ
′;C′ X ′ fresh

Γ `a spawn t : Unit :: X ′;C′′

4 TYPE INFERENCE 38

where C′′ = C′,X ′ wspawn ϕ ′. By S-SPAWN in Table 8, and by the third judg-
ment C ` θ ′ϕ ′ v ϕ in equation (39), we get C `spawn θ ′ϕ ′ vspawn ϕ . This to-
gether with the right premise in equation (38) implies by transitivity that C `spawn
θ ′ϕ ′ v X . Setting θ̃ = θ ′, [X/X ′] gives C `spawn θ̃ϕ ′ v θ̃X ′, which implies by
Lemma 4.5 that C ` θ̃(spawn ϕ ′ v X ′). The first judgment in equation (39) gives
C ` θ̃C′, and therefore implies C ` θ̃C′′, which concludes part 1 for the constraint
set. The case follows by reflexivity for the typing part, C `Unit≤Unit, as well as
for the effect part, C ` θ̃X ′ v X .
Case: e = v. lock
In this case, we have

C;Γ `n v : Lρ :: ε C ` X w ρ.lock

C;Γ `n v. lock: Lρ :: X
(40)

and further Γ .θ Γ′. We get by induction on v that Γ′ `a v : Lρ ′ :: ε;C′. In addition,
we have

C ` θ
′C′, C ` θ

′Lρ ′ ≤ Lρ , C ` θ
′
ε v ε, and θ

′ = θ ,θ ′′ (41)

for some substitution θ ′′. By rule TA-LOCK, we get

Γ
′ `a v : Lρ ′ :: ε;C′ X ′ fresh

Γ
′ `a v. lock: Lρ ′ :: X ′;C′′

where C′′ = C′,X ′ w ρ ′.lock. By S-LOCK in Table 7, and the second judgment
in equation (41) imply that C ` ρ ′ ⊆ ρ . Then, S-LOCK in Table 8 yields C `
ρ ′.lock v ρ.lock. The right premise in equation (40) gives by transitivity that
C ` ρ ′.lockvX . Setting θ̃ = θ ′, [X/X ′] and by Lemma 4.5 imply C ` θ̃(ρ ′.lockv
X ′), which gives C ` θ̃C′′, as required for the constraint part. The typing part
follows by induction as C ` θ̃Lρ ′ ≤ Lρ , while the effect part follows by reflexivity
as C ` θ̃X ′ v X , as required.

The unlocking case works analogously.
ut

4.2. Annotated semantics
In Section 2, we briefly made use of labelled steps of the operational seman-

tics, used as a technical way to define what it means to wait on a lock and to be
deadlocked in terms of transitions (as opposed to refer to the syntactic form of a

4 TYPE INFERENCE 39

program). We postponed the actual formalization of that labelling, which is done
next, where the purpose of the labelled version of the semantics is to be able to
relate the behaviour of the program to the type system. It is in particular needed to
formulate and prove the correctness of the analysis with respect to the operational
semantics. For one, all global steps need to be annotated by an appropriate label,
not only the lock handling steps. Besides that, to be able to state the soundness of
the flow analysis (as part of the general soundness), the locks themselves and the
labels in the semantics must carry corresponding information. They are therefore
augmented to carry the flow variables ρ .

The resulting annotated global steps are shown in Table 13 on the following
page. Apart from the additional annotations, the rules are identical to the ones
from Table 3 earlier. For the annotation of the steps with ρ-variables: The type
system, run on the static code, uses flow variables ρ in its derivations. In par-
ticular, for type checking lock creation statements newπ L, rule T-NEWL checks
whether the type is of the appropriate form Lρ . We use the corresponding flow
variable ρ to annotate the lock creation statement to newπ

ρ L to remember which
variable the static type system has used in T-NEWL. That variable is then re-
membered further as annotation on the freshly created lock reference lρ . The role
of the type system for annotating the spawn-steps is similar: in rule T-SPAWN,
checking spawn-expression, the effect ϕ is also assumed to be annotated in the
syntax, which allows in the reduction rule R-SPAWN here to record ϕ as part of
the reduction label. Note that since the constructs for spawning and for lock cre-
ation now are additionally labelled, we assume that the corresponding typing rules
T-NEWL and T-SPAWN from Tables 6 and 12 are formulated for that augmented
syntax accordingly.

4.3. Semantics of the behaviour
Next we are going to define the transition relation on the abstract behaviour with
the effect-constraints. Given a constraint set C where C ` a;ϕ2 v ϕ1, we interpret
it as ϕ1 may first perform an a-step before executing ϕ2. See also [5]. The a is
one of the labels from Table 5 which do not include the τ-label.

Definition 4.18. The transition relation between configurations of the form C; σ̂ `
Φ is given inductively by the rules of Table 14, where we write C ` ϕ1

a
=⇒v ϕ2 for

C ` a;ϕ2 v ϕ1. The σ̂ represents an abstract heap, which is a finite mapping from
a flow variable ρ and a process identity p to a natural number.

Each transition is labelled with one of the labels in Table 5, and correspondingly
captures the three possible steps we describe in the behaviour, namely creating

4 TYPE INFERENCE 40

t1 −→ t2
R-LIFT

σ ` p〈t1〉
p〈τ〉−−→ σ ` p〈t2〉

σ ` P1
p〈α〉−−→ σ ′ ` P′1

R-PAR

σ ` P1 ‖ P2
p〈α〉−−→ σ

′ ` P′1 ‖ P2

p2 fresh
R-SPAWN

σ ` p1〈let x:T = spawn tϕ

2 in t1〉
p1〈spawn(ϕ)〉−−−−−−−→ σ ` p1〈let x:T = () in t1〉 ‖ p2〈t2〉

σ ′ = σ [lρ 7→ free] l is fresh
R-NEWL

σ ` p〈let x:T = newπ
ρ L in t〉 p〈τ〉−−→ σ

′ ` p〈let x:T = lρ in t〉

σ(lρ) = free∨σ(lρ) = p(n) σ ′ = σ +p lρ

R-LOCK

σ ` p〈let x:T = lρ . lock in t〉 p〈lρ .lock〉−−−−−→ σ
′ ` p〈let x:T = lρ in t〉

σ(lρ) = p(n) σ ′ = σ −p lρ

R-UNLOCK

σ ` p〈let x:T = lρ . unlock in t〉 p〈lρ .unlock〉−−−−−−→ σ
′ ` p〈let x:T = lρ in t〉

Table 13: Global steps (annotated)

a new process with a given behaviour, locking and unlocking. Analogous to the
corresponding case in the concrete semantics, rule RE-SPAWN covers the cre-
ation of a new (abstract) thread and leaves the abstract heap unchanged. Tak-
ing a lock is specified by rule RE-LOCK which increases the corresponding lock
count by one. Unlocking works similarly by decreasing the lock count by one
(cf. RE-UNLOCK), where the second premise makes sure the lock count stays
non-negative. The transitions of a global effect Φ consist of the transitions of the
individual thread (cf. RE-PAR). As stipulated by rule RE-LOCK, the step to take
an abstract lock is always enabled, which is in obvious contrast to the behaviour
of concrete locks. To ensure that the abstraction preserves deadlocks requires to
adapt the definition of what it means that an abstract behaviour waits on a lock
(cf. also Definition 2.1 for concrete programs and heaps).

Definition 4.19 (Waiting for a lock (=⇒v)). Given a configuration C; σ̂ `Φ where
Φ = Φ′ ‖ p〈ϕ〉, a process p waits for a lock ρ in σ̂ `Φ, written as waitsv(C; σ̂ `
Φ, p,ρ), if C ` ϕ

ρ.lock
====⇒v ϕ ′ but σ̂(ρ,q)≥ 1 for some q 6= p.

Definition 4.20 (Deadlock). A configuration C; σ̂ `Φ is deadlocked if σ̂(ρi, pi)≥
1 and furthermore waits(C; σ̂ ` Φ, pi,ρi+k1) (where k ≥ 2 and for all 0 ≤ i ≤

4 TYPE INFERENCE 41

C; σ̂ `Φ1
a
=⇒v C; σ̂ ′ `Φ′1

RE-PAR

C; σ̂ `Φ1 ‖Φ2
a
=⇒v C; σ̂

′ `Φ
′
1 ‖Φ2

C ` ϕ
spawn(ϕ ′′)
======⇒v ϕ ′

RE-SPAWN

C; σ̂ ` p1〈ϕ〉
p1〈spawn(ϕ ′′)〉
========⇒v C; σ̂ ` p1〈ϕ ′〉 ‖ p2〈ϕ ′′〉

C ` ϕ
ρ.lock
====⇒v ϕ ′ σ̂ ′(ρ, p) = σ̂(ρ, p)+1

RE-LOCK

C; σ̂ ` p〈ϕ〉 p〈ρ.lock〉
=====⇒v C; σ̂

′ ` p〈ϕ ′〉

C ` ϕ
ρ.unlock
=====⇒v ϕ ′ σ̂(ρ, p)≥ 1 σ̂ ′(ρ, p) = σ̂(ρ, p)−1

RE-UNLOCK

C; σ̂ ` p〈ϕ〉 p〈ρ.unlock〉
=======⇒v C; σ̂

′ ` p〈ϕ ′〉

Table 14: Global transitions

k−1). The +k is meant as addition modulo k. A configuration C; σ̂ `Φ contains
a deadlock, if, starting from C; σ̂ ` Φ, a deadlocked configuration is reachable;
otherwise it is deadlock free.

Example 4.21. To detect potential deadlocks in the program in Listing 1, we ex-
plore the abstract behaviour ϕ = X3;X1 obtained in equation (6) of Example 4.4
in a process starting from an empty heap, and the constraints C generated during
the derivation of the program in equation (6). The execution uses the transition
relation on the abstract behaviour defined in Table 14, and Definition 4.18, as
well as the orders of behaviours in Table 8. We show the execution of the abstract
behaviour for a particular interleaving of the parallel processes, p1 and p2, as
follows:

C, [] ` p1〈X3;X1〉
p1〈spawn(X2)〉
========⇒v

C, [] ` p1〈X1〉 ‖ p2〈X2〉
p1〈ρ̃ ′.lock〉
======⇒v

C, [ρ̃ ′ 7→ p1(1)] ` p1〈X̃ ′f2
〉 ‖ p2〈X2〉

p2〈ρ̃.lock〉
======⇒v

C, [ρ̃ ′ 7→ p1(1)][ρ̃ 7→ p2(1)] ` p1〈X̃ ′f2
〉 ‖ p2〈X̃ f2〉

p1〈ρ̃ ′.lock〉
======⇒v

C, [ρ̃ ′ 7→ p1(2)][ρ̃ 7→ p2(1)] ` p1〈ε〉 ‖ p2〈X̃ f2〉
p2〈ρ̃.lock〉
======⇒v

C, [ρ̃ ′ 7→ p1(2)][ρ̃ 7→ p2(2)] ` p1〈ε〉 ‖ p2〈ε〉

Note that with the given constraints, the lock-manipulating steps involve a non-
deterministic choice between which abstract lock is affected. For instance, in the

4 TYPE INFERENCE 42

first locking step of the above execution, the relevant constraints for this locking
step are (cf. equation (5) of Example 4.4):

X1 w X̃ ′f , X̃ ′f w X̃ ′f1 ; X̃ ′f2, X̃ ′f1 w ρ̃
′. lock, ρ̃

′ w ρ1, ρ1 w {π1} .

The mentioned locking step can proceed by non-deterministically taking one of
the abstract locks, namely ρ̃ ′ and ρ̃1.3 It is analogous for the other three locking
steps.

The abstract heap σ̂ = [ρ̃ ′ 7→ p1(2)][ρ̃ 7→ p2(2)] at the end of the above execu-
tion does not satisfy the condition of deadlock (cf. Definitions 4.19 and 4.20). The
executions for all the other possible process interleavings and non-deterministic
choices of abstract locks in this example can be done similarly. In this case, no
reachable configuration contains a deadlock, and therefore the program code in
Listing 1 is deadlock free. ut
Example 4.22. This example illustrates deadlock detection for a program in which
locks are created dynamically. In particular, the mapping from concrete locks to
their abstract representation is non-injective, i.e., one abstract lock can represent
one or more concrete locks. Consider the following piece of code:

Listing 2: Dynamic lock creation and deadlock analysis
l e t g = fn () . newπ L in
l e t f = fn (z1 : L , z2 : L) . (z1 . l o c k ; z2 . l o c k) in
l e t x1 = g () in l e t x2 = g ()
in spawn (f (x2 , x1)) ; f (x1 , x2)

The example shows that after creating two locks by calling the function g twice, a
new process is spawned such that both processes are running in parallel. The two
processes respectively call the function f to acquire the two locks, but in a reverse
order (see Figure 1a). The above program exhibits the well-known “deadly em-
brace”. On the abstract level, both locks are abstracted to the location π , which
means that the two processes are taking the same abstract locks (see Figure 1b),
but different concrete locks. The analysis starts with the derivation of the code in
Listing 2, which is abbreviated with t. The derivation is captured in equation (42).

(cf. eq (43)) (cf. eq (44)) (cf. eq (45)) (cf. eq (46)) (cf. eq (48))

Γ0 ` t : T̂ :: ϕ;C
(42)

3Process p1 cannot take the lock represented by {π1} because the operational semantics for the
behaviours only works on variables.

4 TYPE INFERENCE 43

With an empty context Γ0, the derivation starts by analysing the function g
which creates a lock at location π .

ρ fresh

Γ0 ` newπ L: Lρ :: ε,ρ w {π} Xg fresh

Γ0 ` fn ().newπ L:
Xg−→ Lρ :: ε;Cg

(43)

where Cg = ρ w {π},Xg w ε . We ignore the constraint Xg w ε later in the example
to keep the presentation clean. The derivation continues with an extended context

Γ1 = Γ0,g:∀ρ:Cg
Xg−→ Lρ .

ρ1,ρ2,X f fresh

Γ1,z1:Lρ1 ,z2:Lρ2 ` z1 : Lρ1 :: ε; /0 X f1 fresh

Γ1,z1:Lρ1 ,z2:Lρ2 ` z1. lock: Lρ1 :: X f1 ,X f1 w ρ1.lock

...

Γ1,z1:Lρ1 ,z2:Lρ2 ` z2. lock : . . .

Γ1,z1:Lρ1 ,z2:Lρ2 ` z1. lock;z2. lock: Lρ2 :: X f1 ;X f2 ,X f1 w ρ1.lock,X f2 w ρ2.lock

Γ1 `fn (z1,z2).(z1. lock;z2. lock) : Lρ1 ×Lρ2
Xf−→ Lρ2 :: ε,C f

(44)

The derivation of the second locking expression is similar, where the effect is
captured by another fresh effect variable X f2 with the constraint X f2 w ρ2.lock.
We abbreviate the effect of the function body as ϕ f =X f1;X f2 , and the accumulated
constraints of the function abstraction as C f = X f1 w ρ1. lock,X f2 w ρ2. lock
,X f w X f1;X f2 . The typing context is then extended with a binding for the variable
f , which corresponds to the function abstraction above, in the following form:

Γ2 = Γ1, f :Ŝ f ,

where Ŝ f = ∀ρ1,ρ2,X f ,X f1,X f2:C f .L
ρ1×Lρ2

X f−→ Lρ2 .

ρ ′1 fresh θρ ′1
= [ρ ′1/ρ]

Γ2(g) = ∀ρ:Cg
Xg−→ Lρ

Γ2 ` g :
Xg−→ Lρ ′1 :: ε,θρ ′1

Cg Γ2 ` () : :: ε; /0 Xg1 fresh

Γ2 ` g() : Lρ ′2 :: Xg1;Xg1 w Xg

...

Γ2 ` g() : . . .

Γ2 ` g();g() : Lρ ′2 :: Xg1;Xg2;C′g
(45)

4 TYPE INFERENCE 44

The type and effect for the second function application g() can be derived sim-
ilarly: ρ ′2 is a fresh variable by instantiating the type of g with a substitution
θρ ′2

= [ρ ′2/ρ]. A constraint ρ ′2 w {π} is generated during the instantiation by ap-
plying θρ ′2

to Cg. The effect is captured by a fresh variable Xg2 with constraints
Xg2 w Xg generated. For the overall generated constraints for the sequential com-
position, we abbreviate C′g = ρ ′1 w {π},Xg1 w Xg,ρ

′
2 w {π},Xg2 w Xg. The deriva-

tion proceeds with the extended context

Γ3 = Γ2,x1:Lρ ′1,x2:Lρ ′2 .

(cf. eq (47))
Γ3(f) = Ŝ f

Γ3 ` f : Lρ̃1 ×Lρ̃2
X̃ f−→ Lρ̃2 :: ε; θ f1C f

Γ3(x2) = Lρ ′2 Γ3(x1) = Lρ ′1

Γ3 ` x2,x1 : Lρ ′2 ×Lρ ′1 :: ε; /0 Lρ̃1 ×Lρ̃2 ≥ Lρ ′2 ×Lρ ′1 `C′1

Γ3 ` f (x2,x1) : Lρ̃2 :: X1; θ f1C f , C′1

Γ3 `spawn (f (x2,x1)) : Unit :: X2;C1
(46)

where X1 and X2 are fresh, and

C′1 = ρ̃1 w ρ
′
2, ρ̃2 w ρ

′
1, X1 w X̃ f , and C1 = θ f1C f ,C′1,X2 w spawn X1 .

Furthermore,

ρ̃1, ρ̃2, X̃ f , X̃ f1, X̃ f2 fresh, and θ f1 = [ρ̃1, ρ̃2, X̃ f , X̃ f1, X̃ f2/ρ
′
2,ρ
′
1,X f ,X f1,X f2]

(47)
The derivation of the function application f (x1,x2) is performed analogously.

(cf. eq (49))
Γ3(f) = Ŝ f

Γ3 ` f : Lρ̃ ′1 ×Lρ̃ ′2
X̃ ′f−→ Lρ̃ ′2 :: ε; θ f2C f

Γ3(x1) = Lρ ′1 Γ3(x2) = Lρ ′2

Γ3 ` x1,x2 : Lρ ′1 ×Lρ ′2 :: ε; /0 Lρ̃ ′1 ×Lρ̃ ′2 ≥ Lρ ′1 ×Lρ ′2 `C′2

Γ3 ` f (x1,x2) : Lρ̃ ′2 :: X3; C2
(48)

where X is fresh, and

C′2 = ρ̃
′
1 w ρ

′
1, ρ̃

′
2 w ρ

′
2, X3 w X̃ ′f , and C2 = θ f2C f , C′2 .

Furthermore,

ρ̃
′
1, ρ̃
′
2, X̃

′
f , X̃
′
f1, X̃

′
f2 fresh, and θ f2 = [ρ̃ ′1, ρ̃

′
2, X̃

′
f , X̃
′
f1, X̃

′
f2/ρ

′
1,ρ
′
2,X f ,X f1,X f2]

(49)

4 TYPE INFERENCE 45

The overall type, effect, and constraints of Listing 2 is

t : Lρ̃ ′2 :: Xg1;Xg2;X2;X3;C (50)

We summarise the constraints C which are generated throughout the derivation in
the following table:

C = Cg,C f ,C′g,C1,C2
Cg = ρ w {π},Xg w ε

C f = X f1 w ρ1.lock,X f2 w ρ2.lock,X f w X f1;X f2
C′g = ρ ′1 w {π},Xg1 w Xg,ρ

′
2 w {π},Xg2 w Xg

C1 = θ f1C f ,C′1,X2 w spawn X1
= X̃ f1 w ρ̃1.lock, X̃ f2 w ρ̃2.lock, X̃ f w X̃ f1; X̃ f2 ,C

′
1,X2 w spawn X1

C′1 = ρ̃1 w ρ ′2, ρ̃2 w ρ ′1, X1 w X̃ f
C2 = θ f2C f ,C′2

= X̃ ′f1 w ρ̃ ′1.lock, X̃
′
f2 w ρ̃ ′2.lock, X̃

′
f w X̃ ′f1; X̃ ′f2,C

′
2

C′2 = ρ̃ ′1 w ρ ′1, ρ̃
′
2 w ρ ′2,X3 w X̃ ′f

(51)
With the minimal solution of the constraints C, the type Lρ̃ ′2 and the effect X2;X3
in equation (50) can be interpreted as follows:

t : Lπ :: spawn ({π}. lock; {π}. lock); {π}. lock; {π}. lock . (52)

To detect potential deadlocks in the program in Listing 2, we explore the ab-
stract behaviour ϕ =Xg1;Xg2 ;X2;X3 obtained earlier in equation (50) in a process
starting from an empty abstract heap, and the constraints C generated during the
derivation of the program in equation (51). The execution uses the transition re-
lation on the abstract behaviour defined in Table 14, and Definition 4.18, as well
as the orders of behaviours in Table 8. According to the constraints in equation
(51), we see that Xg1 w Xg w ε resp. Xg2 w Xg w ε . We therefore concentrate on
the effect X2;X3 for the execution. With a particular interleaving, and a particular
choice of abstract lock with respect to the aforementioned constraints C, we show
that a deadlocked configuration is reachable from the initial configuration.

C, [] ` p1〈X2;X3〉
p1〈spawn(X1)〉
========⇒v

C, [] ` p1〈X3〉 ‖ p2〈X1〉
p1〈ρ ′1.lock〉======⇒v

C, [ρ ′1 7→ p1(1)] ` p1〈X̃ ′f2
〉 ‖ p2〈X1〉

p2〈ρ ′2.lock〉======⇒v
C, [ρ ′1 7→ p1(1)][ρ ′2 7→ p2(1)] ` p1〈X̃ ′f2

〉 ‖ p2〈X̃ f2〉

4 TYPE INFERENCE 46

Note that although the abstract locks ρ ′1 and ρ ′2 are respectively held by process
p1 and p2, it does not block process p1 and p2 from taking the abstract lock ρ ′2 re-
spectively ρ ′1 (cf. rule RE-LOCK in Table 14). The configuration at the end of the

above execution, for which we have C ` X̃ ′f2
ρ ′2.lock====⇒v ε and C ` X̃ f2

ρ ′1.lock====⇒v ε

for processes p1 and p2, respectively, implies by definition 4.19 that both pro-
cesses are waiting for a lock which is being held by each of their neighbour. That
is, waitsv(C; σ̂ ` p1〈X̃ ′f2〉 ‖ . . . , p1,ρ

′
2) and waitsv(C; σ̂ ` . . . ‖ p2〈X̃ f2〉, p2,ρ

′
1),

which satisfies the condition for being a deadlocked configuration (cf. Defini-
tion 4.20). ut

4.4. Soundness
A crucial part for soundness of the algorithm with respect to the semantics is

preservation of well-typedness under reduction. This includes to check that the
operational semantics of the program is over-approximated by the effect given by
the type system, i.e., establishing a simulation relation between a program and
its effect; in our setting, this relation has to be sensitive to deadlocks. Defining
the simulation relation requires to relate concrete heaps with abstract ones where
concrete locks are summarized by their point of creation. See the discussion in
Section 1.2 for rationale behind the abstraction function and the design of the
corresponding deadlock sensitive simulation.

Definition 4.23 (Wait-sensitive heap abstraction). Given a concrete and an ab-
stract heap σ1 and σ̂2, and a mapping Θ from the lock references of σ1 to the
abstract locks of σ̂2, σ̂2 is a wait-sensitive heap abstraction of σ1 wrt. Θ, written
σ1 ≤Θ σ̂2, if ∑l∈{l′ | Θl′=ρ}σ1(l, p) ≤ σ̂2(ρ, p), for all p and ρ . The definition is
used analogously for comparing two abstract heaps. In the special case of map-
ping between the concrete and an abstract heap, we write ≡Θ if the sum of the
counters of the concrete locks coincides with the count of the abstract lock.

Definition 4.24 (Deadlock sensitive simulation .D
v). Assume a heap-mapping Θ

and a corresponding wait-sensitive abstraction ≤Θ. A binary relation R between
configurations is a deadlock sensitive simulation relation (or just simulation for
short) if the following holds. Assume C1; σ̂1 ` Φ1 R C2; σ̂2 ` Φ2 with σ̂1 ≤Θ σ̂2.
Then:

1. If C1; σ̂1 `Φ1
p〈a〉
==⇒v C1; σ̂ ′1 `Φ′1, then C2; σ̂2 `Φ2

p〈Θa〉
===⇒v C2; σ̂ ′2 `Φ′2 for

some C2; σ̂ ′2 `Φ′2 with σ̂ ′1 ≤Θ σ̂ ′2 and C1; σ̂ ′1 `Φ′1 R C2; σ̂ ′2 `Φ′2.
2. If waitsv((C1; σ̂1 `Φ1), p,ρ), then waitsv((C2; σ̂2 `Φ2), p,Θ(ρ)).

4 TYPE INFERENCE 47

Again, given a heap-mapping Θ, configuration C1; σ̂1 `Φ1 is simulated by C2; σ̂2 `
Φ2 (written C1; σ̂1 `Φ1 .D

v C2; σ̂2 `Φ2), if there exists a deadlock sensitive sim-
ulation for Θ s.t. C1; σ̂1 `Φ1 R C2; σ̂2 `Φ2.

The definition is used analogously for simulations between program and effect
configurations, i.e., for σ1 ` P .D

v C; σ̂2 ` Φ. In that case, the transition relation
p〈a〉
==⇒v is replaced by

p〈a〉
==⇒ for the program configurations.

C1; σ̂1 `Φ1 C1; σ̂ ′1 `Φ′1

C2; σ̂2 `Φ2 C2; σ̂ ′2 `Φ′2

v

p〈a〉

R

v

p〈Θa〉

R

Figure 2: Deadlock sensitive simulation .D
v

The notation
p〈a〉
==⇒ is used for weak transitions, defined as

p〈τ〉−−→∗ p〈a〉−−→. This
relation captures the internal steps which are ignored when relating two tran-
sition systems by simulation. It is obvious that the binary relation .D

v is it-
self a deadlock simulation. The relation is transitive and reflexive. Thus, if
C1; σ̂1 ` Φ1 .D

v C2; σ̂2 ` Φ2, the property of deadlock freedom is straightfor-
wardly carried over from the more abstract behaviour to the concrete one (cf.
Lemma 4.25).

Lemma 4.25 (Preservation of deadlock freedom). Assume C1; σ̂1 `Φ1 .D
vC2; σ̂2 `

Φ2. If C2; σ̂2 `Φ2 is deadlock free, then so is C1; σ̂1 `Φ1.

Proof. We prove contra-positively that if the configuration C1; σ̂1 `Φ1 contains a
deadlock, so does C2; σ̂2 `Φ2. Assume that C1; σ̂1 `Φ1

s
=⇒vC1; σ̂ ′1 `Φ′1 such that

C1; σ̂ ′1 ` Φ′1 is deadlocked, where s denotes a sequence of labels. By assumption,
there exists a simulation relation s.t. C1; σ̂1 ` Φ1 R C2; σ̂2 ` Φ2. This implies by
Definition 4.24 that C2; σ̂2 `Φ2

s
=⇒v C2; σ̂ ′2 `Φ′2 s.t.

C1; σ̂
′
1 `Φ

′
1 R C2; σ̂

′
2 `Φ

′
2 and σ̂

′
1 ≤Θ σ̂

′
2 , (53)

where Θ is a heap-mapping. The configuration C1; σ̂ ′1 ` Φ′1 is deadlocked means
that σ̂ ′1(ρi, pi) ≥ 1 and waitsv((C1; σ̂ ′1 ` Φ′1), pi,ρi+k1) for some k ≥ 1. Being in
a simulation relation implies with part 2 of Definition 4.24 that waitsv((C2; σ̂ ′2 `
Φ′2), pi,Θ(ρi+k1)). Furthermore, σ̂ ′1≤Θ σ̂ ′2 in Equation (53) gives σ̂ ′1(Θ(ρi), pi)≥ 1.
Hence, C2; σ̂ ′2 `Φ′2 is deadlocked and C2; σ̂2 `Φ2 contains a deadlock. ut

4 TYPE INFERENCE 48

The next lemma shows compositionality of .D
v with respect to parallel com-

position.

Lemma 4.26 (Compositionality). Assume C; σ̂1 ` p〈ϕ1〉 .D
v C; σ̂2 ` p〈ϕ2〉 for a

given heap-mapping Θ, then C; σ̂1 ` Φ ‖ p〈ϕ1〉 .D
v C; σ̂2 ` ΘΦ ‖ p〈ϕ2〉 (for the

same Θ)

Proof. Straightforward. ut

The soundness proof for the algorithmic type and effect inference is formu-
lated as a subject reduction result such that it captures the deadlock-sensitive sim-
ulation. The part for the preservation of typing under substitution is fairly standard
and therefore omitted here. For the effects, the system derives the formal be-
havioural description, i.e., over-approximation, for a program’s future behaviour;
one hence cannot expect the effect being preserved by reduction. Thus, we relate
the behaviour of the program and the behaviour of the effects via a deadlock-
sensitive simulation relation.

The proof of subject reduction is best not done using the algorithmic formu-
lation, i.e., on the derivation rules from Table 11. On the other hand, also the
original specification from Section 3.2 is problematic for performing the proof.
The reason for that lies in the presence of the three non-syntax-directed rules:
sub-typing/sub-effecting on the one hand and generalization and instantiation on
the other. The rules of the operational semantics are syntax-directed which means
that the syntactic structure of an expression or thread determines which step can
be taken: the reduction strategy is deterministic (for a single thread). In contrast,
the type system does not determine the typing rule for a given syntactic struc-
ture which, connecting the type derivations with the operational semantics in the
subject reduction proof, necessitates considering different combinations of rules
justifying a given typing judgment. To avoid that complication, subject reduction
is done for the normalized system presented in Table 12 on page 29.

For the basic step of β -reduction in the proof of subject reduction, one needs
preservation of typing under substitution. Since the proof of subject reduction uses
the normalized system and since the typing context may associate type schemes
to variables whereas expressions can carry only types), the formulation of the
substitution lemma is slightly more involved (see Lemma 4.28 below). The next
lemma is helpful for the substitution lemma in the crucial case for variables.

Lemma 4.27. Assume C1,C2;Γ` t : T̂ :: ϕ . If C2 ` θC1 with dom(θ)∩fv(Γ,C2,ϕ)=
/0, then C2;Γ ` t : θ T̂ :: ϕ .

4 TYPE INFERENCE 49

Proof. Straightforward. ut

Lemma 4.28 (Substitution). Assume C2;Γ,x:∀~Y :C1.T̂1 `n t : T̂2 :: ϕ and C1,C2;Γ`n
v : T̂1. If further C2 ` θC1 where dom(θ) =~Y , then C2;Γ `n t[v/x] : θ T̂2 :: ϕ .

Proof. Straightforward, with the help of Lemma 4.27. ut

The following substitution Lemma 4.29 resp., Corollary 4.30 for the normal-
ized system, is more general than the previous one in that the value being substi-
tuted is allowed to be a subtype of the variable; on the other hand, we can restrict
our attention to types, not type schemes.

Lemma 4.29 (Substitution). Assume C;Γ,x:T̂1 ` t : T̂2 :: ϕ and C;Γ ` v : T̂ ′1. If
further C ` T̂ ′1 ≤ T̂1, then C;Γ ` t[v/x] : T̂2 :: ϕ ..

Proof. Straightforward. ut

Corollary 4.30 (Substitution). Assume C;Γ,x:T̂1 ` t : T̂2 :: ϕ and C;Γ `n v : T̂ ′1. If
further C ` T̂ ′1 ≤ T̂1, then C;Γ ` t[v/x] : T̂ ′2 :: ϕ ′ where C ` T̂ ′2 ≤ T̂2 and C ` ϕ ′ v ϕ ,
for some T̂ ′2 and ϕ ′.

Proof. A direct consequence of Lemma 4.29 plus soundness and completeness of
the normalized system. ut

The following is a simple property connecting subtyping and generic instances.

Lemma 4.31. If C,C′ ` T̂1 ≤ T̂2, then C ` ∀~Y :C′.T̂1 &g ∀~Y :C′.T̂2.

Proof. An easy consequence of Definition 3.4 of generic instance, choosing C1 =
C2 and θ = id. ut

The following lemma expresses that typing is preserved when a typing as-
sumption in the context is “strengthened” by using larger type with respect to the
.g-order (thereby weakening the judgment). The lemma is formulated for the
specification of the type system. Corollary 4.33, the formulation as needed in the
proof of subject reduction, is an easy consequence.

Lemma 4.32 (Weakening (type schemes)). Assume C;Γ,x:Ŝ1 ` e : Ŝ2 :: ϕ and
C ` Ŝ1 .g Ŝ′1. Then, C;Γ,x:Ŝ′1 ` e : Ŝ2 :: ϕ .

Proof. Straightforward. ut

4 TYPE INFERENCE 50

Corollary 4.33 (Weakening (type schemes)). Assume C;Γ,x:Ŝ1 `n e : T̂2 :: ϕ and
C ` Ŝ1 .g Ŝ′1. Then, C;Γ,x:Ŝ′1 `n e : T̂ ′2 :: ϕ ′ where C ` T̂2 ≥ T̂ ′2 and C ` ϕ w ϕ ′.

Proof. A direct consequence of Lemma 4.32. ut

Next the proof of subject reduction, which is done for the normalized system.

Lemma 4.34 (Subject reduction for the normalized system). Let Γ `n p〈t〉 ::
p〈ϕ;C〉, and σ1 ≡Θ σ̂2. Assume furthermore θ |=C, where Θ is a ground substi-
tution.

1. σ1 ` p〈t〉 p〈τ〉−−→ σ ′1 ` p〈t ′〉, then Γ `n p〈t ′〉 :: p〈ϕ ′;C〉 with C ` ϕ w ϕ ′, and
σ ′1 ≡Θ σ̂2.

2. (a) σ1 ` p〈t〉 p〈a〉−−→σ ′1 ` p〈t ′〉where a 6= spawnϕ ′′, then C; σ̂2 ` p〈ϕ〉 p〈a〉
==⇒v

C; σ̂ ′2 ` p〈ϕ ′〉, Γ `n p〈t ′〉 :: p〈ϕ ′′;C〉, and furthermore C ` ϕ ′≡ ϕ ′′ and
σ ′1 ≡Θ σ̂ ′2.

(b) σ1 ` p〈t〉 p〈a〉−−→ σ1 ` p〈t ′′〉 ‖ p′〈t ′〉 where a = spawn ϕ ′, then C; σ̂2 `
p〈ϕ〉 p〈a〉

==⇒vC; σ̂2 ` p〈ϕ ′′〉 ‖ p′〈ϕ ′〉 and such that Γ`n p〈t ′′〉 :: p〈ϕ ′′′;C〉
where C ` ϕ ′′ ≡ ϕ ′′′, and Γ `n p′〈t ′〉 :: p′〈ϕ ′;C〉.

3. If waits(σ1 ` p〈t〉, p, lρ), then waitsv(σ̂2 ` p〈ϕ〉, p,ρ).

C; σ̂2 ` p〈ϕ〉 C; σ̂2 ` p〈ϕ ′〉

σ1 ` p〈t〉 σ ′1 ` p〈t ′〉

w

::

p〈τ〉

::

(a)

C; σ̂2 ` p〈ϕ〉 C; σ̂ ′2 ` p〈ϕ ′〉

σ1 ` p〈t〉 σ ′1 ` p〈t ′〉

v

p〈a〉

::

p〈a〉

::

(b)

Figure 3: Subject reduction

Proof. We are given Γ `n p〈t〉 :: p〈ϕ;C〉. In part 1, furthermore σ1 ` p〈t〉 p〈τ〉−−→
σ1 ` p〈t ′〉. In case of steps justified by the rules for local reduction steps of Table
2, σ1 remains unchanged. We proceed by case distinction on the rules for the local
transition steps from Table 2 (together with R-LIFT from Table 3).

4 TYPE INFERENCE 51

Case: R-RED: σ1 ` p〈let x:T = v in t〉 p〈τ〉−−→ σ1 ` p〈t[v/x]〉
By well-typedness, we are given Γ `n p〈let x:T = v in t〉 :: p〈ϕ;C〉, so inverting
rules T-THREAD and T-LET gives:

C1,C2;Γ `n v : T̂1 :: ϕ1 bT̂1c= T1 ~Y not free in C2,Γ,ϕ1 C2;Γ,x:∀~Y :C1.T̂1 `n t : T̂2 :: ϕ2

C2;Γ `n let x:T1 = v in t :: ϕ1;ϕ2

Γ `n p〈let x:T1 = v in t〉 :: p〈ϕ1;ϕ2;C2〉

with ϕ = ϕ1;ϕ2 and where furthermore C2 ` θC1 with dom(θ)⊆~Y and dom(θ)∩
fv(Γ,C2,ϕ1) = /0. For the effect of the value v, we have ϕ1 = ε (cf. the correspond-
ing rules for values T-VAR, T-LREF, T-ABS1, and T-ABS2 for the normalized
system from Table 12 on page 29). By preservation of typing under substitution
(Lemma 4.28) we get from the last premise from above that C2;Γ `n t[v/x] : T̂2 ::
ϕ2, and thus

C2;Γ `n t[v/x] : T̂2 :: ϕ2
T-THREAD

Γ `n p〈t[v/x]〉 :: p〈ϕ2;C2〉

where by rule EE-UNIT, ϕ1;ϕ2 = ε;ϕ2 ≡ ϕ2, and by rule SE-REFL, C ` ϕ1;ϕ2 w
ϕ2, as required. Since the heaps σ1 and σ̂2 do not change, the relation ≡Θ relates
the heaps after the steps, as well.

Case: R-LET: σ1 ` p〈let x2:T2 = (let x1:T1 = e1 in t1) in t2〉
p〈τ〉−−→ σ1 ` p〈let

x1:T1 = e1 in (let x2:T2 = t1 in t2)〉
We are given that Γ`n p〈let x2:T2 =(let x1:T1 = e1 in t1) in t2〉 :: p〈(ϕ1;ϕ2);ϕ3;C〉.
Then, by inverting rules T-THREAD, and T-LET twice, we get:

C1,C2,C;Γ `n e1 : T̂1 :: ϕ1 C2,C;Γ,x1:∀~Y1:C1.T̂1 ` t1 : T̂2 :: ϕ2

C2,C;Γ `n let x1:T1 = e1 in t1 : T̂2 :: ϕ1;ϕ2 C;Γ,x2:∀~Y2:C2.T̂2 `n t2 : T̂3 :: ϕ3

C;Γ `n let x2:T2 = (let x1:T1 = e1 in t1) in t2 : T̂3 :: (ϕ1;ϕ2);ϕ3

Γ `n p〈let x2:T2 = (let x1:T1 = e1 in t1) in t2〉 :: p〈(ϕ1;ϕ2);ϕ3;C〉

(54)

We have further that

~Y1 /∈ fv(C2,C,Γ,ϕ1) dom(θ1)⊆~Y1 C2,C ` θ1C1 (55)
~Y2 /∈ fv(C,Γ,ϕ1;ϕ2) dom(θ2)⊆~Y2 C ` θ2C2 (56)

Consider now the following derivation tree (using two times T-LET and T-THREAD)

4 TYPE INFERENCE 52

and the additional premises from equations (58) and (59):

C1,C;Γ `n e1 : T̂1 :: ϕ1

C2,C;Γ,x1:∀~Y1:C1.T̂1 `n t1 : T̂2 :: ϕ2 C;Γ,x1:∀~Y1:C1.T̂1,x2:∀~Y2:C2.T̂2 `n t2 : T̂3 :: ϕ3

C;Γ,x:∀~Y1:C1.T̂1 `nlet x2:T2 = t1 in t2 : T̂3 :: ϕ2;ϕ3

C;Γ `nlet x1:T1 = e1 in (let x2:T2 = t1 in t2) : T̂3 :: ϕ1;(ϕ2;ϕ3)

Γ `n p〈let x1:T1 = e1 in (let x2:T2 = t1 in t2)〉 :: p〈ϕ1;(ϕ2;ϕ3);C〉

(57)

~Y1 /∈ fv(C,Γ,ϕ1) dom(θ ′1)⊆~Y1 C ` θ
′
1C1 (58)

~Y2 /∈ fv(C,Γ,x1:∀~Y1:C1.T̂1,ϕ2) dom(θ ′2)⊆~Y2 C ` θ
′
2C2 (59)

They can be justified as follows.
The first condition of (58) directly follows from the corresponding one from

(55). The above conditions (55) imply with Lemma 4.8(1), dom(θ1) ∩ fv(C2,C) =
/0, i.e., in particular dom(θ1)∩ fv(C) = /0. Thus, with Lemma 4.14, the rightmost
conditions from (55) and from (56) imply C ` θ ′1C1. As for equation (59): The
first condition follow from the first one of (56) wlog., the remaining two are un-
changed from (56).

The leftmost C1,C2,C;Γ `n e1 : T̂1 :: ϕ1 leaf in the tree from (54) can be
strengthened to

C1,C;Γ `n e1 : θ2T̂1 :: ϕ1 (60)

with Lemma 4.27. Note that the conditions dom(θ2)∩ fv(C,C1,Γ, T̂ ,ϕ1) = /0 and
C1,C ` θ2C2 hold as well (the dom(θ2)∩ fv(C1, T̂1) = /0 holds wlog.). Thus, the
judgment of equation (60) corresponds to the left-most subgoal of the tree in (57)
The second sub-goal of (57) is directly covered by the second subgoal of (54).
The third sub-goal of (57) follows from the third one of (54) by weakening with
respect to the typing context. Thus, we conclude by EE-ASSOCS and SE-REFL

that C ` (ϕ1;ϕ2);ϕ3 w ϕ1;(ϕ2;ϕ3).

Case: R-IF1: σ1 ` p〈let x:T = if true then e1 else e2 in t〉 p〈τ〉−−→ σ1 ` p〈let
x:T = e1 in t〉
From the well-typedness assumption and inverting rules T-THREAD, T-LET, and

4 TYPE INFERENCE 53

T-IF1, we get:

C,C′ ` T̂ ′ ≥ T̂1 C,C′ ` T̂ ′ ≥ T̂2
C,C′ ` ϕ ′ w ϕ1 C,C′ ` ϕ ′ w ϕ2

C,C′;Γ `ntrue : Bool:: ε

C,C′;Γ `n e1 : T̂1 :: ϕ1 C,C′;Γ `n e2 : T̂2 :: ϕ2

C,C′;Γ `nlet x:T = if true then e1 else e2 : T̂ ′ :: ϕ
′ C;Γ,x:∀~Y ′:C′.T̂ ′ `n t : T̂ :: ϕ

C;Γ `nlet x:T = if true then e1 else e2 in t : T̂ :: ϕ
′;ϕ

Γ `n p〈let x:T = if true then e1 else e2 in t〉 :: p〈ϕ ′;ϕ;C〉

where ~Y ′ 6∈ fv(C,Γ,ϕ ′),C ` θC′ and dom(θ)⊆ ~Y ′ for some θ . Lemma 4.31 gives
C ` ∀~Y ′:C′.T̂ ′ .g ∀~Y ′:C′.T̂1, and further by Corollary 4.33, the right-most subgoal
can be weakened to C;Γ,x:∀~Y ′:C′.T̂1 `n t : T̂ ′′ :: ϕ ′′ for some T̂ ′′ and ϕ ′′, where
C ` T̂ ′′ ≤ T̂ and C ` ϕ ′′ v ϕ .

Then, we get by applying T-LET and T-THREAD that

C,C′;Γ `n e1 : T̂1 :: ϕ1 C;Γ,x:∀~Y ′:C′.T̂1 `n t : T̂ ′′ :: ϕ
′′

C;Γ `nlet x:T = e1 in t : T̂ ′′ :: ϕ1;ϕ
′′

Γ `n p〈let x:T = e1 in t〉 :: p〈ϕ1;ϕ
′′;C〉

We are given ~Y ′ ∩ fv(C,Γ,ϕ ′) = /0 and well-formedness of ∀~Y ′:C′.T̂ ′ implies ~Y ′

is upward closed with respect to C′. Both together with C,C′ ` ϕ ′ w ϕ1 give by
Lemma 4.11 that ~Y ′ ∩ fv(ϕ1) = /0. Thus, by Lemma 4.12 implies C ` ϕ ′ w ϕ1.
This together with C ` ϕ w ϕ ′′ implies by SE-SEQ C ` ϕ ′;ϕ w ϕ1;ϕ ′′, which
concludes the case.

The case for R-IF2 works analogously.

Case: R-APP1: σ1 ` p〈let x2:T2 = (fn x1:T1.t1) v in t2〉
p〈τ〉−−→ σ1 ` p〈let x2:T2 =

t1[v/x1] in t2〉
From the well-typedness assumption and inverting rules T-THREAD, T-LET, T-APP

and T-ABS1, we get:

bT̂1c= T1 C,C′;Γ,x1:T̂1 `n t1 : T̂ ′1 :: ϕ1

C,C′;Γ `nfn x1:T1.t1 : T̂1
ϕ1−→ T̂ ′1 :: ε C,C′;Γ `n v : T̂ ′′1 :: ε C,C′ ` T̂1 ≥ T̂ ′′1

C,C′;Γ `n (fn x1:T1.t1) v : T̂ ′1 :: ϕ1 C;Γ,x2:∀~Y :C′.T̂ ′1 `n t2 : T̂2 :: ϕ2

C;Γ `nlet x2:T2 = (fn x1:T1.t1) v in t2 : T̂2 :: ϕ1;ϕ2

Γ `n p〈let x2:T2 = (fn x1:T1.t1) v in t2〉 :: p〈ϕ1;ϕ2;C〉
(61)

4 TYPE INFERENCE 54

where ~Y 6∈ fv(C,Γ,ϕ ′),C ` θC′ and dom(θ)⊆~Y for some θ . Using the substitu-
tion lemma (Corollary 4.30) on the left-most subgoal gives C,C′;Γ `n t1[v/x1] :
T̂ ′′′1 :: ϕ ′1 where

C,C′ ` T̂ ′′′1 ≤ T̂ ′1 (62)

and C,C′ ` ϕ ′1 v ϕ1. Equation (62) implies with Lemma 4.31 ∀~Y :C′.T̂ ′′′1 &g

∀~Y :C′.T̂ ′1. Thus by using weakening (Corollary 4.33) on the right-most subgoal of
(61) we get C;Γ,x2:∀~Y :C′.T̂ ′′′1 `n t2 : T̂ ′2 :: ϕ ′2 with C ` T̂ ′2 ≤ T̂2 and C ` ϕ ′2 v ϕ2.
Thus we can derive

C,C′;Γ `n t1[v/x1] : T̂ ′′′1 :: ϕ
′
1 C;Γ,x2:∀~Y :C′.T̂ ′′′1 `n t2 : T̂ ′2 :: ϕ

′
2

C;Γ `nlet x2:T = t1[v/x1] in t2 : T̂ ′2 :: ϕ
′
1;ϕ
′
2

Γ `n p〈let x2:T = t1[v/x1] in t2〉 :: p〈ϕ ′1;ϕ
′
2;C〉

Therefore, we conclude the case observing that C ` ϕ1;ϕ2 w ϕ ′1;ϕ ′2 (by SE-SEQ).

Case: R-APP2: σ1 ` p〈let x2:T2=(fun f :Tf .x1:T1.t1)v in t2〉
p〈τ〉−−→

σ1 ` p〈let x2:T2= t1[v/x1][fun f :Tf .x1:T1.t1/ f] in t2〉
From the well-typedness assumption and inverting rules T-THREAD, T-LET, T-APP

and T-ABS2, we get:

bT̂f c= Tf T̂f = T̂1
ϕ1−→ T̂ ′1

C;C′;Γ,x1:T̂1, f :T̂f `n t1 : T̂ ′1 :: ϕ1

C,C′;Γ `nfun f :Tf .x1:T1.t1 : T̂1
ϕ1−→ T̂ ′1 :: ε C,C′;Γ `n v : T̂ ′′1 :: ε C,C′ ` T̂1 ≥ T̂ ′′1

C,C′;Γ `n (fun f :Tf .x1:T1.t1) v : T̂ ′1 :: ϕ1 C;Γ,x2:∀~Y :C′.T̂ ′1 `n t2 : T̂2 :: ϕ2

C;Γ `nlet x2:T2 = (fun f :Tf .x1:T1.t1) v in t2 : T̂2 :: ϕ1;ϕ2

Γ `n p〈let x2:T2 = (fun f :Tf .x1:T1.t1) v in t2〉 :: p〈ϕ1;ϕ2;C〉
(63)

where ~Y 6∈ fv(C,Γ,ϕ ′),C ` θC′ and dom(θ) ⊆ ~Y for some θ . Using two times
the substitution lemma (Corollary 4.30) on the left-most subgoal gives C,C′;Γ `n
t1[v/x1][fun f :Tf .x1:T1.t1/ f] : T̂ ′′′1 :: ϕ ′1 where

C,C′ ` T̂ ′′′1 ≤ T̂ ′1 (64)

and C,C′ ` ϕ ′1 v ϕ1. Equation (64) implies with Lemma 4.31 ∀~Y :C′.T̂ ′′′1 &g

∀~Y :C′.T̂ ′1. Thus by using weakening (Corollary 4.33) on the right-most subgoal of
(63) we get C;Γ,x2:∀~Y :C′.T̂ ′′′1 `n t2 : T̂ ′2 :: ϕ ′2 with C ` T̂ ′2 ≤ T̂2 and C ` ϕ ′2 v ϕ2.

4 TYPE INFERENCE 55

Therefore we can derive:

C,C′;Γ `n t1[v/x1][fun f :Tf .x1:T1.t1/ f] : T̂ ′′′1 :: ϕ
′
1 C;Γ,x2:∀~Y :C′.T̂ ′1 `n t2 : T̂ ′2 :: ϕ

′
2

C;Γ `nlet x2:T2 = t1[v/x1][fun f :Tf .x1:T1.t1/ f] in t2 : T̂ ′2 :: ϕ
′
1;ϕ
′
2

Γ `n p〈let x2:T2 = t1[v/x1][fun f :Tf .x1:T1.t1/ f] in t2〉 :: p〈ϕ ′1;ϕ
′
2;C〉

Thus, by SE-SEQ, C ` ϕ1;ϕ2 w ϕ ′1;ϕ ′2, as required.

Case: R-NEWL: σ1 ` p〈let x:T = newπ
ρL in t〉 p〈τ〉−−→ σ ′1 ` p〈let x:T = lρ in t〉

where σ ′1 = σ1[lρ 7→ free] for a fresh l. By the well-typedness assumption and
inverting T-THREAD, T-LET, and T-NEWL we get

C,C′ ` ρ w {π}

C,C′;Γ `n newπ
ρL : Lρ :: ε C;Γ,x:∀~Y :C′.Lρ `n t : T̂ :: ϕ

C;Γ `nlet x:T = newπ
ρL in t : T̂ :: ε;ϕ

Γ `n p〈let x:T = newπ
ρL in t〉 :: p〈ε;ϕ;C〉

where ~Y 6∈ fv(C,Γ),C ` θC′, and dom(θ) ⊆ ~Y for some θ . Using T-LET and
T-THREAD gives:

C,C′;Γ `n lρ : Lρ :: ε C;Γ,x:∀~Y :C′.Lρ `n t : T̂ :: ϕ

C;Γ `let x:T = lρ in t : T̂ :: ε;ϕ

Γ `n p〈let x:T = lρ in t〉 :: p〈ε;ϕ;C〉

Then, by SE-REFL, C ` ε;ϕ w ε;ϕ . Finally, σ1 ≡Θ σ2 before the step implies
that also σ ′1 ≡Θ σ2 after the step, as the new lock is free initially.

Case: R-LOCK: σ1 ` p〈let x:T = lρ . lock in t〉 p〈lρ .lock〉−−−−−→σ ′1 ` p〈let x:T = lρ in

t〉
where σ1(lρ) = free or σ1(lρ) = p(n) and σ ′1 = σ1 +p lρ . By the well-typedness
assumption and by inverting rules T-THREAD, T-LET, T-LOCK, and T-LREF, we
get:

C,C′;Γ `n lρ : Lρ :: ε C,C′ ` X w ρ.lock

C;C′ `n lρ . lock: Lρ :: X C;Γ,x:∀~Y :C′.Lρ `n t : T̂ :: ϕ

C;Γ `nlet x:T = lρ . lock in t : T̂ :: X ;ϕ

Γ `n p〈let x:T = lρ . lock in t〉 :: p〈X ;ϕ;C〉

4 TYPE INFERENCE 56

where ~Y 6∈ fv(C,Γ,X),C ` θC′, and dom(θ) ⊆~Y for some θ . By rules T-LREF,
T-LET and T-THREAD, we can derive

C,C′;Γ `n lρ : Lρ :: ε C;Γ,x:∀~Y :C′.Lρ `n t : T̂ :: ϕ

C;Γ `nlet x:T = lρ in t : T̂ :: ε;ϕ

Γ `n p〈let x:T = lρ in t〉 :: p〈ε;ϕ;C〉

We are given ~Y ∩ fv(C,X) = /0 and well-formedness of ∀~Y :C′.Lρ implies ~Y is up-
ward closed with respect to C′. Both together with C,C′ ` X w ρ.lock give by
Lemma 4.11 that also ~Y ∩ fv(ρ.lock) = /0. Thus, all conditions of Lemma 4.12
are satified, yielding C ` X w ρ.lock. Then, by SE-SEQ C ` X ;ϕ w ρ.lock;ϕ ,

i.e., C ` X ;ϕ
ρ.lock
====⇒v ϕ . Then, by RE-LOCK we get

C;σ2 ` p〈X ;ϕ〉 p〈ρ.lock〉
=====⇒v C;σ

′
2 ` p〈ϕ〉 (65)

where σ ′(ρ, p) = σ(ρ, p)+ 1. Thus, the assumption σ1 ≡Θ σ2 before the step
implies σ ′1 ≡Θ σ ′2 after the step. Finally, by EE-UNIT, C ` ε;ϕ ≡ ϕ , as required.

The case for R-UNLOCK works analogously.
Part 2b deals with spawn-steps.

Case: R-SPAWN: σ1 ` p1〈let x:T = spawn tϕ2
2 in t1〉

p1〈spawn(ϕ2)〉−−−−−−−→ σ1 ` p1〈let
x:T = () in t1〉 ‖ p2〈t2〉
By the well-typedness assumption and inverting rules T-THREAD, T-LET, and
T-SPAWN gives

C,C′;Γ `n t2 : T̂2 :: ϕ2 C,C′ ` X wspawn ϕ2

C,C′;Γ `nspawn tϕ2
2 :Unit:: X C;Γ,x:∀~Y :C′. Unit `n t1 : T̂1 :: ϕ1

C;Γ `nlet x:T = spawn tϕ2
2 in t1 : T̂1 :: X ;ϕ1

Γ `n p1〈let x:T = spawn tϕ2
2 in t1〉 :: p1〈X ;ϕ1;C〉

where ~Y 6∈ fv(C,Γ,X),C ` θC′, and dom(θ) ⊆ ~Y for some θ . Applying rules
T-LET and T-THREAD gives:

C,C′;Γ `n p2 : Unit:: ε C;Γ,x:∀~Y :C′. Unit `n t1 : T̂1 :: ϕ1

C;Γ `nlet x:T = p2 in t1 : T̂1 :: ε;ϕ1

Γ `n p1〈let x:T = p2 in t1〉 :: p1〈ε;ϕ1;C〉

4 TYPE INFERENCE 57

By well-formedness, ∀~Y :C′. Unit implies ~Y = /0 and C′ = /0. Therefore, C,C′ `
X wspawn ϕ2 implies C ` X wspawn ϕ2. Then, by SE-SEQ C ` X ;ϕ1 wspawn
ϕ2;ϕ1, i.e. C ` X ;ϕ1

spawn(ϕ2)
=====⇒v ϕ1. Hence we get by RE-SPAWN

C;σ ` p1〈X ;ϕ1〉
p1〈spawn(ϕ2)〉
========⇒v C;σ ` p1〈ϕ1〉 ‖ p2〈ϕ2〉 (66)

By EE-UNIT, C ` ε;ϕ1 ≡ ϕ1, as required.
Since C′ = /0, the left-most subgoal is written as C;Γ `n t2 : T̂2 :: ϕ2. Then, we

conclude the case by T-THREAD:

C;Γ `n t2 : T̂2 :: ϕ2

Γ `n p2〈t2〉 :: p2〈ϕ2〉

For part 3, we are given waits(σ1 ` p〈t〉, p, lρ), i.e., by Definition 2.1, it is not

the case that σ1 ` p〈t〉 p〈lρ.lock〉−−−−−→ but σ ′1 ` p〈t〉 p〈lρ.lock〉−−−−−→ for some σ ′1 which implies
that for some process q,

σ1(lρ) = q(n) with q 6= p . (67)

The definition further implies that the thread t is of the form let x:T = lρ . lock
in t ′, and we are given more specifically that σ1 ` p〈let x:T = lρ . lock in

t ′〉 6 p〈l
ρ.lock〉−−−−−→. The well-typedness assumption and inverting rules T-THREAD, T-LET

and T-LOCK gives

C,C′;Γ `n lρ : Lρ :: ε C,C′ ` X w ρ.lock

C;C′ `n lρ . lock: Lρ :: X C;Γ,x:∀~Y :C′.Lρ `n t ′ : T̂ :: ϕ

C;Γ `nlet x:T = lρ . lock in t ′ : T̂ :: X ;ϕ

Γ `n p〈let x:T = lρ . lock in t ′〉 :: p〈X ;ϕ;C〉

where~Y 6∈ fv(C,Γ,X),C ` θC′ and dom(θ)⊆~Y for some θ .
We are given~Y ∩ fv(C,X) = /0, and furthermore, well-formedness of ∀~Y :C′.Lρ

implies ~Y is upward closed with respect to C′. Both together with C,C′ ` X w
ρ.lock give by Lemma 4.11 that also ~Y ∩ fv(ρ.lock) = /0. Thus, all conditions
of Lemma 4.12 are satisfied, yielding C ` X w ρ.lock. Then, by SE-SEQ C `
X ;ϕ w ρ.lock;ϕ , i.e. C ` X ;ϕ

ρ.lock
====⇒v ϕ .

The assumption σ1 ≡Θ σ2 and equation (67) imply by the wait-equivalence
definition (Definition 4.23) that σ2(ρ,q) ≥ 1. Thus, by Definition 4.19, we have
waitsv(σ2 ` p〈X ;ϕ〉, p,ρ), as required. ut

4 TYPE INFERENCE 58

The well-typedness relation between a program and its effect straightforwardly
implies a deadlock-preserving simulation:

Corollary 4.35. Given σ1 ≡Θ σ2 and Γ ` p〈t〉 :: p〈ϕ;C〉, then σ1 ` p〈t〉 .D
v

C;σ2 ` p〈ϕ〉.

Proof. The weak transition relation
p〈a〉
==⇒ is defined as

p〈τ〉−−→∗ p〈a〉−−→. Thus the result
follows from subject reduction by induction on the number of τ-steps. ut

Lemma 4.36 (Subject reduction). Let Γ `a p〈t〉 :: p〈ϕ;C〉, σ1 ≡Θ σ̂2, and θ |=C.

1. σ1 ` p〈t〉 p〈τ〉−−→ σ ′1 ` p〈t ′〉, then Γ `a p〈t ′〉 :: p〈ϕ ′;C′〉 with C ` θ ′C′ for some
θ ′, and furthermore C ` ϕ w θ ′ϕ ′, and σ ′1 ≡Θ σ̂2.

2. (a) σ1 ` p〈t〉 p〈a〉−−→σ ′1 ` p〈t ′〉where a 6= spawnϕ ′′, then C; σ̂2 ` p〈ϕ〉 p〈a〉
==⇒v

C; σ̂ ′2 ` p〈ϕ ′〉, Γ `a p〈t ′〉 :: p〈ϕ ′′;C′〉 with C ` θ ′C′, furthermore C `
ϕ ′ w θ ′ϕ ′′ and σ ′1 ≡Θ σ̂ ′2.

(b) σ1 ` p〈t〉 p〈a〉−−→ σ1 ` p〈t ′′〉 ‖ p′〈t ′〉 where a = spawn ϕ ′, then C; σ̂2 `
p〈ϕ〉 p〈a〉

==⇒vC; σ̂2 ` p〈ϕ ′′〉 ‖ p′〈ϕ ′〉 and such that Γ`a p〈t ′′〉 :: p〈ϕ ′′′;C′′〉
with C ` θ ′′C′′ and C ` ϕ ′′ w θ ′′ϕ ′′′, and furthermore Γ `a p′〈t ′〉 ::
p′〈ϕ ′′′′;C′〉 with C ` θ ′C′ and C ` ϕ ′ w θ ′ϕ ′′′′.

3. If waits(σ1 ` p〈t〉, p, l), then waitsv(C; σ̂2 ` p〈ϕ〉, p, θ̂ l).

Proof. We are given that Γ `a p〈t〉 :: p〈ϕ;C〉, and furthermore in part 1, σ1 `
p〈t〉 p〈τ〉−−→ σ ′1 ` p〈t ′〉. By soundness, we have Γ `s p〈t〉 :: p〈ϕ;C〉. Then, we get by
part 1 in Lemma 4.34 that

Γ `s p〈t ′〉 :: p〈ϕ ′′;C〉 with C ` ϕ w ϕ
′′, and σ

′
1 ≡θ̂

σ2 . (68)

By the first condition in equation (68) and the completeness (cf. Theorem 4.17),
we get

Γ `a p〈t ′〉 :: p〈ϕ ′;C′〉, C ` θ
′C′ and C ` θ

′
ϕ
′ v ϕ

′′ (69)

The second inequality in equation (68) and the last one in equation (69) give by
transitivity that C ` ϕ w θ ′ϕ ′. This together with Γ `a p〈t ′〉 :: p〈ϕ ′;C′〉 and C `
θ ′C′ in equation (69), and σ ′1 ≡Θ σ2 in equation (68) conclude part 1.

It is analogously for the other parts. ut

The well-typedness relation between a program and its effect straightforwardly
implies a deadlock-preserving simulation:

5 CONCLUSION 59

Corollary 4.37. Given σ1 ≡Θ σ̂2 and Γ ` p〈t〉 :: p〈ϕ;C〉, then σ1 ` p〈t〉 .D
v

C; σ̂2 ` p〈ϕ〉.

Proof. The result follows from soundness in Theorem 4.6, Corollary 4.35 and
completeness in Theorem 4.17. ut

5. Conclusion

We have presented a constraint-based type and effect inference algorithm for
deadlock checking. It infers a behavioural description of a thread’s behaviour
concerning its lock interactions which then is used to explore the abstract state
space to detect potential deadlocks. The static analysis is developed for a con-
current calculus with higher-order functions and dynamic lock creation. Covering
lock creation by an appropriate abstraction extends our earlier work [43] for dead-
lock detection using behaviour abstraction. Another important extension of that
work is to enhance the precision by making the analysis context-sensitive and fur-
thermore to support effect inference ([43] in contrast required the programmer to
provide the behaviour annotations manually). The analysis is shown sound, i.e.,
the abstraction preserves deadlocks of the program. Formally that is captured by
an appropriate notion of simulation (“deadlock-sensitive simulation”).

Related work. Deadlocks are a well-known problem in concurrent programming
and a vast number of techniques for statically and dynamically detecting concur-
rency errors such as deadlocks and races have been investigated and implemented
for various languages [47, 17, 26, 48, 52, 34]. One common way to prevent dead-
locks is to arrange locks in a certain partial order such that no cyclic wait on
locks/resources, which is one of the four necessary conditions for deadlocks [11],
can occur. Cf. also [12] for an earlier comparison of different analysis techniques
for deadlock detection, concentrating on model-checking for detecting deadlocks
in Ada programs. For instance, Boyapati, Lee, and Rinard [9] prevent deadlocks
by introducing deadlock types and imposing an order among these. The paper also
covers type inference and polymorphism wrt. the lock levels. Likewise, the type
inference algorithms by Suenaga [49] and Vasconcelos et al. [51] assure deadlock
freedom in a well-typed program with a strict partial order on lock acquisition.
Agarwal, Wang, and Stoller [4] use above deadlock types to improve the effi-
ciency for run-time checking with a static type system, by introducing runtime
checks only for those locks where the inferred deadlock type indicates potential

5 CONCLUSION 60

for deadlocks. Similar to our approach, Naik et al. [37] detect potential dead-
locks with a model-checking approach by abstracting threads and locks by their
allocation sites. The approach is neither sound nor complete.

Instead of preventing deadlocks caused by the attempt to acquire locks, static
analyses, as well as type systems, are also studied to prevent deadlocks caused
by communication over channels and message passings, where the dynamically
changing communication structures complicates the analyses for preventing dead-
locks [31, 32, 33, 22]. Kobayashi [33] presents a constraint-based type inference
algorithm for detecting communication deadlocks in the π-calculus. In contrast to
our system, he attaches abstract usage information onto channels, not processes.
Cyclic dependencies there indicate potential deadlocks. Further differences are
that channel-based communication does not have to consider reentrance, and the
lack of functions avoids having to consider polymorphism and higher order. Gi-
achino et al. [22] derives behavioural types with dependency informations out
of programs in concurrent object language with asynchronous message passings,
then translates the behavioural types into a finite state model, and verifies deadlock
freedom by detecting circular dependency in the model. Further works dealing
with deadlocks in concurrency models using active objects include [20, 21, 15].
Instead of checking for deadlocks, the approach by Kidd et al. [30] generates an
abstraction of a program to check for data races in concurrent Java programs,
by abstracting unlimited number of Java objects into a finite set of abstract ones
whose locks are binary. Gordon, Ernst, and Grossman [23] introduce the concept
of lock capabilities used in a type and effect system for static deadlock preven-
tion. The lock capabilities, integrated into the type system, are flexible enough
to not insist on a global lock order but allow more flexible acquisition orders,
and that flexibility makes the method amenable to handle fine-grained locking
disciplines. The deadlock prevention analysis is formulated as a type and effect
system (as the work presented here), but does not use behavioral effects. Their
contribution relies on the availability of an external must-alias analysis, whereas
ours has a may-alias-like analysis built in. Their language supports method calls,
but not higher-order. Locksmith, a well-known static tool for detecting concur-
rency errors, in particular races, for multithreaded C is described in [41, 40], and
for a more recent overview of the tool and engineering aspects of the techniques
employed, see [42]. Like the work here and, the techniques make use of context-
sensitive flow analysis (inspired by the work of [45, 44] using contraints, but the
work and tool also incorporates further analyses to increase the precision in par-
ticular when dealing with pointers and shared references.

Also dynamic, runtime analyses have been widely used for deadlock detec-

5 CONCLUSION 61

tion (and other concurrency errors like races), e.g. in [25, 26, 6, 7, 29]. They are
typically based on monitoring at run-time patterns and orders of lock-acquisitions
and other behaviour to spot (potentially) erroneous behaviour or even to take cor-
rective action in such cases. Combinations of static and dynamic techniques have
been used, for instance in [1], to reduce the overhead of the run-time monitoring.
In contrast to deadlock prevention, deadlock avoidance means to evade a program
runs into a deadlock during execution. Boudol [8] uses a type and effect sys-
tem to derive statically information which helps the scheduler to navigate around
potential deadlocks. Unlike this paper, which is about deadlock prevention, [8]
is concerned deadlock avoidance. A further difference is that the lock-usage is
block structured whereas here, locks can be created and used without that restric-
tion. That work is extended by Gerakios, Papaspyrou, and Sagonas [19] to deal
also with non-lexical use of locks. A different combination of static and dynamic
techniques, there called type discovery, is proposed in [3, 2] and extended in [46],
which investigate a run-time assisted type inference, where monitoring provides
annotations assisting the type inference.

Future work. To keep the state space of model exploration in the second stage of
our analysis finite, we impose a restriction on process creation. A natural exten-
sion to our work is to find sound abstractions for process creation, which seems
more challenging and a naive approach by simply summarizing processes by their
point of creation is certainly not enough.

The analysis in the paper focuses on concurrent programs with lock-based
synchronization. It would be interesting to study whether similar approaches can
be applied to other synchronization mechanisms, for instance, message passing.
It is practically valuable to study how they can be adapted for object-oriented
languages like Java [24]. One possible approach is to bridge the calculus in the
paper to Java by translating its syntax to that of the calculus in this paper. An initial
step to this could be first considering the syntax of Featherweight Java (FJ) [28].

Since the analysis is based on over-approximations of programs, a reported
potential deadlock may not necessarily exist in the program at runtime. It would
be useful to study different techniques to increase precision by identifying spu-
rious deadlocks and refine the over-approximation accordingly. One technique
for such a refinement is known as counterexample guided abstraction refinement
(CEGAR) [10].

REFERENCES 62

Acknowledgements
We are grateful to the anonymous reviewers for their very thorough reviews

and for giving helpful and critical feedback.

References

[1] Agarwal, R., Bensalem, S., Farchi, E., Havelund, K., Nir-Buchbinder, Y., Stoller,
S. D., Ur, S., Wang, L., 2010. Detection of deadlock potentials in multithreaded
programs. IBM Journal of Research and Development 54 (5), 3:1–3:15.

[2] Agarwal, R., Sasturkar, A., Stoller, S. D., 2004. Type discovery for parameterized
race-free Java. Tech. Rep. DAR-04-16, Dept. of Computer Science, SUNY, Stony
Brook.

[3] Agarwal, R., Stoller, S. D., 2004. Type inference for parameterized race-free Java.
In: Steffen, B., Levi, G. (Eds.), Proceedings of the 5th International Conference on
Verification, Model Checking, and Abstract Interpretation, (VMCAI). Vol. 2937 of
Lecture Notes in Computer Science. Springer, pp. 149–160.

[4] Agarwal, R., Wang, L., Stoller, S. D., 2006. Detecting potential deadlocks with
static analysis and run-time monitoring. In: Ur, S., Bin, E., Wolfsthal, Y. (Eds.),
Proceedings of the Haifa Verification Conference 2005. Vol. 3875 of Lecture Notes
in Computer Science. Springer, pp. 191–207.

[5] Amtoft, T., Nielson, H. R., Nielson, F., 1999. Type and Effect Systems: Behaviours
for Concurrency. Imperial College Press.

[6] Bensalem, S., Havelund, J., Havelund, K., Mounier, L., 2006. Confirmation of dead-
lock potentials detected by runtime analysis. In: Ur, S., Farchi, E. (Eds.), Proceed-
ings of the 4th Workshop on Parallel and Distributed Systems: Testing, Analysis,
and Debugging. ACM, pp. 41–50.

[7] Bensalem, S., Havelund, K., 2006. Dynamic deadllock analysis of multi-threaded
programs. In: Ur, S., Bin, E., Wolfsthal, Y. (Eds.), Proceedings of the Haifa Verifi-
cation Conference 2005. Vol. 3875 of Lecture Notes in Computer Science. Springer,
pp. 208–223.

[8] Boudol, G., 2009. A deadlock-free semantics for shared memory concurrency. In:
Leucker, M., Morgan, C. C. (Eds.), Proceedings of the 6th International Colloquium
on Theoretical Aspects of Computing (ICTAC). Vol. 5684 of Lecture Notes in Com-
puter Science. Springer, pp. 140–154.

REFERENCES 63

[9] Boyapati, C., Lee, R., Rinard, M., 2002. Ownership types for safe programming:
Preventing data races and deadlocks. In: Proceedings of 17th ACM SIGPLAN Con-
ference on Object Oriented Programming: Systems, Languages, and Applications
(OOPSLA). ACM, pp. 211–230.

[10] Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H., 2000. Counterexample-guided
abstraction refinement. In: Emerson, E. A., Sistla, A. P. (Eds.), Proceedings of the
12th International Conference on Computer-Aided Verification (CAV). Vol. 1855 of
Lecture Notes in Computer Science. Springer, pp. 154–169.

[11] Coffman Jr., E. G., Elphick, M., Shoshani, A., 1971. System deadlocks. Computing
Surveys 3 (2), 67–78.

[12] Corbett, J., 1996. Evaluating deadlock detection methods for concurrent software.
IEEE Transactions on Software Engineering 22 (3), 161–180.

[13] Damas, L., 1985. Type assignment in programming languages. Ph.D. thesis, Labo-
ratory for Foundations of Computer Science, University of Edinburgh.

[14] Damas, L., Milner, R., 1982. Principal type-schemes for functional programming
languages. In: Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL). ACM, pp. 207–212.

[15] de Boer, F. S., Bravetti, M., Grabe, I., Lee, M., Steffen, M., Zavattaro, G., 2013. A
Petri net based analysis of deadlock for active objects and futures. In: Pasareanu,
C. S., Salaün, G. (Eds.), Revised Selected Papers of the 9th International Workshop
on Formal Aspects of Component Software (FACS 2012). Lecture Notes in Com-
puter Science. Springer, pp. 110–127.

[16] Dijkstra, E. W., 1965. Cooperating sequential processes. Tech. Rep. EWD-123,
Technological University, Eindhoven.

[17] Engler, D. R., Ashcraft, K., 2003. RacerX: Effective, static detection of race con-
ditions and deadlocks. In: Proceedings of the 19th ACM Symposium on Operating
Systems Principles. ACM, pp. 237–252.

[18] Flanagan, C., Sabry, A., Duba, B. F., Felleisen, M., 1993. The essence of compiling
with continuations. In: Proceedings of the 1993 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). ACM, pp. 237–247.

[19] Gerakios, P., Papaspyrou, N., Sagonas, K., 2011. A type and effect system for dead-
lock avoidance in low-level languages. In: Proceedings of the 6th ACM SIGPLAN
International Workshop on Types in Languages Design and Implementation (TLDI).
ACM, pp. 15–28.

REFERENCES 64

[20] Giachino, E., Grazia, C. A., Laneve, C., Lienhardt, M., Wong, P. Y., 2013. Dead-
lock analysis of concurrent objects: Theory and practice. In: Johnsen, E. B., Petre,
L. (Eds.), Proceedings of the 11th International Conference on Integrated Formal
Methods (iFM). Vol. 7940 of Lecture Notes in Computer Science. Springer, pp.
394–411.

[21] Giachino, E., Laneve, C., 2011. Analysis of deadlocks in object groups. In: Bruni,
R., Dingel, J. (Eds.), Formal Techniques for Distributed Systems (FMOODS-
FORTE). Vol. 6722 of Lecture Notes in Computer Science. Springer, pp. 168–182.

[22] Giachino, E., Laneve, C., 2014. Deadlock detection in linear recursive programs.
In: Bernardo, M., Damiani, F., Hähnle, R., Johnsen, E. B., Schaefer, I. (Eds.),
Advanced Lectures from the 14th International School on Formal Methods for the
Design of Computer, Communication, and Software Systems (SFM). Vol. 8483 of
Lecture Notes in Computer Science. Springer, pp. 26–64.

[23] Gordon, S. C., Ernst, M. D., Grossman, D., 2012. Static lock capabilities for dead-
lock freedom. In: Proceedings of the 8th ACM SIGPLAN workshop on Types in
language design and implementation (TLDI). ACM, pp. 67–78.

[24] Gosling, J., Joy, B., Steele, G. L., Bracha, G., 2000. The Java Language Specifica-
tion, 2nd Edition. Addison-Wesley.

[25] Harrow, J., 2000. Runtime checking of multithreaded applications applications with
Visual Threads. In: Havelund, K., Penix, J., Visser, W. (Eds.), Proceedings of the 7th
International SPIN Workshop on SPIN Model Checking and Software Verification.
Springer, pp. 331–342.

[26] Havelund, K., 2000. Using runtime analysis to guide model checking of Java pro-
grams. In: Havelund, K., Penix, J., Visser, W. (Eds.), Proceedings of the 7th In-
ternational SPIN Workshop on SPIN Model Checking and Software Verification.
Springer, pp. 245–264.

[27] Hindley, J. R., 1969. The principal type-scheme of an object in combinatory logic.
Transactions of the American Mathematical Society 146, 29–60.

[28] Igarashi, A., Pierce, B. C., Wadler, P., 1999. Featherweight Java: A minimal core
calculus for Java and GJ. In: Proceedings of 14th ACM SIGPLAN Conference on
Object Oriented Programming: Systems, Languages, and Applications (OOPSLA).
ACM, pp. 132–146.

REFERENCES 65

[29] Joshi, P., Naik, M., Sen, K., Gay, D., 2010. An effective dynamic analysis for detect-
ing generalized deadlocks. In: Proceedings of the 18th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE). ACM, pp. 327–336.

[30] Kidd, N., Reps, T. W., Dolby, J., Vaziri, M., 2011. Finding concurrency-related
bugs using random isolation. Software Tools for Technology Transfer (STTT) 13 (6),
495–518.

[31] Kobayashi, N., 1998. A partially deadlock-free typed process calculus. ACM Trans-
actions on Programming Languages and Systems 20 (2), 436–482.

[32] Kobayashi, N., 2005. Type-based information flow analysis for the π-calculus. Acta
Informatica 42 (4-5), 291–347.

[33] Kobayashi, N., 2006. A new type system for deadlock-free processes. In: Baier, C.,
Hermanns, H. (Eds.), Procceedings of the 17th International Conference on Con-
currency Theory (CONCUR). Vol. 4137 of Lecture Notes in Computer Science.
Springer, pp. 233–247.

[34] Leino, K. R. M., Müller, P., 2009. A basis for verifying multi-threaded programs. In:
Castagna, G. (Ed.), Proceedings of the 18th European Symposium on Programming
Languages and Systems (ESOP). Vol. 5502 of Lecture Notes in Computer Science.
Springer, pp. 378–393.

[35] Milner, R., 1978. A theory of type polymorphism in programming. Journal of Com-
puter and System Sciences 17 (3), 348–375.

[36] Mossin, C., 1997. Flow analysis of typed higher-order programs. Ph.D. thesis,
DIKU, University of Copenhagen, technical Report DIKU-TR-97/1.

[37] Naik, M., Park, C.-S., Sen, K., Gay, D., 2009. Effective static deadlock detection. In:
Proceedings of the 31st International Conference on Software Engineering (ICSE).
IEEE, pp. 386–396.

[38] Nielson, H. R., Nielson, F., 1999. Type and effect systems. In: Olderog, E.-R., Stef-
fen, B. (Eds.), Correct System Design – Recent Insights and Advances. Vol. 1710 of
Lecture Notes in Computer Science. Springer, pp. 114–136.

[39] Nielson, H. R., Nielson, F., Amtoft, T., 1997. Polymorphic subtyping for effect
analysis: The static semantics. In: Dam, M. (Ed.), Proceedings of the 5th LOMAPS
Workshop. Vol. 1192 of Lecture Notes in Computer Science. Springer, pp. 141–171.

[40] Pratikakis, P., 2008. Sound, precise, and efficient static races detection for multi-
threaded programs. Ph.D. thesis, University of Maryland.

REFERENCES 66

[41] Pratikakis, P., Foster, J. S., Hicks, M. W., 2006. LOCKSMITH: Context-sensitive
correlation analysis for race detection. In: Proceedings of the 27th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). ACM,
pp. 320–331.

[42] Pratikakis, P., Foster, J. S., Hicks, M. W., 2011. LOCKSMITH: Practical static race
detection for C. ACM Transactions on Programming Languages and Systems 33 (1),
3:1–3:55.

[43] Pun, K. I., Steffen, M., Stolz, V., 2012. Deadlock checking by a behavioral effect
system for lock handling. Journal of Logic and Algebraic Programming 81 (3), 331–
354.

[44] Rehof, J., Fähndrich, M., 2001. Type-based flow analysis: From polymorphic sub-
typing to CFL-reachability. In: Proceedings of the 28th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL). ACM, pp. 54–66.

[45] Reps, T., Horwitz, S., Sagiv, M., 1995. Precise interprocedural data-flow analysis
via graph reachability. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL). ACM, pp. 49–61.

[46] Rose, J., Swamy, N., Hicks, M., 2005. Dynamic inference of polymorphic lock
types. Science of Computer Programming 58 (3), 366–383.

[47] Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T., 1997. Eraser:
A dynamic data race detector for multithreaded programs. ACM Transactions on
Computer Systems 15 (4), 391–411.

[48] Sterling, N., 1993. Warlock: A static race analysis tool. In: USENIX Winter Tech-
nical Conference. USENIX Association, pp. 97–106.

[49] Suenaga, K., 2008. Type-based deadlock-freedom verification for non-block-
structured lock primitives and mutable references. In: Ramalingam, G. (Ed.),
Proceedings of the 6th Asian Symposium Programming Languages and Systems
(APLAS). Vol. 5356 of Lecture Notes in Computer Science. Springer, pp. 155–170.

[50] Talpin, J.-P., Jouvelot, P., 1992. Polymorphic type, region and effect inference. Jour-
nal of Functional Programming 2 (3), 245–271.

[51] Vasconcelos, V., Martins, F., Cogumbreiro, T., 2009. Type inference for deadlock
detection in a multithreaded polymorphic typed assembly language. In: Beresford,

REFERENCES 67

A. R., Gay, S. J. (Eds.), Proceedings of the 2nd International Workshop on Pro-
gramming Language Approaches to Concurrency and Communication-cEntric Soft-
ware (PLACES). Vol. 17 of Electronic Proceedings in Theoretical Computer Science
(EPTCS). pp. 95–109.

[52] Vojdani, V., Vene, V., 2007. Goblint: Path-sensitive data race analysis. In: Pro-
ceedings of the 10th Symposium on Programming Languages and Software Tools.
Eötvös Lorand Univ., pp. 130–141.

	Introduction
	Effect inference on the thread local level
	Deadlock preserving abstractions on the global level

	Calculus
	Type system
	Types, effects, and constraints
	Type and effect system

	Type inference
	Equivalence of the two formulations
	Annotated semantics
	Semantics of the behaviour
	Soundness

	Conclusion

