
Don’t let data Go astray

A Context-Sensitive Taint Analysis
for Concurrent Programs in Go

Ka I Pun1, Martin Steffen1, Volker Stolz1,2, Anna-Katharina Wickert3, Eric
Bodden4,5, and Michael Eichberg3

1 University of Oslo, Norway
2 Bergen University College, Norway

3 Technische Universität Darmstadt, Germany
4 Paderborn University, Germany

5 Fraunhofer IEM, Germany

Abstract

Taint analysis is a form of data flow analysis aiming at secure information flow. For
example, unchecked user input is considered typically as “tainted”, i.e., as untrusted and
potentially dangerous. Untrusted data may lead to corrupt memory, undermine the correct
functioning or privacy concerns of the software otherwise, if it reaches program points it is
not supposed to. Many common attack vectors exploit vulnerabilities based on unchecked
data and the programmer’s negligence of foreseeing all possible user inputs (including
malicious ones) and the resulting information flows through the program.

We present a static taint analysis for Go, a modern, statically typed programming lan-
guage. Go in particular features concurrent programming, supporting light-weight threads
dubbed “goroutines”, and message-based communication. Beside a classical context-
sensitive taint analysis, the paper presents a solution for analyzing channel communication
in Go. A longer version of the material will appear in [2].

1 Motivation

The high-level programming language Go is gaining traction, being used in various software
products like Docker and Dropbox, as well as for Android and iOS applications [4]. Support
for concurrency based on goroutines and channel communication lies at the very core of Go’s
design. While standing, at least syntactically and in spirit, in the tradition of C, Go is lightyears
ahead compared to the more low-level language C, when it comes to considering “secure”
computation. Two notable improvements on that front are Go’s advanced static type system
and the absence of pointer arithmetic. But still, the concurrency features and the intended
distributed and mobile applications and platforms, make the task to ensure secure computation
more challenging. In open, interactive and even mobile applications, it is even more vital: One
needs to ensure that unchecked, arbitrary user input does not reach sensitive points in the
program, potentially leading to memory corruption or other violations, and that private data
does not go astray, leaking to the outside or other applications.

To counter such vulnerabilities, we have developed and implemented a static taint analysis,
which is a specific form of flow analysis, for Go. The analysis is context-sensitive, covers
reference types and relies on the corresponding packages of the Go-compiler. In particular, we
cover sound analysis of taint information flow for channel-based communication.



2 Static taint analysis

Information flow analysis [3] is widely studied and used for many languages, including Java
and C, but is currently not implemented for Go. A taint analysis identifies flows of private
information to untrusted places, e.g., a SMS to the attacker, or untrusted information such as
user input passed on or processed without sanity checks. We will concentrate on the former
type (privacy-based) of taint analysis. The analysis defines private information and untrusted
places through a list of sources and sinks. In that it can be seen as a form of a def-use-analysis.
Sources are API calls which could read sensitive data, and sinks are API calls which can write
data to an untrusted place. Our taint analysis is static and context-sensitive, concentrating on
direct information flows.

2.1 The Go programming language

The small example from Listing 1 illustrates the analysis, highlighting a few Go features. The
main function spawns a call to f as a new goroutine (think “thread”) using the keyword go,
handing over the freshly created synchronous channel via the actual parameter ch. The channel
is (obviously) shared between parent and child goroutine, and used to communicate string values
from parent to child and, thereby, also synchronizes between them: sending to the channel is
done in location n6 and reading from it in location f2. The example defines two functions
source and sink , whose only purpose here is to illustrate the concepts of sources and sinks for
the taint analysis. Go supports pointers (though no pointer arithmetic as in C): In the example,
the argument to the sink -function is passed as a reference.

n1

n2

n3

n4

n5

n6

f1

f2

f3

func main ( ) {
x := ” he l l o , world”
ch := make(chan string )
go f ( ch )
s ink (&x)
x = source ( )
ch ← x

}
func f ( ch 1 chan string ) {

y := ←ch 1
s ink (&y)

}
func s ink ( s ∗ string ) {}
func source ( ) string {

return ” s e c r e t ”
}

Listing 1: A Go program with
channels, goroutines, pointers.

n1

n2

n3

n4TA(n6 )↓ch = [ch 7→ S (x )]

n5

n6

f1

f2

f3

Figure 1: Flow graph for Listing 1 with the
additional edge for a write to a channel. Edges
to sinks/from sources elided for simplicity.

2.2 Implementation

Building upon similar analyses such as [5], the implementation is context sensitive, i.e., a
function call (including asynchronous functions) is analyzed differently depending on the call-
site context, which, in our case, is a “value context” containing information about the taint
status of the actual parameters. The analysis partly relies on existing technologies and libraries.



First, we use Go’s static single-assignment (SSA) intermediate representation for a worklist-
based iteration algorithm. Secondly, we use an inclusion-based pointer analysis (see [1]) to
handle pointers in a more precise way.

Figure 1 shows the flow graph for the example program, where the nodes correspond to
the “line annotations” in the code. The implementation uses a worklist algorithm for fixpoint
iteration, working through the nodes. In the example, the sink -function is called twice, once in
the main function with the untainted string value "hello, world", and in the child goroutine
executing f . In the latter case, the value delivered to the sink is received via the channel
connecting the two goroutines, and in that case the value originates from the source-procedure.
To correctly have the analysis report a possible flow of tainted data from a source to a sink,
we introduce for each created channel a new type of data flow node, with incoming edges from
the send-operations to the channel and outgoing edges to read-operations that may access the
channel. The transfer function for the new node only transfers the lattice value of the channel
(see the node labelled TA(. . . ) in Figure 1), and not the complete lattice of the writing node.

Listing 1 uses the unbuffered channel only once. In larger programs buffered channels or
many writes to a channel are likely. If a channel receives a tainted and an untainted value,
the static analysis will over-approximate the channel’s taint status to the lattice’s top value >.

3 Potential for monitoring

For some paths, a static analysis overapproximates the results, and a dynamic analysis under-
approximate the results. If we introduce monitoring for these parts, we can improve our results.
A scenario is to use monitoring as a sanitizer. A sanitizer works like a white list and changes
a tainted value to an untainted, e.g. applying the hash function on a password should change
the lattice value to untainted. A classical taint analysis ignores that the hash function changes
the taint status to untainted and produces a false positive. A more complicated approach is to
monitor the concurrent behavior of a program. The idea is to influence the scheduling so that
a tainted value will only take safe paths.

References

[1] L. O. Andersen. Program Analysis and Specialization for the C Programming Language.
PhD thesis, DIKU, University of Copenhagen, 1994. Available as DIKU report 94/19.

[2] E. Bodden, K. I. Pun, V. Stolz, M. Steffen, and A.-K. Wickert. Information flow analysis
for Go. In 7th Intl. Symp. On Leveraging Applications of Formal Methods, Verification and
Validation, volume 9952 of LNCS. Springer Verlag, Oct. 2016.

[3] D. Denning. Secure Information Flow in Computer Systems. PhD thesis, Purdue University,
1976.

[4] Go Authors. Mobile golang/go Wiki GitHub, Feb. 2016. URL https://github.com/

golang/go/wiki/Mobile.

[5] R. Padhye and U. P. Khedker. Interprocedural Data Flow Analysis in Soot Using Value
Contexts. In 2nd ACM SIGPLAN Intl. Workshop on State Of the Art in Java Program
Analysis, SOAP ’13, pages 31–36, New York, NY, USA, 2013. ACM.

https://github.com/golang/go/wiki/Mobile
https://github.com/golang/go/wiki/Mobile

	Motivation
	Static taint analysis
	The Go programming language
	Implementation

	Potential for monitoring

