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Abstract. We present the current state of the art of information flow
analyses for Go applications. Based on our findings, we discuss future
directions of where static analysis information can be used at runtime
to for example achieve higher precision, or optimise runtime checks. We
focus specifically on outstanding language features such as closures and
message-based communication via channels.

1 Introduction

The Go language [7,8,25] is a relative newcomer to the programming language
stage. Nonetheless, it has been quickly taken up for application development
by big players, most notably, Docker. There, it is used as a language for their
popular software container framework. Backed by Google, it is also speculated
to be the future language for Android development, and recently the mobile
development kit was published.

Like any other software, Go programs are frequently exposed to “hostile”
environments, whether it is on a web-facing server, or soon on a mobile phone.
Both are constant targets for attacks by hackers and malicious applications,
which try to break into the system through malicious input or specially crafted
interactions. To prevent the violations of program executions induced by mali-
cious data, one effective way is to statically analyse the flows of such data within
programs.

We present here our information flow analysis of Go programs, where we
focus on the more interesting features of the Go language, such as channel-based
communication and deferred execution. This analysis is the foundation for a
monitoring framework to thwart such attacks, by identifying the flow of potential
malicious (tainted) data from a set of pre-defined sources to a set of sinks that
this data must not reach unprocessed. Based on our findings on the precision
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of our analysis, we give recommendations how monitoring can complement the
inevitable gaps in a static analysis.

Related Work. Static analysis for information flows has been widely studied:
Denning and Denning [5,6] present a mechanism in terms of a lattice model
to guarantee secure information flows for sequential statements. Such a con-
struct is the foundation of many static analysis frameworks, e.g., the Monotone
Framework [18], which is also the starting point for our approach. Andrews and
Reitman [1] propose an axiomatic approach to certifying flows in both sequen-
tial and parallel programs. Type systems are also a common approach to ensure
noninterference for well-typed programs, e.g., Volpano et al. [27] formulate Den-
ning’s work in the form of a type system for a core imperative language; Pottier
and Simone [21] propose a type-based analysis for a call-by-value λ-calculus.

Apart from guaranteeing program security by tracking the flow of sensitive
data, our approach identifies potential tainted data flows within programs at
compile time, which helps in detecting bugs as well as avoiding attacks by mali-
cious applications. A number of work has been done to analyse flow information
of tainted data using similar idea: Arzt et al. [2] propose a static taint analysis
for Android applications. Livshits and Lam propose a variant of SSA to discover
bugs in C programs [15], and use a context-sensitive pointer alias analysis to
detect security violations in Java applications [14]. Pistoia et al. [20] present
a control- and data-flow framework to find tainted variables in Java bytecode.
Information flow analyses have also been applied for languages like PHP [13] and
JFlow [17], which is an extension to the Java language. While Go shares some
of the general features with those imperative languages, we also take a look at
some of its novel constructs, which are mostly related to concurrency.

Paper Overview. Section 2 provides the background of the Go language and infor-
mation flow analysis; Sect. 3 presents the abstract syntax of the language and
the analysis for Go programs; Sect. 4 illustrates our implementations with exam-
ples, Sect. 5 discusses the potential for monitoring for Go programs, and finally
Sect. 6 concludes the paper.

2 Preliminaries

2.1 The Go Language

Go, a language backed by Google, has gained a certain amount of traction after
its inception. Its advertised design principles as being simple and concise together
with its surface syntax make the language identifiable in the tradition of C. At
its core, Go is a lexically scoped, concurrent, imperative language with higher-
order functions, supporting object-oriented design (while notable not support-
ing classes nor inheritance). Concerning concurrency, Go’s primary feature is
asynchronous function calls (resp. asynchronous method calls), called gorou-
tines (basically a lightweight form of threads with low overhead and lacking
known thread synchronisation mechanisms such as wait and signal). The second
core concurrency construct is (typed) channel communication, in the tradition
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of languages like CSP [9,10] or Occam. Since (references to) channels can be
sent over channels, Go allows “mobile channel” flexibility for communication as
known from the π-calculus [16].

Thus, despite the “simple” surface syntax in the tradition of C, Go combines
features which are challenging from a program analysis perspective: Reference-
data, imperative features, arrays, and slices require point-to analyses. Control-
flow analyses are needed to obtain data-flow analyses of acceptable precision in
the presence of higher-order functions. The Go compiler (at least in a developer
branch) supports a static-single assignment intermediate format to facilitate flow
analyses. Shared variable concurrency is featured by Go but frowned upon. The
more dignified and recommended way of concurrent programming via message
passing, using either synchronous or buffered channels of finite capacity. The
static analysis of such channel communication has similarities to pointer analysis,
as channels are a referenced shared data where channel pointers themselves can
be communicated via channels (or stored and handed over to procedures as
other references, as well). The analysis of data flow in the context of channel
communication is challenging in itself, but at least avoids unprotected concurrent
access to shared mutable data and shields the programmer from the subtleties
of Go’s weak memory model. In this work, we do not consider shared variable
concurrency.

2.2 Information Flow Analysis

We discuss here in particular the challenges of information flow analysis when
applied to Go. Information flow analysis [1,5] attempts to determine whether a
given program can leak sensitive information, either directly or through indi-
rect channels, for instance when secret values influence timing behaviour or
power consumption, so-called indirect information flows. Dynamic information
flow analysis attempts to detect such leaks by monitoring an application’s exe-
cution. Such dynamic analyses are generally to detect direct information flows
only, i.e., such flows that occur through direct memory copies. This is due to
the fact that indirect flows occur through control-flow dependencies on secret
values, and in particular because a program can leak information as it does not
execute a certain behaviour at runtime. Since behaviour that does not execute
cannot be monitored, this precludes the detection of certain indirect flows.

Static code analysis, however, can analyse all of a program’s possible exe-
cutions, detecting control-flow dependencies and also such “missing behaviour”.
It is for that reason that static analysis can detect not only direct but also
indirect information flows. Recent research has shown that a static pre-analysis
can assist a subsequent dynamic analysis by finding control-flow dependencies
that can leak secret information and defining a special instrumentation scheme
at runtime that signals when the respective branches are taken. Depending on
some properties of the monitored programming language, and depending on the
scope of the static pre-analysis this can allow the dynamic analysis to even
monitor all possible information leaks at runtime. Indirect information flows,
however, have the tendency to cause so-called “overtainting”, where an analysis



434 E. Bodden et al.

ends up tracking many—typically too many—information flows, the majority
of which is to the security analyst often irrelevant. The underlying problem is
a deeply semantic one: an indirect information flow signals not that a program
leaks data but it signals that a program leaks information about data. But how
much information will allow for a practical attack? This question is extremely
hard to decide in terms of a program’s structure. Recent work has thus focused
on making the analysis of indirect information flows more precise, for instance by
also regarding so-called declassification, i.e., the intentional disclosure of infor-
mation about secret data. Since such declassification is intentional, a program
analysis should avoid signalling it as leak of secret information. Declassification
is generally quite essential. Without declassification, for instance, a password
dialog may not even signal to the user whether or not the password was entered
correctly, as this would signal some information about the secret password, even
though this information is essential to reveal.

When conducting information-flow analysis for programs with pointers, it is
essential to pair it with a pointer analysis, as otherwise the analysis would fail
to resolve aliasing relationships. Consider the code sequence a.f = secret();
print(b.f);. In this code, to determine whether the program may print the
secret, an analysis must know whether a and b alias, i.e., point to the same
object. Pointer analysis is generally expensive to compute, and to yield appro-
priate precision must share certain design properties with the alias analysis it
seeks to support. Generally, a high-precision analysis should be context sensitive
and flow sensitive, for instance. If the accompanying alias analysis does not share
the same level of context and flow sensitivity, then this can cause imprecision to
creep into the information-flow analysis, ultimately resulting in false warnings
that threaten to distract the security analyst from the important true warnings.

3 Analysis

In this section, we present our information flow analysis for Go programs, and
illustrate its use with some examples in the next section. The analysis is based
on a suitable subset of the full language which is easy to formalise yet covers the
most important features.

Information flow describes a dynamic property: in our setting, it is any value
that originates from a particular API call (as denoted by a list of sources),
and is used within the execution of the program. If the execution reaches a
call to any of our denoted sinks, and the value is passed as a parameter, we
would like to report an error or a warning. Of course, such tracking of data flow
can happen at runtime, but naturally we are interested in whether we can give
certain guarantees for a program before it is run. We thus need to reformulate
this problem in the terms of a static analysis that can be defined in terms of the
program source code.

To simplify the discussion, we assume in the paper a simplified representation
of (Go) source code, assuming for example that each statement contains at most
a single function call, with only variables or constants as arguments. Also, we
stipulate that all variables must be initialised when declared.
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In the following, we will handle expressions representatively build up by
using primitive types, structs, channels and function types. We elide the other
useful, built-in datatypes in Go, such as slices (arrays) and key/value maps, and
appeal to the reader’s intuition that common approaches to over-approximation
of reference types as in the case of structs and channels can be applied.

The abstract syntax is given by Table 1. We shall concern ourselves with
statements that are assignments to locally declared variables or struct members,
conditionals, finalizers (defer), or initiators of concurrent execution (go). In
addition, we have the channel operations read and write, return from function,
and of course sequential composition of statements.

Table 1. Abstract syntax

s ::= x := e | x.f := e | if v then s else s | defer((λx.s) v) statements
| go s | x ← y | x → y | return v | s; s

e ::= v | v v | makeChan expressions
v ::= x | x.f | () | true | false | λx.s values

Expressions may be variables or values of the aforementioned supported
types, functions calls (written as application here), or channel initialisation.
Go’s multiple return values from function calls would require a minor exten-
sion of the syntax which would not add much for our discussion, as would slice-
and map manipulation. Function definitions straightforwardly have typed formal
parameters, and bodies composed of statements.

We can then restate the problem as follows: we would like to report a warning,
if the return value of a function call labelled as source is assigned to a variable,
and the value may be propagated through assignments and function calls to a
variable which is used as an actual parameter in a function call to a sink.

Furthermore, our analysis must take channels into account in a sound way:
if a sensitive (tainted) value is written into a channel, as an over approximation,
we assume that a read from that channel may return the tainted value. As
static analysis of channel-based communication has been studied extensively for
example in [11], we do not go into the details here and leave specialising this
part of our analysis towards a more precise solution using those techniques for
future (implementation) work.

3.1 Lattice

Our intended analysis can easily be expressed with the well-known concept of
Monotone Framework [18]. For our taint analysis, we define a simple lattice
where a value in a variable (attribute) is initially marked as “undefined” (⊥), and
based on custom black-/whitelist of API calls, marked as either “tainted” (1),
“untainted” (0), or “both” (�). We define the least upper bound (∪) of two taint
values in a straight-forward manner:
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∪ ⊥ 1 0

⊥ ⊥ 1 0
1 1 1
0 0 0

1 0

⊥

3.2 Aliasing and Channels

The Go language has several reference types, most prominently: structs, slices
(arrays), and maps. Again, we do not model the required tracking of aliasing
explicitly, but assume availability through a sound, context-insensitive over-
approximation. Thus we make use of the following function1, which, given a
variable at a particular statement, over-approximates the set of allocation sites
of objects and the variable they have been assigned to:

pta : Var × Lab → P(Loc).

We use this function to additionally maintain the function

aliases : Lab × Var → P(Lab × Var),

which we require to identify potential aliases created through field-use in
structs.

Another example of a reference type are of course Go’s (typed) channels.
Our rules for assignments, which are defined later in the section, track cor-
rectly the taint information associated with a channel when aliasing (e.g., ch :=
makeChan; ch’:= ch) because of the points-to analysis described above. Addi-
tional processing that does not follow the control flow is now required when
writing a tainted value into the alias ch’. A very coarse and obvious solution
to achieve the required dataflow is to add dependencies between a write to a
channel to all reads from it. A related analysis built on top of that allows a
sound over-approximation of the peers of a channel referenced by a variable in
a particular location, that is, all uses of the same channel reference in read or
write statements.

3.3 Taint Analysis via the Control-Flow Graph

For the intraprocedural part of our analysis, we can set up the Monotone Frame-
work with the help of the control-flow graph (CFG). As ultimately our analy-
sis should warn on particular statements (function calls to sinks with tainted
actual parameters), we decide on a single-instruction graph, i.e., each node in
the control-flow graph represents a single, normalised (as per our grammar)
1 https://godoc.org/golang.org/x/tools/go/pointer.

https://godoc.org/golang.org/x/tools/go/pointer
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instruction. Conditionals result in branches in the control-flow graph, and loops
lead to (additional) back-edges to nodes earlier in the graph. We do not describe
how to obtain the graph, but rather refer to [18] and recapitulate the essen-
tial ingredients. We assume that the function nodes returns a set of labeled
statements [s]l of a program. Furthermore, the flow-function

flow : Lab → P(Lab × Lab)

returns the edges in the CFG for a uniquely labeled statement [s]l, and its exten-
sions flow∗, yielding the CFG for the entire program. Calls to go-routines can
be handled through an additional control flow-edge from the caller to the body,
as control does not return, and we only permit channel-based communication.
Full Go also supports—but discourages—locks and shared variables.

To effectively be able to emit a warning, our analysis framework must yield
the following information: is any of the actual parameters in a function call to
a sink marked as possibly tainted on the entry to the statement? Information
by our taint analysis is thus given for each node (statement) in the CFG by
the partial TA function of type: Lab → (Var → L), which yields the taint
information associated with variables in scope at the particular node:

TA(l) = Φ(S,N l)
where S =

⋃ {TA(l′) | (l′, l) ∈ flow∗(P )} and N l ∈ nodes(P ).

Note that we collect all the taint information flowing to the statement labelled
with l in the set S. The function Φ(S,N l) defined in Table 2 derives the equations
for the standard programming constructs. In essence, the analysis resembles the
well-known analyses of Def-Use chains or Reaching Definitions, extended by the
required notions of transitivity and aliasing. A standard worklist algorithm can
be used to generate the smallest solution to our dataflow problem, which we can
then query for all actual parameters, at each statement that is marked as a sink.

One way to propagate taint information in our core language is to assign
an expression to either a variable x := e or to a struct member x.f := e. We
use in Table 2 a function φ to derive the taint information of the expression on
the right-hand side of an assignment. The expressions, including creating new
channels makeChan, unit, boolean values and function definitions, do not taint
any variable, and therefore the variable x (or struct member x.f) on the left-
hand side is marked as untainted (x �→ 0). In the case where the expression is a
variable y, the function φ updates the analysis result of x with the one of y at
the current state. For assigning a struct member y.f , we have to collect the taint
information from all the aliases of the reference y with the help of the aliases
function described above. For function calls v1v2, in case the called function v1

is a source, the assigned variable x is marked as tainted (x �→ 1). Otherwise, we
derive the taint information of the called function with interprocedural analysis.

Interprocedural Analysis. The function Φv1
exit is integrated with the worklist

algorithm as developed by Padhye and Khedker [19], which we have implemented
to achieve a flow- and context-sensitive analysis. The idea of the authors is to
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Table 2. Taint analysis

Φ(S, [x := e]l) = φ(S, x, e, l)

Φ(S, [x.f := e]l) = φ(S, x.f, e, l)

Φ(S, [defer((λx.s)v)]l) = id(S)

Φ(S, [go s]l) = id(S)

Φ(S, [x → ch]l) = S[ch S(x)]

Φ(S, [x ← ch]l) = S[x {TA(l )↓ch | [x → ch ]l f.a. (l : ch ) ∈ aliases(l : ch)}]

Φ(S, [return v]l) = id(S)

φ(S, x, y, l) = S[x S(y)]

φ(S, x, y.f, l) = S[x {TA(l )↓y | [y := e]l ∨ [y ← ch]l

f.a. (l : y ) ∈ aliases(l : y)}]

φ(S, x.f, y, l) = S[x.f S(y)]

φ(S, x.f, y.f , l) = S[x.f {TA(l )↓y | [y := e]l ∨ [y ← ch]l

f.a. (l : y ) ∈ aliases(l : y)}]

φ(S, x, (), l) = S[x 0]

φ(S, x, true, l) = S[x 0]

φ(S, x, false, l) = S[x 0]

φ(S, x, λx.s, l) = S[x 0]

φ(S, x, v1v2, l) =
S[x 1] if v1 is a source
S[x Φv1

exit] otherwise
φ(S, x, makeChan, l) = S[x 0]

differ between calls and to save the data flow values for every context. There-
fore, the algorithm can avoid that a function with identical input parameters
is analysed multiple times. This is built upon the assumption that equivalent
input parameters of a function will yield the same data flow values at the exit
node of the function. Their approach increases precision over the trivial app-
roach, where every exit-value from a return-statement flows back to all call
sites, not just the actual caller. The algorithm uses an additional calling con-
text X := (S, actual param), which guarantees that identical contexts produce
identical results. We will later describe the actual working on an example.

Another way to pass on taint data is to through channel communications.
Sending values or variables to a channel x → ch will propagate the taint informa-
tion of x to ch. To read from a channel x ← ch, we have to gather the knowledge
of all the possible aliases of the channel to which tainted data may be sent. The
statements, including finalizers (defer) and initiators of concurrent execution
(go), do not affect the taint information.

Soundness. Here we elide formal claims and proofs with regard to the soundness
of the analysis. The small-step operational semantics by Steffen [23] could serve
as a starting point for such a formalisation, and the corresponding properties.
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4 Implementation

Our information flow analysis relies partly on existing technologies and libraries:
although our above analysis is formulated in terms of the single-instruction
control-flow graph, our prototype implementation uses existing libraries from
the Go compiler tool-chain and tools that go beyond this simplistic view. With
the help of those libraries, we obtain the static single assignment-form (SSA)2 [4],
interprocedural call-graph3, and the necessary points-to information. We shortly
describe the APIs available to us.

The SSA library consists primarily of four interfaces. Firstly, the Member
interface holds the member of a Go package being functions, types, global vari-
ables and constants. Secondly, the Node interface describes a node from the SSA
graph. Valid values for the Node interface are types fitting either to the Value or
Instruction interface. An expression which leads to a value is of type Value.
A statement using a value and computes are part of the Instruction interface.

Through the fact that we consider the distinction between calling contexts,
we need to differ whether a node is a call or not. For this aim, we use the
CallInstruction interface allowing us to distinguish between a function call
and Go specific calls being a goroutine and a defer statement. To define the
desired behaviour, we need two additional inputs for our analysis: a blacklist of
API calls that produce tainted values, and a whitelist of calls that either produce
untainted values, or turn tainted ones into untainted.

A common property that is investigated with a taint analysis is whether
unsanitized user input can e.g. reach SQL queries, where it could lead to SQL
injection attacks. In that case, any user input, that is, console input, or e.g. data
submitted through an HTML form, is marked as tainted. Correspondingly, we
add those calls to our blacklist and call them sources. Our analysis shall report
a warning if a tainted value reaches a sink. Sinks are again specified separately,
just like sources.

4.1 Example

In this section, we explain our current taint analysis approach with the program
in Fig. 1, which primarily reads a file and prints the file content to the standard
output. The program consists of a main function and two additional functions h
and g. The function h reads the first eight bytes of a file and returns the bytes
as a string c and the status r. The function g copies the input string to another
variable b and returns the variable. The main function calls the function g with
a constant string value a and once with eight bytes from a file s. The last input
parameter for g is obtained with the help of function h. os.File.Read is a
source, and fmt.Print a sink.

To get the results, we use the functions and the lattice described in Sect. 3.
The entry point of our analysis is the main function within a Go program, where

2 https://godoc.org/golang.org/x/tools/go/ssa.
3 https://godoc.org/golang.org/x/tools/go/callgraph.

https://godoc.org/golang.org/x/tools/go/ssa
https://godoc.org/golang.org/x/tools/go/callgraph
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main()

a := “Hello World”n1

b := g(a)c1

fmt.Print(b)
f, := os.OpenFile(”./pw.txt”)

n3

s, n := h(f)c2

fmt.Print(s)
for n > 0

n6

s, n = h(f)c3

t := g(s)c4

fmt.Print(t)n8

exitn9

h(f *os.File) (c string, r int)

b := make([]byte, 8)
r, = f.Read(b)

n4

c = string(b[:])
return

n5

g(a string) (b string)

b = a
return

n2|n7

Fig. 1. A simplified control flow graph with different contexts

nothing is initialised. Thus the lattice at this point is empty and the worklist
contains n1, c1, n3, c2, n6, c3, c4, n10 and n11. At the beginning a context X0

is created. The entry value is the empty lattice and the exit lattice is currently
not set because the execution is not yet finished.

The first element n1 is removed from the worklist and then processed. It
receives untainted for the variable a from the transfer function defined in
Table 2. Through the next removal c1 is obtained, being the first call in the
example. A new context X1 having an untainted value as input is created and a
new transition from X0 to X1 is added. After the context is created, all nodes of
the function are added to the worklist. In the following step n2 is removed to be
processed, and the exit lattice of X1 is set to a0, b0 because n2 contains a return
statement.

As a subsequent step, the algorithm selects node n3 for processing and cre-
ates a lattice with the tainted variable f . Afterwards c2 is collected and pro-
duces a new value context X2. The transfer function of the call passes a tainted
parameter. Therefore, the entry lattice of the new context contains the tainted
parameter. In the context X2, n4 is processed first. The transfer function returns
for the variables b and r the tainted value and updates the lattice for the node.
The next node n5 is then selected, and the transfer function computes that the
variable c is also tainted. The exit lattice for X2 is updated such that b, r and c
are tainted.

Back in context X0, the algorithm picks node n6 for processing and detects
that a tainted value reaches a sink. Afterwards, c3 with a tainted value as
a parameter is handled as context X3. The algorithm checks whether a call to
function h with a tainted parameter already exists, finds X2 and adds the tran-
sition from 〈X3, c3〉 to X2. For the succeeding call c4 the value context currently
does not exist, so a new context X4 is created and the nodes of g are added
to the worklist. In the ensuing step, the algorithm processes n7, which leads to
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variable b becoming tainted. The next node from the worklist is n8, which also
reports a warning. Since all contexts with a fitting entry parameter already exist,
the remaining nodes do not lead to the creation of new contexts, but only the
transitions are added.

4.2 Concurrency in Go

A language specific characteristics of Go is that it supports concurrent program-
ming by design [8]. The idea is that only one goroutine is allowed to access
a value. Hence, Go encourages use of channels for message passing instead of
concurrent access to shared variables. The channels are first-class values in Go.

As channels are an essential part of concurrent Go programs, our analysis
must be able to handle channels correctly. The challenge is that channels are used
for concurrency and therefore multiple different execution paths are possible.
Our current idea is to add additional information in case of writing values to a
channel. Every goroutine which uses the channel should get an entry node with
the identity function. This allows the analysis to build the least upper bound of
all incoming edges.

x := ”Hello World”n1

ch := make(chan, string)n2

go f(ch)c1

sink(x)n3TA(n5 )↓ch = [ch S (x )]

x = taintedn4

ch ← xn5

. . .
n6

func f(ch chan string)fn1

y := ← chfn2

sink(y)fn3

Fig. 2. An example which explains the challenges of channels for our analysis.

The program in Fig. 2 is a simple example which uses channels. First a vari-
able x and a channel ch are created. The channel is used in a goroutine which
calls function f. The function f reads a value from the channel. The value reaches
a sink at node fn3. The red node indicates the sub-equation for the flow-function
that we use to propagate the taint-state of the channels back to (after) its dec-
laration site, by dropping all other information from the exit of the readChan
through this exit-branch.

While in this example, due to the unbuffered nature of synchronised chan-
nels, the value read from ch will always be tainted, in a larger program, non-
deterministic execution orders may yield tainted or untainted results from read-
statements, which the static analysis over-approximates to �. In other words, a
sink in a goroutine that consumes data from a channel, may only be reached by
a tainted value in some cases. This illustrates the need for a runtime component,
or sanitizers that takes care of those false positives.
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In addition to the problem described above, the example illustrates a chal-
lenge for a precise solution of our analysis. We assume that x is untainted when
it reaches the sink at node n3 and is tainted at node n4. Through the fact that
the channel ch gets x as a value, we should assume that every read to ch could
possibly produce a tainted value. As a conclusion the node fn3 is reached by a
tainted value.

Consequently, our analysis must know which goroutines uses ch. This can be
achieved by a backward analysis. The challenge is to update only the channel
with the taint information and not the tainted value x. Such an imprecision
would yield to a report at node n3, which is obviously a false positive.

A correct statically implementation of the analysis should therefore only
report a potential flow at node fn3. The precision of the analysis could be
increased through a dynamic observation of the potential dangerous paths of
concurrent execution. Then fn3 should only be reported if fn3 is executed after
node n5. This would make the analysis more precise, but will in general not be
possible to deduce statically.

5 Potential for Monitoring

We discuss in the following potential techniques to introduce monitoring in those
paths when a static information analysis cannot determine whether this path is
safe. Such monitoring then effectively fulfils the role of sanitizers, and can in a
second pass be put on the whitelist and used to check that all dangerous paths
are indeed covered.

Instrumenting Go Programs. Instrumentation of source code is often used in
Go since Go 1.2 [26]. One usage of instrumentation is collecting data for deter-
mining coverage. The placement of the instrumentation, however, may suffer
from similar problems as static analysis, in that optimal placement of instru-
mentation is difficult to determine.

Such test coverage instrumentation tools can give us hints for our instrumen-
tation to monitor flow as to whether paths we are interested in are executed
or not. A further step is to instrument the source code with the required func-
tionality for our taint analysis. Being interested in preventing tainted data from
reaching a sink, an obvious instrumentation is to stop the execution of the pro-
gram when the additional data recorded by the instrumentation reports that we
are about to reach a sink.

A traditional approach to instrumentation, especially for object-oriented lan-
guages, is aspect-oriented programming. This declarative technique has been
used with success e.g. for Java [24], but relies on extensive infrastructure.
Although developers are experimenting with developing similar frameworks for
Go, the prototypes are far from the necessary flexibility and convenient syntax,
as offered for example by AspectJ [12].

Also object-oriented design techniques can be helpful in instrumenting either
source code or code on the level of shared libraries: for example, as the sources



Information Flow Analysis for Go 443

and sinks in a taint analysis will mainly be API calls, it may be easy to generate
wrappers for them, and recompile an application using those proxies.

What to Monitor. Another question is of course which other properties could
be interesting to monitor in Go programs. Here, we have focused on a taint
analysis that is useful for services processing sensitive data.

Currently we think that two different things could be interesting to monitor:
First, it can be used to add sanitizers and secondly to monitor and influence the
concurrent behaviour of a program run.

The first idea is to dynamically add sanitizers. A typical taint analysis can
only add a taint status and does not remove it. The latter is important to avoid
too many false positives because the taint status spreads during the program
execution. An example which produces false positives is where the program logic
should enforce sanitisation. This could be achieved e.g. by a password which is
entered and then send via a hash function to a server. Classically, the taint
analysis will report the flow described above because the taint status of the
password is propagated to the send function [22].

The second idea is to actively influence scheduling to avoid tainted paths. If
we assume the example from Fig. 2, the potential leak will only be reported if n5

is reached before fn3 is executed. In a more complicated setting, where there are
more consumers to a channel, and some of them will not pass on data to any
sink, we could develop a scheduler which routes tainted data along safe paths
only. Of course this requires a more advanced analysis of the communication
behaviour to be able to enable processes which have the capacity to consume
a tainted item without becoming blocked. This problem is closely related to
deadlock avoidance in schedulers [3].

6 Conclusion

In this paper we presented our attempt at implementing an information flow
analysis for the Go language. The combination of object-based language con-
structs such as structs and arrays, and message-passing through typed channels,
requires a combination of various techniques.

In one dimension, we have static analysis components that combine intra-
and context-sensitive interprocedural techniques with reference-based analyses
to capture aliasing effects. In the other dimension, we need dynamic checks that
compensate for the over-approximation of the taint-analysis in the case where
either tainted or untainted flows come from a source to a sink can occur.

Currently, our analysis only implements the static analysis part, and we are
actively investigating the alternatives for monitoring the running application,
for example through instrumentation. The code for the analysis and examples
area available from the project website.4

Future Work. A very interesting approach that does not require instrumenta-
tion would be to integrate tighter with the Go runtime system: the Go runtime
4 See http://www.mn.uio.no/ifi/english/research/projects/goretech/.

http://www.mn.uio.no/ifi/english/research/projects/goretech/
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already contains a sophisticated, tuned framework for tracking data races in con-
current programs. Although due to its invasiveness it incurs a noticeably perfor-
mance penalty, it could reasonably be extended to taint-tracking. The runtime
would only need to be informed of sources and sinks. That could be achieved by
introducing annotations, as an alternative to a global (runtime-wide) list.

Since our current prototype analysis is a combination of the worklist-based
analysis for intra- and interprocedural data flow, yet we rely on existing Go
analyses for aliasing, the program may be effectively traversed multiple times,
for each analysis separately. If the different analyses could be integrated into a
single framework, we may benefit from some synergy.

Also, we do not cover all language features yet. It is unclear how higher-
order functions (and their application) could be analysed successfully statically,
so runtime monitoring may prove as an effective solution there.

An alternative approach to providing warnings, or termination, when reach-
ing a sink with tainted data, could be to fail as early as possible, that is, as soon
as it becomes clear that a policy will be inevitable in the future. Here, static
analysis would be the main contributor to identify the best places to insert such
checks, once more illustrating the need for a combined approach, with static and
dynamic aspects playing together to achieve a common goal.
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