
Leveraging DTrace for Runtime Verification?

Carl Martin Rosenberg1, Martin Steffen1, and Volker Stolz1,2

1 Inst. for Informatikk, Universitetet i Oslo
2 Inst. for Data- og Realfag, Høgskolen i Bergen

Norway

Abstract. DTrace, short for “dynamic tracing”, is a powerful diagnos-
tic tool and tracing framework. It is invaluable for performance monitor-
ing, tuning, and for getting insights into almost any aspect of a running
system. In this paper we investigate how we can leverage the DTrace op-
erating system-level instrumentation framework [9] to conduct runtime
verification. To this end, we develop graphviz2dtrace, a tool for pro-
ducing monitor scripts in DTrace’s domain-specific scripting language D
for specification formulas written in LTL3, a three-valued variety of the
well-known Linear Temporal Logic. We evaluate the tool by analyzing a
small stack-implementation and a multi-process system.

1 Introduction

Runtime verification is an emergent field of research in which formal properties
of concrete program or system runs are checked in an automatic manner. In order
to conduct runtime verification, one must extract relevant information from the
running system without harming or degrading the system in the process. We
investigate using the DTrace [9] framework for this purpose.

Originally developed for Sun Microsystems, DTrace combines both static and
dynamic instrumentation techniques in a unified framework spanning all aspects
of a software system, from specific events in userland processes to function calls
within the operating system kernel. DTrace exposes instrumentation points rep-
resenting events of interest, and lets users associate actions that the computer
should take when the selected events occur via a domain-specific, AWK-like,
programming language, D. We investigate the suitability of DTrace for runtime
verification by making the following contributions:

1. We design and implement graphviz2dtrace, a tool for generating DTrace-
based monitors for properties specified in LTL3: a three-valued variety of the
well-known specification logic Linear Temporal Logic (LTL) [5]. In conjunc-
tion with the LamaConv automata library [22], graphviz2dtrace provides a
complete runtime verification platform.

? This article is based upon work from COST Action ARVI IC1402, supported by
COST (European Cooperation in Science and Technology).

2

2. We use graphviz2dtrace-based monitors to verify two software systems: A
simple stack implementation written in C, and a web application consisting
of a Node.js [17] web server communicating with a PostgreSQL [19] database.
We demonstrate how graphviz2dtrace-based monitors can be used to de-
tect property violations and analyze the performance penalty we induce by
monitoring the running system.

3. Drawing on the two case studies, we discuss the possibilities and inherent
limitations of graphviz2dtrace-based monitoring, and suggest directions
for future work using DTrace for runtime verification.

The paper is organized as follows. In Section 2, we describe the main compo-
nents of DTrace: probes, providers, and the D scripting language. We also dis-
cuss how dynamic instrumentation is possible with the pid and fbt providers.
Then, we describe how to create a bridge between logical and practical con-
cepts by associating atomic LTL propositions with DTrace probe specifications,
and how this idea is implemented in graphviz2dtrace. Since graphviz2dtrace

produces standalone scripts in the D programming language, we discuss how
graphviz2dtrace is constrained by the inherent limitations of D, especially
with respect to concurrency.

We describe the process of finding and specifying observable events, associ-
ating the events to atomic propositions in LTL specification formulas, and using
the generated monitors to detect property violations.

We evaluate the tool in two case studies: First, we investigate a faulty stack
implementation written in C, demonstrating how we can instrument a program
without leaving static artifacts in the source code. Then, we investigate a sys-
tem composed of a web server written in Node.js and a PostgreSQL database.
We specify a safety property concerning the interaction between the web server
and the database and demonstrate how to detect a violation by hooking a mon-
itor onto the running processes. We also analyze the performance degradation
we induce through monitoring, before evaluating our findings and drawing our
conclusions.

Section 5 concludes with related and future work. An extended version and
technical annexes can be found in the recently published Master thesis [21] and
the accompanying web-page.3

2 DTrace

DTrace, short for “dynamic tracing”, is a powerful operating system level diag-
nostic tool and tracing framework. It can be seen as a major step forward from
older tools such as ptrace or strace in terms of versatility, sophistication, and
efficiency. It offers a flexible tool set for performance monitoring, tuning and
collecting comprehensive information on the behavior of a running system, from
the behavior of a single process to the internals of the operating system kernel.

3 http://www.mn.uio.no/ifi/english/research/groups/pma/completedmasters/

2016/rosenberg/

http://www.mn.uio.no/ifi/english/research/groups/pma/completedmasters/2016/rosenberg/
http://www.mn.uio.no/ifi/english/research/groups/pma/completedmasters/2016/rosenberg/

3

In its most basic form, it gives users a way of specifying events of interest
and associate actions that the computer should take when those events occur.
With DTrace, a user can make requests like

– whenever a process opens this file, increment this counter and notify me when
the counter exceeds a hundred, or even something as complex as

– whenever the Apache web server processes an HTTP request, store the re-
sponse code in a data structure, and when I say so, show me a statistical
distribution of the response codes.

Requests like these are programmed in a domain-specific scripting language,
D, which is heavily inspired by AWK and C. Originally written for the Sun
Solaris 10 operating system, DTrace is now available for Mac OS X, FreeBSD,
and other systems [13]. With DTrace installed, an administrative user can log
into the system, write a DTrace script and get insights about the system without
having to reboot, stop or alter the system in any way.

DTrace has two main concerns: Firstly, to give users a way of specifying the
information they want, and secondly, to acquire the requested information in a
safe and efficient manner. While both concerns ultimately must be met, they
are treated separately within DTrace: Producers are DTrace components that
acquire the requested data. Other components post-process the acquired data,
presenting it to the user in the manner the user requested: These components are
called consumers. One purpose of this separation is to ensure safety: producers
should only be concerned with acquiring data in a safe and unintrusive way, not
with how the acquired data is to be presented or used [8, p. 30-32].

At the kernel level, there are a series of producer components called providers
that gather data about some aspect of the running system. For example, the
syscall provider gives data about system calls that are issued to the operating
system. The most important consumer is the dtrace program, the command-
line utility that provides the most common way of interacting with the DTrace
framework. This component compiles and executes D-scripts, and calls upon the
underlying producers to acquire the requested data.

Specifying events of interest: Probes. First of all, users need a way to specify
events of interest. To this end, DTrace provides the user with an enormous list
of possible instrumentation points representing events of interest. These instru-
mentation points are called probes. The available probes reflect aspects of the
system that can be monitored at the current point in time.

Probes are identified by a four-tuple <provider:module:function:name>.
Users use these tuples to select the probes they are interested in, and specify
actions to be taken once the associated events occur. In DTrace parlance, when
the event a probe represents occurs, one says that the probe “fires”.

It is also possible for application developers to employ so called User Stati-
cally Defined Tracing (USDT) to their own programs, by inserting static probes
in the application source code. In this way, the application developers can create
custom providers for their applications. Many notable software projects have

4

USDT probes, including the PostgreSQL database management software, that
we will visit in our case study later, as well as many programming language
runtimes.

Doing things when events occur: Actions. Once users have specified which probes
they are interested in, they can associate actions blocks that should be executed
when the selected probes fire. Users can store data in variables, collect statistics,
spawn other processes, inspect system structure and analyze function parame-
ters, to name just a few of the possibilities. Even though action statements are
specified in blocks tying them to specific probes, it is possible to share variables
and data structures between action blocks, making it possible to monitor com-
plex interactions between events [13, p. 37–42]. The available action statements
will vary between DTrace implementations on different platforms.

Filtering out the noise: Predicates. When a probe fires, an optional predicate
determines if the corresponding action block should execute or not. Predicates
are written as boolean expressions that can use any D operator and any D data
object. A missing predicate is equivalent to the predicate /true/, meaning that
no filter is present and the action block will be executed unconditionally when
the probe fires.

Dynamic Tracing. A foundational concept in DTrace is dynamic tracing. Dy-
namic tracing permits users to instrument programs on the fly, without requiring
static artifacts to be present in the software that is being instrumented [8, p.
30]. This makes it possible to analyze systems that provide limited logging capa-
bilities, systems that are distributed in binary form only, and systems that are
opaque in other ways.

In DTrace, dynamic tracing is made possible by the fbt and pid providers [12].
The previously mentioned fbt provider makes it possible to instrument all func-
tion return values and arguments in the operating system kernel [13, p. 163].
For userland processes, the pid provider gives probes that fire when a function
is entered or returned from, and can also be used to create probe firings for
specific instructions in the function [13, p. 788-791]. In Section 4.1, we use the
pid provider to dynamically instrument a stack program in C.

The listing in Figure 1 shows a simple D-script which matches on read-
syscalls into the kernel. It prints the name of the process issuing the call, except
of any running instance of the dtrace-process itself.

syscall::read:entry /* probe */

/execname != "dtrace" / /* predicate */

{ printf("%s \n " , execname); } /* action block */

Fig. 1. A simple D-script

5

3 Design of graphviz2dtrace

The fundamental idea behind graphviz2dtrace is to let users associate the
atomic propositions in LTL formulas with DTrace-observable events represented
by DTrace probes (with optional predicates). Suppose, for example, that we want
to ensure that a program deallocates all memory before exiting, and have ex-
pressed this property as ¬exit W dealloc using the precedence pattern identified
by Dwyer et al. in [1]. Suppose that we also have produced a corresponding LTL3

automaton with LamaConv. With graphviz2dtrace, we can create a concrete
monitor program for this property in the following manner: First, we can map
exit to the DTrace probe pid$target::main:return, which fires whenever the
main function returns. Similarly, we can map dealloc to pid$::dealloc:entry,
which fires whenever the dealloc function is entered. Every time DTrace regis-
ters one of the specified events, the state of the automaton is updated according
to the automaton transition function (encoded in a two-dimensional array). The
monitor reports a verdict the moment it detects that the property is either sat-
isfied or violated and terminates itself.

Originally, the idea (and hence the name) of graphviz2dtrace was to pro-
vide a unified way of producing DTrace monitors from any monitor automaton
encoded in Graphviz [11] dot notation4. However, we chose to restrict ourselves
to monitor automata for LTL3 since it is well suited for reasoning about finite
traces.

LTL3 differs from traditional LTL in its semantics, which is defined for finite
prefixes of infinite traces. The semantics of LTL3 is based on the notion of good
and bad prefixes originally developed in [15]: A good prefix for a formula φ is a
prefix such that all possible continuations of the prefix make φ true. Conversely,
a bad prefix for φ is a prefix such that all possible continuations of the prefix
make φ false. Consequently, an LTL3 monitor is an automaton that accepts a
trace if it detects a good prefix, rejects a trace if it detects a bad prefix or outputs
inconclusive if the provided trace is neither a good nor a bad prefix [6].

In LTL3 monitor automata produced by LamaConv, all states will be labeled
either green, red or yellow. Whenever the automaton enters a red state, the
automaton has detected a bad prefix. If the automaton enters a green state,
a good prefix has been found. If the trace (ie. the input to the automaton) is
terminated while the automaton is in a yellow state, the verdict is inconclusive.
In graphviz2dtrace-produced scripts, this is reflected in three types of probe
clauses: As soon as the automaton detects that it is about to enter an accepting
or rejecting state, the script outputs the corresponding verdict and stops itself. If
the script is terminated while in a yellow state, the script outputs INCONCLUSIVE.

Concurrency-related limitations The most important limitation with DTrace is
that there is no way to have a globally accessible yet synchronized state variable
in D : This introduces the possibility of race conditions if two or more probe

4 The graphviz dot notation was chosen because LamaConv can produce it, for its
ubiquity, and for the ease with which automata can be visualized.

6

clauses attempt to update the state variable of the automaton at the same time.
A possible mitigation would be to use a thread-local rather than a global state
variable, but that would make it impossible to reason about probes that are not
associated with the same thread. We elected to make graphviz2dtrace agnostic
about the provided probes: Users are responsible for preventing race conditions.
While this severely restricts the properties that one can safely monitor with
graphviz2dtrace-based scripts, we show an example that works around this
limitation in section 4.

4 Case studies

In this section we use graphviz2dtrace to analyze simple properties in two
different setups: in the first case study, we observe function calls in a simple C
program that implements a stack-API. In the second, we show how our DTrace-
based approach can be used to cover properties that span different operating-
system level processes. Lastly, we discuss the performance penalties incurred
through DTrace.

4.1 Verifying a single process program

To demonstrate graphviz2dtrace in practice, we start by investigating a näıve
implementation of the classic stack data structure, supporting the operations
push, pop and empty. The push function adds an element to the top of the stack,
pop removes the topmost element on the stack and returns the element to the
user, and empty says whether the stack is empty or not. We will consider the
following property:

�((push ∧ ♦empty)→ (¬empty U pop))

This property is chosen among the properties which Bauer et al. determined to
be LTL3-monitorable [6] and can be understood as saying that for any stack
that has been pushed to and is eventually found empty, a pop event must have
occurred before the empty event.

Obtaining the automaton. First, we must obtain an automaton by using
LamaConv. We use the following invocation to generate an automaton encoded
in the Graphviz dot language:

r l t l c o n v ”LTL=[] ((push && <>empty) −> (! empty U pop)) ,
ALPHABET=[push , pop , empty] ” −−formula −−moore −−min −−dot

The resulting automaton and corresponding dot code are shown in Figure 2.
We observe that the resulting automaton has two yellow states and one red state.
If the input to the automaton ends while the automaton is in any of the yellow
states, the verdict is inconclusive. If the automaton is in the red state, it means
that it has detected a violation of the property.

7

digraph G {
q0 -> q0 [label="?"];
q1 -> q2 [label="\"pop\""];
q1 -> q1 [label="\"push\""];
q1 -> q0 [label="\"empty\""];
q2 -> q2 [label="\"empty\""];
q2 -> q2 [label="\"pop\""];
q2 -> q1 [label="\"push\""];
start [shape=none, style=invis];
start -> q2 [label="START"];
q2 [style=filled, fillcolor=yellow]
q1 [style=filled, fillcolor=yellow]
q0 [style=filled, fillcolor=red]

}

Fig. 2. Automaton (left) and dot script (right) for the formula �((push ∧ ♦empty)→
(¬empty U pop))

Mapping atomic propositions to DTrace probe and predicate expres-
sions. With the automaton in hand, we map the atomic propositions in the LTL
formula (push, pop and empty) to DTrace probe and predicate expressions. We
use the pid provider to detect function calls within the program, which lets us
detect when a function is being called and when a function is returned from. In
this way, we can inspect both function arguments and return values. We create
the following mapping in JSON as mapping.json:

push→ pid$target::push:entry

pop→ pid$target::pop:return

empty→ pid$target::empty:return/arg1 == 1/

Anytime the stack program enters the push function, our monitor script registers
this as a push event and updates the internal automaton state accordingly. Sim-
ilarly, whenever the stack program returns from the pop function, the monitor
registers this as a pop event.

The empty function reports whether the stack is empty or not. It returns
either 1 or 0, meaning true or false. Since we are interested in the event “the
stack is empty” rather than “the empty function is being called”, we must check
the return value of empty. We use a predicate expression for this. The predicate
checks that the return value of the function, which the pid provider binds to
arg1, is 1.

We now have all the necessary ingredients. To obtain our monitor, we use
the following graphviz2dtrace invocation:

$./graphviz2dtrace.py --mapping mapping.json automaton.dot

The listing in Figure 3 shows the salient parts of the generated script, eliding
generated comments, and parts of the transition table.

Detecting a violation. To experiment with the monitor, we introduce a fault
into the stack implementation. The push function does not increment the buffer

8

i n t HAS VERDICT;
i n t s t a t e ;
i n t t f [3] [3] ;

dt race : : : BEGIN
{

t f [0] [0] = 0 ;
/∗ . . . ∗/
t f [2] [2] = 0 ;
HAS VERDICT = 0 ;
s t a t e = ($1 ? $1 : 0) ;

}

p id$ ta rge t : : empty : re turn
/ (arg1 == 1) && (s t a t e == 2)/
{

t r a c e (”REJECTED”) ;
HAS VERDICT = 1 ;
e x i t (0) ;

}

p id$ ta rge t : : push : entry
/ s t a t e == 2 | | s t a t e == 0/
{

s t a t e = t f [s t a t e] [1] ;
}

p id$ ta rge t : : empty : re turn
/ (arg1 == 1) && (s t a t e == 0)/
{

s t a t e = t f [s t a t e] [0] ;
}

p id$ ta rge t : : pop : re turn
/ s t a t e == 2 | | s t a t e == 0/
{

s t a t e = t f [s t a t e] [2] ;
}

dtrace : : :END / !HAS VERDICT /
{ t r a c e (”INCONCLUSIVE”) ; }

Fig. 3. Generated script

index after pushing a new element onto the stack, ie. the empty operation will
yield 1 (ie. true) even though elements have been pushed onto the stack:

void push(int number, int* i) { buffer[*i] = number; }

We demonstrate this by feeding the program a test case via the standard input.
Notice that the monitor is called with the -c parameter, which tells the moni-
toring script that it should start the provided program and trace until the target
program finishes running. We run the program with sudo, as DTrace requires
special privileges to run, regardless of the privilege level of the programs being
monitored.

$ sudo ./monitor.d -c ./stack < incite_error.in

PUSHED 3

PUSHED 4

PUSHED 5

YES

REJECTED

Indeed, we see that the last line is REJECTED. To ensure against a false posi-
tive, we fix the stack implementation to increment on push, which should make
the monitor output INCONCLUSIVE, we recompile the program and run the test
case again:

$ sudo ./monitor.d -c ./stack-wpushfix < incite_error.in

PUSHED 3

PUSHED 4

PUSHED 5

NO

INCONCLUSIVE

9

As expected, the verdict is INCONCLUSIVE, since we have reached the end of
the trace and stopped in neither an accepting, nor rejecting, state.

4.2 Verifying interactions between programs

The previous case study concerned a single-process program. What if the system
we want to analyze is realized by more than one process? To illustrate how
graphviz2dtrace can create monitors suitable for these occasions, we will now
analyze a simple system consisting of a web server written in Node.js [17] talking
to a PostgreSQL [19] database. The point of this case study is not to illuminate
some complex system—in fact, the system is made deliberately simplistic to
emphasize how the system is instrumented—but rather to discuss what it is like
to use graphviz2dtrace in practice on a deployed system.

The web server listens to incoming HTTP requests and stores the user-agent
strings of the incoming requests in a PostgreSQL database. When the server
starts up, it reports its process ID and the process ID of the attached PostgreSQL
client to the terminal. Suppose we wanted to ensure that whenever the web server
receiving a request, the database completes the corresponding insertion query
successfully before the web server sends a response to the client. How could we
do that?

In the following, we go through the process of selecting relevant probes corre-
sponding to the events we want to study, specifying the property in LTL, creating
the corresponding monitor, attaching it to the running system and detecting vi-
olations.

Both Node.js and PostgreSQL have tailor-made static probes that we can
make use of. For PostgreSQL, we consulted the listing of available static probes
in [20] and used DTrace to find a single probe to associate with the event that
a specific PostgreSQL client is done executing a query:

postgresql$$1:postgres:PortalRun:query-execute-done.

The $$1 lets us target a specific PostgreSQL client instance by providing the
corresponding PID to the monitoring script via the command line. Furthermore,
Node.js has static probes for incoming HTTP requests and responses, which can
be tied to a specific Node.js instance as in these probe specifications:

node$target:node::http-server-request and
node$target:node::http-server-response.

Here, we use the $target macro variable to specify the PID of the relevant
Node.js instance via the command line.

By not supporting parameterized properties, graphviz2dtrace makes it hard
to reason about distinct events of the same type. However, the predicate mecha-
nism in DTrace is quite expressive. Let us see if we can use the DTrace predicate
mechanism to express the property as something that either should happen or
should never happen, and see if we can get closer to our intended meaning.

10

We wanted to ensure that the server never sends a response to the client
before the database management system has completed the corresponding query.
Let us rephrase this property in terms of what should never happen:

1. The server should never send a response before the corresponding database
query is complete.

2. There should never be an HTTP request for which the corresponding database
query and HTTP response never happen.

Suppose we kept three running counters: One for registered requests, another
for completed queries, and a third for completed responses. We can achieve this
in a D script by adding one probe clause for each event that increments the
corresponding counter:

i n t nrequests , nresponses , nque r i e s ;

node$target : node : : http−se rver−r eque s t
{ nreques t s++; }

node$target : node : : http−se rver−re sponse
{ nresponses++; }

pos tg r e sq l $$1 : po s tg r e s : PortalRun : query−execute−done
{ nque r i e s++; }

If we want to add this to a graphviz2dtrace-generated script, we must
place these probe clauses before the clauses related to the automaton logic to
get the intended result, since probe clauses associated with the same probe are
processed in order. If we place them below the automaton-related clauses, the
counters would be incremented after we check if the property is violated. Note
also that global variables are initialized to 0 by default in D script.

With the counters in place, we can then express the first property as

�¬(nresponses > nqueries)

What about the response property? We suggest the following: Define a tolerance
level for how big the difference can be between registered requests on the one
hand and registered responses and queries on the other. As a starting point, let
us arbitrarily specify the tolerance level by saying that this difference should
never exceed 100:

�¬(((nrequests− nresponses) > 100) ∧ ((nrequests− nqueries) > 100))

Having decided on these properties, we need to find a way of associating the
atomic propositions of these properties with probe firings so we can detect viola-
tions. We can associate the atomic proposition in the precedence property with
the http-server-response probe:

node$target:node::http-server-response/nresponses > nqueries/

11

The response property is not as obvious, but we we can use the special tick
provider to inspect the state of the monitoring script at a given interval. The
tick provider fires at a fixed interval on one CPU [18, p. 177]. By associating
a suitable predicate with a tick event, we can check if the difference between
registered requests and registered queries and responses is too large. If we check
the property 10 times a second, the probe and predicate specification becomes:

tick-10hz/((req - res) > 100) || ((req - queries) > 100)/

We then go on to constructing an appropriate automaton. First, we create
some aliases. We call the event related to the precedence property mismatch and
the event associated with the response property unresponsive. We then define
our specification formula as the following conjunction:

(�¬mismatch) ∧ (�¬unresponsive)

We then use LamaConv to create the automaton, and graphviz2dtrace to
create the corresponding script. We also add the counter logic mentioned above
to get the counters to work. Finally, to make the verdicts more informative, we
also add print statements helping us distinguish between when the property is
violated due to the mismatch event and when the violation is caused by the
unresponsive event.

Detecting a violation. With the monitoring script in hand, let us proceed
to verifying the system under scrutiny. Again, we have introduced an artificial
problem in our code to give our monitor something interesting to observe. We
use the following fragment in the web server source code to handle a request:

c l i e n t . query (’INSERT INTO e n t r i e s (entry) VALUES($1) ’ ,
[req . headers [’ user−agent ’]] ,
f unc t i on (e r ror , r e s u l t){

i f (e r r o r){
r e s . end (’ Query f a i l e d \n ’) ;

}
}) ;

r e s . end (’ Accepted entry \n ’) ;

Once the database finishes, the runtime executes the code in the anonymous
callback function. In the meantime, the webserver can go on processing other
events. However, the statement res.end(’Accepted entry\n’); which closes
the HTTP response, is outside of the callback which fires when the database is
done. Therefore it is possible that the statement above is executed before the
database is done completing the query.

On startup, the Node.js server prints all the information that we need to
subsequently attach DTrace:

$ node server.js

Server running at 127.0.0.1, port 1337

12

Node.js PID is 11509

PostgreSQL client PID is 11510

$ sudo ./monitor.d -p 11509 11510

The p flag binds 11509 to the $target macro variable. Similarly, 11510 will
be bound to $1. With the monitor attached, we use the Apache Benchmark [2]
tool ab to send the server a series of requests, and quickly trigger the monitor:

$ ab -n 10000 http://127.0.0.1:1337/

...

REJECTED DUE TO MISMATCH

We can detect a violation of the response property, too. Running a new
benchmark on the server after fixing the callback error above, this time with a
high number of concurrent connections via the command line option -c 200, we
get immediately: REJECTED DUE TO UNRESPONSIVENESS.

The tolerance gap of 100 requests in the property was chosen arbitrarily, so
this does not have to mean that there is any grave error with the software system
as such. Nevertheless, we have seen that the monitor detects a violation.

On concurrency Since the Node.js web server and the PostgreSQL database run
as separate processes on a multi-core machine it is both possible and desirable
that they do tasks in parallel: Generally, this can also mean that we get two
simultaneous probe firings that create a race condition on the monitor’s state

variable. In this specific case, we are in the clear: The clauses in the generated
monitor never update the state variable, since as soon as either the mismatch
or the irresponsive event is detected a bad prefix has been found and monitoring
is terminated.

4.3 Performance

Finally, we would like to observe and discuss the performance of DTrace-based
runtime verification. Gregg [12] analyzes the overhead of the pid provider and
states the following principle about the performance overhead induced by DTrace:

“The running overhead is proportional to the rate of probes – the more
they fire per second, the higher the overhead.”

He then formulates the following rules of thumb:

– “Don’t worry too much about pid provider probe cost at < 1 000 events/sec.”
– “At > 10 000 events/sec, pid provider probe cost will be noticeable.”
– “At > 100 000 events/sec, pid provider probe cost may be painful.”

Paraphrasing our performance evaluation detailed in [21], we see that in the
case of the web-server, in our benchmark the system processes roughly 2 000
requests per second, and with three probe firings associated with each request

13

(one for the request, one for the query and one for the response), this only adds
up to 6 000 probe firings per second, which is well below this threshold.

In the case of the stack example, we also compared with printf-based events
(essentially how logging would be implemented). We observe that although this
method of event-generation has only half the runtime overhead of using DTrace
probes from the pid provider, it is a static instrumentation which gives less flexi-
bility, especially in the case where the application does not need to be monitored.
In that case, DTrace would have virtually no overhead, whereas the program with
the printf-statements would have to be recompiled without them.

This shows that we can instrument a running system with DTrace without
adversary performance effects, so long as we limit the number of possible probe
firings per second to a reasonable level.

5 Conclusion and Future Work

DTrace offers a unique insight into running programs with little overhead. Its
main design goal is unobtrusiveness, i.e., apart from a usually minor performance
impact, DTrace cannot affect the program execution in any way. Here, we have
used DTrace scripts to monitor events provided by the operating system runtime
(function calls via C-style libraries or syscalls into the kernel), and through User
Statically Defined Tracing, where developers deliberately expose relevant probes
to DTrace.

As the scripts run inline with the actual program, we have chosen to encode
the transition function of three-valued Linear Time Logic LTL3 directly through
a two-dimensional array in DTrace. The three-valued logic gives us the possibility
to yield a verdict on an accepting/rejecting a run as soon as possible.

A major advantage of this approach is that we can associate events from
different (operating system-level) processes, possibly even implemented in dif-
ferent languages. We have illustrated the usefulness in two small cases studies,
and reflected on performance impacts.

Related Work. The main challenge in applied runtime verification is how to
observe a program. Approaches can be divided into those that require access to
the source code, and those that do not.

The former rely on recompilation (or byte-code transformation in case of in-
terpreted languages) to be able to intercept relevant events at runtime. Programs
are either recompiled with manual annotations or instrumentations, or through
a more declarative approach like aspect-oriented programming [16]. The notions
of capturing function entries and exits with the possibility to bind values in As-
pectJ have already been used previously together with temporal logics [24] and
trace-based interface specifications [7].

In the second category of tools that can work with a binary representation
only of the software, we have log-based tools [14], or those that work on a lower
level, e.g. by using advanced emulation or virtualization techniques like Intel’s

14

SAE technology [10]. The latter works on the instruction-level and requires re-
construction of higher-level actions of the program from sequences of assembly
instructions.

Another dimension of classification is online versus offline monitoring. In on-
line monitoring, properties are checked in lock-step with the program execution.
This also allows the monitor to interrupt, or otherwise interact with the program
as soon as a violation is detected. The ability of a system to reason and reflect
about its own operating modes and overall system state at runtime has also
been termed runtime reflection in [4]. In offline monitoring, runtime verification
techniques are only used to record a trace, which is then processed later, e.g.
for post-mortem analyses. Our DTrace approach realises online monitoring, as
scripts are executed inline, yet we have not made use of a feedback mechanism to
realise reflection. However, a feedback mechanism could be achieved by connect-
ing the output of the DTrace script to the input of the program, or making use
of DTrace’s so-called destructive actions [18, p. 114], which, among other things,
offer direct manipulation of memory contents. This requires active cooperation
from the program, in the sense that a developer has to program the application
to respond to monitor verdicts.

In future work, we plan to extend the framework with parametrized propositions
[23], or quantified event automata [3]. This will allows us to instantiate properties
with events that carry values, e.g. to match corresponding identifiers in requests
and responses. As we have seen in the web-server example, this is a limiting
factor which can only be partially remediated through counters.

It is not clear how concurrent programs can effectively be monitored without
race conditions in the action blocks. An obvious, though less elegant, solution
would be to use DTrace to only collect the trace data, and produce a single
stream of interleaved events that is processed outside of DTrace.

All source code to the example programs, monitors, and detailed instructions
are available in [21] and the accompanying web-page http://www.mn.uio.no/

ifi/english/research/groups/pma/completedmasters/2016/rosenberg/.

References

1. H. Aalav, G. Avrunin, J. Corbett, L. Dillon, M. Dwyer, and C. Pasareanu. Speci-
fication patterns. http://patterns.projects.cis.ksu.edu/. Accessed: 2015-08-
13.

2. Apache Software Foundation. ab – Apache HTTP server benchmarking tool.
https://httpd.apache.org/docs/2.4/programs/ab.html.

3. H. Barringer, Y. Falcone, K. Havelund, G. Reger, and D. E. Rydeheard. Quantified
event automata: Towards expressive and efficient runtime monitors. In D. Gian-
nakopoulou and D. Méry, editors, 18th Intl. Symp. Formal Methods (FM 2012),
volume 7436 of Lecture Notes in Computer Science, pages 68–84. Springer, 2012.

4. A. Bauer, M. Leucker, and C. Schallhart. Model-based runtime analysis of dis-
tributed reactive systems. In 17th Australian Software Engineering Conference
(ASWEC 2006). IEEE Computer Society, 2006.

http://www.mn.uio.no/ifi/english/research/groups/pma/completedmasters/2016/rosenberg/
http://www.mn.uio.no/ifi/english/research/groups/pma/completedmasters/2016/rosenberg/
http://patterns.projects.cis.ksu.edu/
https://httpd.apache.org/docs/2.4/programs/ab.html

15

5. A. Bauer, M. Leucker, and C. Schallhart. Monitoring of real-time properties. In
S. Arun-Kumar and N. Garg, editors, Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2006), pages 260–272. Springer, 2006.

6. A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol., 20(4):14:1–14:64, Sept. 2011.

7. E. Bodden and V. Stolz. Tracechecks: Defining semantic interfaces with temporal
logic. In W. Löwe and M. Südholt, editors, Software Composition, volume 4089 of
Lecture Notes in Computer Science, pages 147–162. Springer, 2006.

8. B. Cantrill. Hidden in plain sight. ACM Queue, 4(1):26–36, Feb. 2006.
9. B. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic instrumentation of

production systems. In ATEC ’04 Proceedings of the annual conference on USENIX
Annual Technical Conference. USENIX, 2004.

10. N. Chachmon, D. Richins, M. Christensson, R. Cohn, W. Cui, and
V. Janapa Reddi. Simulation and analysis engine for scale-out workloads. In
Proceedings of the 30th ACM on Intl. Conf. on Supercomputing. ACM, 2016.

11. J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull. Graphviz—
open source graph drawing tools. In P. Mutzel, M. Jünger, and S. Leipert, editors,
Graph Drawing, volume 2265 of Lecture Notes in Computer Science, pages 483–484.
Springer, 2002.

12. B. Gregg. DTrace pid Provider Overhead. http://dtrace.org/blogs/brendan/

2011/02/18/dtrace-pid-provider-overhead/, 2011.
13. B. Gregg and J. Mauro. DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X,

and FreeBSD. Prentice Hall Professional, 2011.
14. K. Havelund and R. Joshi. Experience with rule-based analysis of spacecraft logs.

In C. Artho and C. P. Ölveczky, editors, Formal Techniques for Safety-Critical
Systems, volume 476 of Communications in Computer and Information Science,
pages 1–16. Springer, 2015.

15. O. Kupferman and M. Y. Vardi. Model checking of safety properties. Formal
Methods in System Design, 19(3):291–314, 2001.

16. R. Laddad. AspectJ in Action. Manning Publications, second edition, 2009.
17. Node.js Foundation. Node.js. https://nodejs.org/en/.
18. Oracle Corporation. DTrace Guide for Oracle Solaris 11. Oracle Corporation,

2012.
19. PostgreSQL Global Development Group. PostgreSQL. http://www.postgresql.

org/.
20. PostgreSQL Global Development Group. PostgreSQL Documentation: Dynamic

Tracing. http://www.postgresql.org/docs/current/static/dynamic-trace.

html.
21. C. M. Rosenberg. Leveraging DTrace for Runtime Verification. Master thesis,

Dept. of Informatics, Faculty of Mathematics and Natural Sciences, University of
Oslo, May 2016.

22. T. Scheffel, M. Schmitz, et al. LamaConv—logics and automata converter library.
http://www.isp.uni-luebeck.de/lamaconv.

23. V. Stolz. Temporal assertions with parametrized propositions. J. Log. Comput.,
20(3):743–757, 2010.

24. V. Stolz and E. Bodden. Temporal assertions using AspectJ. Electr. Notes Theor.
Comput. Sci., 144(4):109–124, 2006.

http://dtrace.org/blogs/brendan/2011/02/18/dtrace-pid-provider-overhead/
http://dtrace.org/blogs/brendan/2011/02/18/dtrace-pid-provider-overhead/
https://nodejs.org/en/
http://www.postgresql.org/
http://www.postgresql.org/
http://www.postgresql.org/docs/current/static/dynamic-trace.html
http://www.postgresql.org/docs/current/static/dynamic-trace.html
http://www.isp.uni-luebeck.de/lamaconv

	Leveraging DTrace for Runtime Verification

