
Rule-based Consistency Checking
of Railway Infrastructure Designs

Bjørnar Luteberget1, Christian Johansen2, and Martin Steffen2

1 RailComplete AS, Sandvika, Norway (formerly Anacon AS)
2 Department of Informatics, University of Oslo, Norway

bjlut@railcomplete.no,{cristi,msteffen}@ifi.uio.no

Abstract. Railway designs deal with complex and large-scale, safety-critical in-
frastructures, where formal methods play an important role, especially in verify-
ing the safety of so-called interlockings through model checking. Model checking
deals with state change and rather complex properties, usually incurring consid-
erable computational burden (chiefly in terms of memory, known as state-space
explosion problem). In contrast to this, we focus on static infrastructure proper-
ties, based on design guidelines and heuristics. The purpose is to automate much
of the manual work of the railway engineers through software that can do verifi-
cation on-the-fly. In consequence, this paper describes the integration of formal
methods into the railway design process, by formalizing relevant technical rules
and expert knowledge. We employ a variant of Datalog and use the standardized
“railway markup language” railML as basis and exchange format for the formal-
ization. We describe a prototype tool and its (ongoing) integration in industrial
railway CAD software, developed under the name RailCOMPLETEr. We apply
this tool chain in a Norwegian railway project, the upgrade of the Arna railway
station.

Keywords: railway designs, automation, logic programming, signalling, railway
infrastructure, railML, CAD, Datalog

1 Introduction

Railway systems are complex and large-scale, safety-critical infrastructures, with in-
creasingly computerized components. The discipline of railway engineering is char-
acterized by heavy national regulatory oversight, high and long-standing safety and
engineering standards, a need for interoperability and (national and international) stan-
dardization. Due to the high safety requirements, the railway design norms and regu-
lations recommend the use of formal methods (of various kinds), and for the higher
safety integrity levels (SIL), they “highly recommend” them (cf. e.g. [4]). Railways re-
quire thoroughly designed control systems to ensure safety and efficient operation. The
railway signals are used to direct traffic, and the signalling component layout of a train
station is crucial to its traffic capacity. Another central part of a railway infrastructure is
the so-called interlocking, which refers, generally speaking, to the ensemble of systems
tasked to establish safe, conflict-free routes of trains through stations (cf. [18]).

Railway construction projects are heavy processes that integrate various fields, en-
gineering disciplines, different companies, stakeholders, and regulatory bodies. When



2 Bjørnar Luteberget, Christian Johansen, and Martin Steffen

working out railway designs a large part of the work is repetitive, involving routine
checking of consistency with rules, writing tables, and coordinating disciplines. Many
of these manual checks are simple enough to be automated.

With the purpose of increasing the degree of automation, we present results on
integrating formal methods into the railway design process, as follows:

– We formalize rules governing track and signalling layout, and interlocking.
– The standardized “railway markup language” railML [19] is used as basis and ex-

change format for the formalization.
– We model the concepts describing a railway design in the logic of Datalog; and

develop an automated generation of the model from the railML representation.
– We develop a prototype tool and integrate it in existing railway CAD software.

We illustrate the logical representation of signalling principles and show how they can
be implemented and solved efficiently using the Datalog style of logic programming
[21]. We also show the integration with existing railway engineering workflow by using
CAD models directly. This enables us to verify rules continuously as the design process
changes the station layout and interlocking. Based on railML [19], our results can be
easily adopted by anyone who uses this international standard. The work uses as case
study the software and the design (presently under development) used in the Arna-
Fløen upgrade project,3 with planned completion in 2020. The Arna train station is
located on Northern Europe’s busiest single-track connection, which is being extended
to a double-track connection. The case study is part of an ongoing project in Anacon
AS (now merged with Norconsult), a Norwegian signalling design consultancy. It is
used to illustrate the approach, test the implementation, and to verify that the tool’s
performance is acceptable for interactive work within the CAD software.

The rest of the paper is organized as follows. Section 2 discusses aspects of the
railway domain relevant for this work. Section 3 proposes a tool chain that extends CAD
with formal representations of signalling layout and interlocking. Section 4 presents our
formalization of the rules and concepts of railway design as logical formulas amenable
for the Datalog implementation and checking. Section 5 provides information about
the implementation, including details about counterexample presentation and empirical
evaluation using the case study. We conclude in Section 6 with related and future work.

2 Background on the Railway Signalling Domain
The signalling design process results in a set of documents which can be categorized
into (a) track and signalling component layout, and (b) interlocking specification.

Railway construction projects rely heavily on computer aided design (CAD) tools
to map out railway station layouts. The various disciplines within a project, such as
civil works, track works, signalling, or catenary power lines, work with coordinated
CAD models. These CAD models contain a major part of the work performed by en-
gineers, and are a collaboration tool for communication between disciplines. The sig-
nalling component layout is worked out by the signalling engineers as part of the design
process. Signals, train detectors, derailers, etc., are drawn using symbols in a 2D geo-
graphical CAD model. An example of a layout drawing is given in Figure 1.

3 www.jernbaneverket.no/Prosjekter/prosjekter/Arna---Bergen

www.jernbaneverket.no/Prosjekter/prosjekter/Arna---Bergen


Rule-based Consistency Checking of Railway Infrastructure Designs 3

Fig. 1. Cut-out from 2D geographical CAD model (construction drawing) of preliminary design
of the Arna station signalling.

2.1 Interlocking Specification

An interlocking is an interconnection of signals and switches to ensure that train move-
ments are performed in a safe sequence [18]. Interlocking is performed electronically
so that, e.g., a green light (or, more precisely, the proceed aspect) can only be lit under
certain conditions. Conditions and state are built into the interlocking by relay-based
circuitry or by computers running interlocking software. Most interlocking specifica-
tions use a route-based tabular approach, which means that a train station is divided
into possible routes, which are paths that a train can take from one signal to another.
These signals are called the route entry signal and route exit signal, respectively. An el-
ementary route contains no other signals in-between. The main part of the interlocking
specification is to tabulate all possible routes and set conditions for their use. Typical
conditions are:

– Switches must be positioned to guide the train to a specified route exit signal.
– Train detectors must show that the route is free of any other trains.
– Conflicting routes, i.e. overlapping routes (or overlapping safety zones), must not

be in use.

3 Proposed Railway Signalling Design Tool Chain

Next we describe shortly the tool chain that we propose for automating the current man-
ual tasks involved in the design of railway infrastructures (see details in [15]). In partic-
ular, we are focused on integrating and automating those simple, yet tedious, rules and
conditions usually used to maintain some form of consistency of the railway, and have
these checks done automatically. Whenever the design is changed by an engineer work-
ing with the CAD program, our verification procedure would help, behind the scenes,
verifying any small changes in the model and the output documents. Violations would
either be automatically corrected, if possible, or highlighted to the engineer. Thus, we
are focusing on solutions with small computational overhead.



4 Bjørnar Luteberget, Christian Johansen, and Martin Steffen

3.1 Computer-Aided Design (CAD) Layout Model

CAD models, which ultimately correspond to a database of geometrical objects, are
used in railway signalling engineering. They may be 2D or 3D, and contain mostly
spatial properties and textual annotations, i.e., the CAD models focus on the shapes of
objects and where to place them. The top level of the document, called the model space
block, contains geometrical primitives, such as lines, circles, arcs, text, and symbols.

Geometric elements may represent the physical geometry directly, or symbolically,
such as text or symbols. However, the verification of signalling and interlocking rules
requires information about object properties and relations between objects such as
which signals and signs are related to which track, and their identification, capabil-
ities, and use. This information is better modelled by the railway-specific extensible
hierarchical object model called railML [17].

3.2 Integrating railML and Interlocking Specifications with CAD Models

CAD programs were originally designed to produce paper drawings, and common
practice in the use of CAD programs is to focus on human-readable documents. The
database structure, however, may also be used to store machine-readable information.
In the industry-standard DWG format, each geometrical object in the database has an
associated extension dictionary, where add-on programs may store any data related to
the object. Our tool uses this method to store the railML fragments associated with each
geometrical object or symbol. Thus, we can compile the complete railML representa-
tion of the station from the CAD model.

Besides the layout, the design of a railway station consists also of a specification
for the interlocking. This specification models the behavior of the signalling, and it is
tightly linked to the station layout. A formal representation of the interlocking specifica-
tion is embedded in the CAD document in a similar way as for the railML infrastructure
data, using the document’s global extension dictionary. Thus, the single CAD document
showing the human-readable layout of the train station also contains a machine-readable
model which fully describes both the component layout and the functional specification
of the interlocking. This allows a full analysis of the operational aspects of the train
station directly from a familiar editable CAD model.

3.3 Overall Tool Chain

Figure 2 shows the overall tool chain. The software allows checking of rules and regula-
tions of static infrastructure (described in this paper) inside the CAD environment, while
more comprehensive verification and quality assurance can be performed by special-
purpose software for other design and analysis activities.

Generally, analysis and verification tools for railway signalling designs can have
complex inputs, they must account for a large variety of situations, and they usually
require long running times. Therefore, we limit the verification inside the design en-
vironment to static rules and expert knowledge, as these rules require less dynamic
information (timetables, rolling stock, etc.) and less computational effort, while still of-
fering valuable insights. This situation may be compared to the tool chain for writing



Rule-based Consistency Checking of Railway Infrastructure Designs 5

Rules,
regulations,
and expert
knowledge
(Datalog

representation)

CAD program (design stage)

CAD document
(station layout)

Verification
issues GUI

Symbols with
attached railML

fragments

Interlocking
specification

Complete railML
document

Verification
program

User decision

Is
su

e
de

sc
ri

pt
io

n
(r

ul
e,

ob
je

ct
s,

lo
ca

tio
ns

)

Human-readable
reports and
drawings

Machine-readable
layout and specs

Interlocking
code generation
and verification

Capacity
analysis

Drawing/
report

generators

Building
Information
Modeling

Export

Fig. 2. Railway design tool chain. The CAD program box shows features which are directly ac-
cessible at design time inside the CAD program, while the export creates machine-readable (or
human-readable) documents which may be further analyzed and verified by external software
(shown in dashed boxes).

computer programs. Static analysis can be used at the detailed design stage (writing
the code), but can only verify a limited set of properties. It cannot fully replace testing,
simulation and other types of analysis, and must as such be seen as a part of a larger
tool chain.

Other tools, that are external to the CAD environment, may be used for these more
calculation heavy or less automated types of analysis, such as:

– Code generation and verification for interlockings, possible e.g. through the formal
verification framework of Prover Technology.

– Capacity analysis and timetabling, performed e.g. using OpenTrack, LUKS, or
Treno.

– Building Information Modeling (BIM), including such activities as life-cycle infor-
mation management and 3D viewing, are already well integrated with CAD, and
can be seen as an extension of CAD.

The transfer of data from the CAD design model to other tools is possible by using
standardized formats such as railML, which in the future will also include an interlock-
ing specification schema [3].



6 Bjørnar Luteberget, Christian Johansen, and Martin Steffen

4 Formalization of Rule Checking

To achieve our goal of automating checking of the consistency of railway designs we
need formal representations of both the designs and the consistency rules.

The logical representation of the designs (called the model) and of the rules (called
properties) are fed into the verification engine (SAT/SMT or Datalog) which is doing
satisfiability checking, thus looking for an interpretation of the logical variables that
would satisfy the formulas. More precisely, the rules are first negated, then conjoined
with the formulas representing the model. Therefore, looking for a satisfying interpre-
tation is the same as looking for a way to violate the rules. When found, the interpreta-
tion contains the information about the exact reasons for the violation. The reasons, or
counter-example, involves some of the negated rules as well as some parts of the model.

We formalize the correctness properties (i.e., technical rules and expert knowledge)
as predicates over finite and real domains. Using a logic programming framework, we
will include the following in the logical model:

1. Predicate representation of input document facts, i.e. track layout and interlocking.
2. Predicate representation of derived concept rules, such as object properties, topo-

logical properties, and calculation of distances.
3. Predicate representation of technical rules.

Each of these categories are described in more detail below, after we present the logical
framework we employ.

4.1 Datalog

Declarative logic programming is a programming language paradigm which allows
clean separation of logic (meaning) and computation (algorithm). This section gives
a short overview of Datalog concepts. See [21] for more details. In its most basic form
Datalog is a database query, as in the SQL language, over a finite set of atoms which
can be combined using conjunctive queries, i.e. expressions in the fragment of first-
order logic which includes only conjunctions and existential quantification.

Conjunctive queries alone, however, cannot express the properties needed to verify
railway signalling. For example, given the layout of the station with tracks represented
as edges between signalling equipment nodes, graph reachability queries are required
to verify some of the rules. This corresponds to computing the transitive closure of the
graph adjacency relation, which is not expressible in first-order logic [13, Chap. 3].
Adding fixed-point operators to conjunctive queries is a common way to mitigate the
above problem while preserving decidability and polynomial time complexity.

The Datalog language is a first-order logic extended with least fixed points. We
define the Datalog language as follows: Terms are either constants (atoms) or vari-
ables. Literals consist of a predicate P with a certain arity n, along with terms cor-
responding to the predicate arguments, forming an expression like P (~a), where ~a =
(a1, a2, . . . , an). Clauses consist of a head literal and one or more body literals, such
that all variables in the head also appear in the body. Clauses are written as

R0(~x) :– ∃~y : R1(~x, ~y), R2(~x, ~y), . . . , Rk(~x, ~y).



Rule-based Consistency Checking of Railway Infrastructure Designs 7

Datalog uses the Prolog convention of interpreting identifiers starting with a capital
letter as variables, and other identifiers as constants. E.g., the meaning of the clause
a(X,Y ) :– b(X,Z), c(Z, Y ) is ∀x, y : ((∃z : (b(x, z) ∧ c(z, y)))→ a(x, y)).

Clauses without body are called facts, those with one or more literals in the body
are called rules. No nesting of literals is allowed. However, recursive definitions of
predicates are possible. In the railway domain, this can be used to define the connected
predicate, which defines whether two objects are connected by railway tracks:

directlyConnected(a, b) :– track(t), belongsTo(a, t), belongsTo(b, t).

connected(a, b) :– directlyConnected(a, b).

connected(a, b) :– directlyConnected(a, x), connection(x, c),

connected(c, b).

Here, the connection predicate contains switches and other connection types. Further
details of relevant predicates are given in the sections below.

Another common feature of Datalog implementations is to allow negation, with
negation as failure semantics. This means that negation of predicates in rules is allowed
with the interpretation that when the satisfiability procedure cannot find a model, the
statement is false. To ensure termination and unique solutions, the negation of predi-
cates must have a stratification, i.e. the dependency graph of negated predicates must
have a topological ordering (see [21, Chap. 3] for details).

Datalog is sufficiently expressive to describe static rules of signalling layout topol-
ogy and interlocking. For geometrical properties, it is necessary to take sums and dif-
ferences of lengths, which requires extending Datalog with arithmetic operations. A
more expressive language is required to cover all aspects of railway design, e.g. capac-
ity analysis and software verification, but for the properties in the scope of this paper, a
concise, restricted language which ensures termination and short running times has the
advantage of allowing tight integration with the existing engineering workflow.

4.2 Input Documents Representation

Track and signalling objects layout in the railML format. Given a complete railML
infrastructure document, we consider the set of XML elements in it that correspond to
identifiable objects (this is the set of elements which inherit properties from the type
tElementWithIDAndName). The set of all IDs which are assigned to XML ele-
ments form the finite domain of constants on which we base our predicates (IDs are
assumed unique in railML).

Atoms := {a | element.ID = a} .

We denote a railML element with ID = a as elementa. All other data associated with
an element is expressed as predicates with its identifying atom as one of the arguments,
most notably the following:

– Element type (also called class in railML/XML):

track(a)← elementa is of type track,
signal(a)← elementa is of type signal,
balise(a)← elementa is of type balise,

switch(a)← elementa is of type switch.



8 Bjørnar Luteberget, Christian Johansen, and Martin Steffen

– Position and absolute position (elements inheriting from tPlacedElement):

pos(a, p)← (elementa.pos = p), a ∈ Atoms, p ∈ R,
absPos(a, p)← (elementa.absPos = p), a ∈ Atoms, p ∈ R.

– Direction (for elements inheriting from tOrientedElement):

dir(a, d)← (elementa.dir = d), a ∈ Atoms, d ∈ Direction,

where Direction = {up, down, both, unknown}, indicating whether the object is
visible or functional in only one of the two possible travel directions, or both.

– Signal properties (for elements of type tSignal):

signalType(a, t)← (elementa.type= t), t∈{main, distant, shunting, combined} ,
signalFunction(a, f)← (elementa.function = f),

a ∈ Atoms, f ∈ {home, intermediate, exit, blocking} .

The switch element is the object which connects tracks with each other and creates
the branching of paths. A switch belongs to a single track, but contains connection
sub-elements which point to other connection elements, which are in turn contained in
switches, crossings or track ends. For connections, we have the following predicates:

– Connection element and reference:

connection(a)← elementa is of type connection,
connection(a, b)← (elementa.ref = b).

– Connection course and orientation:

connectionCourse(a, c)← (elementa.course = c), c∈{left, straight, right}
connectionOrientation(a, o)← (elementa.orientation = o),

a ∈ Atoms, o ∈ {outgoing, incoming} .

To encode the hierarchical structure of the railML document, a separate predicate
encoding the parent/child relationship is added:

– Object belongs to (e.g. a is a signal belonging to track b):

belongsTo(a, b)← b is the closest XML ancestor of a whose element
type inherits from tElementWithIDAndName.

Interlocking. An XML schema for tabular interlocking specifications is described in
[3], and this format is used here with, anticipating that it will become part of the railML
standard schema in the future. We give some examples of how XML files with this
schema are translated into predicate form:

– Train route with given direction d, start point a, and end point b (a, b ∈ Atoms,
d ∈ Direction):

trainRoute(t)← elementt is of type route
start(t, a)← (elementt.start = a)

end(t, b)← (elementt.end = b)



Rule-based Consistency Checking of Railway Infrastructure Designs 9

– Conditions on detection section free (a) and switch position (s, p):

detectionSectionCondition(t, a)←(a ∈ elementt.sectionConditions),

switchPositionCondition(t, s, p)←((s, p) ∈ elementt.switchConditions).

4.3 Derived Concepts Representation

Derived concepts are properties of the railway model which can be defined indepen-
dently of the specific station. A library of these predicates is needed to allow concise
expression of the rules to be checked.

Object properties. Properties related to specific object types which are not explicitly
represented in the layout description, such as whether a switch is facing in a given
direction, i.e. if the path will branch when you pass it:

switchFacing(a, d)← ∃c, o : switch(a) ∧ switchConnection(a, c)∧
switchOrientation(c, o) ∧ orientationDirection(o, d).

Topological and geometric layout properties. Predicates describing the topological
configuration of signalling objects and the train travel distance between them are de-
scribed by predicates for track connection (predicate connected(a, b)), directed con-
nection (predicate following(a, b, d)), distance (predicate distance(a, b, d , l)), etc.
The track connection predicate is defined as:

directlyConnected(a, b)← ∃t : track(t) ∧ belongsTo(a, t) ∧ belongsTo(b, t),

connected(a, b)← directlyConnected(a, b) ∨ (∃c1, c2 : connection(c1, c2)∧
directlyConnected(a, c1) ∧ connected(c2, b)).

Interlocking properties. Properties such as existsPathWithoutSignal(a, b) for find-
ing elementary routes, and existsPathWithDetector(a, b) for finding adjacent train
detectors will be used as building blocks for the interlocking rules.

4.4 Rule Violations Representation

With the input documents represented as facts, and a library of derived concepts, it
remains to define the technical rules to be checked. Technical rules are based on [11].
Some examples of technical rules representing conditions of the railway station layout
are given below. More details can be found in the technical report [16].

Property 1 (Layout: Home signal [11]) A home main signal shall be placed at least
200 m in front of the first controlled, facing switch in the entry train path.



10 Bjørnar Luteberget, Christian Johansen, and Martin Steffen

200 m

Fig. 3. A home main signal shall be placed at least 200 m in front of the first controlled, facing
switch in the entry train path. (Property 1)

See also Figure 3 for an example. Property 1 may be represented in the following way:

isFirstFacingSwitch(b, s)← stationBoundary(b) ∧ facingSwitch(s)∧
¬(∃x : facingSwitch(x) ∧ between(b, x, s)),

ruleViolation1(b, s)← isFirstFacingSwitch(b, s)∧
(¬(∃x : signalFunction(x, home) ∧ between(b, x, s))∨
(∃x, d, l : signalFunction(x, home)∧
∧ distance(x, s, d, l) ∧ l < 200).

Checking for rule violations can be expressed as:

∃b, s : ruleViolation1(b, s),

which in Datalog query format becomes ruleViolation1(B,S)?.

Property 2 (Layout: Exit main signal [11]) An exit main signal shall be used to sig-
nal movement exiting a station.

This property can be elaborated into the following rules:

– No path should have more than one exit signal:

ruleViolation2(s)←∃d : signalType(s, exit) ∧ following(s, so, d)∧
¬signalType(s0, exit).

– Station boundaries should be preceded by an exit signal:

exitSignalBefore(x, d)←∃s : signalType(s, exit) ∧ following(s, x, d)

ruleViolation2(b)←∃d : stationBoundary(b) ∧ ¬exitSignalBefore(b, d).

Property 3 (Interlocking: Track clear on route) Each pair of adjacent train detec-
tors defines a track detection section. For any track detection sections overlapping the
route path, there shall exist a corresponding condition on the activation of the route.

See Figure 4 for an example. Property 3 can be represented as follows:

adjacentDetectors(a, b)←trainDetector(a) ∧ trainDetector(b)∧
¬existsPathWithDetector(a, b),



Rule-based Consistency Checking of Railway Infrastructure Designs 11

Section 1 Section 2

Sig. A Sig. B

Tabular interlocking:
Route Start End Sections must be clear

AB A B 1, 2

Fig. 4. Track sections which overlap a route must have a corresponding condition in the inter-
locking. (Property 3)

detectionSectionOverlapsRoute(r, da, db)← trainRoute(r)∧
start(r, sa) ∧ end(r, sb)∧
adjacentDetectors(da, db) ∧ overlap(sa, sb, da, db),

ruleViolation3 (r, da, db)← detectionSectionOverlapsRoute(r, da, db)∧
¬detectionSectionCondition(r, da, db).

Property 4 (Interlocking: Flank protection [11]) A train route shall have flank pro-
tection.

For each switch in the route path and its associated position, the paths starting in the
opposite switch position defines the flank. Each flank path is terminated by the first flank
protection object encountered along the path. An example situation is shown in Figure
5. While the indicated route is active (A to B), switch X needs flank protection for its
left track. Flank protection is given by setting switch Y in right position and setting
signal C to stop. Property 4 can be elaborated into the following rules:

– All flank protection objects should be eligible flank protection objects, i.e. they
should be in the list of possible flank protection objects, and have the correct orien-

Route

Signal A Signal B

Signal C

Switch X

Switch Y

Flan
k

Fig. 5. The dashed path starting in switch X must be terminated in all branches by a valid flank
protection object, in this case switch Y and signal C. (Property 4)



12 Bjørnar Luteberget, Christian Johansen, and Martin Steffen

tation (the flankElement predicate contains the interlocking facts):

flankProtectionObject(a, b, d)←((signalType(a,main) ∧ dir(a, d))∨
(signalType(a, shunting) ∧ dir(a, d))∨
switchFacing(a, d)∨
derailer(a)) ∧ following(a, b, d).

flankProtectionRequired(r, x, d)← trainRoute(r) ∧ start(r, sa)∧
end(r, sb) ∧ switchOrientation(x, o) ∧ between(sa, x, sb)∧
orientationDirection(o, od) ∧ oppositeDirection(od, d).

flankProtection(r, e)←flankProtectionRequired(r, x, d)∧
flankProtectionObject(e, x, d).

ruleViolation4 (r, e)←flankElement(r, e)∧
¬flankProtection(r, e).

– There should be no path from a model/station boundary to the given switch, in the
given direction, that does not pass a flank protection object for the route:

ruleViolation4 (r, b, x)← stationBoundary(b)∧
flankProtectionRequired(r, x, d) ∧ following(b, x, d)∧
existsPathWithoutFlankProtection(r, b, x, d).

5 Tool Implementation

The XSB Prolog interpreter was used as a back-end for the implementation as it offers
tabled predicates which have the same characteristics as Datalog programs [20], while
still allowing general Prolog expressions such as arithmetic operations.

5.1 Counterexample Presentation

When rule violations are found, the railway engineer will benefit from information
about the following:

– Which rule was violated (textual message containing a reference to the source of
the rule or a justification in the case of expert knowledge rules).

– Where the rule was violated (identity of objects involved).

Also, classification of rules based on e.g. discipline and severity may be useful in many
cases. In the rule databases, this may be accomplished through the use of structured
comments, similar to the common practice of including structured documentation in
computer programs, such as JavaDoc (see Figure 6 for an example). A program parses
the structured comments and forwards corresponding queries to the logic programming
solver. Any violations returned are associated with the information in the comments, so
that the combination can be used to present a helpful message to the user. A prototype
CAD add-on program for Autodesk AutoCAD was implemented, see Figure 7.



Rule-based Consistency Checking of Railway Infrastructure Designs 13

%| rule: Home signal too close to first facing switch.
%| type: technical
%| severity: error
homeSignalBeforeFacingSwitchError(S,SW) :-

firstFacingSwitch(B,SW,DIR),
homeSignalBetween(S,B,SW),
distance(S,SW,DIR,L), L < 200.

Fig. 6. Structured comments on rule violation expression

Fig. 7. Counterexample presentation within an interactive CAD environment.

5.2 Case Study Results

The rules concerning signalling layout and interlocking from Jernbaneverket [11] de-
scribed above were checked in the railML representation of the Arna-Fløen project,
which is an ongoing design project in Anacon AS (now merged with Norconsult). Each
object was associated with one or more construction phases, which we call phase A and
phase B, which also correspond to two operational phases. The model that was used
for the work with the Arna station (phase A and B combined) included 25 switches, 55
connections, 74 train detectors, and 74 signals. The interlocking consisted of 23 and 42
elementary routes in operational phase A and B respectively.

The Arna station design project and the corresponding CAD model has been in
progress since 2013, and the method of integrating railML fragments into the CAD
database, as described in Section 3, has been in use for about one year. Engineers work-
ing on this model are now routinely adding the required railML properties to the sig-

Testing station Arna phase A Arna phase B

Relevant components 15 152 231
Interlocking routes 2 23 42
Datalog facts 85 8283 9159
Running time (s) 0.1 4.4 9.4

Table 1. Case study size and running times on a standard laptop.



14 Bjørnar Luteberget, Christian Johansen, and Martin Steffen

nalling components as part of their CAD modelling process. The rule collection con-
sisted of 37 derived concepts, 5 consistency predicates, and 8 technical predicates. Run-
ning times for the verification procedure can be found in Table 1.

6 Conclusions, Related and Further Work

We have demonstrated a logical formalism in which railway layout and interlocking
constraints and technical rules may be expressed, and which can be decided by logic
programming proof methods with polynomial time complexity.

Related work. Railway control systems and signalling designs are a fertile ground
for formal methods. See [1,7] for an overview of various approaches and pointers to
the literature, applying formal methods in railway design. In particular, safety of inter-
lockings has been intensively formalized and studied, using for instance VDM [9] and
the B-method, resp. Event-B [12]. Model checking has proved particularly attractive
for tackling the safety of interlocking, and various model checkers and temporal log-
ics have been used, cf. e.g. [5,22,6]. Critically evaluating practicality, [8] investigated
applicability of model checking for interlocking tables using NuSMV resp. Spin. The
research shows that interlocking systems of realistic size are currently out of reach for
both flavors of model checkers. [10] uses bounded model checking for interlockings.
An influential technology is the verified code generation for interlockings from Prover
AB Sweden [2]. Prover is an automated theorem prover, using Stålmarck’s method.

The mentioned works generally include dynamic aspects of the railway in their
checking, like train positions and the interlocking state. This is in contrast to our work,
which focuses on checking against static aspects. Lodemann et al. [14] use semantic
technologies to automate railway infrastructure verification. Their scope is still wider
than this paper in the computational sense, with the full expressive power of OWL
ontologies, running times on the order of hours, and the use of separate interactive
graphical user interfaces rather than integration with design tools.

Future work. In the future work with RailComplete AS, we will focus on extending the
rule base to contain more relevant signalling and interlocking rules from [11], evaluating
the performance of our verification on a larger scale. Design information and rules about
other railway control systems, such as geographical interlockings and train protection
systems could also be included. The current work is assuming Norwegian regulations,
but the European Rail Traffic Management System is expected to dominate in the future.

Finally, we plan to extend from consistency checking to optimization of designs.
Optimization requires significantly larger computational effort, and the relation between
Datalog and more expressive logical programming frameworks could become relevant.

Acknowledgments. We thank Anacon AS and RailComplete AS, especially senior
engineer Claus Feyling, for guidance on railway methodology and philosophy. We ac-
knowledge the support of the the Norwegian Research Council through the project Rail-
Cons – Automated Methods and Tools for Ensuring Consistency of Railway Designs.

http://www.forskningsradet.no
http://www.mn.uio.no/ifi/english/research/projects/railcons/
http://www.mn.uio.no/ifi/english/research/projects/railcons/


Rule-based Consistency Checking of Railway Infrastructure Designs 15

References
1. D. Bjørner. New results and trends in formal techniques for the development of software in

transportation systems. In Proceedings of the Symposium on Formal Methods for Railway
Operation and Control Systems (FORMS’03). L’Harmattan Hongrie, 2003.

2. A. Borälv and G. Stålmarck. Prover technology in railways. In Industrial-Strength Formal
Methods, International Series in Formal Methods, pages 329–305. Springer-Verlag, 1999.

3. M. Bosschaart, E. Quaglietta, B. Janssen, and R. M. P. Goverde. Efficient formalization of
railway interlocking data in RailML. Information Systems, 49:126–141, 2015.

4. J.-L. Boulanger. CENELEC 50128 and IEC 62279 Standards. Wiley-ISTE, Mar. 2015.
5. S. Busard, Q. Cappart, C. Limbrée, C. Pecheur, and P. Schaus. Verification of railway inter-

locking systems. In 4th Int. Workshop on Engineering Safety and Security Systems (ESSS),
volume 184 of EPTCS, pages 19–31, 2015.

6. C. Eisner. Using symbolic model checking to verify the railway stations of Hoorn-
Kersenboogerd and Heerhuowaard. In Correct Hardware Design and Verification Methods,
10th IFIP WG 10.5, CHARME ’99, volume 1703 of LNCS, pages 97–109. Springer, 1999.

7. A. Fantechi, W. Fokkink, and A. Morzenti. Some trends in formal methods applications to
railway signalling. In Formal Methods for Industrial Critical Systems, pages 61–84. John
Wiley & Sons Inc., 2012.

8. A. Ferrari, G. Magnani, D. Grasso, and A. Fantechi. Model checking interlocking control
tables. In Formal Methods for Automation and Safety in Railway and Automotive Systems,
pages 107–115. Springer, 2010.

9. M. Fukuda, Y. Hirao, and T. Ogino. VDM specification of an interlocking system and a
simulator for its validation. In 9th IFAC Symposium Control in Transportation Systems 2000
Proceedings Vol.1, pages 218–223, Braunschweig, 2000. IFAC.

10. A. E. Haxthausen, J. Peleska, and R. Pinger. Applied bounded model checking for inter-
locking system designs. In SEFM 2013 Collocated Workshops on Software Engineering and
Formal Methods, volume 8368 of LNCS, pages 205–220. Springer, 2014.

11. Jernbaneverket. Teknisk regelverk. http://trv.jbv.no/, 2015.
12. T. Lecomte, L. Burdy, and M. Leuschel. Formally checking large data sets in the railways. In

Proceedings of DS-Event-B 2012: Advances in Developing Dependable Systems in Event-B.
In conjunction with ICFEM 2012, Nov. 2012.

13. L. Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An
EATCS Series. Springer-Verlag, 2004.

14. M. Lodemann, N. Luttenberger, and E. Schulz. Semantic computing for railway infrastruc-
ture verification. In IEEE Seventh Int. Conf. on Semantic Computing, pages 371–376, 2013.

15. B. Luteberget and C. Feyling. Automated verification of rules and regulations compliance
in CAD models of railway signalling and interlocking. In Computers in Railways XV. WIT
Press, 2016. To appear.

16. B. Luteberget, C. Johansen, and M. Steffen. Rule-based consistency checking of railway
infrastructure designs. Technical report 450, Jan. 2016.

17. A. Nash, D. Huerlimann, J. Schütte, and V. P. Krauss. RailML — a standard data interface
for railroad applications. In Computers in Railways IX, pages 233–240. WIT Press, 2004.

18. J. Pachl. Railway Operation and Control. VTD Rail Publishing, 2015.
19. railML. The XML interface for railway applications. http://www.railml.org, 2016.
20. T. Swift and D. S. Warren. XSB: Extending Prolog with tabled logic programming. Theory

Pract. Log. Program., 12(1-2):157–187, Jan. 2012.
21. J. D. Ullman. Principles of Database and Knowledge-Base Systems. CSP, 1988.
22. K. Winter, W. Johnston, P. Robinson, P. Strooper, and L. van den Berg. Tool support for

checking railway interlocking designs. In Proceedings of the 10th Australian Workshop on
Safety Critical Systems and Software, pages 101–107, 2006.

http://trv.jbv.no/
http://www.railml.org

	 Rule-based Consistency Checking of Railway Infrastructure Designs 
	Introduction
	Background on the Railway Signalling Domain
	Interlocking Specification

	Proposed Railway Signalling Design Tool Chain
	Computer-Aided Design (CAD) Layout Model
	Integrating railML and Interlocking Specifications with CAD Models
	Overall Tool Chain

	Formalization of Rule Checking
	Datalog
	Input Documents Representation
	Track and signalling objects layout in the railML format.
	Interlocking.

	Derived Concepts Representation
	Object properties.
	Topological and geometric layout properties.
	Interlocking properties.

	Rule Violations Representation

	Tool Implementation
	Counterexample Presentation
	Case Study Results

	Conclusions, Related and Further Work


