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Abstract. In this paper, we present a small-step operational semantics for a small
concurrent language supporting deferred function calls and related constructs in
the style of the Go programming language. For lexical scoping, the presence of
higher-order functions, but also the presence of the defer-command, requires the
notion of closures in the semantics.

1 Introduction

New programming languages appear all the time, most as variations and evolutions
of earlier languages or with new combinations of established features. Many new de-
signs remain obscure or establish a niche existence, some enjoy their days in the sun,
some new general purpose languages even rise to prominence to stay, sometimes ac-
companied by considerable hype. A recent promising newcomer is Go [19,18,36,13],
a language “backed” by Google, which gained quite some momentum after its incep-
tion and after going public in 2009. Syntactically, Go’s bloodline, tracing back to C, is
noticeable in its surface syntax as well as in simplicity and conciseness as advertised
design principles of the language.

At its core, Go is a lexically scoped, concurrent, imperative language with higher-
order functions, supporting object-oriented design. How to most profitably and ele-
gantly combine object-orientation with concurrency is a long-standing question . See
for instance [2] for an early discussion of the issue, where the essential design decision
is whether objects as units of data coincide with the units of concurrency (in which
case the objects are “active”) or objects and threads/processes etc. are different. In, e.g.,
his PhD thesis, Frank de Boer [10] proposed and studied the “parallel object-oriented
language” POOL, whose design is firmly in the “active objects” camp, where objects
basically are processes, exchanging messages over channels. Many popular concurrent
object-oriented languages follow such a design, including actor languages, agent lan-
guages etc. The alternative is multi-threading as supported perhaps most prominently
by Java and related languages.

Go seems not to fit neatly into either camp. For a start, one may debate to which
extent Go is object-oriented. Since the coinage of the term “object orientation” in Sim-
ula [9], being object-oriented has become a staple attribute of most modern languages
in one way or the other, but unfortunately, there is not overly much consensus on what
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object-orientation exactly is. Whether or not Go is object-oriented is salomonically an-
swered by the Go language FAQ as “yes and no”. In general, the consensus opinion
seems to be that Go is object-oriented but not entirely as you know it, and that at least
that it supports object-oriented programming and design. Officially, there’s no concept
named “object” in the language, and classes and class inheritance as mechanisms of
code reuse are missing. However, Go supports methods, which are functions with “re-
ceiver” as specific argument on which they are dynamically dispatched. The mecha-
nism relies on interfaces, structural subtyping, there called “duck typing”, as opposed
to more conventional nominal subtyping disciplines (cf. [31]). In this paper, we ignore
Go’s static type system (and thereby its object-oriented features) concentrating on some
aspects of non-local control flow and goroutines. For a very recent account of Go’s type
system and a formal calculus formalizing aspects of Go, see [30]. That work, however,
does not capture deferred function calls, on which we concentrate in this paper.

Concerning concurrency, Go’s primary feature is asynchronous function calls (resp.
asynchronous method calls). The mechanism is baptized goroutine by the developers
of the language (basically a lightweight form of threads with low overhead and lacking
known thread synchronization mechanisms such as wait and signal). The second core
concurrency construct is (typed) channel communication, in the tradition of languages
like CSP [22,23] or Occam. Since (references to) channels can be sent over channels, Go
allows “mobile channel” flexibility for communication as known from the π-calculus
[32].

This paper concentrates on two aspects of Go, the structural, non-local control flow
with Go’s specific constructs of defer, panic, and recover and the notion of gorou-
tines. Deferred function calls are to be executed when the surrounding function returns,
and independently of whether that return is done following unexceptional control flow
or while “panicking”. The command recover can be used to exit panicking mode and
return to normal execution. For lexical scoping, the small-step semantics uses a vari-
ant of closures, so-called capsules [25,26]. For the concurrent execution of multiple
goroutines, we use simple evaluation contexts where the global configurations have to
represent the parent-child relationship between goroutines.

2 A calculus with deferred functions and goroutines

After defining the abstract syntax of the calculus, we define a small-step semantics
by structural, operational rules, where in a first step we concentrate on the behavior
of one single goroutine (Section 2.2.1). Afterwards, Section 2.2.2 presents the global
semantics, covering the concurrent execution of goroutines.

2.1 Abstract syntax

The abstract syntax is given in Table 1. We elide types in this treatment, which will be
covered in the technical report, so variable declarations and abstractions are untyped.
The code is categorized into terms t and expressions e. A term t is either a value v,
where values includes the truth values, the unit value, leaving further values such as in-
tegers etc. unspecified, as they are orthogonal to our semantics. A term var x := e in t
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represents the sequential composition of first e followed by t, where the var-construct
binds the local variable x in t, i.e., the construct is also used to represent local, lexical
scopes. Furthermore, sometimes we write let x = e in t, if the variable x is not writ-
ten to in t, i.e., is used in a single-assignment fashion, and additionally use sequential
composition t1; t2 as abbreviation for let x = t1 in t2, if x is not mentioned free in t2 at
all, i.e., if x /∈ fv(t2). Expressions include function applications and conditionals. New
goroutines are created with the expression go ((λx.e1) v). Values, which are evaluated
expressions, are variables and function abstractions. We use () in this calculus also to
represent the absence of a value.

The constructs defer, recover, and panic are used for structured, non-local con-
trol flow: panic and return work similar to throwing and catching exceptions and de-
ferred code is executed when the surrounding function call returns, independent from
whether a goroutine is panicking or not. Their semantics is discussed in more detail in
Section 2.2.1. The construct return v is run-time syntax (hence underlined). Go itself
has a “terminating statement” return, used to hand back results from callee to caller,
if any. In our calculus, reducing a function application results in a value, which then is
returned without a specific construct in the user-syntax. The return is inserted by the
reduction rules to demarcate the boundaries of the function call’s “stack-frames”. This
is necessary to appropriately capture the semantics of deferred code.

t ::= v | var x := e in t terms
e ::= t | v v | if v then e else e | go t expressions
| defer ((λx.t) v) | recover | panic v | return v

v ::= x | () | true | false | λx.t values

(1)

Table 1: Abstract syntax

2.2 Operational semantics

Next we describe the small-step operational semantics of the calculus. The language of-
fers higher-order functions and nested, lexical scopes. Thus function bodies can outlive
their surrounding scope in which they are defined. As a consequence, lexical scoping
for non-local variables requires a memory discipline more complex than a stack-based
memory allocation and de-allocation. The phenomenon that a function definition can
outlive its defining scope also occurs for deferred function calls, which are executed
when the surrounding function returns and not at the place where the surrounding scope
(which may be nested) ends. Similarly, goroutines, which are asynchronously executed
function calls, have the same effect: when defined, variables refer lexically to a partic-
ular scope, but ultimate execution occurs “outside” that scope.

To represent such features, one conventionally uses closures. Closures [29] were
first implemented in PAL [15,14] and first widely used in Scheme [35,34]. Go indeed
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supports closures to enable static scoping. Generally speaking, a closure is a function,
i.e., an abstraction together with providing values for the abstraction’s free variables.

The semantics in this section concentrates on the local semantics of one goroutine.
For simplicity we also ignore reference values, concentrating on specifying the order
of reduction in the presence of deferred functions. Instead of using full closures, which
would typically require the introduction of references or locations, we make use of so
called capsules in the formulation of the rules in this presentation. Capsules [25] [26]
have been recently introduced as a slightly simpler variant of closures to capture static
binding in the presence of higher-order functions. We omit the treatment of references in
this section; obviously, they are supported by Go, though. [25] [26] prove that modeling
local state with capsules resp. with closures is equivalent.

A capsule environment, or environment for short, is used to model local state, here
for one sequential piece of code. An environment is a partial, finite function from vari-
ables to values. We use γ,γ1,γ

′, . . . for environments. By dom(γ), we refer of the domain
of γ . We use⊥ for the undefined value. Let’s write • for the empty capsule environment.
A binding from a variable x to a value v is written [x 7→ v], and in abuse of notation, we
write γ[x 7→ v] if the mapping γ is updated by a new binding. That includes adding a
new binding, resp., changing an already existing one for x. We also use the notation
[x0 7→ v1, . . . ,xn 7→ vn] or [~x 7→~v] when referring to a concrete capsule.

Capsules then are tuples consisting of a term t and an environment γ . We write γ ` t
for a capsule. As a standard invariant, it’s required (and maintained by the rules) that
all free variables of t are covered by the environment, i.e., dom(γ) ⊇ fv(t). To model
panicking code, we assume one specific variable p not used otherwise. Note that the
environment can contain bindings to abstractions which is reminiscent to the notion of
higher-order store [33].

2.2.1 Defer, panic, and recover Besides standard control-flow structures like loops
and conditionals, Go supports various commands for non-local control flow. We con-
centrate on the following three ones, defer, panic, and recover (and ignore con-
structs like goto and break). Note that, resulting from a deliberate design decision,
Go does not support exceptions, even if the behavior of defer, panic, and recover

obviously represent some “exceptional” control flow.
The local steps are straightforward and are given as a small-step SOS between cap-

sules. Rule R-VAR restructures a nested var-construct. As the construct generalizes
sequential composition, the rule expresses associativity of that construct. Thus it cor-
responds to transforming (e1; t1); t2 into e1;(t1; t2). Note that the grammar insists that,
e.g., in an application, both the function and the arguments are values, analogously
when acquiring a lock, etc. This form of representation is known as a-normal form
[17]. Together with the rest of the rules, which perform a case distinction on the first
non-var expression in a var-construct, a deterministic left-to-right evaluation is ensured.

Rule R-RED is the basic evaluation step, replacing in the continuation term t the
local variable by the value v (where [x← v] is understood as capture-avoiding substi-
tution). The var-construct introduces a new variable with an initial value v. To allow
imperative update, a fresh variable y′ is used to store the value in the environment, and
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γ ` var x2 := (var x1 := e1 in t1) in t2 −→ γ ` var x1 := e1 in (var x2 := t1 in t2) R-VAR

y′ fresh
R-RED

γ ` var y := v in t −→ γ[y′ 7→ v] ` t[y← y′]

γ ` x := v; t −→ γ[x 7→ v] ` t R-ASSIGN

γ ` var x := if true then e1 else e2 in t −→ γ ` var x := e1 in t R-IF1

x′ fresh
R-APP

γ ` var y := (λx.e1)v in t −→ γ[x′ 7→ v] ` var y := (var x0 := e1[x← x′] in return x0) in t

γ ` defer e1;(var x0 := e2 in (var y := return d in t))−→
γ ` var x0 := e2 in (var y := return e1;d in t)

R-DEFER

γ ` panic (v);(var x0 := e1 in (var y := e2 in t))−→
γ[p 7→ v] ` (var x0 := () in (var y := e2 in t))

R-PANIC

γ ` var x :=recover () in t −→ γ[p 7→ ⊥] ` var x := γ(p) in t R-RECOVER

γ(p) =⊥ y′ fresh
R-RETURN1

γ ` var y := return v in t −→ γ[y′ 7→ v] ` t[z′← v]

γ(p) = v 6=⊥ y′ fresh
R-RETURN2

γ ` var y := return v in t −→ γ[p 7→ ⊥] ` panic (v); t[y′← ()]

Table 2: Transition steps

y is replaced by y′ in the continuation of the code. In case the variable is not updated
in t, i.e., in a functional, single-assignment setting, the behavior can more simply but
equivalently covered by a simple substitution:

γ ` let x:T = v in t −→ γ ` t[x← v]

Sometimes, we will use the function let-construct and the simplified substitution
rule when possible. In contrast to R-RED, the assignment treated in R-ASSIGN does
not introduce a fresh variable but simply updates the value for an already existing one.
Since the assignment does not return a (non-trivial) value, we use sequential composi-
tion as syntactic sugar for simplicity for the formulation of the rules. The treatment of
conditionals is standard (the rule for false, symmetric to R-IF1, is omitted).

The next rule R-APP deals with function calls. Parameter passing is done call-by-
value as given in R-APP, where the environment is updated to γ[x′ 7→ v]. The body of
the function is treated by an appropriate substitution e1[x← x′]. Besides that, the rule
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introduces a scope for a new variable x0 used to store the result of the function body
before passing it back to the caller. In a situation where x0 is not mentioned in the func-
tion body e1, the expression var x0 := e1[x← x′] in x0 corresponds to an (equivalent)
η-expansion of the (instantiated) function body e1[x← x′]. It should be noted that the
run-time syntax return x0 does not completely correspond to Go’s terminating state-
ment return. In our reduction semantics, the return syntax is used to demarcate the
end of the top-level stack frame for the function instance currently being executed. The
variable x0 and the η-expanded form of the post-configuration in R-APP is introduced
to capture the semantics of deferred code (see also R-DEFER).

Deferred code, more precisely, deferred function applications, is executed “when”
the function in which the code is deferred, returns. In Go, the signature of a function can
specify a named return parameter. For instance, a function taking an integer argument
and returning an integer in a specified parameter x carries the signature int (x int).
The return parameter corresponds to the var-bound variable in rule R-APP. Deferred
code, which is executed at the end of the function body, can access and change this
return parameter. In the reduction rules, we omitted the type information; using a named
return parameter introduces that variable with the function body as scope and is covered
by the rule R-APP in that e1 (and potential deferred code therein) can access and change
x0

The defer-statement is treated in R-DEFER. Defer allows code to be executed “later”,
exactly at the point where the surrounding function or method returns. An analogous
defer-command has been introduced recently in Apple’s Swift-language [24] as well.
Concretely, only function applications, including partial applications, can be deferred in
Go, but the rule abstractly mentions just an expression e1. Note also that while deferred
functions are allowed in Go to have a non-trivial return type, the value they eventually
may return plays no role. The only way the deferred code can influence the outcome
of the surrounding function (besides recovering from a panic) is by side-effects, which
includes changing the surrounding function’s return value, making use of named return
parameters.

A further subtle point about deferred code is what happens if more than one piece
of code is being deferred when executing a method body. The discipline adopted is
that all of the deferred code will be executed upon return in a LIFO manner. In other
words, each stack frame can be thought of being equipped with an “extra stack” of
deferred code. Thus, deferred code follows a stack-discipline: within the stack-frame of
the surrounding function, code deferred first will be executed last.

Once deferred, the deferred code is “guaranteed”1 to be executed and thus a main
purpose of the code is similar to code in the finally-clause of exception handling as in
languages like Java: it can be used to “clean up” data structures, to close open connec-
tions or files, even in case something unexpected happens. There are some high-level
differences between finally-clauses and deferred function calls. One is that try-catch-

1 There’s an exception to this guarantee, though. Deferred code is executed independent from
whether the goroutine panics or not, but it’s executed only if the enclosing stack frame returns.
Divergence may prevent that, and another reason for failing to return is that the goroutine con-
taining the deferred code may be terminated due to the fact that its parent goroutine terminates.
See Section 2.2.2.
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finally lexically indicates a block of code to which the finally-clause belongs to, and
once entering the try-catch-finally statement, the final clause is (almost) guaranteed to
be executed independent of how the try-block is exited. In contrast, a defer-statement
may be defined inside a nested block inside a function body, but its execution is delayed
until the surrounding function body is exited, not the immediately surrounding scope.
As a result, the deferred code may typically outlive its immediately surrounding scope
much in the same way that nested functions in a higher-order language may outlive
their scope. As a consequence, to model or implement the mechanism adequately in a
language with lexical scoping, closures (or here capsules) are needed.

In general, the mechanism of deferred calls offers greater flexibility compared to
finally-clauses as in Java, as deferring code is done at run-time whereas try-catch-finally
blocks are statically given. See for instance [3] for a calculus treating exceptions or [1]
for a compositional Hoare-style proof system for a Java-like object-oriented language
with exceptions à la Java.

Example 1. The code in Listing 1.1 illustrates lexical scoping and the need of closures
for deferred functions: x in the body of the deferred function refers to the definition of x
with value 7. However, this x is updated in the same scope later, the value being actually
printed in the deferred way is 8. The closure therefore treats its non-local variables “by
reference”.2 The increment x++ at the end of the function body refers clearly to the
var-definition in the first line of the function body and hence has nothing to do with the
variable being printed.

Listing 1.1: Defer, static scope, and mutable “non-local” variables
func main ( ) {

var x = 0
{ var x = 7 / / l o c a l , n e s t e d scope

d e f e r func ( ) {
fmt . P r i n t l n ( x ) / / = 8

} ( )
x = x+1

}
x++

}

ut

The built-in function panic can be used to cause a “panic”, which roughly corre-
sponds to throwing an exception. Besides that, panics can occur due to a number of
“natural causes” such as attempts to dereference null pointers, out-of-bounds access to
arrays and slices, deadlocks, and many more situations. A panic causes the standard
execution of a method or function to stop and the control flow to jump directly to the

2 In other languages, an alternative semantics for closures exists as well, where, when building
the closure, the non-local variables obtain their meaning passing them “by value” instead. Of
course, a by-value treatment would make it impossible for deferred code to change the return
value, after the main body has been exited, for instance due to a panic. Passing by value can
be achieved here by handing over the value explicitly as an extra formal parameter, effectively
using a “λ -lifted” version of the deferred code. Indeed, λ -lifting is a transformation used
to give semantics to higher-order functions under lexical scoping [27] and an alternative to
closures.
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end of the function body. Before returning to the caller, any code previously deferred
in the function body will be executed in LIFO fashion. In R-PANIC, x0 is the desig-
nated callee-site variable to hand over the result of the function to the caller. Since no
“non-exceptional” value is being returned in an (unrecovered) panicking call, x0 is ir-
relevant and set to the corresponding types initial value. Omitting the type information,
written summarily as () in R-PANIC. The value of the panic is remembered in γ using
the “reserved variable” p. Note that executing deferred code at the end of a panicking
function can execute a second panic, which will overwrite the previous one. At each
point in time there is at most one panic active. To recover from a panic means to resume
the standard mode of execution and a function body having recovered returns as value
of the declared type to its caller (as opposed to propagating the panic). R-RECOVER
simply retrieves the value of the previously caused panic from p and unsets it.

Example 2 (Defer stack). The function f in the code from Listing 1.2 invokes two func-
tion calls in a deferred manner. Instead of deferring (λ ().z := z+ 1) (), the derivation
below just uses z := z+1 for simplicity.

Listing 1.2: Stacked defers
func f ( ) i n t { / / a l t e r n a t i v e : f u n c f ( ) ( z i n t )

var z = 1
d e f e r func ( ) {

z = z+1
} ( )
d e f e r func ( ) {

z = z+2
} ( )
re turn z / / 1

}

At the beginning of the reduction, in (2) below, we assume that the environment γ1
contains the definition for the function f . The function in Listing 1.2 does not make
use of named return parameters (the return type is just integers), hence the deferred
abstraction cannot access it. Therefore, for illustration, the derivation treats x0 via a let-
binding and handing back the value is done via substitution in step from (12) to (13).
Note in passing that if the updates to z were not done inside the deferred code, but the
function would simply do z := z+1;z := z+2;z, then the returned value via z would be
4, not 1.

Similarly, if f would declare z as return parameter in its signature (in which case, z
could not declared again via var in the same scope), the function would return 4. In the
deviation below, the step from (4) to (5) would use variable z (and var) instead of the
let-bound variable x0 as shown below.

For reference, the environments in the reductions are, where the γ1 at the start con-
tains already the definition for the function named f , a binding which remains un-
changed:

γ2 = γ1[z′ 7→ 1]
γ3 = γ1[z′ 7→ 3]
γ4 = γ1[z′ 7→ 4]
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γ1 ` var y := f () in t −→ (2)

γ1 ` var y := (λ (). var z := 1 in ((defer z := z+1);((defer z := z+2);z)))) () in t −→ (3)

γ1 ` var y := (let x0 = (var z := 1 in ((defer z := z+1);((defer z := z+2);z))) in return x0) in t −→ (4)

γ1 ` let x0 = (var z := 1 in ((defer z := z+1);((defer z := z+2);z))) in (let y =return x0 in t) −→ (5)

γ1 ` var z := 1 in (let x0 = (((defer z := z+1);((defer z := z+2);z))) in (let y =return x0 in t)) −→ (6)

γ2 ` let x0 = (((defer z′ := z′+1);((defer z′ := z′+2);z′))) in (let y =return x0 in t) −→ (7)

γ2 ` defer z′ := z′+1;(let x0 = ((defer z′ := z′+2);z′)) in (let y =return x0 in t) −→ (8)

γ2 ` let x0 = ((defer z′ := z′+2);z′)) in (let y =return (z′ := z′+1);x0 in t −→ (9)

γ2 ` defer z′ := z′+2;(let x0 = z′ in (let y =return (z′ := z′+1);x0 in t) −→ (10)

γ2 ` let x0 = z′ in (let y =return z′ := z′+2;(z′ := z′+1;x0) in t −→ (11)

γ2 ` let x0 = 1 in (let y =return z′ := z′+2;(z′ := z′+1;x0) in t) −→ (12)

γ2 ` let y =return z′ := z′+2;(z′ := z′+1;1) in t −→ (13)

γ2 ` z′ := z′+2;(let y =return z′ := z′+1;1 in t) −→ (14)

γ3 ` let y =return z′ := z′+1;1 in t −→ (15)

γ3 ` z′ := z′+1;(let y =return 1 in t) −→ (16)

γ4 ` let y =return 1 in t −→ (17)

γ4 ` t[y← 1] . (18)

ut

2.2.2 Goroutines and concurrent execution Concurrency is built into the core of
Go, where the unit of concurrency is called goroutine, a pun on the notion of coroutines
[8]. Coroutines are already a very old concept, originally introduced as a generalization
of subroutines, namely roughly as a procedure that can repeatedly yield “intermedi-
ate” results, and for non-pre-emptive multitasking. Note in passing that the first object-
oriented language Simula [9] [37] supported coroutines already, and a restricted form
known as generators or semi-coroutines has been used in various languages. See e.g.
[4] for a recent semantical account of a calculus with coroutines (using a small-step
semantics as in the presentation here), and including a type and effect system. Further
semantical studies and calculi treating coroutines include [6,7,28,12].

Syntactically, starting a goroutine is similar to deferring code. In both cases, a (func-
tion or method) application is deferred resp. started asynchronously with the command
go. In both cases, while the function may have a return type and return value, it’s not
handed back to the caller of the deferred code3 resp. the spawner of the new gorou-
tine. For example, in Listing 1.2 above illustrating stacked defers, one can replace the
two defer-commands by two go-commands, letting the functions run asynchronously
with the parent goroutine. Since three goroutines are then running concurrently, sharing
variable z, the result from f is non-deterministic, depending on the scheduling. How-
ever, when a goroutine terminates, all its children terminate, as well. For that example,
it means: if the parent goroutine, executing the main function and f terminates before
the two child goroutines modify the shared variable z, their update to z will not be-

3 With the exception that deferred code can be used to change the value of return parameters
declared in the function’s signature.
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come effective.4 It it should be noted that if a goroutine is terminated due to its parent’s
termination, this also prevents the coroutine’s already deferred code from happening:
deferred code is guaranteed to happen —panicking or not— upon return from a call, but
this form of aborting of a goroutine precludes any further returns from being executed.

For instance, the deferred function g in Listing 1.3 may or may not be executed,
even if the defer-statement itself happens.

Listing 1.3: Termination and defer
func g ( ) {

d e f e r func ( ) {
} ( )

}

func f ( ) {
go func ( ) {

d e f e r g ( )
} ( )
re turn

}
func main ( ) {

go f ( )
}

The semantics therefore needs to account for the parent-child relationship between
goroutines. We write 〈t〉 to denote a goroutine (without child goroutine), where t is the
term being executed, and use ‖ for the parallel composition. Let G stand for a “set” of
goroutines running in parallel, as given as follows.

G ::= ◦ | 〈t ‖ G〉 (19)

As usual, parallel composition ‖ is assumed commutative and associative, and we use
◦, representing the empty set of goroutines, as neutral element, i.e., 〈t ‖ ◦〉 ≡ 〈t〉. We
use≡ for the induced congruence. Obviously, when stipulating that ‖ is associative, we
mean the arrangement of elements inside 〈t ‖ . . .〉, the parenthetic structure using the
angle brackets represents the parent-child relationship between goroutines and is not
associative.

To formulate the steps for configurations of the form γ ` G, we use evaluation
contexts [16] (also known as reduction contexts [20]) to specify the redex inside G.
Since the evaluation strategy is rather trivial —non-deterministically reducing one term
of one goroutine in G— the definition of the contexts is likewise rather simple. An
evaluation context is basically a syntactic entity, here G, with exactly one hole (written
[ · ]):

E ::= [ · ] | 〈[ · ] ‖ G〉 | 〈t ‖ E〉 . (20)

Then E[t] represents the context E with t taking the place of the hole. The global
small-step transition relation is then given inductively by the rules of Table 3. Rule
R-CONTEXT lifts a local steps to the global level, using the evaluation contexts. Eval-
uating the go-command spawns asynchronously a new goroutine. The parent-child re-
lationship is captured in that the new goroutine 〈t〉 runs within the same enclosing

4 Running the example as is, where the main goroutine does not do much else than spawning two
child goroutines, it is practically guaranteed that the parent (and with it the child goroutines)
terminates before the children start affecting z.
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angle brackets. Note that goroutines don’t carry an identity. Such an identity could
be used by the spawning goroutine to obtain back an eventual result, if any, from the
asynchronously running code. Such a generalization would correspond to the notion
of futures [21][5]. Cf. also De Boer’s paper of a proof-theoretic account of a calculus
with asynchronous communication using futures [11]). Of course, the functionality of
first-class futures can easily be implemented in Go using channels.

γ1 ` t1 −→ γ2 ` t2
R-CONTEXT

γ1 ` E[t1]−→ γ2 ` E[t2]

R-GO
γ ` E[〈(go (t1); t2) ‖ G〉]−→ γ ` E[〈t2 ‖ 〈t1〉 ‖ G〉]

R-TERM
γ ` E[〈v ‖ G〉]−→ γ ` E[◦]

G1 ≡ G′1 G1 ≡ G′1 γ ` 〈G1〉 −→ γ ` 〈G2〉
R-STRUCT

γ ` 〈G′1〉 −→ γ ` 〈G′2〉

Table 3: Global transition relation

3 Conclusion, discussion, and future work

We presented an operational semantics, in particular capturing concurrency and non-
standard control-flow using deferred functions, as they have been introduced in the
language Go. Concentrating on the mentioned features, the paper obviously left out
many others that deserve study. These include references and reference types, which
can be treated in a standard manner, namely by introducing references or locations
allocated on a heap; their treatment is orthogonal to the aspects covered here. Other
interesting data structures include arrays and slices and their iterators.

Concentrating on the run-time behavior and the operational semantics, the presenta-
tion leaves out basically all typing aspects. Go claims to be strongly typed. While being
strongly typed is nearly as vague an attribute for a programming language as being
“modern” or “high-level”, Go certainly is light-years ahead when it comes to impos-
ing typing restrictions with meaningful semantics guarantees, compared to its spiritual
predecessor C (from which Go otherwise borrows many syntactic conventions). Rather
unconventional for most mainstream object-oriented (typed) languages is to do away
with nominal typing and nominal subtyping (not to mention to do away with classes,
class types, and inheritance, . . . ). Based on record types (or struct types) and interfaces,
Go adopts what is known as structural (sub-)typing, as alternative to nominal subtyping.
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Nominal subtyping was introduced already in the first object-oriented language Simula
[9], and ever since has nominal subtyping been the basis for subtype polymorphism for
most general mainstream, class-based object-oriented languages, including Smalltalk,
Java, C++ and more.

Starting with POOL, a “parallel object-oriented language” [10], Frank de Boer pro-
vided semantic studies, proof theories, and verification methods for numerous language
features related to object-orientation and concurrency (features like channel communi-
cation, multi-threading, objects and object creation, inheritance, futures, active objects
. . . ). It would be interesting to make use of the proof techniques he and his colleagues
developed to apply to Go with its new take on combining established language features
into an interesting design. While mentioning POOL and as a personal remark: during
the early stages of my own PhD, I was working in a group interested in formal methods
for concurrency and object-orientation. POOL and its proof theory was one of the works
we carefully scrutinized and which influenced our own work as it was one of the few
solid theoretical studies on this topic available at that time. Though my concrete the-
sis work afterwards digressed into type theory for functional (non-concurrent) object-
oriented calculi, later my interest repeatedly came back to study aspects of concurrency
and object-orientation, an interest which has been sparked by work like Frank’s about
POOL.
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