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Abstract

The Go programming language combines well-known imperative features with
useful, well understood concurrency primitives based on channels. We discuss
the state of the art of information flow analyses, and combine techniques from
monotone frameworks with aliasing analysis, context-sensitive analysis of func-
tion calls, and message passing-based concurrency. An example illustrates how
these components play together to obtain a reasonably precise taint analysis.
We apply our analysis to the well-known scenario of SQL injections and compare
our approach with two other tools for Go.
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language, concurrency

1. Introduction

The Go language [1T], 13}, 47], a relative newcomer to the programming lan-
guages stage, has gained traction in recent years. With concurrency features in
the form of channels and so called goroutines built in at the core of the language,
chief application areas include network applications, webservers, or distributed
software in general. Especially for cloud computing and virtualization frame-
works, Go plays out its strengths, with the Docker container framework as one
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prominent example realized in Go. Backed by Google, Go is also speculated to
be the future language for Android and iOS development, and a corresponding
framework and library gomobile [I4] has been published as part of Go 1.5.

Whether on web-facing servers or soon increasingly on mobile phones, Go
programs are exposed to “hostile” environments. Both are constant targets
for attacks by hackers and malicious applications, which may try to break into
the system through specially crafted input or interactions. SQL-injections (and
similar attacks) are a well-known form of this kind of vulnerability, taking the
crown on OWASPs (Open Web Application Security Project) top ten vulnera-
bilitiesE| A further security challenge for programs in networked or virtualized
platforms is to prevent leakage of sensitive data such as passwords or privacy-
related data to the outside world or unauthorized third parties. In both vio-
lations — unchecked malicious input reaching points in an application where
it can wreak havoc and undesired output of sensitive data from the program
— certain kind of data originating from some point in the program (unchecked
malicious input, privacy information ...) end up at other points where it is not
supposed to. Not all data is considered “dangerous” or “sensitive” in the sense
described; data whose unrestricted flow through points in the program violates
safety or security restrictions is generically called tainted, the rest untainted.
Which particular pieces, resp. origins and usage of information are considered
tainted depend on the application.

The corrupting dangers of undisciplined and uncontrolled data flow have
been known since ages, and countermeasures are well-known, too, such as pro-
gramming practices like sanitizing all input (“never trust user input or generally
input from the outside, always check for well-formedness”). The problem per-
sists nonetheless. Furthermore, modern language features like high-level control
structures, non-local control flow and in particular concurrency make it hard
for a programmer to track data through a program and to foresee and cater for
all imaginable interactions.

Automatic methods tracing data to mitigate the mentioned ill-effects are
known as taint analyses, a variation or application of the concept of data flow
analysis. An effective way to perform that type of analysis is at compile time,
i.e., statically. We report on the design and implementation of a static taint anal-
ysis of Go programs (and implemented in Go). In the conceptual presentation
we focus on the more interesting and challenging features of the Go language,
such as channel-based communication of concurrent goroutines and deferred ex-
ecution. This analysis identifies the flow of potential malicious (tainted) data
from a set of pre-defined sources to a set of sinks that this data must not reach
unprocessed. It can be seen as the foundation for a monitoring framework to
thwart such attacks.

The work here is an extended version of [5], giving a more detailed account
of the analysis and in particular describing and evaluating the Gotcha analysis
tool. The tool has been developed in the context of the master thesis [51].

Isee https://www.owasp.org/index.php/Top_10_2013-A1-Injection
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Related work

Static analyses for information flows have been widely studied: [Denning and
Denning| [9, 0] present a mechanism in terms of a lattice model to guarantee
secure information flows for sequential statements. Such a construct is the foun-
dation of many static analysis frameworks, e.g., the monotone framework [30],
which is also the starting point for our approach. |Andrews and Reitman| [2] pro-
pose an axiomatic approach to certifying flows in both sequential and parallel
programs. Type systems are also a common approach to ensure noninterference
for well-typed programs, e.g.,|Volpano et al.|[50] formulate Denning’s work in the
form of a type system for a core imperative language; [Pottier and Simonet| [40]
propose a type-based analysis for a call-by-value A-calculus.

Apart from guaranteeing program security by tracking the flow of sensi-
tive data, our approach identifies potential tainted data flows within programs
at compile time, which helps in detecting bugs as well as avoiding attacks by
malicious applications. A number of work has been done to analyse flow infor-
mation of tainted data using similar ideas: |Arzt et al| [3] describe and imple-
ment a static taint analysis for Java-based Android applications. The analysis
is formulated as an IFDS problem. IFDS (“interprocedural finite distributive
subset”) by [Reps et al.| [41] is a prominent example of the functional approach
to context-sensitive, interprocedural data flow analysis (the alternative is based
on call-strings) [43]. IFDS is efficient and precise for distributive transfer func-
tions, where being precise refers to the fact that the solution of such a problem
coincides with the solution given by the “meet-over-all-valid-paths (MVP). It
reduces the interprocedural flow problem to graph reachability in a compact
representation of the interprocedural flow, called exploded supergraph. IFDS
based taint analysis has also been used for other languages, like for JavaScript
by |Guarnieri et al.| [I5] and for web-applications in Java by Tripp et al.| [48]. Like
the work presented here, the TAJ tool (taint analysis for Java) of [48] operates
on an SSA intermediate representation and is field-sensitive. IFDS handles data
flow domains with subset lattices of the form 2P. IDE (“inter-procedural dis-
tributive environment transformer”) [42] is an extension by [Sagiv et al., dealing
with contexts that are of the type Var — D (“environments”, called abstract
states in this paper), where Var are variables of the program being analyzed
and D the domain of abstract values. The domain is required to be a finite
lattice, which can be lifted to domains of environments.

Livshits and Lam| propose a variant of SSA to discover bugs in C pro-
grams [23], and use a context-sensitive pointer alias analysis to detect security
violations in Java applications [24]. [Pistoia et al|[34] present a control- and
data-flow framework to find tainted variables in Java bytecode. Information
flow analyses have also been applied for languages like PHP [22] and JFlow [29],
which is an extension to the Java language. While Go shares some of the gen-
eral features with those imperative languages, we also take a look at some of its
novel constructs, which are mostly related to concurrency.

Paper overview. Section [2] provides the background of the Go language and
information flow analysis; Section [3] presents the concepts of our analysis for Go
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programs; Section [4] illustrates our implementation with examples, and finally
Section [6] concludes the paper.

2. Preliminaries

2.1. The Go language

At its core, Go is a lexically scoped, concurrent, imperative language with
higher-order functions, supporting object-oriented design, while notably not
supporting classes nor inheritance. Concerning concurrency, Go’s primary fea-
ture is asynchronous function (resp. method) calls executed as goroutines which
are basically a lightweight form of threads with low overhead and lacking known
thread synchronisation mechanisms such as wait and signal. The second core
concurrency construct is channel communication, in the tradition of calculi resp.
languages like CSP [I7, [I8] or Occam [19]. Since (references to) channels can
be sent over channels, Go allows “mobile channel” flexibility for communication
as known from the m-calculus [26].

Thus, despite the “simple” surface syntax in the tradition of C, Go combines
features which are challenging from a program analysis perspective: Reference-
data, imperative features, arrays, and slices require point-to analyses. Control-
flow analyses are needed to obtain data-flow analyses of acceptable precision in
the presence of higher-order functions. The Go compiler since version 1.8 sup-
ports a static single assignment (SSA) intermediate format [8, 28] [35] to facili-
tate flow analyses. Shared variable concurrency is featured by Go but frowned
upon. The more dignified and recommended way of concurrent programming
is via message passing, using either synchronous or buffered channels of finite
capacity. The static analysis of such channel communication has similarities to
pointer analysis, as channels are referenced shared data where channel pointers
themselves can be communicated via channels (or stored and handed over to
procedures as other references as well). The analysis of data flow in the context
of channel communication is challenging in itself, but at least avoids unprotected
concurrent access to shared mutable data and shields the programmer from the
subtleties of Go’s weak memory model. In this work, we do not consider shared
variable concurrency.

2.2. Information flow analysis

We discuss here in particular the challenges of information flow analysis when
applied to Go. Information flow analysis [9} 2] attempts to determine whether a
given program can leak sensitive information, either directly or through indirect
channels, for instance when secret values influence timing behaviour or power
consumption.

Dynamic information flow analysis attempts to detect such leaks by moni-
toring an application’s execution. However, monitoring does not guarantee an
application to be safe, i.e., no leakage of sensitive information for any execu-
tions at runtime. Static code analysis, however, can analyse all of a program’s
possible executions, and detect all control-flow dependencies. Recent research
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has shown that a static pre-analysis can assist a subsequent dynamic analysis
by finding control-flow dependencies that can leak secret information, and by
defining a special instrumentation scheme at runtime that signals when the re-
spective branches are taken. Depending on some properties of the monitored
programming language, and depending on the scope of the static pre-analysis
this can allow the dynamic analysis to even monitor all possible information
leaks at runtime.

When conducting information-flow analysis for programs with pointers, it is
essential to pair it with a pointer analysis, as otherwise the analysis would fail
to resolve aliasing relationships. Consider the code sequence a.f = secret();
print(b.£f);. In this code, to determine whether the program may print
the secret, an analysis must know whether a and b alias, i.e., point to the
same object. Pointer analysis is usually expensive to compute, and to yield
appropriate precision, it must share certain design properties with the alias
analysis it seeks to support. In general, a high-precision analysis should be
context sensitive and flow sensitive, for instance. If the accompanying alias
analysis does not share the same level of context and flow sensitivity, then this
can cause imprecision to creep into the information-flow analysis, ultimately
resulting in false warnings that threaten to distract the security analyst from
the important true warnings.

3. Analysis

In this section, we present our information flow analysis for Go programs,
and illustrate its use with some examples in the next section. The presentation
here is based on a suitable subset of the full language, concentrating on which
is easy to formalise yet covers the most important features.

Information flow describes a dynamic property: in our setting, it is any value
that originates from a particular API call (as denoted by a list of sources), and
is used within the execution of the program. If the execution reaches a call to
any of our denoted sinks, and the value is passed as a parameter, we would
like to report an error or a warning. Of course, such tracking of data flow
can happen at runtime, but naturally we are interested in whether we can give
certain guarantees for a program before it is run. We thus need to reformulate
this problem in the form of a static analysis that can be defined in terms of the
program source code.

8.1. Abstract syntax

To simplify the exposition, we discuss the analysis using a simplified repre-
sentation of the language, assuming for example that each statement contains
at most one single function call, with only variables or constants as arguments.
Also, we stipulate that all variables must be initialised when declared.

In the following, we will handle expressions representatively built up by
using primitive types, structs, channels and function types. We elide the other
useful, built-in datatypes in Go, such as slices (arrays) and key/value maps, and
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appeal to the reader’s intuition that common approaches to over-approximation
of reference types as in the case of structs and channels can be applied.

The abstract syntax is given by Table We shall concern ourselves with
statements that are assignments to locally declared variables or struct members,
conditionals, finalizers (defer), or initiators of concurrent execution (go). In
addition, we have the channel operations sending to resp. receiving from a chan-
nel, return from function, and of course sequential composition of statements.

s u= z:=e¢ | z.f:=e | if vthenselses | s;s statements
| x<+y | gos | defer((Az.s) v) | return v

e u= v |?x | vv | makeChan expressions

v = x| af ] ()| true | false | Ax.s values

Table 1: Abstract syntax

Expressions may be variables or values of the aforementioned supported
types, functions calls (written as application here), or channel initialisation.
Go’s multiple return values from function calls would require a minor extension
of the syntax which would not add much for our discussion, as would slice- and
map manipulation. Function definitions straightforwardly have typed formal
parameters, and bodies composed of statements.

We can then restate the problem as follows: we would like to report a warn-
ing, if the return value of a function call labelled as source is assigned to a
variable, and the value may be propagated through assignments and function
calls to a variable which is used as an actual parameter in a function call to a
sink.

Furthermore, our analysis must take channels into account in a sound way:
if a sensitive (tainted) value is written into a channel, as an over approximation,
we assume that a read from that channel may return the tainted value. As
static analysis of channel-based communication has been studied extensively for
example in [21], we do not go into the details here and leave specialising this
part of our analysis towards a more precise solution using those techniques for
future (implementation) work.

3.2. Data structures and ingredients of the taint analysis

The taint analysis as a special form of data flow analysis can be can repre-
sented as an instance of the concept of a monotone framework [20], a generic
setting of program analysis operating on lattices of abstract values and states. A
value in the language, i.e., a concrete piece of data is either tainted or untainted
(represented as 1, resp. 0). Which values are considered tainted depends on
the intended application. Typical data assumed initially to be tainted may be
user input or passwords. In a concrete application, initial taint values are based
on custom black-/whitelist of API calls, marked as either tainted or not. That
leads to the 4-valued lattice Val* of abstract values, with T and L the top value
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of the lattice (representing uncertainty, or an uninitialized value, respectively)
and the bottom element of the lattice.

N
NS

We write C for the partial order of the lattice, and notations C, J etc. accord-
ingly; U and M stands for the least upper bound and the greatest lower bound,
respectively.

3.8. Aliasing and channels

The Go language has several reference types, including structs, slices, arrays
and maps. We do not formalize the required tracking of aliasing explicitly,
but assume appropriate static alias information as available in the presentation.
That corresponds to the situation in the implementation, where our analysis
relies on Go’s built-in points-to analysisﬂ It is a context-insensitive Andersen-
style points-to analysis [I], perhaps the most well known and widely used form
of pointer analysis. See [45] for investigation on the complexity of this kind
of pointer analysis. The analysis is also known as “subset-based” analysis, to
distinguish it from a variant due to Steensgard [46], which uses equality instead
of inclusion and is therefore coarser. In the terminology of [27], using flow type
systems, the equality-based formulation corresponds to simple flow analyses.
See [44] for a recent, extensive overview over various pointer analyses,.

Thus we make use of the following points-to function

pt : Var x Loc — 2%°¢ (1)

which, given a variable at a particular location, returns an approximation of set
of “objects” the variable may currently refer to. The set of actual objects is
statically represented by the set of locations the objects have been allocated:

Definition 1 (May alias). A variable x1 atly may be an alias with a variable
Ty at ly, written as x'' ~, 2, iff pt(a) N pt(al2) # 0. We write z; ~ 2o for

xt ~q xh, comparing two variables at the same location I.

We also simply speak of aliases (instead of may-aliases).

Another example of a reference typed data structure are, of course, Go’s
(typed) channels. Our treatment of assignments via transfer functions, which
are defined later in the section, track the taint information associated with a
channel when aliasing (e.g., ch := makeChan;ch’:= ch) because of the points-
to analysis described above. Additional processing that does not follow the

“https://godoc.org/golang.org/x/tools/go/pointer
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control flow is now required when writing a tainted value into the alias ch’. A
coarse and obvious solution to achieve the required dataflow is to add depen-
dencies between a write to a channel to all reads from it. A related analysis
built on top of that allows a sound over-approximation of the peers of a channel
referenced by a variable in a particular location, that is, all uses of the same
channel reference in read or write statements]

8.4. Tuaint analysis via the control-flow graph

For the intraprocedural part of our analysis, we can set up the monotone
framework [20] with the help of the control-flow graph (CFG). We write [s]’
for a statement s at location or label [. We use Loc for the infinite set of
locations or labels [. In this presentation, we make the assumption that the
graph is built-up as single-instruction graph, i.e., each node in the control-
flow graph represents a single instruction. That means labelled statements [s]’
are nodes of the CFG where s is an elementary, single statement. The actual
intermediate representation in Go, our implementation builds upon, works with
sequences of instructions of straight-line code, so-called basic blocks, as forming
the nodes of the CFG. This is a commonly used improved representation; the
basic principles of the analysis are unaffected by that optimization. Besides
elementary statements at location | (written [s]') we also need uniquely labelled
variables z!. The Conditionals result in branches in the control-flow graph, and
loops lead to (additional) back-edges to nodes earlier in the graph. We do not
describe how to obtain the graph, but rather refer to [30] and recapitulate the
essential ingredients.

The analysis works with “abstract” values, i.e., values from the abstract do-
main Val* which constitutes the lattice of taint values introduced in Section
An abstract state of maps variables to abstract values, i.e., it is a function of
type Var — Val*. We write £ for the set of abstract states.

The result of the taint analysis is thus given by a function of type

taint : Loc — (Var — Val*)

which gives for each node (respresenting an basic statement) the current taint
information associated per variables in scope at the particular node (to be pre-
cise, the analysis captures the taint values at the entry of each particular node,
as the analysis is formulated as a forward analysis).

The core of the analysis is given by interpreting, for each basic statement,
the effect it has on the taint status of each variable. This is captured by the so-
called transfer functions, translating statements case by case into ultimately a
state-transformer, operating on the abstract states of type %*. We write [_] for
the translation of statements and, in abuse of notation, use the same notation
for translating expressions occurring on the right-hand sides of basic statements.

3See https://go.googlesource.com/tools/+/master/godoc/analysis/peers.go
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The analysis therefore makes use of two functions of the following types:

[T : (Var x Var — bool) — Ezp — %t — Val* (2)
Il : (Var x Var — bool) — Stmt — (£ — ¥)

In both cases, the first argument is a relation on variables (i.e., of type Var x
Var — bool). This argument, clearly, is intended to represent the alias rela-
tionship between variables, more precisely, when applying the transfer function
at a given node labelled [, the alias relation ~ is used. Cases for the state-
transforming transfer function, which are quite straightforward, are given in
Table We write o[z — v] for the state of which agrees with o¢ on the
values of all variables, except for x, whose value is replaced by v. Note the
treatment of the send-statement ch < x: a channel ch is marked tainted if
the value being sent into it (from variable x) is tainted, and furthermore, once
tainted, the channel will not become untainted in the future, as the taint-value
is monotonously increased only. That treatment is different from ordinary (non-
channel) variables, which can become untainted again. In the context of tainted
data and concomitant vulnerabilities, one also speaks of sanitizing data. In that
terminology, the analysis treats channels as unsanitizable.

[o:=elyy = oflo [e]]
[0.f == elir = 0wt [e]7]
[defer((Az.s) v )]]:u“ = aﬁ
[go sl,s = o
[ch « 2] ¢ = of[ch s of(z)Uo?(ch)
[return o]y = of

Table 2: Transfer function

The abstract evaluation of possible right-hand sides is shown in Table
Values, including abstractions, uniformly are untainted, i.e., marked as 0; like-
wise channel references freshly created via makeChan. In case of reference data
(field access or channel variables), the evaluation builds the least upper bound
of the value of all potential aliases. In the definition, evaluations of the form
[] . or [ch] ; without a reference to a relation correspond to the direct look-up
o¥(z') or o¥(ch). Note that, in case of records, the taint information does not
distinguish which field contains tainted data and which not; in case a field is
tainted, the corresponding record is summarily treated as tainted itself. This
treatment is known as being field-insensitive.

Generally, the interprocedural data flow for the taint analysis is to satisfy
the constraints of equation , where [; — [ represents an edge in the cfg from
ll to lg.

[s]2 and I — I, implies taint(ll)g[[s]];%;t(ll) (3)
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[z]¢ = L[], | 2" ~a 2}
[z.fl¢ = LK[2T,: | 2" ~a z}
[7ch])ye = LHIeh'], | ch’ ~a ch}
[vl; = 0
[o1 vl = 1 if v1 is a source
toler T oV, otherwise

Table 3: Evaluation of right-hand sides

3.5. Interprocedural analysis

Control-flow connects not only statements within the body of one procedure,
but also the caller with the call. Functions typically are called multiple times
in a program, and with different arguments, and interprocedural analyses allow
to differentiate between different calls to the same function, depending on the
call-site, referred to as the calling context. In designing an interprocedural
analysis, there is the obvious trade-off between the precision, i.e., to which extent
one differentiates between calling contexts, and scalability. In the trivial case,
ignoring contexts, the analysis is called context insensitive. According to the
well-known classification of [Sharir and Pnueli| [43], one can identify two standard
approaches: contexts based on call strings (taking an abstract representation
of the call stack in the form of pending function calls into account), and the
functional approach, where different call-sites are distinguished in the analysis
by different (more or less) abstract representation of their actual parameters,
especially the flow information pertaining to them.

The functional approach has variously been implemented, investigated, and
applied in different settings; also our implementation follows this approach to
deal with functions and goroutines, roughly similar to the value context ap-
proach of |Padhye and Khedker| [31] (implemented in Soot [49]).

Calls to go-routines can be handled through an additional control flow-edge
from the caller to the body, as control does not return, and we only permit
channel-based communication. Full Go also supports—but discourages—locks
and shared variables.

To effectively be able to emit a warning, our analysis framework must yield

the following information: is any of the actual parameters in a function call to
a sink marked as possibly tainted on the entry to the statement?
In essence, the analysis resembles the well-known analyses of def-use chains or
reaching definitions, extended by the required notions of transitivity and alias-
ing. A standard worklist algorithm can be used to generate the smallest solution
to our dataflow problem, which we can then query for all actual parameters, at
each statement that is marked as a sink.

One way to propagate taint information in our core language is to assign an
expression to either a variable x := e or to a struct member z.f := e. In the case
where the expression is a variable y, the function ¢ updates the analysis result

10
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of x with the one of y at the current state. For assigning a struct member y. f,
we have to collect the taint information from all the aliases of the reference y
with the help of the aliases function described above. For function calls vqvs,
in case the called function v is a source, the assigned variable = is marked
as tainted (z — 1). Otherwise, we derive the taint information of the called
function with interprocedural analysis as shown in Table

The function ®¥%., is integrated with the worklist algorithm as developed
by [Padhye and Khedker] [31], which we have implemented to achieve a flow- and
context-sensitive analysis. The idea is to distinguish between calls and to save
the data flow values for every context. Therefore, the algorithm can avoid that
a function with identical input parameters is analysed multiple times. This
is built upon the assumption that equivalent input parameters of a function
will yield the same data flow values at the exit node of the function. Their ap-
proach increases precision over the trivial approach, where every exit-value from
a return-statement flows back to all call sites, not just the actual caller. The
algorithm uses an additional calling context X := (5, actual param), where S is
the parent context, which guarantees that identical contexts produce identical
results. We will later describe the actual working on an example.

Another way to pass on taint data is through channel communications. Send-
ing values or variables to a channel ch <— x will propagate the taint information
of z to ch (c.f. Table . To read from a channel ?ch, we have to gather the
knowledge of all the possible aliases of the channel to which tainted data may
be sent as defined in Table [3| The statements, including finalizers (defer) and
initiators of concurrent execution (go), do not affect the taint information.

4. Implementation

Our information flow analysis relies partly on existing technologies and
libraries: although our above analysis is formulated in terms of the single-
instruction control-flow graph, our prototype implementation uses existing li-
braries from the Go compiler tool-chain and tools that go beyond this simplistic
view. With the help of those libraries, we obtain the static single assignment-
form (SSA)E| [8], interprocedural call—grap}ﬂ, and the necessary points-to infor-
mation. We shortly describe the APIs available to us.

The SSA library consists primarily of four interfaces. Firstly, the Member
interface holds the member of a Go package being functions, types, global vari-
ables and constants. Secondly, the Node interface describes a node from the
SSA graph. Valid values for the Node interface are types fitting either to the
Value or Instruction interface. An expression which leads to a value is of type
Value. A statement uses values and performs computation, it implements the
Instruction interface.

4https://godoc.org/golang.org/x/tools/go/ssa
Shttps://godoc.org/golang.org/x/tools/go/callgraph

11
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Through the fact that we consider the distinction between calling contexts,
we need to differ whether a node is a function call or not. For this aim, we use
the CallInstruction interface that allows us to distinguish between a function
call and Go specific calls being a goroutine and a defer statement. To define the
desired behaviour, we need two additional inputs for our analysis: a blacklist
of API calls that produce tainted values, and a whitelist of calls that either
produce untainted values, or turn tainted ones into untainted.

A common property that is investigated with a taint analysis is whether
unsanitized user input can e.g., reach SQL queries, where it could lead to SQL
injection attacks. In that case, any user input, that is, console input, or e.g., data
submitted through an HTML form, is marked as tainted. Correspondingly, we
add those calls to our blacklist and call them sources. Our analysis shall report
a warning if a tainted value reaches a sink. Sinks are again specified separately,
just like sources.

4.1. Example

In this section, we illustrate our current taint analysis with the program in
Figure[l] which primarily reads a file and prints the file content to the standard
output. The program consists of a main function and two additional functions h
and g. The function h reads the first eight bytes of a file and returns the bytes
as a string ¢ and the status r. The function g copies the input string to another
variable b and returns the variable. The main function calls the function g with
a constant string value a and once with eight bytes from a file s. The last
input parameter for g is obtained with the help of function hA. The functions
os.File.Read and fmt.Print are a source and a sink, respectively.

‘ main() ‘ ‘h(f *os.File) (c string, r int)‘
m | a = “Hello World” | 4 b := make([]byte, 8) ‘
r, - = f.Read(b)
€ ‘ b= g(a) ‘
l, s ¢ = string(b[:]) ‘
3 fmt. Print(b) return
f, _:= os.OpenFile(”./pw.txt")
s, n:= h(f) ‘
fmt.Print(s) ‘
forn >0
s, n = h(f) ‘
t = gls) |
fmt. Print(t) ‘ g(a string) (b string) ‘
it \ nalne

b=a
return

Figure 1: A simplified control flow graph with different contexts

To analyse the example and find all possible (tainted) flows, we use the
transfer functions and the lattice described in Section [3] The entry point of
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our analysis is the main function within a Go program, where all variables are
initialised with L (we call it “empty”, for short). Thus the lattice at this point
is empty and the worklist contains nodes nq, ¢1,ns, c2, s1, g, €3, €4, S2 and ng.
At the beginning, a context Xj is created. The entry value is the empty lattice
and the exit lattice is currently not set because the execution is not yet finished.

The first element n; is removed from the worklist and then processed. It
receives untainted for the variable a from the transfer function defined in Sec-
tion Through the next removal, ¢; is obtained, being the first call in the
example. A new context X; having an untainted value as input is created and a
new transition from Xy to Xj is added. After the context is created, all nodes of
the function are added to the worklist. In the following step ns is processed, and
the exit lattice of X is [a — 0], [b — 0] because ny contains a return statement.

As a subsequent step, the algorithm selects node ng for processing and cre-
ates a lattice with the tainted variable f. Afterwards cs is collected and pro-
duces a new value context Xs. The transfer function of the call passes a tainted
parameter. Therefore, the entry lattice of the new context contains the tainted
parameter. In the context X5, n4 is processed first. The transfer function re-
turns for the variables b and r the tainted value and updates the lattice for the
node. The next node ny is then selected, and the transfer function computes
that the variable c is also tainted. The exit lattice for X5 is updated such
that b,r and c are tainted.

Back in context Xy, the algorithm picks node s; for processing and detects
that a tainted value reaches a sink. Our analysis will report a warning, and
proceed with ng in the same context. Afterwards, ¢z with a tainted value as
a parameter is handled as context X3. The algorithm checks whether a call
to function h with a tainted parameter already exists, finds X, and adds the
transition from (X3, c3) to X;. For the succeeding call ¢4, the value context
currently does not exist, so a new context X, is created and the nodes of func-
tion g are added to the worklist. In the ensuing step, the algorithm processes nz,
which leads to variable b becoming tainted. The next node from the worklist
is so and contains again a call to a sink, which consequently reports a warning.
Since all contexts with a matching entry parameter already exist, the remaining
nodes/iterations do not lead to the creation of new contexts, but only additional
transitions.

4.2. Concurrency in Go

Concurrency is at the core of the Go language [13], supporting message
passing and asynchronous execution of functions (in the form of goroutines).
That is, Go encourages use of channels for message passing instead of shared
variables and our analysis does not cover shared memory communication. Chan-
nels, however, as far as their treatment for data-flow is concerned, bear some
resemblance to reference-typed shared variables: they are dynamically created,
first-class reference data, and sending to resp. reading from is analogous to
writing and reading from shared variables. Data flow and the possible propaga-
tion of tainted values may now involve channel communication (besides intra-
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procedural and inter-procedural flow via parameter passing). Our treatment of
data flow through message passing resembles conceptually the one in |Pascual
and Hascoét| [33]. In contrast to their work, we cover the corresponding data
flow by additional edges, whereas they work on a control flow graph without
such edges; instead, the corresponding additional flow is treated by adjusting
the propagation algorithm appropriately, dealing with send-statements in a spe-
cial way, namely by restarting the data propagation when solving the data flow
equations.

In addition to the intra-procedural edges and inter-procedural edges —from
caller to the entry of a callee and furthermore, for standard, synchronous calls,
back from the exit of the callee to the caller— we add another class of edges
covering data flow via channel communication between goroutines. Since shared
variable communication is discouraged in Go, the taint analysis does not attempt
to track tainted data through shared memory. The analysis assumes that, when
spawning a new goroutine, the channel it uses for communication are handed
over explicitly as actual parameters (or later communicated via message pass-
ing). The buffered nature of a channel regarding the fact that it basically is used
analogously to a shared variable makes it necessary that it cannot be treated
the same as ordinary values. Handing over a currently untainted channel to
a goroutine does not mean it can be treated as untainted in the body of the
callee. This is due to the fact that the parent of the goroutine, running in paral-
lel, may well communicate tainted data (directly or indirectly) to the child after
handing over the arguments in the asynchronous call. This delay is captured
in the control flow graph by additional edges and additional flow functions.
The edges connect the nodes containing channel send statements ¢ <— x to the
asynchronous call to a function using the channel as argument.

The flow function covering the corresponding new edge is given by

Aot o [Z = 0| Z = dom(c?) \ {c}] (4)

i.e., it “untaints” all variables (setting them to 0) except the channel variable,
on which it acts as identity.

The program in Figure [2| illustrates the approach. The main program (with
the graph on the left) and the function f executed in a separate goroutine
share the channel ¢, which is handed over from main program as argument.
Variable x, originally untainted, is updated with a taint value, which is then
sent from the parent to the child goroutine. Via this communication, a tainted
value may reach the sink in the instance of f’s body (and in absence of other
communicating partners reading from channel ¢, it will reach it). Note also,
that the tainted value will not reach the sink involving x in the main program.
That is due to the fact that the transfer function from equation connected
to the loop-back edge erases all taint information (except the one relevant for
the channel variable c.

Unless specified otherwise, channels are “bidirectional” in the sense that a
goroutine in possession of a channel can use it for sending as well as for receiving
values. This fact is the reason why the channel-send edges are added from
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|

ni ‘ z := "hello,world” ‘
n2 ‘ ¢ := make(chan, string) ‘

|

€1 go f(c) }—fUQ—>{ func f(¢’ chan string) ‘
| |

n3 ‘ sink(x) ‘ Iy ‘ y =7 ‘
| |

Ny ‘ x := tainted ‘ ng ‘ sink(y) ‘

ns | cew |

—/ |
g |

Figure 2: Goroutines and channel communication.

the sender nodes to the nodes with corresponding nodes initiating concurrent
activities on a channel, as opposed to the entry node of the function body, like
in Figure @ from ns back to c¢1, as opposed to fn,. If function f would do a
send on the channel, this may influence the statements in the main procedure
following node ¢; (though not in this example).

Go’s type system allows to restrict channel usages (as send-only or receive
only. With the information, that ¢ is handed over to f as read-only channel, the
graph of Figure [2| could be improved by having the channel-send edge starting
from ns to go to fnq, instead of looping back to c;.

5. Evaluation

In this section we compare our tool Gotcha with two other particular analysis
tools for Go programs. These two tools support a specific form of a taint
analysis, namely a check against the well-known SQL injection pattern [6]. This
is a common vulnerability in applications that execute queries against an SQL
database where the query string is directly taken (or constructed from) user
input.

The SafeS QIE] tool identifies all methods of the package database/sql hav-
ing a string parameter with the name ”query”. For a function call without a
static parameter, the tool assumes that the function is vulnerable to a SQL
injection.

The GAS — Go AST Scannmﬂ tool, which we will call GAS in the remainder
of the section, has a rule-based approach. They offer two rules for detecting SQL
injections, which we summarize as follows:

Shttps://github.com/stripe/safesql
“https://github.com/GoASTScanner/gas
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The first rule matches against calls of the function fmt.Sprintf. For every
call of this function, GAS checks whether the first parameter matches a regu-
lar expression. The regular expression will succeed if the string contains SQL
keywords like SELECT, DELETE, INSERT and UPDATE. If both conditions
are true, GAS will report a warning. The second rule does not check against a
specific function call. Instead the check is against a concatenated string build
up by a string conforming the above describe pattern and a non constant value.

Our tool Gotcha is not specifically an SQL injection checker, and hence
is more similar to the rule-based GAS than the single-purpose SafeSQL-tool.
We can achieve detecting potentially dangerous use of SQL effect by choos-
ing sources and sinks for this particular problem accordingly: as sinks we take
the various functions from the database/sql package that are actually able to
execute a query on the underlying database. Listing[I]shows the necessary defi-
nitions used in our experiment. Each declaration consists of a function signature
with arguments and return type, (qualified) name, and the indication whether
it is a sink, i.e. any tainted input will be reported, or a source, i.e. marked as
producing tainted output.

<func(query string, args ...interface{}) (xdatabase/sql.Rows, error);
(*database/sql.DB).Query> —_SINK_

<func(query string, args ...interface{}) *database/sql.Rows;
(xdatabase/sql.DB).QueryRow> —_SINK_

<func(args ...interface{}) (xdatabase/sql.Result, error );
(xdatabase/sql.DB).Query> —_SINK_

<func(format string, a ...interface{}) (int, error);
fmt> —_SINK_

<func() string;
github.com/akwick/sqinco/sqllnjections.source> —_SOURCE_

Listing 1: Sources and sinks from the case study

Table |4 shows the example programs that we have analysed with all three
tools. Each sample encodes a particular scenario, such as string concatenation
with or without a constant argument (the former is unsafe if it depends on
user input, the latter is always safe). For details on the examples, we refer the
reader to [51] and the accompanying repository with the experimental setup
at https://github.com/akwick/sqginco (“SQL Injection Comparison”). We
have provided a virtual machine image via Docker that allows for easy repro-
duction of our experiment.

Ezecution times. As the example programs are quite small and do not require
analysis of the imported libraries, analysis time is not an issue. However, analy-
sis times rapidly become an issue when a program with all its imports from the
standard libraries is being analysed. Currently, only careful pruning of imports
through a runtime configuration keeps the analysis tractable. A single descent
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Expected

Test feature safesql  gas  gotcha result
constant variables X X X X
variable with hard-coded string v 4 X X
variable is return value of a function call v v v v

flow-sensitive changes so that the variable
has a hard-coded string

constant variable to QueryRow

example above with hard-coded string

variable is result of Sprintf

query string with lower letters

(I R R N E N RN
> | > | >|>x|>|x]|x
> | 3| > || x| x|

v
X
v
wrapped function v
v
v
X

non-query with string containing SELECT

Table 4: The results for the examples

e.g. into the frequently used string functions from the fmt package incurs virtu-
ally intolerable analysis times (also see future work on how we intend to tackle
this problem by pre-computing/caching analysis results for e.g. the standard
library).

6. Conclusion

In this paper we present our attempt at implementing an information flow
analysis for the Go language. The combination of object-based language con-
structs such as structs and arrays, and message-passing through typed channels,
requires a combination of various techniques.

In one dimension, we have static analysis components that combine intra-
and context-sensitive interprocedural techniques with reference-based analyses
to capture aliasing effects. In the other dimension, we need dynamic checks that
compensate for the over-approximation of the taint-analysis in the case where
either tainted or untainted flows come from a source to a sink can occur.

Currently, our analysis only implements the static analysis part, and we are
actively investigating the alternatives for monitoring the running application,
for example through instrumentation. The code for the analysis and examples
area available from the project Websiteﬁ

8See http://www.mn.uio.no/ifi/english/research/projects/goretech/ .
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Future work.

We see possible future work in several directions: improving the static anal-
ysis, and refining static intermediate results through dynamic checks.

Execution time of our analysis is one of the potentials for improvement. As
reported above, the analysis will currently descend into the standard library and
analyse all invoked functions in a new run of the Gotcha, even though usually
the libraries do not change. We are currently working on persisting intermediate
analysis results for library code, essentially lifting the reuse of results for existing
value contexts to another level.

The specification mechanism for sources and sinks (see Section [5)) can also
be made more fine-grained, as currently we do not have the possibility to specify
that, for example, a function propagates the taint-value from an argument to
one of its outputs. This is relevant in the aforementioned setting where we want
a modular analysis with summaries and use pre-computed results (instead of
re-analysing identical code between runs), and for specifying the behaviour of
opaque functions that we do not have the source code of, e.g. from compiled
libraries. Likewise, a specification mechanism for sanitizers is useful, for exam-
ple, to indicate that a hash-function turns tainted input into untainted output.
Ideally, we hope to achieve a useful degree of flexibility, though most likely not
going as far as, for instance, the SPLINT tool for the C language [12], which even
offers a way of specifying user-defined lattices.

Also, since our current prototype analysis is a combination of the worklist-
based analysis for intra- and interprocedural data flow, yet we rely on existing Go
analyses for aliasing, the program may be effectively traversed multiple times,
for each analysis separately. If the different analyses could be integrated into a
single framework, we may benefit from some synergy. Leveraging available type
information about channels as hinted at at the end of Section [4.2] may also yield
some improvements

Our implementation does not cover all language features yet. It is unclear
how higher-order functions (and their application) could be analysed successfully
at compiled time. Therefore, runtime monitoring may prove as an effective
solution there.

Another — not necessarily competing — school of thought implements dynamic
taint tracking, by attaching meta data at runtime, and checking it when reaching
sinks, like in the Perl language. There, a tainted flow to a sink leads to an
exception. Improving dynamic tracking by reducing runtime overhead through
improved placement of runtime checks has already been mentioned above, such
as Livshits et al. [23] [24].

A very interesting approach that does not require any additional monitors
would be to integrate tighter with the Go runtime system: it already contains a
sophisticated, tuned framework for tracking data races in concurrent programs.
Although due to its invasiveness, it incurs a noticeably performance penalty, it
could reasonably be extended to taint-tracking. The runtime would only need
to be informed of sources and sinks. That could be achieved by introducing
annotations, as an alternative to a global (runtime-wide) list. Some of the
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performance penalties could possibly avoided by using definite results from the
static analysis phase and disable runtime checking in parts that have been proven
safe.

Another interesting idea is to actively influence scheduling to avoid tainted
paths. If we assume the example from Figure 2| the potential leak will only
be reported if ns is reached before fng is executed. In a more complicated
setting, where there are more consumers to a channel, and some of them will
not pass on data to any sink, we could develop a scheduler which routes tainted
data along safe paths only. Of course this requires a more advanced analysis
of the communication behaviour to be able to enable processes which have the
capacity to consume a tainted item without becoming blocked. This problem
is closely related to deadlock avoidance in schedulers [7]. Though theoretically
interesting, it would mostly apply in scenarios with multiple readers (from a
single channel, unlike publish/subscribe), which we do not deem that likely and
hence relevant in practice.
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