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A memory model dictates the order in which memory operations appear to execute; it also affects

how processes communicate through shared memory in a parallel computing setting. The design of a

proper memory model is a balancing act. On one hand, memory models must be lax enough to allow

common hardware and compiler optimizations. On the other hand, the more lax the model, the harder

it is for developers to reason about their programs. Though the right balance between relaxation and

intelligibility is up for debate, models should, in principle, preclude definitely unwanted behavior. One

class of unwanted behavior is called the out-of-thin-air. These are counter intuitive results that can be

justified through circular reasoning. In this work we propose a memory model that precludes out-of-

thin-air behavior and is fairly relaxed, meaning, it allows for writes to appear out of order.

The calculus we propose is inspired by the Go programming language developed at Google. Go

recently gained traction in networking applications, web servers, distributed software and the like. It

features goroutines (i.e., asynchronous execution of function calls resembling lightweight threads) and

buffered channel communication in the tradition of CSP or Occam.

The Go memory model

The happens-before relation is used in the Go memory model to describe which reads can observe which

writes to the same variable. It says, for example, that within a single goroutine, the happens-before

relation boils down to program order. The language is particularly suited for concurrent programs. If the

effects of a goroutine are to be observed by another, a synchronization mechanism must be used in order

to establish a relative ordering between events belonging to the different goroutines. The Go memory

model advocates channel communication as the main method of synchronization [2], where a send on

a channel happens before the corresponding receive from that channel completes. Synchronization is

also imposed by the boundedness of channels: The kth receive on a channel with capacity C happens

before the (k+C)th send from that channel completes. Our semantics incorporates channels for message

passing, goroutines for asynchronous code execution, and it allows for out-of-order execution where

writes to memory can be arbitrarily delayed.

Abstract syntax

The abstract syntax of the calculus is given in Table 1. Values are written generally as v and include

booleans, integers, and etc (these more obvious values are not explicitly listed on the table). Less obvi-

ously, local variables (or registers) are also counted as values and are denoted r. Names (or references)

are also considered values and are denoted n. Names are used, for example, when referring to different

channels – when presenting the semantics, we will use c for indicating a reference to a channel.

Expressions are written as e. A load z represents the reading the shared variable z into the thread.

The syntax for reading global variables makes the shared memory access explicit in this representation:

Global variables z, unlike local variables r, are not expressions on their own; they can be used only in

connection with loading from or storing to shared memory. Therefore, expressions like x←load z or

x← z are disallowed.



v ::= r | n

e ::= t | v | load z | z := v

| make (chan T,v) | ← v | v← v | close v | pend v

| if v then t else t | go t

g ::= v← v | ← v | default
t ::= let r = e in t | ∑i let ri = gi in ti

Table 1: Abstract syntax

A new channel is created by make (chan T,v), where T represents the type of values carried by

the channel, and the non-negative integer v the channel’s capacity. Sending a value over a channel and

receiving a value as input from a channel are written respectively as v1← v2 and← v. After the operation

close, no further values can be sent on the specified channel. Attempting to send values on a closed

channel leads to a panic. The expression pend v represents the state immediately after sending a value

over a channel. Note that pend is part of the run-time syntax as opposed to the user-level syntax, i.e., it

is used to formulate the operational semantics of the language but is not part of the syntax available to

the programmer. On Table 1, run-time syntaxes are underlined.

Starting a new asynchronous activity, called goroutine in Go, is done using the go-keyword.

Select-statements, written using the ∑-symbol, consist of a finite set of guarded branches. Only

communication statements, i.e., channel sending and receiving, or the default-keyword are allowed

as guards (with at most one default per select). A channel can be mentioned in more than one guard;

sending and receiving guards can also be used in the same select-statement.

The let-construct let r = e in t combines sequential composition and the use of scopes for local

variables r: after evaluating e, the rest t is evaluated where the resulting value of e is handed over using

r. The let-construct is seen as a binder for variable r in t. It becomes sequential composition when r

does not occur free in t. We use semicolon as syntactic sugar in such situations.

Operational semantics with write buffering

Programs consist of the parallel composition of goroutines 〈σ , t〉, write events n(|z:=v|), and channels

c[q f ,qb]. In the current semantics, read accesses to the main memory cannot be delayed; consequently,

there are no read events.

Write events are 3-tuples from N×X×Val; they record the shared variable being written to and the

written value, together with a unique identifier n. A write n(|z:=v|) to variable z is said to be shadowed

if another write event n′ to variable z happened after n but before the current point in time.

In addition to the code t to be executed, goroutines 〈σ , t〉 contain local information about earlier

memory interaction. In first approximation, the local state contains information about events which

occurred earlier. Local states σ are are tuples of type 2(N×X)×2N abbreviated as Σ. We use the notation

(Ehb,Es) to refer to the tuples. The first component of the local state Ehb contains the identities of

all write events that have happened before the current stage of the computation of the goroutine. The

second component Es of the local state represents the set of identities of write events that, at the current

point, are shadowed.

The reduction rules for reads and writes are on our technical report [1]. From a goroutine’s point

of view, its reads and writes appear in program order. This is guaranteed by the absence of delayed

reads and by disallowing reads from obtaining values of writes that have been shadowed. Also, from a

goroutine’s point of view, writes from other goroutines may appear out of order: writes are placed on a

global pool and subsequent reads can read any write from the pool.



Synchronization between goroutines is achieved by communicating via channels as shown in Ta-

ble 2. A channel is of the form c[q f ,qb], where c is a name and (q f ,qb) a pair of queues referred to as

fresh(c)
R-MAKE

〈σ ,let r = make (chan T,v) in t〉 −→ 〈σ ,let r = c in t〉 ‖ c f [] ‖ cb[]

|q| ≤ cap(c) ¬closed(c f [q])
R-SEND

〈σ ,c← v; t〉 ‖ c f [q]−→ 〈σ ,pend c; t〉 ‖ c f [(v,σ) :: q]

|q1|< cap(c) σ ′ = σ +σ ′′

R-PEND

cb[q2 :: σ ′′] ‖ 〈σ ,pend c; t〉 ‖ c f [q1]−→ cb[q2] ‖ 〈σ
′
, t〉 ‖ c f [q1]

σ ′ = σ +σ ′′ v 6=⊥
R-RECEIVE

c f [q1 :: (v,σ ′′)] ‖ 〈σ ,let r =← c in t〉 ‖ cb[q2]−→ c f [q1] ‖ 〈σ
′
,let r = v in t〉 ‖ cb[σ :: q2]

σ ′ = σ +σ ′′

R-RECEIVE⊥
c f [(⊥,σ

′′)] ‖ 〈σ ,let x =← c in t〉 −→ c f [(⊥,σ
′′)] ‖ 〈σ ′,let x =⊥ in t〉

¬closed(c f [q])
R-CLOSE

c f [q] ‖ 〈σ ,close (c); t〉 −→ c f [(⊥,σ) :: q] ‖ 〈σ , t〉

Table 2: Operational semantics: message passing

forward and backward queue respectively. For convenience, we use c f and cb when referring to chan-

nel’s c forward and backward queues respectively. In order to account for the synchronization power

of channels, in addition to communicating a value, the queues are managed so that sends and receives

trigger exchanges of happened-before and shadowing knowledge between the communicating partners.

Contributions

We propose an operational semantics for a memory model that precludes out-of-thin-air behavior, is

fairly relaxed, and is based on a calculus with processes and buffered channels [1]. We have imple-

mented of the calculus in the K framework [3], an executable semantics framework based on rewriting

logic, and are finishing a simulation proof to show that the model exhibits the so called data-race free

guarantee. The DRF guarantee says that data-race free programs (i.e. programs that are properly syn-

chronized) have sequentially consistent behavior. Our goal is to further relax the model by introducing

delayed reads, yet, at the same time, keeping out-of-thin-air behavior at bay.
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