
Correctness, Compositionality, Concurrency
Facets of formal program analysis

Martin Steffen

Autumn 2017

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-2

Program analysis

“process of automatically analyzing the behavior of
computer programs”

• all kinds of beneficial effects. . .

Rice’s theorem
All non-trivial, semantic properties of programs are
undecidable.

https://en.wikipedia.org/wiki/Program_analysis
https://en.wikipedia.org/wiki/Program_analysis
http://mathworld.wolfram.com/RicesTheorem.html

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-2

Program analysis

“process of automatically analyzing the behavior of
computer programs”

• all kinds of beneficial effects. . .

Rice’s theorem
All non-trivial, semantic properties of programs are
undecidable.

https://en.wikipedia.org/wiki/Program_analysis
https://en.wikipedia.org/wiki/Program_analysis
http://mathworld.wolfram.com/RicesTheorem.html

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-3

The good, the bad, and the ones we can’t
figure out

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-3

The good, the bad, and the ones we can’t
figure out

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-4

Two out of three ain’t bad

automation

soundess completeness

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-5

Sacrifice soundness / underapproximation

automation

soundess completeness

• testing (and “testing can be formal too”)
• run-time verification

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-5

Sacrifice soundness / underapproximation

automation

soundess completeness

• testing (and “testing can be formal too”)
• run-time verification

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-6

Of course: one can do better than just
that. . .

• avoiding redundant exploration (POR)
• prioritizing

• preemption bounding
• symbolic execution
• combination with (other) static analysis

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-7

Giving up on completeness

automation

soundess completeness

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-7

Giving up on completeness

automation

soundess completeness

false positives

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-8

But how?

if x=y then skip else x:=x+1

Assume (x, y) ∈ {(0, 0), (1, 1), (0, 1)}

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-8

But how?

if x=y then skip else x:=x+1

Assume (x, y) ∈ {(0, 0), {(1,1),(0,1)} }

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-9

Abstraction

• abstraction ⇒ overapproximation ⇒ false positives
• lumping different “elements” together (values, program

points . . .)
• symbolic representation
• abstract interpretation
• data flow analysis

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-10

Data flow analysis

1mA

4kΩ

2V

t0

1v1

i1

4V 4nF

• abstraction: “Ampere”
. . .

• circuit laws (Kirchhoff)
• stationary solution

• abstraction: sets of
values . . .

• data flow constraints,
transfer functions

• fixpoint (µ or ν)

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-11

What’s a type?

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-11

What’s a type?

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-11

What’s a type?

λω λPω

λ2 λP2

λω λPω

λ→ λP

• directive for memory allocation
• an object in a category? homotopy?
• an abstraction?
• formula in a HO constructive logic?

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-12

Types, flows, and effects

t : T

What?
if t terminates,
Int-value

From where?
data flow

During?
effects, while
executing

• all of it: more or less approximative

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-12

Types, flows, and effects

t : Int
What?
if t terminates,
Int-value

From where?
data flow

During?
effects, while
executing

• all of it: more or less approximative

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-12

Types, flows, and effects

t : T ++

What?
if t terminates,
Int-value

From where?
data flow

During?
effects, while
executing

• all of it: more or less approximative

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-12

Types, flows, and effects

t : T ++ :: ϕ
What?
if t terminates,
Int-value

From where?
data flow

During?
effects, while
executing

• all of it: more or less approximative

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-13

Type systems & type checking

Γ ` t : T
• derivation systems

A,B ` A A,B ` B

A,B ` A ∧B

A ` B → A ∧B

` A→ B → A ∧B

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-13

Type systems & type checking

Γ ` t : T
• derivation systems

x1:T1, x2:T2 ` x1 : T1 x1:T1, x2:T2 ` x2 : T2

x1:T1, x2:T2 ` (x1, x2) : T1 × T2

x1:T1 ` λx2:T2.(x1, x2) : T2 → T1 × T2

` λx1:T1.λx2:T2.(x1, x2) : T1 → T2 → T1 × T2

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-14

Type checking
automation

soundess completenessΓ ` t : T

Γ ` t : T

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-15

Type inference

Γ ` t : ?

Γ ` t : ?

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-15

Type inference

Γ ` t : ?

Γ ` t : ?

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-16

Type inference

Γ ` t : ?

• unification
• decidability?
• cf. synthesized and

inherited attributes

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-16

Type inference

Γ ` t : ?

• unification
• decidability?
• cf. synthesized and

inherited attributes

Γ ` t : T Γ ` t : ?

complete

sound

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-17

And for flows and effects?

Γ̂ ` t : T̂ :: ϕ

• adding constraints
• for flows: simple constraints

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-17

And for flows and effects?

C; Γ̂ ` t : T̂ :: ϕ

• adding constraints
• for flows: simple constraints

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-18

Correctness

Milner’s dictum (“type safety” / “static typing”)

Well-typed programs cannot go wrong!

t1 t2

T

: :

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-18

Correctness

Milner’s dictum (“type safety” / “static typing”)

Well-typed programs cannot go wrong!

ϕ1 ϕ2

t1 t2

α′

α

:: ::

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-18

Correctness

Milner’s dictum (“type safety” / “static typing”)

Well-typed programs cannot go wrong!

ϕ1 ϕ2

t1 t2

T

α′

α

:: ::

: :

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-19

Context-sensitivity

• treat function calls “properly” (= dependent on
call-site)

caller calleecaller callee

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-19

Context-sensitivity

• treat function calls “properly” (= dependent on
call-site)

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-19

Context-sensitivity

• treat function calls “properly” (= dependent on
call-site)

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-19

Context-sensitivity

• treat function calls “properly” (= dependent on
call-site)

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-20

Compositional accounts and “polymophism”

• context-sensitive:function analysis distinguishing
different call-sites

constrained universally quantified types

∀Y .T̂

cf.

• type schemes in ML-polymorphmism and
• bounded quantification ∀Y ≤ T1.T2 in F≤ . . .

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-20

Compositional accounts and “polymophism”

• context-sensitive:function analysis distinguishing
different call-sites

constrained universally quantified types

∀Y : C.T̂

cf.

• type schemes in ML-polymorphmism and
• bounded quantification ∀Y ≤ T1.T2 in F≤ . . .

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-21

Program analysis

Single threaded�� � � � � � �� � ��� � � �� ��

Music engraving by LilyPond 2.19.80—www.lilypond.org

Γ ` t : ?

• types: basically single
threaded

• structural analysis of
program code

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-22

Concurrency and analysis
�

��

��

���
�

���
��

�
��

� �
��

��

� � ��

��
���

��

���
��

�
�

24������� ���
24

������� ppp

Un peu retenu
très expressif

�� ���

��

�
�
�

�
���
��

� �
�

��

���
�

��
	
���

�
�

�

��

��

�
	
���

�
�

� ��

�

	 ����

�long

�
� ���

��

�������

��������
�

ped.

��

Rall.

�
�� � ��

��
�

a Tempo

���
�����

pp
��	 �

� �
 �
ppp
�������������������

�
Lent

��

 �

�

 ��

�

� ��
�� 	 �

���

�

�������������� �

��
8va

��
��

��� �

	
��

����

��

�����

� �
 �

�

�������

��������

 ��

��
Rallentando

�
� ��

�
���

	 ��
�
�

 �

�
 �
�� ��

��
�

���

��

New kinds of errors

• races
• deadlocks
• starvation
• . . .

Analyses get more hairy

• reproducability
(“Heisenbugs”)

• interference vs. isolation
• state space explosion

problem

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-23

Illustration: Deadlock analysis

• given: multi-threaded calculus
• types and effects for lock interaction

Y ::= % | X type-level variables
r ::= % | {π} | r t r lock/label sets
T̂ ::= B | L r | T̂ ϕ→ T̂ types
σ̂ ::= ∀~Y :C. T̂ ϕ→ T̂ | T̂ type schemes
C ::= ∅ | % w r, C | ε w ϕ,C simple constraints

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-24

Deadlocks (2)

• two level approach
local type and effect system
global state exploration (à la model checking)

• flows: tracing lock instances (rudimentary alias analysis)

Processes as effects
Abstracting approximative lock interaction of one thread
into an“abstract process” (as in process algebra)

• correctness: deadlock-sensitive simulation
• further abstractions: bounded call stack

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-25

Type & effect systems

automation

soundess completeness

Safe nested transactions
Resource analysis for join synchronization

Taint analysis for Go

Poly. behavior inference for deadlocks/races

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-26

Proof systems for program verification

automation

soundess completeness

Inheritance of proofs
Lazy behavioral subtyping

Comp. verification of multithreaded oo programs

Hybrid system verification
Full abstraction

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-26

Proof systems for program verification

automation

soundess completeness

Inheritance of proofs
Lazy behavioral subtyping

Comp. verification of multithreaded oo programs

Hybrid system verification
Full abstraction

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-27

Run-time veryification, testing, BMC

automation

soundess completeness

DTrace + LTL monitoring
Model testing modulo congruence

Test generation from traces
bounded MC for hybrid systems

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-28

Miscellaneous

• railway design verification (with datalog)
• full abstraction
• protocol verification (model checking, SDL) and

engineering
• parametric model checking (rewriting theory,

transducers)
• timed ambients & π-calculus (semantics,

assumption-commitement type system for resources)
• semantics of weak memory models
• Petri-net semantics for concurrent actor language

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-29

Kudos

Slides were done with emacs org-mode, LATEX, TikZ (and a
bit Lilypond).

http://orgmode.org/
https://www.latex-project.org//
http://www.texample.net/tikz/examples/
http://lilypond.org/

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-30

References I
Bibliography
[1] Ábrahám, E., de Boer, F. S., de Roever, W.-P., and Steffen, M. (2003). Inductive proof-outlines for

monitors in Java. In Najm, E., Nestmann, U., and Stevens, P., editors, FMOODS ’03, volume 2884
of Lecture Notes in Computer Science, pages 155–169 (15 pages). Springer Verlag. A longer version
appeared as technical report TR-ST-03-1, April 2003.

[2] Ábrahám-Mumm, E., de Boer, F. S., de Roever, W.-P., and Steffen, M. (2002a). A tool-supported
proof system for monitors in Java. In Bonsangue, M. M., de Boer, F. S., de Roever, W.-P., and Graf,
S., editors, FMCO 2002, volume 2852 of Lecture Notes in Computer Science, pages 1–32 (33 pages).
Springer Verlag.

[3] Ábrahám-Mumm, E., de Boer, F. S., de Roever, W.-P., and Steffen, M. (2002b). Verification for
Java’s reentrant multithreading concept. In Nielsen, M. and Engberg, U. H., editors, Proceedings of
FoSSaCS 2002, volume 2303 of Lecture Notes in Computer Science, pages 4–20 (17 pages). Springer
Verlag. A longer version, including the proofs for soundness and completeness, appeared as Technical
Report TR-ST-02-1, March 2002.

[4] Bodden, E., Pun, K. I., Steffen, M., Stolz, V., and Wickert, A.-K. (2016). Information flow analysis
for Go. In Margaria, T. and Steffen, B., editors, 7th International Symposium On Leveraging
Applications of Formal Methods, Verification and Validation (ISOLA’16), volume 9952 of Lecture
Notes in Computer Science, pages 431–445. Springer Verlag.

[5] de Boer, F. S., Bonsangue, M. M., Grüner, A., and Steffen, M. (2008). Automated test driver
generation for Java components. In Netherland’s Testing Day “TestDag’08”, Delft. White Paper.

[6] de Boer, F. S., Bonsangue, M. M., Grüner, A., and Steffen, M. (2009). Java test driver generation
from object-oriented interaction traces. Electronic Notes in Theoretical Computer Science, 243:33–47
(15 pages). Special issue for the Proceedings of the 2nd International Workshop on Harnessing
Theories for Tool Support in Software TTSS’08, ICTAC 2008 satellite workshop, 30. August 2008,
Istambul, Turkey.

[7] Dovland, J., Johnsen, E. B., Owe, O., and Steffen, M. (2008). Lazy behavioral subtyping. In
Cuellar, J., Maibaum, T., and Sere, K., editors, Proceedings of the 15th International Symposium on
Formal Methods (FM’08), volume 5014 of Lecture Notes in Computer Science, pages 52–67 (16
pages). Springer Verlag.

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-31

References II
[8] Dovland, J., Johnsen, E. B., Owe, O., and Steffen, M. (2009). Incremental reasoning for multiple

inheritance. In Proceedings of the 7th International Conference on integrated Formal Methods
(iFM’09), Düsseldorf, Germany, 16 – 19 February, 2009, volume 5423 of Lecture Notes in Computer
Science, pages 215–230. Springer Verlag.

[9] Dovland, J., Johnsen, E. B., Owe, O., and Steffen, M. (2010). Lazy behavioral subtyping. Journal
of Logic and Algebraic Programming, 79(7):578–607. 30 pages. Article in Press, Preprint available at
doi:10.1016/j.jlap.2010.07.008. Presented at the 20th Nordic Workshop on Programming
Theory, NWPT ’08, Tallinn. A shorter conference version appeared in the Proceedings of the 15th
International Symposium on Formal Methods (FM’08), LNCS 5014.

[10] Dovland, J., Johnsen, E. B., Owe, O., and Steffen, M. (2011). Incremental reasoning with lazy
behavioral subtyping for multiple inheritance. Science of Computer Programming, 76:915–941.

[11] Gaudel, M.-C. (1995). Testing can be formal, too. In Mosses, P. D., Nielsen, M., and
Schwarzbach, M. I., editors, Proceedings of TAPSOFT ’95, volume 915 of Lecture Notes in
Computer Science, pages 82–96. Springer Verlag.

[12] Hofmann, M., Naraschewski, W., Steffen, M., and Stroup, T. (1998). Inheritance of proofs.
Theory and Practice of Object Systems (Tapos), Special Issue on the Third Workshop on
Foundations of Object-Oriented Languages (FOOL 3, LICS and Federated Logic Conferences
Workshop), July 1996, 4(1):51–69 (19 pages). An extended version appeared as Interner Bericht,
Universität Erlangen-Nürnberg, IMMDVII-5/96.

[13] Johnsen, E. B., Mai Thuong Tran, T., Owe, O., and Steffen, M. (2012a). Safe locking for
multi-threaded Java. In Proceedings of the International Conference on Foundations of Software
Engineering (Theory and Practice) (FSEN’11), volume 7141 of Lecture Notes in Computer Science,
pages 158–173. Springer Verlag.

[14] Johnsen, E. B., Mai Thuong Tran, T., Owe, O., and Steffen, M. (2012b). Safe locking for
multi-threaded Java with exceptions. Journal of Logic and Algebraic Programming, special issue of
selected contributions to NWPT’10. Available online 3. March 2012.

[15] Mai Thuong Tran, T., Owe, O., and Steffen, M. (2010). Safe typing for transactional vs.
lock-based concurrency in multi-threaded Java. In Pham, S. B., Hoang, T.-H., McKay, B., and
Hirota, K., editors, Proceedings of the Second International Conference on Knowledge and Systems
Engineering, KSE 2010, pages 188 – 193. IEEE Computer Society.

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-32

References III
[16] Mai Thuong Tran, T. and Steffen, M. (2010). Safe commits for Transactional Featherweight Java.

In Méry, D. and Merz, S., editors, Proceedings of the 8th International Conference on Integrated
Formal Methods (iFM 2010), volume 6396 of Lecture Notes in Computer Science, pages 290–304.
Springer Verlag. An earlier and longer version has appeared as UiO, Dept. of Informatics Technical
Report 392, Oct. 2009.

[17] Mai Thuong Tran, T., Steffen, M., and Truong, H. (2013). Compositional static analysis for
implicit join synchronization in a transactional setting. In Eleftherakis, G., Hinchey, M., and
Holcombe, M., editors, Proceedings of SEFM’13, volume 8137 of Lecture Notes in Computer
Science, pages 212–228. Springer Verlag.

[18] Owe, O., Steffen, M., and Torjusen, A. (2010). Model testing asynchronously communicating
objects using modulo AC rewriting. In Proceedings of the 6th Workshop on Model-Based Testing
MBT’10 (ETAPS Satellite Workshop), pages 68–84. Elsevier Science Publishers. Electronic Notes in
Theoretical Computer Science ENTCS, Volume 264, Issue 3.

[19] Pun, K. I., Steffen, M., and Stolz, V. (2012). Deadlock checking by a behavioral effect system for
lock handling. Journal of Logic and Algebraic Programming, 81(3):331–354. A preliminary version
was published as University of Oslo, Dept. of Computer Science Technical Report 404, March 2011.

[20] Pun, K. I., Steffen, M., and Stolz, V. (2013). Deadlock checking by data race detection. In
Proceedings of the 5th IPM International Conference on Fundamentals of Software Engineering
(FSEN’13), volume 8161 of Lecture Notes in Computer Science, pages 34–50. Springer Verlag.

[21] Pun, K. I., Steffen, M., and Stolz, V. (2014a). Behaviour inference for deadlock checking. In
Proceeding of the 8th International Symposium on Theoretical Aspects of Software Engineering
(TASE’14), pages 106–113. IEEE.

[22] Pun, K. I., Steffen, M., and Stolz, V. (2014b). Deadlock checking by data race detection. Journal
of Logic and Algebraic Methods in Programming. Available online 13 August 2014,
http://dx.doi.org/10.1016/j.jlamp.2014.07.003. A preliminary version was published as University of
Oslo, Dept. of Computer Science Technical Report 421, October 2012, and a shorter version in the
proceedings of FSEN’13.

Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-33

References IV

[23] Pun, K. I., Steffen, M., and Stolz, V. (2014c). Effect-polymorphic behaviour inference for deadlock
checking. In Giannakopoulou, D. and Salaün, G., editors, Proceedings of SEFM’14, volume 8702 of
Lecture Notes in Computer Science, pages 50–64. Springer Verlag. A longer version is available
(under the title “Lock-Polymorphic Behaviour Inference for Deadlock Checking”) as UiO, Dept. of
Informatics Technical Report 436, Sep. 2013.

[24] Pun, K. I., Steffen, M., and Stolz, V. (2016a). Effect-polymorphic behaviour inference for deadlock
checking. Journal of Logic and Algebraic Methods in Programming, 85(6). A longer version is
available (under the title “Lock-Polymorphic Behaviour Inference for Deadlock Checking”) as UiO,
Dept. of Informatics Technical Report 436, Sep. 2013.

[25] Pun, K. I., Steffen, M., Stolz, V., Wickert, A.-K., Bodden, E., and Eichberg, M. (2016b). Don’t
let data Go astray: A context-sensitive taint analysis for concurrent programs in Go (extended
abstract). In Proceedings of the 24nd Nordic Workshop on Programming Theory (NWPT’16).

[26] Pun, K. I., Steffen, M., Stolz, V., Wickert, A.-K., Bodden, E., and Eichberg, M. (2017). Gotcha:
Static taint analysis for Go. Journal of Logic and Algebraic Methods in Programming. Under Review
for a special issue with selected papers from NWPT’16.

[27] Rice, H. G. (1953). Classes of recursively enumerable sets and their decision problems. American
Mathematical Society, 74:358–366.

[28] Rosenberg, C. M., Steffen, M., and Stolz, V. (2016). Leveraging DTrace for runtime verification.
In Sánchez, C., editor, Proceedings of the 16th International Conference on Runtime Verification, RV
2016, Madrid, Spain, September 23-30, 2016, volume 10012 of Lecture Notes in Computer Science,
pages 318–332. Springer Verlag.

	Introduction
	Types & more
	Comp. & conc.
	Sel. contributions
	

