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Program analysis

“process of automatically analyzing the behavior of
computer programs”

• all kinds of beneficial effects. . .

Rice’s theorem
All non-trivial, semantic properties of programs are
undecidable.

https://en.wikipedia.org/wiki/Program_analysis
https://en.wikipedia.org/wiki/Program_analysis
http://mathworld.wolfram.com/RicesTheorem.html
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The good, the bad, and the ones we can’t
figure out
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Two out of three ain’t bad

automation

soundess completeness
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Sacrifice soundness / underapproximation

automation

soundess completeness

• testing (and “testing can be formal too”)
• run-time verification
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Of course: one can do better than just
that. . .

• avoiding redundant exploration (POR)
• prioritizing

• preemption bounding
• symbolic execution
• combination with (other) static analysis
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Giving up on completeness

automation

soundess completeness
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Giving up on completeness

automation

soundess completeness

false positives
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But how?

if x=y then skip else x:=x+1

Assume (x, y) ∈ {(0, 0), (1, 1), (0, 1)}
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if x=y then skip else x:=x+1

Assume (x, y) ∈ {(0, 0), {(1,1),(0,1)} }
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Abstraction

• abstraction ⇒ overapproximation ⇒ false positives
• lumping different “elements” together (values, program

points . . . )
• symbolic representation
• abstract interpretation
• data flow analysis
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Data flow analysis

1mA

4kΩ

2V

t0

1v1

i1

4V 4nF

• abstraction: “Ampere”
. . .

• circuit laws (Kirchhoff)
• stationary solution

• abstraction: sets of
values . . .

• data flow constraints,
transfer functions

• fixpoint (µ or ν)
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What’s a type?
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What’s a type?
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What’s a type?

λω λPω

λ2 λP2

λω λPω

λ→ λP

• directive for memory allocation
• an object in a category? homotopy?
• an abstraction?
• formula in a HO constructive logic?
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Types, flows, and effects

t : T

What?
if t terminates,
Int-value

From where?
data flow

During?
effects, while
executing

• all of it: more or less approximative
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Types, flows, and effects

t : T ++

What?
if t terminates,
Int-value

From where?
data flow

During?
effects, while
executing

• all of it: more or less approximative
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Types, flows, and effects

t : T ++ :: ϕ
What?
if t terminates,
Int-value

From where?
data flow

During?
effects, while
executing

• all of it: more or less approximative
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Type systems & type checking

Γ ` t : T
• derivation systems

A,B ` A A,B ` B

A,B ` A ∧B

A ` B → A ∧B

` A→ B → A ∧B
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Type systems & type checking

Γ ` t : T
• derivation systems

x1:T1, x2:T2 ` x1 : T1 x1:T1, x2:T2 ` x2 : T2

x1:T1, x2:T2 ` (x1, x2) : T1 × T2

x1:T1 ` λx2:T2.(x1, x2) : T2 → T1 × T2

` λx1:T1.λx2:T2.(x1, x2) : T1 → T2 → T1 × T2
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Type checking
automation

soundess completenessΓ ` t : T

Γ ` t : T
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Type inference

Γ ` t : ?

Γ ` t : ?
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Type inference

Γ ` t : ?

• unification
• decidability?
• cf. synthesized and

inherited attributes
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Type inference

Γ ` t : ?

• unification
• decidability?
• cf. synthesized and

inherited attributes

Γ ` t : T Γ ` t : ?

complete

sound
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And for flows and effects?

Γ̂ ` t : T̂ :: ϕ

• adding constraints
• for flows: simple constraints
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And for flows and effects?

C; Γ̂ ` t : T̂ :: ϕ

• adding constraints
• for flows: simple constraints
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Correctness

Milner’s dictum (“type safety” / “static typing”)

Well-typed programs cannot go wrong!

t1 t2

T

: :
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Correctness

Milner’s dictum (“type safety” / “static typing”)

Well-typed programs cannot go wrong!

ϕ1 ϕ2

t1 t2

α′

α

:: ::
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Correctness

Milner’s dictum (“type safety” / “static typing”)

Well-typed programs cannot go wrong!

ϕ1 ϕ2

t1 t2

T

α′

α

:: ::

: :
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Context-sensitivity

• treat function calls “properly” (= dependent on
call-site)

caller calleecaller callee
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Context-sensitivity
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Context-sensitivity

• treat function calls “properly” (= dependent on
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Context-sensitivity

• treat function calls “properly” (= dependent on
call-site)
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Compositional accounts and “polymophism”

• context-sensitive:function analysis distinguishing
different call-sites

constrained universally quantified types

∀Y .T̂

cf.

• type schemes in ML-polymorphmism and
• bounded quantification ∀Y ≤ T1.T2 in F≤ . . .
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Compositional accounts and “polymophism”

• context-sensitive:function analysis distinguishing
different call-sites

constrained universally quantified types

∀Y : C.T̂

cf.

• type schemes in ML-polymorphmism and
• bounded quantification ∀Y ≤ T1.T2 in F≤ . . .
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Program analysis

Single threaded�� � � � � � �� � ��� � � �� ��

Music engraving by LilyPond 2.19.80—www.lilypond.org

Γ ` t : ?

• types: basically single
threaded

• structural analysis of
program code
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New kinds of errors

• races
• deadlocks
• starvation
• . . .

Analyses get more hairy

• reproducability
(“Heisenbugs”)

• interference vs. isolation
• state space explosion

problem
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Illustration: Deadlock analysis

• given: multi-threaded calculus
• types and effects for lock interaction

Y ::= % | X type-level variables
r ::= % | {π} | r t r lock/label sets
T̂ ::= B | L r | T̂ ϕ→ T̂ types
σ̂ ::= ∀~Y :C. T̂ ϕ→ T̂ | T̂ type schemes
C ::= ∅ | % w r, C | ε w ϕ,C simple constraints
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Deadlocks (2)

• two level approach
local type and effect system
global state exploration (à la model checking)

• flows: tracing lock instances (rudimentary alias analysis)

Processes as effects
Abstracting approximative lock interaction of one thread
into an“abstract process” (as in process algebra)

• correctness: deadlock-sensitive simulation
• further abstractions: bounded call stack
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Type & effect systems

automation

soundess completeness

Safe nested transactions
Resource analysis for join synchronization

Taint analysis for Go

Poly. behavior inference for deadlocks/races



Correctness,
Compositionality,
Concurrency

Facets of formal
program analysis

Martin Steffen

Introduction

Types & more

Comp. & conc.

Sel. contributions

0-26

Proof systems for program verification

automation

soundess completeness

Inheritance of proofs
Lazy behavioral subtyping

Comp. verification of multithreaded oo programs

Hybrid system verification
Full abstraction
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Proof systems for program verification

automation

soundess completeness

Inheritance of proofs
Lazy behavioral subtyping

Comp. verification of multithreaded oo programs

Hybrid system verification
Full abstraction
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Run-time veryification, testing, BMC

automation

soundess completeness

DTrace + LTL monitoring
Model testing modulo congruence

Test generation from traces
bounded MC for hybrid systems
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Miscellaneous

• railway design verification (with datalog)
• full abstraction
• protocol verification (model checking, SDL) and

engineering
• parametric model checking (rewriting theory,

transducers)
• timed ambients & π-calculus (semantics,

assumption-commitement type system for resources)
• semantics of weak memory models
• Petri-net semantics for concurrent actor language
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Kudos

Slides were done with emacs org-mode, LATEX, TikZ (and a
bit Lilypond).

http://orgmode.org/
https://www.latex-project.org//
http://www.texample.net/tikz/examples/
http://lilypond.org/
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