Martin Steffen

Autumn 2017

Latin: recurrere

Martin Steffen

Recursion

Introduction
Multiplication

Recursion & iteration

Binary search To conclude

Linguistics/Mathematics: Relating to or involving the repeated application of a rule, definition, or procedure to successive results.

Oxford Dictionary

Recursion

The reduction of a problem to a simpler problem

• Latin: recurrere

Martin Steffen

Recursion

Introduction

Multiplication

Fibonacci Binary search

To conclude

Linguistics/Mathematics: Relating to or involving the repeated application of a rule, definition, or procedure to successive results.

Oxford Dictionary

Recursion

The reduction of a problem to a (simpler) version of itself

 self-referentiality: recursive problems, algorithms, definitions, data structures, . . .

Martin Steffen

Introduction

Multiplication

Recursion & iteration Fibonacci

Binary search To conclude

So zart, so gut!

La Vache qui rit.

Multiplication

From elementary school: $a \times b$

"a times b" means: add b onto itself, and do that a-times.

$$a \times b = \underbrace{b+b+\ldots+b}_{a \ge 0}$$

Example (4×3)

3 plus 3 gives 6, plus 3 gives 9, plus 3 gives 12,

and done.

Martin Steffen

Recursion Introduction

Multiplication

Recursion & iteration Fibonacci Binary search

Multiplication

From elementary school: $a \times b$

"a times b" means: add b onto itself, and do that a-times.

$$a \times b = 0 + \underbrace{b + b + \ldots + b}_{a \ge 0}$$

Example (4×3)

3 plus 3 gives 6, plus 3 gives 9, plus 3 gives 12,

and done.

Martin Steffen

Recursion Introduction

Multiplication

Recursion & iteration Fibonacci

Binary search To conclude

Multiplication

From elementary school: $a \times b$

"a times b" means: add b onto itself, and do that a-times.

$$a \times b = 0 + \underbrace{b + b + \ldots + b}_{a \ge 0} = \sum_{i=1}^{a} b^{i}$$

Example (4×3)

3 plus 3 gives 6, plus 3 gives 9, plus 3 gives 12,

and done.

Martin Steffen

Recursion

Introduction
Multiplication

Recursion & iteration Fibonacci Binary search

As static method

```
public class Timesiter {
    public static long times_iter(int a, int b) {
        int r = 0:
        for (int i = 1; i \le a; i++) {
            r = r + b:
        return r;
  public static void main(String args[]) {
      System.out.println(times_iter (4, 3));
```

As static method

```
public class Timesiter {
    public static long times_iter(int a, int b) {
        int r = 0:
        for (int i = 1; i \le a; i++) {
           r = r + b:
        return r;
  public static void main(String args[]) {
      System.out.println(times_iter (4, 3));
```

As static method (2)

```
public static long times_iter(int a, int b) {
    int r = 0;
    for (int i = 1; i <= a; i++) {
        r = plus(r,b);
    };
    return r;
}
public static int plus(int x, int y) {
    return x + y;}</pre>
```

Just to focus

```
times_iter(a, b) {
  int r = 0;
  for (i = 1; i <= a; i++) {
     r = plus(r,b); };
  return r;
}

plus(x, y) { return x + y;}</pre>
```

$$a \times b = 0 + \underbrace{b + b + \ldots + b}_{a \ge 0} = \sum_{i=1}^{\infty} b_i$$

Multiplication: one more time

Martin Steffen

Recursion

Introduction
Multiplication

Recursion & iteration Fibonacci Binary search

$$a \times b = 0 + \underbrace{b + b + \ldots + b}_{a \ge 0} = \sum_{i=1}^{a} b$$

Multiplication: one more time

Martin Steffen

Recursion

Multiplication

Recursion & iteration Fibonacci

Binary search

To conclude

Introduction

Self-referential definition (= recursive)

Multiplication calculated with the help of Multiplication (and addition)

 $a \times b = b + \underbrace{b + \ldots + b}_{a + b} = b + ((a - 1) \times b)$

Multiplication: one more time

Martin Steffen

Recursion

Introduction Multiplication

Recursion & iteration

Fibonacci Binary search

To conclude

$a \times b = b + \underbrace{b + \ldots + b}_{a + b + a + b} = b + ((a - 1) \times b)$

Self-referential definition (= recursive)

Multiplication of $a \times b$ calculated with the help of multiplication of $a-1\times b$ (and addition)

In Java

Martin Steffen

```
Recursion
```

Multiplication

Recursion & iteration Fibonacci

Binary search To conclude

```
public static long times(int a, int b) {
    if (a == 0) {
        return 0;
    } else {
        return b + times (a-1, b);
    }
}
```

In Java


```
times(a, b) {
    if (a == 0) {
        return 0;
    } else {
        return b + times (a-1, b);
    }
}
```

 $a \times b = b + ((a-1) \times b)$

Martin Steffen Recursion

Introduction Multiplication

To conclude

Recursion & iteration Fibonacci Binary search

In Java


```
Martin Steffen
```

Recursion Introduction

Multiplication Recursion & iteration Fibonacci

Binary search To conclude

```
times(a, b) {
       if (a == 0) {
          return 0;
       } else {
           return b + times (a-1, b);
```

$$a \times b \Leftarrow b + ((a-1) \times b)$$

And what about negative numbers?

Martin Steffen

```
Recursion
Introduction
Multiplication
Recursion & iteration
```

Binary search

```
public static long times(int a, int b) {
    if (a >= 0) {
        if (a == 0) {
            return 0;
        } else {
            return b + times (a-1, b);
        }
    } else {
        return - (times (-a, b));
    }
}
```

Take home message

Martin Steffen

Recursion

A recursive method is defined by via itself (= calling itself).

Recursion

Introduction Multiplication

Recursion & iteration Fibonacci Binary search

Take home message

Recursion

A recursive method is defined by via itself (= calling itself).

"Proper recursion" (= termination)

To solve a problem:

- define a method via calling itself of a "simpler" version of the problem.
- and: there is a simplest problem which is directly solvable (= without further recursion), such that the recursion "finds the exit" and terminates

Martin Steffen

Recursion

Introduction
Multiplication

Recursion & iteration

Binary search To conclude

11

Take home message

Recursion

A recursive method is defined by via itself (= calling itself).

"Proper recursion" (= termination)

To solve a problem:

- 1. define a method via an applications of itself on one "simpler" versions of the problem
- 2. and: there is one are simplest problems, which is are directly (= without further recursion) solvable, such that the recursion "finds the exit" and terminates.

Martin Steffen

Recursion Introduction

Multiplication

Recursion & iteration Fibonacci

Binary search

Factorial

Iteratively: "1 times 2 times 3... until n"

$$n! = 1 \times 2 \times \ldots \times (n-1) \times n = \prod_{i=1}^{n} i$$

Martin Steffen

Recursion Introduction Multiplication

Recursion & iteration

Binary search To conclude

Factorial

Iteratively: "1 times 2 times 3... until n"

$$n! = 1 \times 2 \times \ldots \times (n-1) \times n = \prod_{i=1}^{n} i$$

```
factorial_iter(n) {
  long result = 1;
  for (i = 1; i <= n; i++) {
    result = result * i;
  };
  return result;</pre>
```

Martin Steffen

Recursion Introduction Multiplication

Recursion & iteration Fibonacci Binary search

Binary search To conclude

One more time, but recursive

 $n! = n \times (n-1) \times \ldots \times 2 \times 1$

Martin Steffen

Recursion

Introduction Multiplication

Recursion & iteration

Fibonacci Binary search

One more time, but recursive

Martin Steffen

Recursion

Introduction
Multiplication

Recursion & iteration Fibonacci

Binary search To conclude

```
n! = n \times \underbrace{(n-1) \times \ldots \times 2 \times 1}_{(n-1)!}
```

```
factorial(n) {
  if (n == 1) return 1;
  return n * factorial(n-1);
}
```

Side by side comparison

```
factorial_iter(n) {
  long result = 1;
  for (i = 1; i <= n; i++) {
    result = result * i;
  };
  return result;
}</pre>
```

```
factorial(n) {
   if (n == 1) return 1;
   return n * factorial(n-1);
}
```

- variable result updated step by step (= iteratively)
- variable result local local to method body
- exactly one value per call

Side by side comparison

```
factorial_iter(n) {
  long result = 1;
  for (i = 1; i <= n; i++) {
    result = result * i;
  };
  return result;
}</pre>
```

variable result updated step by step (= iteratively)

- variable result local local to method body
- exactly one value per call

Martin Steffen

Recursion

Introduction Multiplication

Recursion & iteration

Martin Steffen

Recursion

Introduction Multiplication

Recursion & iteration

$$5 \times fac(4)$$

Martin Steffen

Recursion

Introduction Multiplication

Recursion & iteration

Martin Steffen

Recursion

Introduction Multiplication

Recursion & iteration

Martin Steffen

Recursion

Introduction Multiplication

Recursion & iteration

Martin Steffen

Recursion

Introduction Multiplication

Recursion & iteration

Fibonacci Binary search

Martin Steffen

Recursion

Introduction Multiplication

Recursion & iteration

Martin Steffen

Recursion

Introduction Multiplication

Recursion & iteration

Martin Steffen

Recursion

Introduction Multiplication

Recursion & iteration

Fibonacci Binary search

Martin Steffen

Recursion

Introduction Multiplication

Recursion & iteration

Fibonacci Binary search

Martin Steffen

Recursion

Introduction Multiplication

Recursion & iteration

Fibonacci Binary search

Martin Steffen

Recursion

Introduction Multiplication

Recursion & iteration

Martin Steffen

Recursion

Introduction Multiplication

Recursion & iteration

Martin Steffen

Recursion

Introduction Multiplication

Recursion & iteration

Martin Steffen

Recursion

Introduction Multiplication

Recursion & iteration

Caller and callee

caller callee

Martin Steffen

Recursion

Introduction Multiplication

Recursion & iteration Fibonacci

Life time of local variables

Martin Steffen

Recursion

Introduction Multiplication

Recursion & iteration Fibonacci

Run time stack

```
factorial(n) {
   long result;
   if (n == 1) { result = 1; }
   else {
      result = n * factorial(n-1);
   };
   return result;
}
```

- n!: n (here 5) incarnations of result
- allocation/deallocation: LIFO ⇒ run-time stack
- dynamic memory management

Leonardo da Pisa

Martin Steffen

Recursion Introduction Multiplication

Recursion & iteration Fibonacci Binary search To conclude

The rabbit problem

Martin Steffen

Recursion

Introduction
Multiplication

Recursion & iteration

Binary search

To conclude

- 1. A rabbit grows up in one month
- 2. Each grown up pair of rabitt breeds a pair of rabitts each month

Question

Starting with one pair, how many pairs do we have after n months

Fibonacci's solution

Month	rabbit pairs			
	newborn	grown up	total	
0	1	0	1	
1	0	1	1	
2	1	1	2	
3	1	2	3	
4	2	3	5	
5	3	5	8	
	:			

parti gelic Septi Home

וו ב כד ל ינו יחום כדי היווו בווקום

Fibonacci's solution

Month	rabbit <mark>pairs</mark>			
	newborn	grown up	total	
0	1	0	1	
1	0	1	1	
2	1	1	2	
3	1	2	3	
4	2	3	5	
5	3	5	8	
	:			
	$f_n = \begin{cases} 1 \\ f_{n-1} \end{cases}$	$f_{-1} + f_{n-2}$	$\begin{array}{l} \text{if } n=0 \text{ or} \\ \text{otherwise} \end{array}$	n = 1

parti sake tem Septi

Home

In Java

Martin Steffen

```
Recursion
 Introduction
 Multiplication
 Recursion & iteration
 Fibonacci.
 Binary search
```

```
public static int fibonacci(int n) {
  if (n == 0) return 1;
                                         // base case
  if (n = 1) return 1;
                                         // base case
  return
                                                            To conclude
    fibonacci (n-1) + fibonacci (n-2); // induction case
```

Calls

f(1)

f(0)

Martin Steffen

Introduction Multiplication

Recursion & iteration

Calls

Martin Steffen

Recursion

Introduction
Multiplication

Recursion & iteration

Fibonacci

As an aside ...


```
\node{f(5)}
child{node {f(4)}
 child{node {f(3)}
   child{node {f(2)}
    child{node {f(1)}}
    child{node {f(0)}}
   child{node {f(1)}}
  child{node {f(2)}
   child{node {f(1)}}
   child{node {f(0)}}
child{node {f(3)}
 child{node {f(2)}
   child{node {f(1)}}
   child{node {f(0)}}
  child{node {f(1)}}
U:--- fibonaccitree.tex
```

tree = rec. data structure

tree node =

- node without children ("leaf"), or
 - with n (here 2) tree nodes as children

Martin Steffen

Recursion

Introduction Multiplication

Recursion & iteration Fibonacci

Trees


```
public class TreeO {
   private TreeO left, right = null;
   private Object data;
```

in practice: tree structure mostly more complex

- list of childred/sub-trees
- instead of Object: "generics"
- further methods, constructors, pointers
- avoid null-pointer
- interfaces
- . . .

Martin Steffen

Recursion

Introduction
Multiplication

Recursion & iteration Fibonacci

Binary search

We can do more efficiently


```
Martin Steffen
```

- a = "newborn", b = "grown up"
- initial call with fibonacci(n, 0, 1)

Life time of local variables

Fac. iteratively

Fac. recursively

Fib. recursively


```
Recursion
Introduction
Multiplication
Recursion & iteration
```

Binary search To conclude

Martin Steffen

```
public static int fibonacci(int n, int a, int b) {
   if (n == 0) return b; // let's start with 1
   return fibonacci (n-1,b,a+b);
}
```

Tail recursion

 recursive call: last in the method body

```
Martin Steffen
```

Recursion

Introduction Multiplication

Recursion & iteration

Binary search

```
public static int fibonacci(int n, int a, int b) {
   if (n == 0) return b; // let's start with 1
   return fibonacci (n-1,b,a+b);
}
```

Tail recursion

Martin Steffen

- recursive call: last in the method body
- consequently:
 - Stack unnecessary . . .
 - iterative-rekursively
- often: compiler optimization (not in Java, but on the language's todo-list)

```
Recursion
Introduction
Multiplication
Recursion & iteration
```

```
public static int fibonacci(int n, int a, int b) {
   if (n == 0) return b; // let's start with 1
   return fibonacci (n-1,b,a+b);
}
```

"tail-recursive" calls?

```
public static int fibonacci(int n, int a, int b) {
   if (n!= 0) return fibonacci (n-1,b,a+b);
   return b;
}
```



```
public static long factorial(int n) {
   if (n == 1) return 1;
   return n * factorial(n-1);
}
```

Martin Steffen

Recursion Introduction Multiplication

Recursion & iteration Fibonacci

Rekursion vs. Iteration

Erlang is a functional programming language and what needs to be remembered about all functional programming languages is that they don't offer any constructs for loops. Instead, functional programming depends on a concept called recursion.

while Statement Implementation

Since there is no direct while statement available in Erlang, one has to use the recursion techniques available in Erlang to carry out a while statement implementation.

We will try to follow the same implementation of the while loop as is followed in other programming languages. Following is the general flow which will be followed.

Martin Steffen

Recursion

Introduction
Multiplication

Recursion & iteration

Rekursion vs. Iteration

Martin Steffen

Recursion

Introduction Multiplication

Recursion & iteration

Fibonacci

Binary search To conclude

• Recursion and iteration: in principle equally expressive

Recursion, only interesting for "number theoreticians"?

Martin Steffen

Git: Merge

[msteffen@rijkaard mmgo]\$ git pull remote: Counting objects: 9. done. remote: Compressing objects: 100% (2/2), done.

remote: Total 9 (delta 7), reused 9 (delta 7), pack-reused 0

Unpacking objects: 100% (9/9), done.

From github.com:dfava/favasynthesis 0d9fa6c..154dd44 master -> origin/master

Merge made by the 'recursive' strategy.

1 file changed, 30 insertions(+), 22 deletions(-)

[msteffen@rijkaard mmgo]\$

Recursion Introduction

Multiplication

Recursion & iteration

Fibonacci.

Binary search

Recursion, only interesting for "number theoreticians"?

Internet DNS

Recursive DNS is essentially the opposite of <u>Dyn Standard DNS</u> which is an authoritative DNS service that allows others to find *your* domain while Recursive DNS allows *you* to resolve other people's domains.

The Longer Answer

Recursive DNS provides recursive DNS. Yes, that's recursive (something which repeats or refers back to itself) and confusing. In order to make a distinction between the service we provide and the general concept of recursive DNS, here's an explanation.

To better illustrate how recursive DNS works, let's imagine you are sitting at a computer in your study at home. You're connected to the Internet by a cable connection and you are surfing the web looking for widgets. You have no idea where to find widgets, so you open your web browser and type in http://www.google.com.

Martin Steffen

Recursion

Introduction Multiplication

Recursion & iteration

Fibonacci Binary search

Recursion, only interesting for "number theoreticians"?

The multi-million \$ heist via recursion¹

Deconstructing the DAO Attack: A Brief Code Tour

18 JUNE 2016 on thedao, security, ethereum, solidity

TheDAO was attacked today, and the attacker seems to have made off with 3.5mm ether (at time of writing in excess of \$45mm). The vulnerability was the Race To Empty or Recursive Call attack.

Martin Steffen

Recursion

Introduction
Multiplication

Recursion & iteration

Fibonacci

Binary search

¹in virtual money (ether/"blockchain") and temporary.

Goal

Input: integer-array + number

Output: if number in the array: index where

Martin Steffen

Introduction Multiplication

Multiplication
Recursion & iteration
Fibonacci
Binary search

To conclude

3 12 21 23 42 48 50 55 57 60 62 67 75 79 89 91

Goal

Input: integer-array + number

Output: if number in the array: index where

Recursion
Introduction
Multiplication

Martin Steffen

Recursion & iteration Fibonacci

Goal

Input: integer-array + number

• Output: if number in the array: index where

Recursion
Introduction
Multiplication

Martin Steffen

Recursion & iteration Fibonacci

Goal

Input: integer-array + number

• Output: if number in the array: index where

Recursion
Introduction
Multiplication
Recursion & iteration

Binary search
To conclude

Martin Steffen

Goal

Input: integer-array + number

• Output: if number in the array: index where

Recursion
Introduction
Multiplication
Recursion & iteration

Martin Steffen

Goal

Input: integer-array + number

• Output: if number in the array: index where

Recursion
Introduction
Multiplication

Martin Steffen

Recursion & iteration Fibonacci Binary search

We can do better: binary search

Goal

Input: sorted Integer-array + number

Output: if number in the array: index where

Martin Steffen

Introduction
Multiplication
Recursion & iteration

Fibonacci Binary search To conclude

3 12 21 23 42 48 50 55 57 60 62 67 75 79 89 91

We can do better: binary search

Goal

- Input: sorted Integer-array + number
- Output: if number in the array: index where

Martin Steffen

Introduction Multiplication

Recursion & iteration Fibonacci Binary search

We can do better: binary search

Goal

Input: sorted Integer-array + number

Output: if number in the array: index where

Recursion
Introduction
Multiplication
Recursion & iteration

Martin Steffen

Fibonacci Binary search To conclude

We can do better: binary search

Goal

- Input: sorted Integer-array + number
- Output: if number in the array: index where

Martin Steffen

Recursion

Multiplication Recursion & iteration Fibonacci

Binary search
To conclude

We can do better: binary search

Goal

Input: sorted Integer-array + number

Output: if number in the array: index where

Martin Steffen

Introduction
Multiplication

Recursion & iteration Fibonacci Binary search

Recursive approach

Martin Steffen

Divide & conquer: search for elem

- look up in the middle of the array
- if equal to elem ⇒ done
- if smaller than elem ⇒ search rekursively in the right half
- if larger than elem ⇒ search rekursively in the left half

Recursion

Introduction

Multiplication

Recursion & iteration

Fibonacci

Binary search
To conclude

```
static int search (int elem, int[] a, int low, int high) {
    System.out.println(low);
    System.out.println(high);
    if (low = high) {
        if (elem = a[low]) {
            return low:
        } else {
            return -1:
    \} else \{ // low \neq high
        int m = (low + high) / 2;
        if (elem < a[m]) {
            return search (elem, a, low, m-1);
        } else {
            return search(elem, a, m+1, high);
```



```
static int search (int elem, int[] a, int low, int high) {
    System.out.println(low);
    System.out.println(high);
    if (low = high) {
        if (elem = a[low]) {
            return low:
        } else {
            return -1:
    \} else \{ // low \neq high
        int m = (low + high) / 2;
        if (elem < a[m]) {
            return search (elem, a, low, m-1);
        } else {
            return search(elem, a, m+1, high);
```



```
static int search (int elem, int[] a, int low, int high) {
    System.out.println(low);
    System.out.println(high);
    if (low = high) {
        if (elem = a[low]) {
            return low:
        } else {
            return -1:
    \} else \{ // low \neq high
        int m = (low + high) / 2;
        if (elem < a[m]) {
            return search (elem, a, low, m-1);
        } else {
            return search(elem, a, m+1, high);
```



```
static int search (int elem, int[] a, int low, int high) {
    System.out.println(low);
    System.out.println(high);
    if (low = high) {
        if (elem = a[low]) {
            return low:
        } else {
            return -1:
    \} else \{ // low \neq high
        int m = (low + high) / 2;
        if (elem < a[m]) {
            return search (elem, a, low, m-1);
        } else {
            return search(elem, a, m+1, high);
```


"Correctness"

Argument

- 1. The "divide-and-conquer" idea seems plausibly sound
- 2. Termination
 - each recursive call renders the problem smaller (induktion case)
 - there is a smallest problem (base case)

Martin Steffen

Recursion Introduction

Multiplication Recursion & iteration Fibonacci Binary search

"Correctness"

Argument

- 1. The "divide-and-conquer" idea seems plausibly sound
- 2. Termination
 - each recursive call renders the problem smaller (induktion case)
 - there is a smallest problem (base case)
 - Alas: it only looks like that . . .

-*- mode: compilation; default-directory: "~/javaexamples/" -*- Compilation started at Wed Oct 11 15:58:48

java Binsearch

 ${\bf Exception\ in\ thread\ "main"\ java.lang. Stack Overflow Error}$

at Binsearch.search(Binsearch.java:12)

at Binsearch.search(Binsearch.java:12)

at Binsearch.search(Binsearch.java:12)

at Binsearch.search(Binsearch.java:12)

at Binsearch.search(Binsearch.java:12)

-:%*- *compilation* Top L1 [(Compilation:exit [1] Abbrev)]

Martin Steffen

Recursion

Introduction Multiplication

Recursion & iteration Fibonacci

Fibonacci Binary search

- searc

```
static int search (int elem, int[] a, int low, int high) {
    if (low > high) return -1; // empty
    int m = (low + high) / 2;
    if (elem == a[m]) return m;
    if (elem < a[m]) {
        return search(elem, a, low, m-1);
    } else {
        return search(elem, a, m+1, high);
    }
}</pre>
```



```
static int search (int elem, int[] a, int low, int high) {
    if (low > high) return -1; // empty
    int m = (low + high) / 2;
    if (elem == a[m]) return m;
    if (elem < a[m]) {
        return search(elem, a, low, m-1);
    } else {
        return search(elem, a, m+1, high);
    }
}</pre>
```



```
static int search (int elem, int[] a, int low, int high) {
    if (low > high) return -1; // empty
    int m = (low + high) / 2;
    if (elem == a[m]) return m;
    if (elem < a[m]) {
        return search(elem, a, low, m-1);
    } else {
        return search(elem, a, m+1, high);
    }
}</pre>
```



```
static int search (int elem, int[] a, int low, int high) {
    if (low > high) return -1; // empty
    int m = (low + high) / 2;
    if (elem == a[m]) return m;
    if (elem < a[m]) {
        return search(elem, a, low, m-1);
    } else {
        return search(elem, a, m+1, high);
    }
}</pre>
```


The bug that "fixed itself"

```
AND CCCT
```

```
Martin Steffen
```

Recursion Introduction Multiplication Recursion & iteration

Binary search

Perhaps beginner's glitches only . . . ?

Proving that Android's, Java's and Python's sorting algorithm is broken (and showing how to fix it)

Tim Peters developed the Timsort hybrid sorting algorithm in 2002. It is a clever combination of ideas from merge sort and insertion sort, and designed to perform well on real world data. TimSort was first developed for Python, but later ported to Java (where it appears as java.util.Collections.sort and java.util.Arrays.sort) by Joshua Bloch (the designer of Java Collections who also pointed out that most binary search algorithms were broken). TimSort is today used as the default sorting algorithm for Android SDK, Sun's JDK and OpenJDK. Given the popularity of these platforms this means that the number of computers, cloud services and mobile phones that use TimSort for sorting is well into the billions.

Martin Steffen

Recursion

Introduction Multiplication

Recursion & iteration Fibonacci

Binary search

And as consequence?

- hands off recursion?
- base cases (and special cases) are particular error prone ("one-off" errors)
- working in most cases ≠ correct

"Program testing can be used to show the presence of bugs, but never to show their absence"

Dijkstra 1970, p. 7

ultimately: careful reasoning needed ("correctness proof") angesagt. Martin Steffen

Recursion Introduction

Multiplication
Recursion & iteration
Fibonacci
Binary search

Further issues

Martin Steffen

Recursion

Introduction Multiplication

Recursion & iteration Fibonacci

Binary search

To conclude

algorithms (e.g. trees)

inductive/rekursive data structures and corresponding

complexity

in-direct recursion ("call-backs")

induction & recursion

Kudos

Martin Steffen

Recursion Introduction

Multiplication Recursion & iteration Fibonacci Binary search

To conclude

The slides where done with

- gnu emacs *org-mode* ("gnu's not Unix")
- LATEX, und
- TikZ ("TikZ ist kein Zeichenprogram")

The "design" owes inspiration the elaborate style-files of the Uni Lübeck (M. Leucker, V. Stolz).

Sources

Martin Steffen

Most of the material is "common knowledge" and I did not base the lecture on any specific book or source. Similar examples can be found in basically all introductions to Java, or other programming languages, for that matter. Pictures, if not self-made graphics, are likewise from "creative commons". Particular internet finds might be clickable via embedded links.

Recursion
Introduction
Multiplication
Recursion & iteration

Binary search
To conclude