Recursion

Martin Steffen

Autumn 2017




Recursion

= Latin: recurrere

Linguistics/Mathematics:
Relating to or involving
the repeated application
of a rule, definition, or
procedure to successive
results.

Oxford Dictionary

Recursion

The reduction of a problem to a simpler problem

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude



Recursion

= Latin: recurrere

Martin Steffen

Linguistics/Mathematics:

Relating to or involving 'Tf“fﬁ'm
the repeated application Multipicaion

] Recursion & iteration
of a rule, definition, or Fibonaet
procedure to successive iy serh
results.

Oxford Dictionary

Recursion

The reduction of a problem to a (simpler) version of itself

= self-referentiality: recursive problems, algorithms,
definitions, data structures, ...



Recursion

AR

iri
D)e lache gekuh 1T,

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude

~ =
g o s e o

0-3



Multiplication

From elementary school: a x b

) X Martin Steffen
“a times b" means: add b onto itself, and do that a-times.

Recursion
Introduction
Bacon o

axb: b+b++b Fibonacci

N—— Binary search
a Z 0 To coym:lude

Example (4 x 3)
3
plus 3 gives 6,
plus 3 gives 9,

plus 3 gives 12, and done.



Multiplication

From elementary school: a x b

) X Martin Steffen
“a times b" means: add b onto itself, and do that a-times.
Recursion
Introduction
Bacon o
axb:0+b—|—b++b Fibonacci i
N—— Binary search
a>0 To coynclude

Example (4 x 3)
3
plus 3 gives 6,
plus 3 gives 9,

plus 3 gives 12, and done.



Multiplication

From elementary school: a x b

) X Martin Steffen
“a times b" means: add b onto itself, and do that a-times
Recursion
Introduction
a Multiplication
Recursion & iteration
aXbZO—i-b—i-b-i-—i-b:Zb Fibonacc i
ﬁ—/ ‘ Binary search
a>0 =1

To conclude

Example (4 x 3)
3
plus 3 gives 6,
plus 3 gives 9,

plus 3 gives 12, and done.



As static method

public class Timesiter {
public static long times_iter(int a, int b) {
int r = 0;
for (int i =1; i<= a;i++) {
r =r + b;
¥

return r;

}

public static void main(String args[]) {
System.out. println(times_iter (4, 3));
}

}




As static method

public class Timesiter {
public static long times_iter(int a, int b) {
int r = 0;
for (int i =
r =r + b;
IE

return r;

1; i<=a;i++) {

}

public static void main(String args[]) {
System.out. println(times_iter (4, 3));
}

}




As static method (2)

r = 0;

times_iter (

for ( i =1; i<= a;i++)
r = plus(r,b);

}i

return r;

return x + y;}

plus ( X,

{

ar




Just to focus

times_iter (a, b) {
int r = 0;
for (1 = 1; i<= a;i++) {
r = plus(r,b); };
return r;

}

plus (x, y) { return x + y;}

axXb=04+b+b+...+0
—_— ——

a>0



Multiplication: one more time

aXb=04+b+b+...4+0
—_—

a>0

Martin Steffen

Recursion
Introduction
a Multiplication
Z b Recursion & iteration
Fibonacci

=1 Binary search

To conclude



Multiplication: one more time

Martin Steffen
Recursion
axXxb=b+b+...4b = b+ ((a—1) x D)
——

a—1 “mal” b

Binary search

To conclude
Self-referential definition (= recursive)

Multiplication calculated with the help of Multiplication (and
addition)

0-8



Multiplication: one more time

axXxb=b+b+...4b = b+ ((a—1) x D)
—_————
a—1 "mal” b

Self-referential definition (= recursive)

Multiplication of a x b calculated with the help of
multiplication of @ — 1 x b (and addition)

Martin Steffen

Recursion

Binary search

To conclude

0-8



In Java

if

times ( a, b) {
(a =10) {

return O;

} else {

}

return b + times (a—1, b);

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude

0-9



In Java

times(a, b) {

Martin Steffen
if ( a — 0) { Recursion
return 0; Introduction
} else {

Multiplication
. Recursion & iteration
return b + times (a—1, b);

Fibonacci

Binary search
} To conclude

a Xxb = b+((a—1)xDb)

0-9



In Java

times(a, b) {
if (a=0) {
return 0;

1 else {

return b + times (a—1, b);
}

a X b < b+((a—1)xDb)

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude

0-9



And what about negative numbers?

Martin Steffen
times a b
if ( a >= 0) { ( , ) { Recursion
if (a=0) { e
return O; Recursion & iteration
}oelse { .
return b + times (a—1, b); To conclude

}
} oelse {

return — (times (—a, b));
}




Take home message

Recursion

A recursive method is defined by via itself (= calling itself).

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude

0-11



Take home message

Recursion

A recursive method is defined by via itself (= calling itself).

“Proper recursion” (= termination)

To solve a problem:

1. define a method via calling itself of a “simpler” version
of the problem.

2. and: there is a simplest problem which is directly
solvable (= without further recursion), such that the
recursion “finds the exit” and terminates

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude

0-11



Take home message

Recursion

A recursive method is defined by via itself (= calling itself). Wiartin Steffen
Recursion
imoducton
S

“Proper recursion” (= termination) Fibonacc

Binary search

To conclude

To solve a problem:
1. define a method via an applications of itself on ene
“simpler” versions of the problem

. and: there is-ene are simplest problems, which is are
directly (= without further recursion) solvable, such
that the recursion “finds the exit” and terminates.

0-11



Factorial

Iteratively: “1 times 2 times 3... until n”

nl=1x2x...x(n—1)xn

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude

0-12



Factorial

Iteratively: “1 times 2 times 3... until n”

Martin Steffen

Recursion
n!:1><2><...><(n—1)><n Introduction
Multiplication
Recursion & iteration

Fibonacci

Binary search

factorial_iter (n) {
result = 1;
for (i = 1; i<= n;i++) {
result = resu

ult = 1i;
bi

return result;

0-12



One more time, but recursive

Martin Steffen
nl=nxn—-1)x...x2x1 Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci
Binary search

To conclude



One more time, but recursive

nl=nxnmh-1)x...x2x1

(n—1)!

factorial (n) {

if (n == 1) return 1;

return n x factorial (n-1);

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude



Side by side comparison

factorial (n) {

factorial_iter(n) { if (n=1) return 1;
result = 1; return n % factorial(n—1);
for (i = 1; i<=n;i++) { }
result = result * i;
}
return result;
}

= variable result local

= variable result local to method body

updated step by step (=

. . = exactly one value per call
iteratively)



Side by side comparison

factorial_iter(n) {

result =1
for (i = 1; i<=n;i++) {
result = result * i;
return resu

}

= variable result
updated step by step (=
iteratively)

factorial(n) {

result;
if (n=1) result = 1; }
else {
result =n factorial (n—1);

}s

return result;

= variable result local
local to method body

= exactly one value per call



At run time

fac(5)

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude



At run time

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude



At run time

fac(5)

5 x |fac(4)

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude



At run time

fac(5)

5 x |fac(4)

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude



At run time

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude



At run time

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude



At run time

Martin Steffen

Recursion
Introduction
4 x fac(3) Multiplication
Recursion & iteration
Fibonacci

3 X |fac(2)

To conclude



At run time

Martin Steffen

Recursion
Introduction
4 x fac(3) Multiplication
Recursion & iteration
Fibonacci

3 X |fac(2)

To conclude



At run time

Martin Steffen

Recursion
Introduction
4 x fac(3) Multiplication
Recursion & iteration
Fibonacci

3 X |fac(2)

To conclude



At run time

Martin Steffen

Recursion
Introduction
4 x fac(3) Multiplication

Recursion & iteration
Fibonacci

3 X |fac(2)

To conclude



At run time

Martin Steffen

Recursion
Introduction
4 x fac(3) Multiplication
Recursion & iteration
Fibonacci

3 X |fac(2)

To conclude



At run time

Martin Steffen

Recursion
Introduction
Multiplication
Re:

& iteration
Fibonacci
Binary search

To conclude



At run time

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude



At run time

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude



At run time

120

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude



Caller and callee

caller callee

call

return

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude



Life time of local variables

Martin Steffen
5oM B o2 ouow

Recursion
’I: Introduction
—Jt Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude




Run time stack

factorial(n) {
long result;
if (n=1) { result =1; }
else {
result = n % factorial(n—1)
+i

return result;

= nl: n (here 5) incarnations of result
= allocation/deallocation: LIFO = run-time stack

= dynamic memory management



Leonardo da Pisa

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude



The rabbit problem

Martin Steffen
1. A rabbit grows up in one month

Recursion
Introduction
2. Each grown up pair of rabitt breeds a pair of rabitts e oo
each month —
inary search
To conclude
Question

Starting with one pair, how many pairs do we have after n
months



Fibonacci’s solution

Month rabbit pairs
newborn grown up total
0 1 0 1
1 0 1 1
2 1 1 2
3 1 2 3
4 2 3 5
5 3 5 8




Fibonacci’s solution
Month rabbit pairs
7
newborn grown up total am?
0 1 0 1 s
1 0 1 1 (R
2 1 1 2 sl
3 1 2 3 zi
4 2 3 5 sepn |
5 3 5 8 s A
et 4
77‘_
e ifn=0orn=1 | LR
" | fam1+ fa—2 otherwise gol 28 i
L o o '
N E
CEE NG



In Java

if (n=0)
if (n=1)
return

fibonacci

fibonacci( n) {
return 1; // base case
return 1; // base case

(n—1) 4+ fibonacci(n—2); // induction

case

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude

0-22



Calls

VRN VRN
f(3) f(2) f(2) f(1)
/ \ / \ / \
f(2)  f(1) faQ)  f0) f(1)  f(0)
/\
f(1) f(0)



Calls

Martin Steffen

Recursion
Intre ion
u
iteration

i
/ \ ina re
To conclude




As an aside ...

\node{f(5)}
child{node {f(4)}
child{node {f(3)}

Martin Steffen

€ Recursion
“Cnldinode (1))} tree = rec. data structure iiction
child{node {f(0)}} Multiplication
} Recursion & iteration
child{node {f(1)}} tree node = Fibanace

} Binary search
i f(2 o .

el tnode ((L1}} = node without children (“leaf”), o conclude

child{node {f(0)}}
}

or

}

RSN = with n (here 2) tree nodes as
hild{node {f(1)}} o
child{node {f(0)3} children

}
child{node {f(1)}}
}

Ut

0-24



Trees

public class TreeO {
private TreeO left , right = null;
private Object data;

in practice: tree structure mostly more complex

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude



We can do more efficiently

fibonacci (

n, a, b) {
if (n=0) return b; // let's start with 1
return fibonacci (n—1,b,a+b);

}
= a = “newborn”, b = “grown up"

= initial call with fibonacci(n,0,1)

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude

0-26



Life time of local variables

Fac. iteratively Fac. recursively Fib. recursively

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude

fibonacci ( n, a, b) {
if (n = 0) return b; // let's start with 1
return fibonacci (n—1,b,a+b);
}



Tail recursion

16,0.1)

e = recursive call: last in the
oL
L eee method body
£(1.3.5)
1059
| F
I
fibonacci ( n, a, b) {
if (n = 0) return b; // let's start with 1
return fibonacci (n—1,b,a+b);
}

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude



Tail recursion

16,01

m; = recursive call: last in the
(R method body

7(1,3.5)

Martin Steffen

Recursion
= consequently:

Introduction

Multiplication

= Stack unnecessary ... Recursion & teration
. . . Fibonacci
= iterative-rekursively

Binary search

To conclude

= often: compiler optimization
(not in Java, but on the
language's todo-list)

fibonacci( a, b) {

n,
if (n=0) return b; // let's start with 1
return fibonacci (n—1,b,a+b);



“tail-recursive” calls?

fibonacci( n, a b) {

if (n != 0) return fibonacci (n—1,b,a+b); RlartniSiSHen

return b;

Recursion

Introduction
Multiplication

Recursion & iteration

Fibonacci
Binary search
To conclude

factorial ( n) {
if (n= 1) return 1;
return n % factorial(n—1);

0-29



Rekursion vs. lteration

LEARN ERLANG

absolute beginners

Erlang Tutorial

© Erlang - Home

@ Erlang - Overview

© Erlang - Environment
© Erlang - Basic Syntax
@ Erlang - Shell

© Erlang - Data Types
@ Erlang - Variables

© Erlang - Operators

© Erlang - Loops

@ Erlang - Decision Making
@ Erlang - Functions

® Erlang - Modules

@ Erlang - Recursion

@ Erlang -Numbers

© Erlang - Strings

@ Erlang - Lists

© Erlang - File /O

© Erlang - Atoms

& Erlane _Manc

@© Previous Page Next Page @

Erlang is a functional programming language and what needs to be remembered about all
functional programming languages is that they don't offer any constructs for loops. Instead,
functional programming depends on a concept called recursion.

while Statement Implementation

Since there is no direct while statement available in Erlang, one has to use the recursion
techniques available in Erlang to carry out a while statement implementation.

We wil try to follow the same implementation of the while loop as is followed in other
pragramming languages. Following is the general flow which will be followed

while ( condition )
do
( code block )

Evaluate
condition

Condition false

Condition true

statement

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci
Binary search

To conclude



Rekursion vs. lteration

= Recursion and iteration: in principle equally expressive

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude

0-31



Recursion, only interesting for “number
theoreticians”?

Git: Merge

[msteffen@rijkaard mmgo]$ git pull
remote: Counting objects: 9, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 9 (delta 7), reused 9 (delta 7), pack-reused 0
Unpacking objects: 100% (9/9), done.
From github.com:dfava/favasynthesis

0d9fabc..154dd44 master -> origin/master
Merge made by the 'recursive' strategy.
papers/mmgof/intro.tex | 52 +++++++++++++++++++++H++HHHHHH+
1 file changed, 30 insertions(+), 22 deletions(-)
[msteffen@rijkaard mmgo]$ |

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude



Recursion, only interesting for “number
theoreticians”?

Internet DNS Martin Steffen
Recursion
Recursive DNS is essentially the opposite of Dyn Standard DNS which is an authoritative DNS e

Multiplication
service that allows others to find your domain while Recursive DNS allows you to resolve other

Recursion & iteration

people’s domains. Fibonacci
Binary search
The Longer Answer To conclude

Recursive DNS provides recursive DNS. Yes, that's recursive (something which repeats or refers
back to itself) and confusing. In order to make a distinction between the service we provide

and the general concept of recursive DNS, here's an explanation.

To better illustrate how recursive DNS works, let's imagine you are sitting at a computer in your
study at home. You're connected to the Internet by a cable connection and you are surfing the
web looking for widgets. You have no idea where to find widgets, so you open your web

browser and type in http://www.google.com.


https://dyn.com/blog/recursive-dns-how-does-it-work/

Recursion, only interesting for “number
theoreticians”?

a Srre a 8 - Martin Steffen
The multi-million $ heist via recursion!

Recursion

Deconstructing theDAO Attack: L
A Brief Code Tour by

TheDAO was attacked today, and the attacker seems to have made off with
3.5mm ether (at time of writing in excess of $45mm). The vulnerability was
the Race To Empty or

Yin virtual money (ether/"blockchain”) and temporary.


http://vessenes.com/deconstructing-thedao-attack-a-brief-code-tour/

Goal

Input: integer-array + number Recursion
Introduction

Output: if number in the array: index where Multipcaton
Recursion & iteration

Fibonacci

| 3|12[21[23]42]48]50|55]57]60]62|67[75]79]80]01]




Goal

Input: integer-array + number Recursion
Introduction

Output: if number in the array: index where Multipcaton
Recursion & iteration

Fibonacci




Goal

Input: integer-array + number Recursion
Introduction

Output: if number in the array: index where Multipcaton
Recursion & iteration

Fibonacci




Goal

Input: integer-array + number Recursion
Introduction

Output: if number in the array: index where Multipcaton
Recursion & iteration

Fibonacci




Goal

Input: integer-array + number Recursion
Introduction

Output: if number in the array: index where Multipcaton
Recursion & iteration

Fibonacci




Search

Goal

= |nput: integer-array + number e

. . . Introduction

= Qutput: if number in the array: index where Multipcaton
Recursion & iteration

Fibonacci




We can do better: binary search

Goal

= Input: sorted Integer-array + number Recursion

. . . Introduction
= Output: if number in the array: index where Multipcation
Recursion & iteration

|3 |12[21[23]42]48]50|55|57]60]62|67[75]79]80]01]




We can do better: binary search

Goal

= Input: sorted Integer-array + number Recursion

. . . Introduction
= Output: if number in the array: index where Multipcation
Recursion & iteration

|3 |12[21[23]42]48]50|55|57]60]62|67[75]79]80]01]

A

=7



We can do better: binary search

Goal

= Input: sorted Integer-array + number Recursion

. . . Introduction
= Output: if number in the array: index where Multipcation
Recursion & iteration

|3 |12[21[23]42]48]50|55|57]60]62|67[75]79]80]01]

A

i—3



We can do better: binary search

Goal

= Input: sorted Integer-array + number Recursion

. . . Introduction
= Output: if number in the array: index where Multipcation
Recursion & iteration

|3 |12[21[23]42]48]50|55|57]60]62|67[75]79]80]01]

A

i—5



We can do better: binary search

Goal

Martin Steffen
= Input: sorted Integer-array + number Recursion

= Qutput: if number in the array: index where

To conclude

[3]12]21]23]42]48]50]55]57 60]62]67]75]79]80]01]
AL

i—4



Recursive approach

Martin Steffen

Divide & conquer: search for elem Recursion
Introduction
. R Multiplication
= look up in the middle of the array Recursion & eration
Fibonacci
= if equal to elem = done g

To conclude

if smaller than elem = search rekursively in the right
half

= if larger than elem = search rekursively in the left half



In Java

search ( elem, [] a, low, high) {

System.out. println (low);
System.out. println (high);
if (low = high) {

if (elem = aflow]) {
return low;

} else {
return —1;

}
} else { // low # high
m = (low + high) / 2;
if (elem < a[m]) {
return search(elem, a, low, m—1);

} else {

return search(elem, a, m+1, high);

| 3|12[21[23]42]48]50|55|57]60]62|67[75]79]80]01]

T f T

low m high




In Java

search ( elem, [] a, low, high) {

System.out. println (low);
System.out. println (high);
if (low = high) {

if (elem = aflow]) {
return low;

} else {
return —1;

}
} else { // low # high
m = (low + high) / 2;
if (elem < a[m]) {
return search(elem, a, low, m—1);

} else {

return search(elem, a, m+1, high);

| 3|12[21[23]42]48]50|55|57]60]62|67[75]79]80]01]

T 7 T

low m high




In Java

search ( elem, [] a, low, high) {
System.out. println (low);
System.out. println (high);
if (low = high) {

if (elem = aflow]) {
return low;

} else {
return —1;

}
} else { // low # high
m = (low + high) / 2;
if (elem < a[m]) {
return search(elem, a, low, m—1);

} else {

return search(elem, a, m+1, high);

| 3|12[21]23]42]48|50|55{57|60]62|67[75]79]80]01]

T 71

low m high




In Java

search ( elem, [] a, low, high) {
System.out. println (low);
System.out. println (high);
if (low = high) {

if (elem = aflow]) {
return low;

} else {
return —1;

}
} else { // low # high
m = (low + high) / 2;
if (elem < a[m]) {
return search(elem, a, low, m—1);

} else {

return search(elem, a, m+1, high);

[3]12]21]23]42] 48]50]55]57[60]62]67[75] 7980 o1]

TH1

low m high




“Correctness”

Argument

1. The “divide-and-conquer” idea seems plausibly sound
2. Termination

= each recursive call renders the problem smaller
(induktion case)

= there is a smallest problem (base case)

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude



“Correctness”

Argument

1. The “divide-and-conquer” idea seems plausibly sound

Martin Steffen
2. Termination !
Recursion
= each recursive call renders the problem smaller Introduction
. . Multiplication
(IndUktlon Case) Recul:ion&i[eratinn
= there is a smallest problem (base case) R

Binary search

= Alas: it only looks like that ...

To conclude

- mode: compilation; default-directory: "~/javaexamples/" -*-
Compilation started at Wed Oct 11 15:58:48

java Binsearch
Exception in thread "main" java.lang.StackOverflowError
at Binsearch.search(Binsearch.java:12)
at Binsearch.search(Binsearch.java:12)
at Binsearch.search(Binsearch.java:12)
at Binsearch.search(Binsearch.java:12)
at Binsearch.search(Binsearch.java:12)
-:%* *compilation* Top L1 [(Compilation:exit [1] Abbrev)]




On second thought ...

search ( elem , [1 a, low , high) {
if (low > high) return —1; // empty
m = (low + high) / 2;
if (elem = a[m]) return m;
if (elem < a[m]) {
return search(elem, a, low, m—1);

} else {

return search(elem, a, m+1, high);
}

| 3 [12]21]23]42]48]50{55]57[60(62]67[75]| 7989 01]

T f T

m high

low



On second thought ...

search ( elem , [1 a, low , high) {
if (low > high) return —1; // empty
m = (low + high) / 2;
if (elem = a[m]) return m;
if (elem < a[m]) {
return search(elem, a, low, m—1);

} else {

return search(elem, a, m+1, high);
}

| 3 [12]21]23]42]48]50{55]57[60(62]67[75]| 7989 01]

T 7 T

low m high




On second thought ...

search ( elem , [1 a, low , high) {
if (low > high) return —1; // empty
m = (low + high) / 2;
if (elem = a[m]) return m;
if (elem < a[m]) {
return search(elem, a, low, m—1);

} else {

return search(elem, a, m+1, high);
}

| 3 [12]21]23[42]48|50[55]57|60|62]67[75]79]80]01]

T 7 1

low m high




On second thought ...

search ( elem, [1 a, low , high) {
if (low > high) return —1; // empty
m = (low + high) / 2;
if (elem = a[m]) return m;
if (elem < a[m]) {
return search(elem, a, low, m—1);

} else {

return search(elem, a, m+1, high);
}

[3[12]21]23]42] 48]50]55]57[60]62]67] 75[ 798001 ]

771

low m hlgh




The bug that “fixed itself”

while (days > 365) {
if (IsLeapYear(year)) {
if (days > 366) {
days —= 366;
year += 1;

}
} else {
days —= 365;
year += 1;
}
}

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude



Perhaps beginner’s glitches only ...?

Martin Steffen

Proving that Android’s, Java's and
Python's sorting algorithm is broken (and Recursion

Introduction

showing how to fix it) Malipcation

Recursion & iteration

O February 24,2015 @ Envisage  Written by Stijn de Gouw. & $s

Fibonacci

Binary search
Tim Peters developed the Timsort hybrid sorting algorithm in 2002. It is a clever combina- To conclude
tion of ideas from merge sort and insertion sort, and designed to perform well on real

world data. TimSort was first developed for Python, but later ported to Java (where it ap-

pears as java.util.Collections.sort and java.util.Arrays.sort) by Joshua Bloch (the designer of

Java Collections who also pointed out that most binary search algorithms were broken).

TimSort is today used as the default sorting algorithm for Android SDK, Sun’s JDK and

OpenJDK. Given the popularity of these platforms this means that the number of comput-

ers, cloud services and mobile phones that use TimSort for sorting is well into the billions.



And as consequence?

= hands off recursion?

= base cases (and special cases) are particular error prone
(“one-off” errors)

= working in most cases # correct

“Program testing can be
used to show the presence
of bugs, but never to show
their absence”

Dijkstra 1970, p. 7

= ultimately: careful reasoning needed (“correctness
proof”) angesagt.

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude

0-41



Further issues

= in-direct recursion (“call-backs")
= induction & recursion

= inductive/rekursive data structures and corresponding
algorithms (e.g. trees)

= complexity

Martin Steffen

Recursion
Introduction
Multiplication
Recursion & iteration
Fibonacci

Binary search

To conclude

0-42



Kudos

Martin Steffen

The slides where done with

Recursion
Introduction
= gnu emacs org-mode (“gnu’s not Unix") et & rsin
= IATEX, und
= TikZ (“TikZ ist kein Zeichenprogram" )

The “design” owes inspiration the elaborate style-files of the
Uni Libeck (M. Leucker, V. Stolz).


http://orgmode.org/
https://www.latex-project.org//
http://www.texample.net/tikz/examples/

Sources

Martin Steffen
Most of the material is “common knowledge” and | did not Recursion
base the lecture on any specific book or source. Similar patipicaten
examples can be found in basically all introductions to Java, et
Binary search
or other programming languages, for that matter. Pictures, To conclud

if not self-made graphics, are likewise from “creative

commons”. Particular internet finds might be clickable via
embedded links.

0-44



	Recursion
	Introduction
	Multiplication
	Recursion & iteration
	Fibonacci
	Binary search
	To conclude


