
Weak memory models

November 23, 2017

Overview

1 Introduction
Hardware architectures
Compiler optimizations
Sequential consistency

2 Weak memory models
TSO memory model (Sparc, x86-TSO)
The ARM and POWER memory model
The Java memory model
Go memory model

3 Summary and conclusion

2 / 85

Introduction

Concurrency

Concurrency
“Concurrency is a property of systems in which several
computations are executing simultaneously, and potentially
interacting with each other” (Wikipedia)

performance increase, better latency
many forms of concurrency/parallelism: multi-core,
multi-threading, multi-processors, distributed systems ...

4 / 85

Shared memory: a simplistic picture

shared memory

thread0 thread1

one way of “interacting” (i.e.,
communicating and
synchronizing): via shared
memory
a number of threads/processors:
access common memory/address
space
interacting by sequence of
reads/writes (or loads/stores,
etc.)

However: considerably harder to get correct and efficient programs

5 / 85

Dekker’s solution to mutex

As known, shared memory programming requires
synchronization: e.g. mutual exclusion

Dekker
simple and first known mutex algo
here simplified

initially: flag0 = flag1 = 0
f l a g 0 := 1 ;
i f (f l a g 1 = 0)
then CRITICAL

f l a g 1 := 1 ;
i f (f l a g 0 = 0)
then CRITICAL

6 / 85

Dekker’s solution to mutex

As known, shared memory programming requires
synchronization: e.g. mutual exclusion

Dekker
simple and first known mutex algo
here simplified

initially: flag0 = flag1 = 0
f l a g 0 := 1 ;
i f (f l a g 1 = 0)
then CRITICAL

f l a g 1 := 1 ;
i f (f l a g 0 = 0)
then CRITICAL

Known textbook “fact”:
Dekker is a software-based solution to the mutex problem (or is it?)

7 / 85

A three process example

Initially: x,y = 0, r: register, local var
thread0 thread1 thread2
x := 1 while (x = 0) do skip; while (y = 1) do skip

y:=1 r:=x

“Expected” result
Upon termination, register r of the third thread will contain r = 1.

But:
Who ever said that there is only one identical copy of x that
thread1 and thread2 operate on?

8 / 85

A three process example

Initially: x,y = 0, r: register, local var
thread0 thread1 thread2
x := 1 while (x = 0) do skip; while (y = 1) do skip

y:=1 r:=x

“Expected” result
Upon termination, register r of the third thread will contain r = 1.

But:
Who ever said that there is only one identical copy of x that
thread1 and thread2 operate on?

9 / 85

Shared memory concurrency in the real world

shared memory

thread0 thread1

the memory architecture does not reflect
reality
out-of-order executions: 2 interdependent
reasons:
1. modern HW: complex memory

hierarchies, caches, buffers . . .
2. compiler optimizations

10 / 85

SMP, multi-core architecture, and NUMA

shared memory

L2

L1

CPU0

L2

L1

CPU1

L2

L1

CPU2

L2

L1

CPU3

shared memory

L2

L1

CPU0

L1

CPU1

L2

L1

CPU2

L1

CPU3

CPU0 CPU1

CPU2CPU3

Mem. Mem.

Mem.Mem.

11 / 85

“Modern” HW architectures and performance

pub l i c c l a s s TASLock implements Lock {
. . .
pub l i c vo id l o c k () {

whi le (s t a t e . getAndSet (t rue)) { } // s p i n
}
. . .

}

pub l i c c l a s s TTASLock implements Lock {
. . .
pub l i c vo id l o c k () {

whi le (t rue) {
whi le (s t a t e . ge t ()) {} ; // s p i n
i f (! s t a t e . getAndSet (t rue))

re tu rn ;
}
. . .

}
}

12 / 85

Observed behavior

time

number of threads

TTASLock

TASLock

ideal lock

(cf. [Anderson, 1990] [Herlihy and Shavit, 2008, p.470])

13 / 85

Compiler optimizations

many optimizations with different forms:
elimination of reads, writes, sometimes synchronization

statements
re-ordering of independent, non-conflicting memory accesses

introductions of reads
examples

constant propagation
common sub-expression elimination
dead-code elimination
loop-optimizations
call-inlining
. . . and many more

14 / 85

Code reodering

Initially: x = y = 0
thread0 thread1
x := 1 y:= 1;
r1 := y r2 := x;
print r1 print r2

possible print-outs
{(0, 1), (1, 0), (1, 1)}

=⇒ Initially: x = y = 0
thread0 thread1
r1 := y y:= 1;
x := 1 r2 := x;
print r1 print r2

possible print-outs
{(0, 0), (0, 1), (1, 0), (1, 1)}

15 / 85

Common subexpression elimination

Initially: x = 0
thread0 thread1
x := 1 r1 := x;

r2 := x;
if r1 = r2
then print 1
else print 2

=⇒
Initially: x = 0

thread0 thread1
x := 1 r1 := x;

r2 := r1;
if r1 = r2
then print 1
else print 2

Is the transformation from the left to the right correct?

16 / 85

Common subexpression elimination

Initially: x = 0
thread0 thread1
x := 1 r1 := x;

r2 := x;
if r1 = r2
then print 1
else print 2

=⇒
Initially: x = 0

thread0 thread1
x := 1 r1 := x;

r2 := r1;
if r1 = r2
then print 1
else print 2

Is the transformation from the left to the right correct?

thread0 W [x] := 1;
thread1 R[x] = 1; R[x] = 1; print(1)
thread0 W [x] := 1;
thread1 R[x] = 0; R[x] = 1; print(2)
thread0 W [x] := 1;
thread1 R[x] = 0; R[x] = 0; print(1)
thread0 W [x] := 1;
thread1 R[x] = 0; R[x] = 0; print(1);

2nd prog: only 1 read from memory ⇒ only print(1) possible

transformation left-to-right ok
transformation right-to-left: new observations, thus not ok

17 / 85

Compiler optimizations

Golden rule of compiler optimization
Change the code (for instance re-order statements, re-group parts
of the code, etc) in a way that leads to

better performance (at least on average), but is otherwise
unobservable to the programmer (i.e., does not introduce new
observable result(s))

In the presence of concurrency
more forms of “interaction”

⇒ more effects become observable
standard optimizations become observable (i.e., “break” the
code, assuming a naive, standard shared memory model)

18 / 85

Compiler optimizations

Golden rule of compiler optimization
Change the code (for instance re-order statements, re-group parts
of the code, etc) in a way that leads to

better performance (at least on average), but is otherwise
unobservable to the programmer (i.e., does not introduce new
observable result(s)) when executed single-threadedly, i.e.
without concurrency! :-O

In the presence of concurrency
more forms of “interaction”

⇒ more effects become observable
standard optimizations become observable (i.e., “break” the
code, assuming a naive, standard shared memory model)

19 / 85

Is the Golden Rule outdated?

Golden rule as task description for compiler optimizers:
Let’s assume for convenience, that there is no concurrency,
how can I make make the code faster
and if there’s concurrency? too bad, but not my fault . . .

20 / 85

Is the Golden Rule outdated?

Golden rule as task description for compiler optimizers:
Let’s assume for convenience, that there is no concurrency,
how can I make make the code faster
and if there’s concurrency? too bad, but not my fault . . .

unfair characterization
assumes a “naive” interpretation of shared variable concurrency
(interleaving semantics, SMM)

21 / 85

Is the Golden Rule outdated?

Golden rule as task description for compiler optimizers:
Let’s assume for convenience, that there is no concurrency,
how can I make make the code faster
and if there’s concurrency? too bad, but not my fault . . .

What’s needed:
golden rule must(!) still be upheld
but: relax naive expectations on what shared memory is

⇒ weak memory model

DRF
golden rule: also core of “data-race free” programming principle

22 / 85

Compilers vs. programmers

Programmer
wants to understand
the code

⇒ profits from strong
memory models

!
Compiler/HW

want to optimize
code/execution
(re-ordering memory
accesses)

⇒ take advantage of
weak memory models

=⇒
What are valid (semantics-preserving) compiler-optimations?
What is a good memory model as compromise between
programmer’s needs and chances for optimization

23 / 85

Sad facts and consequences

incorrect concurrent code, “unexpected” behavior
Dekker (and other well-know mutex algo’s) is incorrect on
modern architectures1

in the three-processor example: r = 1 not guaranteed

unclear/obstruse/informal hardware specifications, compiler
optimizations may not be transparent
understanding of the memory architecture also crucial for
performance

Need for unambiguous description of the behavior of a chosen
platform/language under shared memory concurrency =⇒ memory
models

1Actually already since at least IBM 370.
24 / 85

Memory (consistency) model

What’s a memory model?
“A formal specification of how the memory system will appear to
the programmer, eliminating the gap between the behavior
expected by the programmer and the actual behavior supported by
a system.” [Adve and Gharachorloo, 1995]

MM specifies:
How threads interact through memory?
Which values a read can return?
When does a value update become visible to other threads?
What assumptions are allowed to make about memory when
writing a program or applying some program optimization?

25 / 85

Sequential consistency

in the previous examples: unspoken assumptions

1. Program order: statements executed in the order
written/issued (Dekker).

2. atomicity: memory update is visible to everyone at the same
time (3-proc-example)

Lamport [Lamport, 1979]: Sequential consistency
"...the results of any execution is the same as if the operations of
all the processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in
the order specified by its program."

“classical” model, (one of the) oldest correctness conditions
simple/simplistic ⇒ (comparatively) easy to understand
straightforward generalization: single ⇒ multi-processor
weak means basically “more relaxed than SC”

26 / 85

Atomicity: no overlap

W[x] := 1

W[x] := 2

W[x] := 3

R[x] = ??
C

B

A

Which values for x consistent with SC?

27 / 85

Atomicity: no overlap

W[x] := 1

W[x] := 2

W[x] := 3

R[x] = 3
C

B

A

Which values for x consistent with SC?

28 / 85

Some order consistent with the observation

W[x] := 1

W[x] := 2

W[x] := 3

R[x] = 2
C

B

A

read of 2: observable under sequential consistency (as is 1,
and 3)
read of 0: contradicts program order for thread C .

29 / 85

Weak memory models

Spectrum of available architectures

(from http://preshing.com/20120930/weak-vs-strong-memory-models)

31 / 85

http://preshing.com/20120930/weak-vs-strong-memory-models

Trivial example

thread0 thread1

x := 1 y := 1
print y print x

Result?
Is the printout 0,0 observable?

32 / 85

Hardware optimization: Write buffers

shared memory

thread0 thread1

33 / 85

Total store order

TSO: SPARC, pretty old already
x86-TSO
see [Owens et al., 2009] [Sewell et al., 2010]

Relaxation
1. architectural: adding store buffers (aka write buffers)
2. axiomatic: relaxing program order ⇒ W-R order dropped

34 / 85

Architectural model: Write-buffers (IBM 370)

shared memory

thread0 thread1

35 / 85

Architectural model: TSO (SPARC)

shared memory

thread0 thread1

36 / 85

Architectural model: x86-TSO

shared memory

thread0 thread1

lock

37 / 85

Directly from Intel’s spec

Intel 64/IA-32 architecture sofware developer’s manual [int, 2013]
(over 3000 pages long!)

single-processor systems:
Reads are not reordered with other reads.
Writes are not reordered with older reads.
Reads may be reordered with older writes to different locations
but not with older writes to the same location.
. . .

for multiple-processor system
Individual processors use the same ordering principles as in a
single-processor system.
Writes by a single processor are observed in the same order by
all processors.
Writes from an individual processor are NOT ordered with
respect to the writes from other processors . . .
Memory ordering obeys causality (memory ordering respects
transitive visibility).
Any two stores are seen in a consistent order by processors
other than those performing the store
Locked instructions have a total order 38 / 85

x86-TSO

FIFO store buffer
read = read the most recent buffered write, if it exists (else
from main memory)
buffered write: can propagate to shared memory at any time
(except when lock is held by other threads).

behavior of LOCK’ed instructions
obtain global lock

flush store buffer at the end

release the lock

note: no reading allowed by other threads if lock is held

39 / 85

SPARC V8 Total Store Ordering (TSO):
a read can complete before an earlier write to a different address,
but a read cannot return the value of a write by another processor
unless all processors have seen the write (it returns the value of
own write before others see it)

Consequences: In a thread: for a write followed by a read (to
different addresses) the order can be swapped

Justification: Swapping of W − R is not observable by the
programmer, it does not lead to new, unexpected
behavior!

40 / 85

Example

thread thread′

flag := 1 flag′ := 1
A := 1 A := 2
reg1 := A reg′1 := A
reg2 := flag′ reg′2 := flag

Result?
In TSOa

(reg1,reg′1) = (1,2) observable (as in SC)
(reg2,reg′2) = (0,0) observable

aDifferent from IBM 370, which also has write buffers, but not the possibility
for a thread to read from its own write buffer

41 / 85

Axiomatic description

consider “temporal” ordering of memory commands
(read/write, load/store etc)
program order <p:

order in which memory commands are issued by the processor
= order in which they appear in the program code

memory order <m: order in which the commands become
effective/visible in main memory

Order (and value) conditions
RR: l1 <p l2 =⇒ l1 <m l2

WW: s1 <p s2 =⇒ s1 <m s2

RW: l1 <p s2 =⇒ l1 <m s2

Latest write wins: val(l1) = val(max<m{s1 <m l1 ∨ s1 <p l1})

42 / 85

ARM and Power architecture

ARM and POWER: similar to each other
ARM: widely used inside smartphones and tablets
(battery-friendly)
POWER architecture = Performance Optimization With
Enhanced RISC., main driver: IBM

Memory model
much weaker than x86-TSO

exposes multiple-copy semantics to the programmer

43 / 85

“Message passing” example in POWER/ARM

thread0 wants to pass a message over “channel” x to thread1,
shared var y used as flag.

Initially: x = y = 0
thread0 thread1

x := 1 while (y=0) { };
y := 1 r := x

Result?
Is the result r = 0 observable?

impossible in (x86-)TSO
it would violate W-W order

44 / 85

Analysis of the example

thread0 thread1

W[x] := 1

W[y] := 1

R[y] = 1

R[x] = 0

rf
rf

How could that happen?
1. thread does stores out of order
2. thread does loads out of order
3. store propagates between threads out of order.

45 / 85

Analysis of the example

thread0 thread1

W[x] := 1

W[y] := 1

R[y] = 1

R[x] = 0

rf
rf

How could that happen?
1. thread does stores out of order
2. thread does loads out of order
3. store propagates between threads out of order.

Power/ARM do all three!

46 / 85

Conceptual memory architecture

memory0 memory1

thread0 thread1

w

w

47 / 85

Power and ARM order constraints

basically, program order is not preserved2 (!) unless.
writes to the same location
address dependency between two loads
dependency between a load and a store,
1. address dependency
2. data dependency
3. control dependency

use of synchronization instructions.

2in other words: “semicolon” etc is meaningless
48 / 85

Repair of the MP example

To avoid reorder: Barriers
heavy-weight: sync instruction (POWER)
light-weight: lwsync

thread0 thread1

W[x] := 1

W[y] := 1

R[y] = 1

R[x] = 0

sync syncrf
rf

49 / 85

Stranger still, perhaps

thread0 thread1

x := 1 print y
y := 1 print x

Result?
Is the printout y = 1, x = 0 observable?

50 / 85

Relationship between different models

(from

http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_506_Spring_2013/10c_ks)

51 / 85

 http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_506_Spring_2013/10c_ks

Java memory model

known, influential example for a memory model for a
programming language.
specifies how Java threads interact through memory
weak memory model
under long development and debate
original model (from 1995):

widely criticized as flawed
disallowing many runtime optimizations
no good guarantees for code safety

more recent proposal: Java Specification Request 133
(JSR-133), part of Java 5
see [Manson et al., 2005]

52 / 85

Correctly synchronized programs and others

1. Correctly synchronized programs: correctly synchronized, i.e.,
data-race free, programs are sequentially consistent
(“Data-race free” model [Adve and Hill, 1990])

2. Incorrectly synchronized programs: A clear and definite
semantics for incorrectly synchronized programs, without
breaking Java’s security/safety guarantees.

tricky balance for programs with data races:
disallowing programs violating Java’s security and safety guarantees
vs. flexibility still for standard compiler optimizations.

53 / 85

Data race free model

Data race free model
data race free programs/executions are sequentially consistent

Data race
A data race is the “simultaneous” access by two threads to the
same shared memory location, with at least one access a write.
a program is race free if no execution reaches a race.

note: the definition seems ambiguous!

54 / 85

Data race free model

Data race free model
data race free programs/executions are sequentially consistent

Data race with a twist
A data race is the “simultaneous” access by two threads to the
same shared memory location, with at least one access a write.
a program is race free if no sequentially consistent execution
reaches a race.

55 / 85

Order relations

synchronizing actions: locking, unlocking, access to volatile
variables

Definition
1. synchronization order <sync : total order on all synchronizing

actions (in an execution)
2. synchronizes-with order: <sw

an unlock action synchronizes-with all <sync -subsequent lock
actions by any thread
similarly for volatile variable accesses

3. happens-before (<hb): transitive closure of program order and
synchronizes-with order

56 / 85

Happens-before memory model

simpler than/approximation of Java’s memory model
distinguising volative from non-volatile reads
happens-before

Happens before consistency
In a given execution:

if R[x] <hb W [X], then the read cannot observe the write
if W [X] <hb R[X] and the read observes the write, then there
does not exists a W ′[X] s.t. W [X] <hb W ′[X] <hb R[X]

Synchronization order consistency (for volatile-s)
<sync consistent with <p.
If W [X] <hb W ′[X] <hb R[X] then the read sees the write
W ′[X]

57 / 85

Incorrectly synchronized code

Initially: x = y = 0

thread0 thread1

r1 := x r2 := y
y := r1 x := r2

obviously: a race
however:

out of thin air
observation r1 = r2 = 42 not wished, but consistent with the
happens-before model!

58 / 85

Happens-before: volatiles

cf. also the “message passing” example

ready volatile
Initially: x = 0, ready = false

thread0 thread1

x := 1 while (!ready) do skip
ready := true r1 := x

ready volatile ⇒ r1 = 1 guaranteed

59 / 85

Problem with the happens-before model

Initially: x = 0, y = 0

thread0 thread1

r1:= x r2:= y
if (r1 6= 0) if (r2 6= 0)

y := 42 x := 42

the program is correctly synchronized!
⇒ observation y = x = 42 disallowed

However: in the happens-before model, this is allowed!

violates the “data-race-free” model

⇒ add causality

60 / 85

Causality: second ingredient for JMM

JMM
Java memory model = happens before + causality

circular causality is unwanted
causality eliminates:

data dependence
control dependence

61 / 85

Causality and control dependency

Initially: a = 0; b = 1
thread0 thread1
r1 := a r3:= b
r2 := a a := r3;
if (r1 = r2)

b := 2;

is r1 = r2 = r3 = 2
possible?

=⇒
Initially: a = 0; b = 1

thread0 thread1
b := 2 r3:= b;
r1 := a a := r3;
r2 := r1
if (true) ;

r1 = r2 = r3 = 2 is
sequentially consistent

Optimization breaks control dependency

62 / 85

Causality and data dependency

Initially: x = y =0
thread0 thread1
r1 := x; r3:= y;
r2 := r1∨1; x := r3;
y := r2;

Is r1 = r2 = r3 = 1
possible?

=⇒ Initially: x = y = 0
thread0 thread1
r2 := 1; r3 := y;
y := 1 x := r3;
r1 := x

using global analysis

∨ = bit-wise or on integers

Optimization breaks data dependence

63 / 85

Summary: Un-/Desired outcomes for causality

Disallowed behavior

Initially: x = y = 0

thread0 thread1
r1 := x r2 := y
y := r1 x := r2

r1 = r2 = 42

Initially: x = 0, y = 0

thread0 thread1
r1:= x r2:= y
if (r1 6= 0) if (r2 6= 0)

y := 42 x := 42

r1 = r2 = 42

Allowed behavior

Initially: a = 0; b = 1
thread0 thread1
r1 := a r3:= b
r2 := a a := r3;
if (r1 = r2)

b := 2;

is r1 = r2 = r3 = 2 possible?

Initially: x = y =0
thread0 thread1
r1 := x; r3:= y;
r2 := r1∨1; x := r3;
y := r2;

Is r1 = r2 = r3 = 1 possible?

64 / 85

Causality and the JMM

key of causality: well-behaved executions (i.e. consistent with
SC execution)
non-trivial, subtle definition
writes can be done early for well-behaved executions

Well-behaved
a not yet commited read must return the value of a write which is
<hb.

65 / 85

Iterative algorithm for well-behaved executions

commit action

if action is well-behaved with actions in CAL
∧

if <hb and <sync orders among committed actions remain the same
∧

if values returned by committed reads remain the same

analyse (read or write) action

committed action list (CAL) = ∅

yesno

next action

66 / 85

JMM impact

considerations for implementors
control dependence: should not reorder a write above a
non-terminating loop
weak memory model: semantics allow re-ordering,
other code transformations

synchronization on thread-local objects can be ignored
volatile fields of thread local obects: can be treated as normal
fields
redundant synchronization can be ignored.

Consideration for programmers
DRF-model: make sure that the program is correctly
synchronized ⇒ don’t worry about re-orderings
Java-spec: no guarantees whatsoever concerning pre-emptive
scheduling or fairness

67 / 85

Go language and weak memory

Go: supports shared var (but frowned upon)
favors message passing (channel communication)
“standard” modern-flavored WMM (like Java, C++11)
based on happens-before
specified in https://golang.org/ref/mem (in English)

Advice for average programmersa [Go memory model, 2014]
aBut of course participants of this course well-trained enough to make sense

of the document.

“If you must read the rest of this document to understand
the behavior of your program, you are being too clever.

Don’t be clever”

68 / 85

https://golang.org/ref/mem

Go MM: Programs-order implies happens-before

program order [Go memory model, 2014]
“Within a single goroutine, the happens-before order is
the order expressed by the program.”

goroutine: Go-speak for thread/process/asynchronously
executing function body/unit-of-concurrency

69 / 85

Allowed and guaranteed observability

May observation [Go memory model, 2014]
A read r of a variable v is allowed to observe a write w to v if both
of the following hold:
1. r does not happen before w .
2. There is no other write w ′ to v that happens after w but

before r .

Must observation [Go memory model, 2014]
r is guaranteed to observe w if both of the following hold:
1. w happens before r .
2. Any other write to the shared variable v either happens before

w or after r .

70 / 85

Synchronization?

so far: only statements without sync-power (reads, writes)
without synchronization (and in WMM): concurrent
programming impossible (beyond independent concurrency)
a few synchronization statements in Go

initialization, package loads
Go goroutine start
via sync-package: locks and mutexes, once-operation
channels

71 / 85

Channels as communication and synchronization construct

central in Go
message passing: fundamental for concurrency
cf. producer/consumer problem, bounded-buffer data
structure, also Oblig-1

Role of channels:
Communication: one can transfer data from sender to receiver, but

not only that:

Synchronization:
receiver has to wait for value
sender has to wait, until place free in “buffer”

and: channels introduce “barriers”

technically: happens-before relation for channel communication

72 / 85

Channels as communication and synchronization construct

central in Go
message passing: fundamental for concurrency
cf. producer/consumer problem, bounded-buffer data
structure, also Oblig-1

Role of channels:
Communication: one can transfer data from sender to receiver, but

not only that:
Synchronization:

receiver has to wait for value
sender has to wait, until place free in “buffer”

and: channels introduce “barriers”

technically: happens-before relation for channel communication

73 / 85

Channels as communication and synchronization construct

central in Go
message passing: fundamental for concurrency
cf. producer/consumer problem, bounded-buffer data
structure, also Oblig-1

Role of channels:
Communication: one can transfer data from sender to receiver, but

not only that:
Synchronization:

receiver has to wait for value
sender has to wait, until place free in “buffer”
and: channels introduce “barriers”

technically: happens-before relation for channel communication

74 / 85

Channels as communication and synchronization construct

central in Go
message passing: fundamental for concurrency
cf. producer/consumer problem, bounded-buffer data
structure, also Oblig-1

Role of channels:
Communication: one can transfer data from sender to receiver, but

not only that:
Synchronization:

receiver has to wait for value
sender has to wait, until place free in “buffer”
and: channels introduce “barriers”

technically: happens-before relation for channel communication

75 / 85

Happens-before for send and receive

x := 1 | y := 2
c ! () | c ? ()
p r i n t y | p r i n t x

which read is guaranteed / may happen?

76 / 85

Message passing and happens-before

Send before receive [Go memory model, 2014]
“A send on a channel happens before the corresponding receive
from that channel completes.”

Receives before send [Go memory model, 2014]
“The kth receive on a channel with capacity C happens before the
k + C th send from that channel completes.”

Receives before send, unbuffered[Go memory model, 2014]
A receive from an unbuffered channel happens before the send on
that

77 / 85

Message passing and happens-before

Send before receive [Go memory model, 2014]
“A send on a channel happens before the corresponding receive
from that channel completes.”

Receives before send [Go memory model, 2014]
“The kth receive on a channel with capacity C happens before the
k + C th send from that channel completes.”

Receives before send, unbuffered[Go memory model, 2014]
A receive from an unbuffered channel happens before the send on
that

78 / 85

Happens-before for send and receive

x := 1 | y :=2
c ! () | c ? ()
p r i n t (y) | p r i n t x

sender receiver

hb
hb

79 / 85

Go memory model

catch-fire / out-of-thin-air (6= Java)
standard: DRF programs are SC
Concrete implementations:

more specific
platform dependent
difficult to “test”

[msteffen@rijkaard wmm] go run reorder.go
1 reorders detected after 329 interations
2 reorders detected after 694 interations
3 reorders detected after 911 interations
4 reorders detected after 9333 interations
5 reorders detected after 9788 interations
6 reorders detected after 9951 interations
...

80 / 85

Summary and conclusion

Memory/consistency models

there are memory models for HW and SW (programming
languages)
often given informally/prose or by some “illustrative” examples
(e.g., by the vendor)
it’s basically the semantics of concurrent execution with shared
memory.
interface between “software” and underlying memory hardware
modern complex hardware ⇒ complex(!) memory models
defines which compiler optimizations are allowed
crucial for correctness and performance of concurrent programs

82 / 85

Conclusion

Take-home lesson
it’s impossible(!!) to produce

correct and
high-performance

concurrent code without clear knowledge of the chosen
platform’s/language’s MM

that holds: not only for system programmers, OS-developers,
compiler builders . . . but also for “garden-variety” SW
developers
reality (since long) much more complex than “naive” SC model

Take home lesson for the impatient
Avoid data races at (almost) all costs (by using synchronization)!

83 / 85

References I

[int, 2013] (2013).
Intel 64 and IA-32 Architectures Software Developer s Manual. Combined Volumes:1, 2A, 2B, 2C,
3A, 3B and 3C.
Intel.

[Adve and Gharachorloo, 1995] Adve, S. V. and Gharachorloo, K. (1995).
Shared memory consistency models: A tutorial.
Research Report 95/7, Digital WRL.

[Adve and Hill, 1990] Adve, S. V. and Hill, M. D. (1990).
Weak ordering — a new definition.
SIGARCH Computer Architecture News, 18(3a).

[Anderson, 1990] Anderson, T. E. (1990).
The performance of spin lock alternatives for shared-memory multiprocessors.
IEEE Transactions on Parallel and Distributed System, 1(1):6–16.

[Andrews, 2000] Andrews, G. R. (2000).
Foundations of Multithreaded, Parallel, and Distributed Programming.
Addison-Wesley.

[Go memory model, 2014] Go memory model (2014).
The Go memory model.
https://golang.org/ref/mem.
Version of May 31, 2014, covering Go version 1.9.1.

[Herlihy and Shavit, 2008] Herlihy, M. and Shavit, N. (2008).
The Art of Multiprocessor Programming.
Morgan Kaufmann.

84 / 85

https://golang.org/ref/mem

References II

[Lamport, 1979] Lamport, L. (1979).
How to make a multiprocessor computer that correctly executes multiprocess programs.
IEEE Transactions on Computers, C-28(9):690–691.

[Manson et al., 2005] Manson, J., Pugh, W., and Adve, S. V. (2005).
The Java memory memory.
In Proceedings of POPL ’05. ACM.

[Owens et al., 2009] Owens, S., Sarkar, S., and Sewell, P. (2009).
A better x86 memory model: x86-TSO.
In Berghofer, S., Nipkow, T., Urban, C., and Wenzel, M., editors, Theorem Proving in Higher-Order
Logic: 10th International Conference, TPHOLs’09, volume 5674 of Lecture Notes in Computer
Science.

[Sewell et al., 2010] Sewell, P., Sarkar, S., Nardelli, F., and O.Myreen, M. (2010).
x86-TSO: A rigorous and usable programmer’s model for x86 multiprocessors.
Communications of the ACM, 53(7).

85 / 85

	Introduction
	Hardware architectures
	Compiler optimizations
	Sequential consistency

	Weak memory models
	TSO memory model (Sparc, x86-TSO)
	The ARM and POWER memory model
	The Java memory model
	Go memory model

	Summary and conclusion

