
An Analysis Tool for Models of Virtualized Systems

E. B. Johnsen M. Steffen J. B. Stumpf L. Tveito

Abstract
This paper gives an example-driven introduction to modelling and analyzing
virtualized systems in, e.g., cloud computing, using virtually timed ambients,
a process algebra developed to study timing aspects of resource management
for (nested) virtual machines. The calculus supports nested virtualization
and virtual machines compete with other processes for the resources of their
host environment. Resource provisioning in virtually timed ambients extends
the capabilities of mobile ambients to model the dynamic creation, migration,
and destruction of virtual machines. Quality of service properties for virtually
timed ambients can be formally expressed using modal contracts describing
aspects of resource provisioning and verified using a model checker for
virtually timed ambients, implemented in the rewriting system Maude.

1 Introduction
Cloud computing is a paradigm of distributed computing which allows users to store
data and execute processes in a shared pool of data centers. A key factor in the success
of cloud computing is virtualization [7, 11]. Virtualization technology represents the
resources of an execution environment as a software layer, a so-called virtual machine. It
allows to share existing resources, improves security by providing isolation of different
users sharing the same resource, and enables dynamic assignment of resources according
to consumer demand. The sharing of resources creates business drivers which make
cloud computing an economically attractive model for deploying software [4]. Nested
virtualization [8] is crucial to support cloud systems, as it enables virtual machines
to migrate between different cloud providers [22]. It is also necessary to host virtual
machines with operating systems which themselves support virtualization [3], such as
Microsoft Windows 7 and Linux KVM.

Virtually timed ambients [13] is a calculus of explicit resource provisioning, based
on the well-known calculus of mobile ambients [6]. It can be used to model nested
virtualization in cloud systems, as virtually timed ambients formalize explicit resource
management for virtual machines. The time model used to realize the resource
provisioning for virtually timed ambients is called virtual time. Virtual time is provided
to a virtually timed ambient by its parental ambient, similar to the time slices that
an operating system provisions to its processes. When considering levels of nested
virtualization, virtual time becomes a local notion of time which depends on a virtually
timed ambient’s position in the nesting structure. Virtually timed ambients are mobile,
reflecting that virtual machines may migrate between host virtual machines. Observe that
such migration affects the execution speed of processes in the migrating virtually timed

This paper was presented at the NIK-2018 conference; see http://www.nik.no/.

ambient, as well as in the virtually timed ambient which is left, and in the virtually timed
ambient which is entered.

In cloud computing, a service-level agreement is a contract between a cloud provider
and a client, specifying properties the system has to satisfy with respect to quality of
service, such as mean time between failures, responsibility for various data rates or
resource consumption. As virtually timed ambients can model nested virtualization in
cloud systems and modal logic can be used to define properties of such systems, modal
contracts for virtually timed ambients [14] formalize quality of service statements about
cloud systems modeled in virtually timed ambients. A simulator and a model checker
for virtually timed ambient have been implemented in the Maude system, as a tool to
prove that a system satisfies a given proposition [14]. Maude was chosen as execution
platform as it provides an intuitive way to model distributed systems at a high level of
abstraction [18].

This paper shows by examples how models of virtualized systems can be constructed
in virtually timed ambients and analyzed with the model checker. Several concrete
examples are analyzed to verify quality of service statements. Together, the basic building
blocks of these examples constitute a library for developing models of virtualized systems.

Contributions. The main contributions of this paper are the following:

• exploration of the virtually timed ambient calculus and the corresponding modal
logic as a model for virtualization in cloud computing;

• a library of basic building blocks for modeling cloud systems in virtually timed
ambients;

• examples and analysis of cloud models, using the model checker tool for virtually
timed ambients.

Paper overview. We introduce virtually timed ambients, their implementation in Maude
and the corresponding modal logic in Section 2. Section 3 describes a library of building
blocks for cloud models in virtually timed ambients. Section 4 presents different examples
of cloud architecture and analyses them using modal logic. We discuss related work and
conclude in Sections 5 and 6.

2 Virtually Timed Ambients
Virtually timed ambients extend mobile ambients with notions of virtual time and resource
consumption, in order to model aspects of virtualization in cloud computing. We first
recapitulate the main points of the calculus of mobile ambients before discussing the
enhancements made by the calculus of virtually timed ambients.

Preliminaries on mobile ambients. The ambient calculus is a process algebra of
locations and domains, originally developed by Cardelli and Gordon [6] for distributed
systems such as the Internet. Mobile ambients are processes with a concept of location,
arranged in a dynamically evolving hierarchy. An ambient represents the location or
domain where a process is running, as illustrated by Fig. 1.

Figure 1: Graphical representation of a mobile ambient containing a process.

Ambients can be nested, such that a surrounding parental ambient contains
subambients, and the nesting structure can change dynamically. This is specified by three
basic capabilities. The input capability in n indicates the willingness of a process to
move its parental ambient into an ambient named n, running in parallel with the parental
ambient (illustrated by Fig. 4); the output capability out n enables an ambient to leave
its surrounding ambient n; and lastly the capability open n allows to open an ambient
named n which is on the same level as the capability. This syntax and the corresponding
semantics are explained in detail in [6].

Figure 2: Graphical representation of the in n capability of mobile ambients.

Virtually timed ambients and their implementation. Mobile ambients are located
processes, arranged in a hierarchy which may change dynamically. Interpreting these
locations as a places of deployment, virtually timed ambients [12, 13] extend mobile
ambients with notions of virtual time and resource consumption.

Timed processes differ from mobile ambients in that each virtually timed ambient
contains, besides possibly further virtually timed subambients, a local scheduler (see
Fig. 3). In a virtually timed ambient, the local scheduler is responsible for triggering timed
behavior and local resource consumption. Each time slice emitted by a local scheduler
triggers the scheduler of a subambient or is consumed by a process as a resource in a
round-robin way. This corresponds to a simple form of fair, preemptive scheduling, which
makes the system’s behavior sensitive to co-located virtually timed ambients and resource
consuming processes. Technically, a local scheduler has a speed, relating externally
received to internally emitted time slices; it contains counters to register the numbers
of received and emitted time slices; and it contains sets of names of local ambients and
processes which have been served a time slice by the scheduler in the current cycle, and
those who have not, respectively.

Figure 3: Graphical representation of a virtually timed ambient with a scheduler.

Timed capabilities extend the capabilities of mobile ambients by including a resource
consumption capability, denoted c, and by giving the opening, exiting, and entering
capabilities of mobile ambients a timed interpretation. These capabilities restructure the
hierarchy of an ambient system, and the local schedulers need to be adjusted for every
movement.

Figure 4: Graphical representation of the in m capability, with updated schedulers of the
old and new parental ambient after the movement.

Without adjusting the schedulers, the moving subambient would not receive time
slices, which are represented with the notation tick, from the scheduler in its new
surrounding ambient. For the in n and out n capabilities, the schedulers of the old and
new surrounding ambient of the moving ambient are modified (as illustrated by Fig. 4).
For the open n capability, the scheduler of the parent ambient itself is modified and the
scheduler of the opened ambient is deleted. For the new consumption capability c, the
time consuming process moves into the scheduler, where it waits to receive a time slice
as resource before it can continue (see Fig. 5).

Figure 5: Graphical representation of the consume capability moving into the scheduler
and consuming a resource after the ambient receives a tick from the parental ambient.

The calculus of virtually timed ambients has been implemented [14] in the Maude
system for rewriting logic. Rewriting logic embeds membership equational logic, such
that a specification or program can contain both equations and rewrite rules. When
executing a Maude specification, rewrite steps are applied to normal forms in the
equational logic. Both equations and rewrite rules may be conditional, meaning that
specified conditions must hold for the rule or equation to apply. The Maude specification
correlates directly to the formal definition of the calculus [13], hence we make use of
the implementation to explain the calculus. The syntax of virtually timed ambients is
represented by Maude terms, constructed from operators:1

op zero : -> VTA [ctor] .

op _|_ : VTA VTA -> VTA [id: zero assoc comm] .

op _._ : Capability VTA -> VTA .

op _[_|_] : Name Scheduler VTA -> VTA .

Here all processes are defined with the data type VTA. The operator zero represents
the inactive process, and parallel composition has the algebraic properties of being
associative, commutative and having zero as identity element. Concatenation is
represented with a dot, and virtually timed ambients are represented with a name followed
by brackets, containing a scheduler and a process. Schedulers have a speed and contain
the counters and sets used to control the distribution of time slices as outlined previously:

op sched_{_,_,_,_,_} : Rat Nat Nat Nat Servables Servables -> Scheduler.

1The full source code for the calculus and the examples described in this paper are available at:
https://github.com/larstvei/Check-VTA/tree/cloud-library

https://github.com/larstvei/Check-VTA/tree/cloud-library

The execution of timed capabilities is represented as rewrite rules, which are
interpreted such that any term or subterm which matches the left hand side of the rewrite
symbol => may be rewritten into the corresponding right hand side. Preconditions can be
expressed using conditional rewrite rules, where a condition is stated after if. The in m
capability, for instance, may be expressed in Maude as follows:

crl [in] :

K[sched SpdK {InK, OutK, RestK, UnSrvK, SrvK}

| N[sched SpdN {InN, OutN, RestN, SrvN, UnSrvN} | in(M) . P | Q]

| M[sched SpdM {InM, OutM, RestM, SrvM, UnSrvM} | R] | U]

=>

K[sched SpdK {InK, OutK, RestK, Unserved, Served}

| M[sched SpdM {InM, OutM, RestM, SrvM, NewParent} | R

| N[sched SpdN {InN, OutN, RestN, SrvN, merge(UnSrvN, barb(P))}

| P | Q]] | U]

if Unserved := makeUnserved(N, UnSrvK, SrvK) /\

Served := makeServed(N, UnSrvK, SrvK) /\

NewParent := makeParent(N, UnSrvK, SrvK, UnSrvM) .

Here the operations makeUnserved, makeServed and makeParent update the schedulers
of the new and old parental ambients according to how the ambient was registered in the
scheduler of the old parental ambient.

The execution of rewrite rules is represented in the syntax of the Maude tool by
providing the rewriting command rew with a virtually timed ambient. The rew command
applies the defined rewrite rules to the given ambient until termination, at which point the
tool returns a result.

Example 1 (Virtually timed subambients and resource consumption) A cloud server
inside a system can be modelled by a virtually timed ambient ’cloud, which here contains
two tick and emits one time slice for every time slice it receives. It is entered by a
virtually timed subambient ’vm which needs to receive two time slices in order to enable
resource consumption. This is simulated in the Maude tool as follows:

rew ’system[sched 0 {0, 0, 0, none, ’vm}

| ’cloud[sched 1 {0, 0, 0, none, none}

| tick | tick]

| ’vm[sched 1/2 {0, 0, 0, none, none}

| in(’cloud) . c . zero]] .

result VTA: ’system[sched 0{0,0,0,none,none}

| ’cloud[sched 1{2,0,0,’vm,none}

| ’vm[sched 1/2{2,0,0,none,none} | zero]]]

We can observe the movement of the virtual machine into the cloud, the consumption of
the time slices as resources and the changing of the schedulers, which count the incoming
time slices and gain (or loose, respectively) a subambient.

Modal logic for virtually timed ambients. Modal logic can be used to describe the
behavior of systems. To capture resource provisioning in virtually timed ambients, we
combine modal logic for mobile ambients [5] with notions based on metric temporal

logic [15, 19, 20] to define a modal logic for virtually timed ambients [14]. The validity
of formulas is defined with regards to the calculus of virtually timed ambients by a
satisfaction relation. In the Maude implementation, terms representing logical formulas
are built from operator declarations, and the satisfaction relation becomes

op _|=_ : VTA Formula -> Bool .

The semantics of the satisfaction relations is expressed as a set of equations and rewrite
rules. For example, a process P satisfies the negation of a formula F if and only if P does
not satisfy F. This case is implemented by the following equation:

eq [Negation] : P |= ~ F = not (P |= F) .

The consumption formula Consume is satisfied by any process P which contains a
consumption capability. In the implementation, an operation consumptions, which is
reduced by equations, determines if a process contains consume capabilities:

eq [Consumption] : P |= Consume = consumptions(P) .

The sometime modality <> A @ N F is satisfied by a process P if and only if P can reduce
to a process satisfying the formula F, and uses less than A resources in the ambient named
N during this reduction. The following conditional rewrite rule captures the semantics of
a sometime formula:

crl [Sometime] : P |= <> A @ N F => true

if contains(P, N) /\

P => Q /\

distance(P, Q, N) ≤ A /\

contains(Q, N) /\

Q |= F => true .

In this rule, the terms distance and contains define the number of used resources
and the existence of the name in the given process, and are reduced by equations.
The condition P => Q expresses that the pattern Q is reachable from a pattern P (after
substitution in the matching) by the rewrite relation => in one or more steps. Maude will
search for a Q such that the condition holds using a breadth-first strategy. This useful
feature of Maude enables a straightforward implementation of the sometime modality.

The remaining formulas of the modal logic for virtually timed ambients are
implemented similarly to the instances given above. The resulting Maude program can
easily be used to check modal properties for virtually timed ambients and is demonstrated
in the following example.

Example 2 (Implementation of modal contracts for virtually timed processes) We con-
sider a cloud server containing a virtual machine ’vm, which is entered by an application
’app, similar to Example 1. We check if the system satisfies a quality of service contract
stating that the application can be executed after the use of two time slices.

rew ’cloud[sched 1 {0, 0, 0, none, ’vm}

| tick | tick

| ’app[sched 0 {0, 0, 0, none, none}

| in(’vm) . c . zero]

| ’vm[sched 1/2 {0, 0, 0, none, none}

| open(’app) . zero]]

|= <> 2 @ ’cloud ~ Consume .

result Bool: true

The model checker confirms that there exists a reduction path where after the use of two
time slices in the cloud ambient, there is no consume capability left. This means that at
most two time slices are needed to execute the application in the virtual machine.

3 A Library for Cloud Models in Virtually Timed Ambients
In order to use virtually timed ambients as a modelling language for cloud computing,
we develop a library containing important elements of cloud architecture, which can be
composed according to a modular principle.

Figure 6: Example configuration of a cloud model.

A cloud model consists of a system containing a cloud and several tasks or data
packages. The cloud typically includes a load balancing or scaling process, depending on
the chosen load balancing strategy, as well as virtual machines. Tasks and data packages
enter the cloud in order to be executed or stored. Here, let sdl represent an empty
scheduler with no speed and let (s K) denote the sucessor of a natural number K.

System. The system is the outermost global level in which all computation takes place.
Every process or resource used during the computation must be installed in this system.

’system[sdl | ...]

Cloud. The cloud ambient models the cloud level, and contains the scaling or load-
balancing process,the virtual machines and the resources. It is entered by tasks and data.

’cloud[sched 1 {0, 0, 0, none, none} | time-slices(5) | ...]

Resources and consumption. Resources are given in the form of time slices tick and
are exhausted by the consume capability.

eq time-slices(0) = zero .

eq time-slices(s K) = tick | time-slices(K) .

eq consumes(0) = ’done[sdl | zero] .

eq consumes(s K) = c . consumes(K) .

Tasks and data. Tasks enter the cloud and request processing resources in order to
execute, while data expends memory capacity while it is stored and can be retrieved again.

eq task(K) =

’task[sdl | in(’cloud) . open(’move) . zero | consumes(K)] .

Round-robin load balancing. In round-robin load balancing, a defined set of virtual
machines receives incoming tasks and data in a round-robin way with the help of a load-
balancer. The virtual machines can be defined with a name and a speed.

eq virtualMachineRR(X, Speed) =

X[sched Speed {0, 0, 0, none, none}

| ! (open(’task) . open(’done) . zero)] .

The cloud ambient needs to contain the following contents for round-robin load
balancing, where round-robin-lb(Ns) describes the load balancing process and
createRRVMs(Ns, Rs) creates the virtual machines:

eq round-robin(Ns, Rs) = round-robin-lb(Ns) | ’round_lock[sdl | zero]

| createRRVMs(Ns, Rs) | ’load_balancer_lock[sdl | zero] .

Competing virtual machines. In this scenario the virtual machines report to the load-
balancing process when they are empty and the load-balancer nondeterministically choses
one of the idle machines to process the next task or data package.

eq virtualMachineI(X, Speed) =

X[sched Speed {0, 0, 0, none, none}

| idle(X)

| ! (open(’task) . open(’done) . idle(X))] .

To deploy competing virtual machines the cloud ambient needs to contain a process
createIVMs(Ns, Rs) to create the virtual machines and a suitable load balancer:

eq idling(Ns, Rs) = createIVMs(Ns, Rs) | load-balancer .

Auto-scaling. Here a scaling process creates a new virtually timed ambient with
a restricted name and predefined speed for each task, similar to lightweight container
systems [16]. After the task has been executed, the virtually timed ambient moves into
the garbage.

eq virtualMachineAS(X, Speed) =

X[sched Speed {0, 0, 0, none, none}

| ’move[sdl | out(X) . in(’task) . in(X) .

’scaling_lock[sdl | out(X) . zero]]

| open(’task) . zero

| open(’done) . in(’garbage) . zero] .

For auto-scaling the cloud ambient needs to contain an ambient for garbage collection,
the scaling process that creates the virtual machines scaling(Speed) and a lock:

eq auto-scaling(Speed) =

garbage | scaling(Speed) | ’scaling_lock[sdl | zero] .

4 Analysis of Cloud Models in Virtually Timed Ambients
We present and analyze three examples inspired by cloud computing, which deploy load
balancing and scaling, as introduced in Section 3, in different ways. In each case we
simulate load on the machines and use a particular data package called observable to
examine the satisfaction of certain quality of service statements by the model.

eq observable(K) =

’task[sdl | open(’move) . zero

| ’observable[sched 1 {0, 0, 0, none, none}

| consumes(K) | open(’done) . zero]] .

The following modal logic formulas represent some essential quality of service statements
in cloud computing scenarios. The first formula expresses that after the computation has
been completed there are K idle virtual machines in the cloud:

eq F1(K) =

<> 0 @ ’system ’system[~ Consume /\ (<> 0 K (’isCloud[True] | True))] .

As a higher number of virtual machines leads to higher energy consumption, this is
necessary information for the calculation of energy costs. This formula does not only
make use of the sometime modality <> A @ N F but also the somewhere modality
<> Speed K F, describing relative change in speed and the number of subambients in
the nested ambient satisfying the formula F. The next formula states that after using K

resources, the execution of all tasks on the cloud will have completed.

eq F2(K) = <> K @ ’cloud (~ Consume) .

This is significant information regarding the required CPU and memory performance as
well as resource allocation. The third formula is about the availability and response time
of the system, and states that K resources are needed to execute the consume capabilities
in the observable data package.

eq F3(K) =

<> K @ ’cloud ’system[’cloud[(+) (’observable[~ Consume] | True)]] .

By checking the satisfaction of these formulas, we can easily make quantitative statements
about different cloud computing scenarios.

The following three examples model typical behavior in cloud systems, including
migration, load balancing, scaling, locking and garbage collection. In order to provide
minimal examples of load balancing we initialise the models with two virtual machines
and add one task and the observable data package to simulate load on the machines. To
focus on the core behavior of the example, we omit the movement of the tasks and data
packages into the cloud and start directly with a configuration where they are already
inside. The examples are given as follows:

eq example(P, Ns) =

’system[sdl | ’cloud[sched 1 {0, 0, 0, none, Ns}

| P | ’isCloud[sdl | zero]

| time-slices(5)

| createTasks(1, 1) | observable(1)]] .

An instance of round-robin load balancing. We initialize the system with a fixed set
of virtual machines, which receive the incoming tasks from the load balancer in order.

rew example(round-robin((’vm0 : ’vm1), (1 1)), (’vm0 : ’vm1)) |= F1(2) .

result Bool: true

rew example(round-robin((’vm0 : ’vm1), (1 1)), (’vm0 : ’vm1)) |= F2(2) .

result Bool: true

rew example(round-robin((’vm0 : ’vm1), (1 1)), (’vm0 : ’vm1)) |= F3(1) .

result Bool: true

By modifying the formulas we can check if the model can terminate with fewer running
virtual machines or if it can run with fewer resources:

rew example(round-robin((’vm0:’vm1),(1 1)),(’vm0:’vm1))|=F1(1)\/F2(1).

result Bool: false

Virtual machines compete for tasks. In this model we initialize the system with a
fixed set of virtual machines competing for incoming tasks by communicating with the
load-balancer, which assigns tasks nondeterministically.

rew example(idling((’vm0 : ’vm1), (1 1)), (’vm0 : ’vm1)) |= F1(2) .

result Bool: true

rew example(idling((’vm0 : ’vm1), (1 1)), (’vm0 : ’vm1)) |= F2(2) .

result Bool: true

rew example(idling((’vm0 : ’vm1), (1 1)), (’vm0 : ’vm1)) |= F3(1) .

result Bool: true

Auto-scaling on the cloud. This model is initialized without pre-defined virtual
machines. Instead, the auto-scaling process creates a new virtual machine for each
incoming task or data package.

rew example(auto-scaling(1), none) |= F1(1) . result Bool: true

rew example(auto-scaling(1), none) |= F2(2) . result Bool: true

rew example(auto-scaling(1), none) |= F3(1) . result Bool: true

In all three cases it holds that two resources are needed to execute the tasks on the
machines, while one resource is needed to respond to the observable data package. This
result is unsurprising as all virtual machines in the given models are initialized with the
same speed. However, in the first two models there are two running virtual machines at
the end of the computation, as the number of virtual machines is fixed in these scenarios,
while in the third model the number of virtual machines has been reduced to one. This
makes the auto-scaling model the most energy efficient of the given models.

5 Related Work
Virtually timed ambients were first defined to study bisimulation for virtual resource
management [12]. They are based on mobile ambients [6], which model location mobility
for processes executing in distributed, hierarchical networks. Gordon proposed a simple
formalism for virtualization loosely based on mobile ambients [9]. Virtually timed
ambients [12, 13] are closer to the syntax of the original mobile ambient calculus, while
at the same time including notions of time and explicit resource provisioning.

Previous research on time in the ambient calculus [1] and in process calculi in
general [2, 10, 17] focuses mostly on time-out behavior, i.e., the stalling of a process
after a certain amount of time, by adding timers and a global clock to the calculus. We

take a complementary viewpoint by considering local schedulers, which allows different
locations to have different speeds and focus on processing power and the question of how
many tasks can be solved in a given amount of time by a system.

Modal logic for mobile ambients was introduced to describe properties of spatial
configuration and mobile computation for a fragment of mobile ambients without
replication and restriction on names [5]. We combine this logic with ideas from metric
temporal logic [15, 19, 20] to specify notions of time and resources [14].

The operational reduction rules for mobile ambients as well as a type system have
been implemented in Maude before [21]. In contrast, our implementation focuses on
capturing the timed reduction rules of virtually timed ambients as well as modal formulas
to enable model checking.

6 Concluding Remarks
Virtualization opens for new and interesting formal computational models. This paper
presents virtually timed ambients in terms of a tool and a library of building blocks for
modelling cloud systems. The tool is implemented in the Maude system for rewriting
logic and can be used to develop and analyse models of virtualization in cloud computing.

The calculus of virtually timed ambients is a formal model of hierarchical locations of
execution. Resource provisioning for virtually timed ambients is based on virtual time, a
local notion of time reminiscent of time slices for virtual machines in the context of nested
virtualization. We provide a modal logic for the calculus and implement a model checker
in the Maude rewriting logic system. By considering modal propositions as quality of
service statements, we can model cloud systems and prove whether they satisfy certain
service-level agreements expressed in modal logic.

To model active resource management, future work will extend the model with
constructs to support resource-aware scaling, as well as optimization strategies for scaling.
We are also working on extending the implementation in this direction, and intend to apply
it to study corresponding examples involving resource management and load balancing.

References
[1] B. Aman and G. Ciobanu. Mobile ambients with timers and types. In Theoretical

Aspects of Computing - ICTAC 2007, 4th International Colloquium, Macau, China,
September 26-28, 2007, Proceedings, pages 50–63, 2007.

[2] J. C. M. Baeten and J. A. Bergstra. Real Time Process Algebra. Technical Report
CS-R 9053, Centrum voor Wiskunde en Informatica (CWI), 1990.

[3] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El, A. Gordon,
A. Liguori, O. Wasserman, and B. Yassour. The Turtles project: Design and
implementation of nested virtualization. In Proceedings 9th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 2010), pages 423–436.
USENIX Association, 2010.

[4] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Computer Systems, 25(6):599–616, 2009.

[5] L. Cardelli and A. D. Gordon. Anytime, anywhere: Modal logics for mobile
ambients. In Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’00, pages 365–377, New York, NY,
USA, 2000. ACM.

[6] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Science,
240(1):177–213, 2000.

[7] T. S. Dillon, C. Wu, and E. Chang. Cloud computing: Issues and challenges.
In 24th IEEE International Conference on Advanced Information Networking and
Applications (AINA 2010), pages 27–33. IEEE Computer Society, 2010.

[8] R. P. Goldberg. Survey of virtual machine research. IEEE Computer, 7(6):34–45,
1974.

[9] A. D. Gordon. V for virtual. Electronic Notes in Theoretical Computer Science,
162:177–181, 2006.

[10] M. Hennessy and T. Regan. A process algebra for timed systems. Information and
Computation, 117(2):221–239, 1995.

[11] R. Jain and S. Paul. Network virtualization and software defined networking for
cloud computing: a survey. IEEE Communications Magazine, 51(11):24–31, 2013.

[12] E. B. Johnsen, M. Steffen, and J. B. Stumpf. A calculus of virtually timed ambients.
In P. James and M. Roggenbach, editors, Postproceedings of the 23rd International
Workshop on Algebraic Development Techniques (WADT 2016), volume 10644 of
Lecture Notes in Computer Science, pages 88–103. Springer, 2017.

[13] E. B. Johnsen, M. Steffen, and J. B. Stumpf. Virtually timed ambients: A calculus of
nested virtualization. Journal of Logical and Algebraic Methods in Programming,
94:109 – 127, 2018.

[14] E. B. Johnsen, M. Steffen, J. B. Stumpf, and L. Tveito. Checking modal contracts
for virtually timed ambients, 2018. Submitted for publication. Available at www.
ifi.uio.no/~johanbst/MLCheckingVTAS.pdf.

[15] R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time
Systems, 2(4):255–299, 1990.

[16] D. Merkel. Docker: Lightweight linux containers for consistent development and
deployment. Linux J., 2014(239), Mar. 2014.

[17] F. Moller and C. Tofts. A temporal calculus of communicating systems. In
J. C. M. Baeten and J. W. Klop, editors, Proceedings 1st International Conference
on Concurrency Theory (CONCUR’90), volume 458 of Lecture Notes in Computer
Science, pages 401–415. Springer, 1990.

[18] P. C. Ölveczky. Designing Reliable Distributed Systems – A Formal Methods
Approach Based on Executable Modeling in Maude. Undergraduate Topics in
Computer Science. Springer, 2018.

[19] J. Ouaknine and J. Worrell. On the decidability and complexity of metric temporal
logic over finite words. Logical Methods in Computer Science, 3, 2007.

[20] J. Ouaknine and J. Worrell. Some recent results in metric temporal logic. In
F. Cassez and C. Jard, editors, Proc. 6th International Conference on Formal
Modeling and Analysis of Timed Systems (FORMATS 2008), volume 5215 of Lecture
Notes in Computer Science, pages 1–13. Springer, 2008.

[21] F. Rosa-Velardo, C. Segura, and A. Verdejo. Typed mobile ambients in Maude.
Electronic Notes in Theoretical Computer Science, 147(1):135 – 161, 2006.
Proceedings of the 6th International Workshop on Rule-Based Programming.

[22] D. Williams, H. Jamjoom, and H. Weatherspoon. The Xen-Blanket: Virtualize once,
run everywhere. In Proceedings 7th European Conference on Computer Systems
(EuroSys’12), pages 113–126. ACM, 2012.

www.ifi.uio.no/~johanbst/MLCheckingVTAS.pdf
www.ifi.uio.no/~johanbst/MLCheckingVTAS.pdf

	Introduction
	Virtually Timed Ambients
	A Library for Cloud Models in Virtually Timed Ambients
	Analysis of Cloud Models in Virtually Timed Ambients
	Related Work
	Concluding Remarks

