
Anything goes unless forbidden
Notes on synchronization and

the operational semantics of a relaxed memory model

Daniel Schnetzer Fava,1 Martin Steffen1 and Volker Stolz1,2

1 Dept. of Informatics, University of Oslo
2 Western Norway University of Applied Sciences

Abstract. A memory model dictates which values may be observed when read-
ing from memory, thereby regulating how concurrent processes communicate
through shared memory.
In this note, we discuss a weak memory model for a calculus inspired by the Go
programming language, focusing on buffered channel communication as the sole
synchronization primitive. In contrast to an axiomatic semantics, we present an
operational interpretation and discuss its rationale and its design.

1 Introduction

A memory model dictates which values may be observed when reading from memory,
thereby affecting how concurrent processes communicate through shared memory. In
this paper we discuss ideas behind an operational formalization of a memory model
that mixes message passing synchronization with shared-variable communication. The
formal model is inspired by the informal specification [14] of the Go programming lan-
guage’s [13, 9] memory model. In the following, we sketch the principles underlying
our design choices. Up to recently, when it comes to memory models, axiomatic seman-
tics have arguably received more focus than operational ones. We chose the operational
approach and believe it leads to more intuitive interpretation of the model’s guarantees.
The semantics takes a perhaps unusual view on synchronization, stressing the following
dichotomy between synchronization and communication:

communication makes information observable, synchronization makes it un-
observable.

Synchronization as constraint on observations Memory models regulate the inter-
action of multiple threads using shared memory. Often, this is formulated in an obser-
vational manner. It is not the realization of the memory that matters, it is what/which
values can be encountered by threads interacting with memory. Interactions, in their
most basic form, are elementary read and writes or loads and stores, while “observing”
a value by a thread means reading it from memory. One general reason which compli-
cates the situation is the asynchronous nature of interaction. For example, threads per-
forming a read operation may not instantly observe values, as in the case of speculative
execution. Similarly, writes done by a process do not immediately and not necessarily

shared memory

thread0 thread1

Fig. 1: Write buffers between processors and memory.

atomically change the status of a shared variable. When it comes to writes, this delay
can be understood by the presence of write buffers, shown in Figure 1.

The picture is meant to only give a schematic impression. In hardware memory
models, the non-instantaneous effect of writes is caused by complex interaction in the
memory hierarchy. One complicating factor is the fact that memory, unlike in Figure 1,
might not consist of a uniform global “data store.” Instead, multiple copies of a shared
variable may exist. Thus, it may not be appropriate to interpret a read-access to a vari-
able as observing the variable’s value, as there might be more than one copy. Different
threads may read from different copies and observe different values.

Synchronization is what allows us to program on such slippery grounds. In very
broad terms, synchronization between processes can be understood as restricting pos-
sible interleavings. Processes running independently in parallel, without synchroniza-
tion, perform their respective steps unconstrained and undisturbed by each other. Syn-
chronization means disallowing some of those interleavings, for example, blocking the
progress of one process up until the other process has arrived at a certain point or pro-
duced some result. This interpretation casts synchronization as constraining the control
flow of concurrently executing processes.

Communication, the exchange of data between processes, also needs consideration.
For weak memory models and shared variable communication, synchronization is often
“explained” as guaranteeing that data is available, thereby assisting communication.
Synchronization statement like fences may understood as “flushing the write buffer.”
For example, with the execution of a write operation in Figure 1, a value is placed in
the write buffers. Synchronization is then needed to make sure that the value becomes
observable by other threads. See, for instance, a statement from an ARM programmer’s
guide talking about that a data memory barrier (DMB).3

“. . . forces all earlier-in-program-order memory accesses to become globally
visible before any subsequent accesses.”

3 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/
CJAIAJFI.html

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/CJAIAJFI.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/CJAIAJFI.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/CJAIAJFI.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/CJAIAJFI.html

This view of synchronization as a mechanism for making writes observable is perfectly
legitimate, of course, and may reflect the way hardware realizations of memory systems
actually operate. Our semantics takes a different view, though. In line with seeing syn-
chronization as restricting the control flow, our semantics formalizes synchronization
as follows

a) for control: it prevents a process from proceeding (temporarily);
b) for data: it makes written values unobservable.

The formalization highlights a dichotomy between communication and synchronization
and makes a sharp distinction of responsibilities: communication makes data available,
while synchronization makes data unavailable. In these terms, reading and writing to
memory is about communication only, not synchronization. Note that such interpreta-
tion is also implicit in the informal description of the happens-before memory model of
Go [14], which takes a very liberal standpoint: any written value is observable unless
and until it is made unobservable by synchronization. Such standpoint is what leads
also to a very relaxed memory model.

Basically, the only mechanism with synchronizing power is channel communica-
tion. There are no fences, synchronized or volatile variables, locks,4 semaphores, etc.
Channels are thereby a mechanism used both for communication of data as well as syn-
chronization. On the one hand, a channel transmits “positive” information, namely the
data being relayed from sender to receiver. On the other, channels transmit “negative”
information related to synchronization. Receiving is blocking, as usual; it prevents the
receiver to proceed until a value is available to be received. Blocking covers the control-
related part of synchronization. The other part, which has to do with shared variables
and their observable values, is also affected by synchronization via channel communi-
cation.

Sequential consistency as baseline One of the simplest memory models, called se-
quentially consistent, stipulates that operations must appear to execute one at a time
and in program order [17]. SC was one of the first formalizations and, to this day, con-
stitutes a baseline for well-behaved memory. For efficiency reasons, however, modern
hardware does not guarantee sequential consistency. SC is also considered much too
strong to serve as the underlying memory semantics of programming languages; the
reason being that sequential consistency prevents many established compiler optimiza-
tions and robs from the compiler writer the chance to exploit the underlying hardware
for efficient parallel execution. The research community has struggled to agree on what,
exactly, a proper memory model should offer. Consequently, a bewildering array of
weak or relaxed memory models have been proposed, investigated, and implemented.
Different taxonomies and catalogs of so-called litmus tests, which highlight specific
aspects of memory models, have also been researched [1].

In light of these difficulties and despite many attempts, there does not exist a well-
accepted comprehensive specification of the C++11 [5, 6] or Java memory models [4,
18, 20]. Despite the existence of broadly disparate approaches towards memory and

4 Except that locks are available via libraries.

its formalization, the following principle of relaxed memory has gained overwhelming
acceptance: regardless of how much relaxation is permitted by the memory model, if a
program is data-race free or properly synchronized, then the memory model must en-
sure that the program behaves sequentially consistently [2, 18]. This principle is known
as the SC-DRF guarantee.

Operational semantics We sketch an operational semantics for a weak memory. Our
calculus is inspired by the Go programming language: similar to Go, our model focuses
on channel communication as the main synchronization primitive. Go’s memory model,
however, is described, albeit succinctly and precisely, in prose [14]. We provide a formal
semantics instead. In this paper, we informally discuss ideas underlying the semantics
and possible extensions. We refer the reader to [11] and the technical report [12] for
more details.

2 Background

Go’s memory model Concerning synchronization primitives, the model covers go-
routine creation and destruction, channel communication, locks, and the once-statement.
Our semantics will concentrate on thread creation and channel communication because
lock-handling and the once statement are not language primitives but part of the sync-
library. Thread destruction, i.e. termination, comes with no guarantees concerning visi-
bility: it involves no synchronization and thus the semantics does not treat thread termi-
nation in any special way. In that sense, our semantics treats all of the primitives covered
by Go’s memory model specification. As will become clear in the next sections, our se-
mantics does not, however, relax read events. Therefore, our memory model is stronger
than Go’s. On the plus side, this prevents a class of undesirable behavior called out-of-
thin-air [7]. On the negative, the absence of relaxed reads comes at the expense of some
forms of compiler optimizations.

Happens-before relation and observability Like Java’s [18, 20], C++11’s [5, 6], and
many other memory models, ours centers around the definition of a happens-before re-
lation. The concept dates back to [16] and was introduced in a pure message-passing
setting, i.e., without shared variables.5 The relation is a technical vehicle for defining
the semantics of memory models. It is important to note that just because an instruc-
tion or event is in a happens-before relation with a second one, it does not necessarily
mean that the first instruction actually “happens” before the second in the operational
semantics. Consider the sequence of assignments x := 1;y := 2 as an example. The first
assignment “happens-before” the second as they are in program order, but it does not
mean the first instruction is actually “done” before the second,6 and especially, it does
not mean that the effect of the two writes become observable in the given order. For
example, a compiler might choose to change the order of the two instructions. Alter-
natively, a processor may rearrange memory instructions so that their effect may not

5 The relation was called happened-before in the original paper.
6 Assuming that x and y are not aliases in the sense that they refer to the same or “overlapping”

memory locations.

be visible in program order. Conversely, the fact that two events happen to occur one
after the other in a particular schedule does not imply that they are in happens-before
relationship, as the observed order may have been coincidental. To avoid confusion
between the technical happens-before relation and our understanding of what happens
when the programs runs, we speak of event e1 “happens-before” e2 in reference to the
technical definition (also abbreviated as e1 →hb e2 as opposed to its natural language
interpretation. Also, when speaking about steps and events in the operational semantics,
we avoid talking about something happening before something else, and rather say that
a step or transition “occurs” in a particular order.

The happens-before relation regulates observability, and it does so very liberally. It
allows a read r from a shared variable to possibly observe a particular write w to said
variable unless one of the following two conditions hold:

r→hb w or (1)
w→hb w′→hb r for some other write w′ to the same variable. (2)

For the sake of discussion, let us concentrate on the following two constituents for
the happens-before relation: 1) program order and 2) the order stemming from chan-
nel communication.7 According to the Go memory model [14], we have the following
constraints related to a channel c with capacity k:

A send on c happens-before the corresponding receive from c completes. (3)
The ith receive from c happens-before the (i+ k)th send on c. (4)

Condition (4) accounts for the boundedness of channels by transmitting happens-
before information in the backward direction for some receiver to some sender. Note
that for synchronous channels, which have capacity zero, conditions (3) and (4) degen-
erate: the send and receiving threads participate in the rendezvous and symmetrically
exchange their happens-before information.

In summary, the operational semantics captures the following principles:

Immediate positive information: a write is globally observable instantaneously.
Delayed negative information: in contrast, negative information overwriting previ-

ously observable writes is not immediately effective. Instead, the information is
spread via message passing in the following way:
Causality: information regarding condition (3) travels with data through channels.
Channel capacity: backward channels are used to account for condition (4).

Local view: Each thread maintains a local view on the happens-before relationship of
past write events, i.e. which events are unobservable. Thus, the semantics does not
offer multi-copy atomicity [8].

3 Axiomatic semantics and litmus tests

To position the work in a slightly broader context, we revisit notions from axiomatic
semantics of memory models. In particular, we use well-known litmus tests to high-
light similarities and differences between our semantics and alternative ones. In the

7 There are additional conditions in connection with channel creation and thread creation, the
latter basically a generalization of program order; we ignore it in the discussion here.

discussion, we sometimes refer to [3], which not only contains a general and elabo-
rate axiomatic semantics, but also collects numerous litmus tests for illustrating their
axiomatic framework. Other relevant related work is captured in the tutorial [19].

Axiomatic semantics operates on event graphs, i.e., graphs with events as nodes and
various relations between the events as edges. Events correspond to occurrences of exe-
cuted instructions, with loads and stores as the most basic form of memory interaction.
Relations capture various forms of dependencies between instructions; for example,
data dependencies and intra-process control-flow dependencies such as program order.
The graph, in particular the relationship between the events, depends on the program
code itself and also on the memory model. One program typically gives rise to more
than one such graph, each of which represents one possible “run” of a program. Still,
such graphs only represent candidate executions, as unrealizable graphs are filtered out
by axioms. The axioms spell out conditions on the various relations, typically requiring
acyclicity of particular combinations of the involved edges. Aspects of a memory model
are often captured or illustrated by so-called litmus tests, which are tailor-made code
snippets used to highlight expected or disallowed behavior in a given setting. Thus, a
litmus test can also be seen as a partial pre- and post-specification for a small piece of
concurrent code. The precondition, often left implicit, assumes that all shared variables
are in some definite, initial state.

As illustration, Figure 2 contains the well-known litmus test for “message passing”
on the left and a corresponding candidate execution on the right. The crucial question
for the given code is whether the observation r1 = 1 and r2 = 0 is possible. The intention
of the code is the following: process p0 wants to send data via x to p1 and uses a write
to y to signal that the value is “ready” to be read. In a memory model where the litmus
test of Figure 2 is expected to work without additional synchronizing instructions, the
observation r1 = 1 and r2 = 0 must be forbidden. The assumption, in this case, is that
the order of reads by p1 reflects the order in which the writes are effected (when done in
program order) by p0. Under this assumption, one can generalize the pattern in that p1
repeatedly reads the flag variable y in a busy wait loop until it is assured that the value
communicated via x is ready to be read.

In moderately weak memory models, ones with per-location write buffering in par-
ticular, message passing is not realizable without additional synchronizing instructions.
The candidate execution of Figure 2b shows exactly that; it gives a justification for the
observation r1 = 1 and r2 = 0, which violates the MP pattern. The edge n2 →rf n3 of
the “read-from” relation →rf simply expresses the fact that n3 reads the value written
by n2. More complex is the “from-read” relation: the edge n4 →fr n1 stipulates that
n4 “reads-from” some write event left unmentioned for which n1 comes “after.” More
precisely, it abbreviates n0 →rf n4 for some write event n0 with n0 →co n1 and where
→co represents the so-called coherence order, which is a total order of writes over the
same memory location. In the example, n0 is the write event setting x to its initial value
0 (which, by convention, is often left out in representations of candidate executions).
Using the mentioned coherence order, the from-read relation captures the intuition that
a read observes a value which is not yet overwritten by a given write. In contrast, in our
setting as well as in others, the information on which writes are observable by a read
is local per observing thread. Conceptually, there is no notion of a total order of writes

p0 p1
x := 1; r1 := y;
y := 1; r2 := x;

r1 = 1, r2 = 0

(a) Litmus test

p0 p1

(n1:Wx = 1)

(n2:Wy = 1)

(n3:Ry = 1)

(n4:Rx = 0)

po

rf

po

fr

(b) Candidate execution

Fig. 2: mp

on a location. Past writes events are seen as unordered even if issued by one thread or
when seen from the perspective of one observing thread.8

One, perhaps unfamiliar, aspect of our semantics is that writes, once performed,
never invalidate earlier writes (at least those done by a thread different from the ob-
server). In the absence of synchronization, writes remain observable indefinitely. A lit-
mus test typifying that kind of behavior is known as coRR,9 shown in Figure 3.

p0 p2
r1 := x; x := 1;
r2 := x;

r1 = 1, r2 = 0

(a) Litmus test

p0 p1

(n1:Rx = 1)

(n2:Rx = 0)

(n3:Wx = 1)

po

rf

fr

(b) Candidate execution

Fig. 3: coRR

The fact that repeated reads by the same thread give different seemingly incoherent
values may seem odd at first. It can, however, be interpreted as a form of oscillation:
when reads and writes happen “at the same time,” i.e., in a racy way without proper
synchronization, the memory can be understood as oscillating between the racy memory
updates. In the example, the value can, in theory, be perceived as oscillating between
0 and 1 indefinitely. This behavior is allowed by our proposed semantics. As a matter

8 Except in the special single threads case, where the reads and writes are done by the same
thread.

9 In general, coherence tests coXY involve an access of kind X and an access of kind Y with X
and Y standing for either R (read) or W (write).

of fact, it is also officially allowed by Sparc RMO [15] and pre-Power4 machines [21].
Many other models, however, including the axiomatization by [3], disallow it.

Note that our treatment of write-accesses is rather liberal and therefore, some of the
litmus tests for write buffering also characterize our semantics. For example, both our
model and PSO-style memory models with per-location write buffers allow the obser-
vation r1 = 1 and r2 = 0 in the mp litmus test of Figure 2. On the other hand, from
our perspective, the treatment of the writes is best not seen as “buffering;” after all, the
value of a write in the operational semantics becomes immediately observable. It is the
negative information of being unobservable that is not immediately effective for all ob-
servers. This negative information requires synchronization via channel communication
in order for it to percolate though the concurrent system.

p0 p1
r1 := x; r2 := y;
y := r1; x := 1;

r1 = 1, r2 = 1

(a) Litmus test

p0 p1

(n1:Rx = 1)

(n2:Wy = 1)

(n3:Ry = 1)

(n4:Wx = 1)

ppo

rf

po

rf

(b) Candidate execution

Fig. 4: Load buffers (lb)

Our basic weak semantics treats writes in a rather relaxed manner. Reads, in con-
trast, are treated in a conventional or “strong” way. Load buffering is a relaxation which
complements write buffering. The effect of load buffers is often illustrated by the litmus
test of Figure 4. The candidate execution graph on the right shows a run which justifies
r1 = 1 and r2 = 1. This execution can be interpreted as follows: the load or read of event
n1 is buffered, thereby taking effect after the write event n4. This buffering causes the
instructions n3 and n4 to seem executed out-of-order, thus, the program order n3→po n4
is perceived as “ignored.” For p0, however, the read cannot be postponed until after the
write instruction, as the value of the write depends (via r1) on the value being read: the
read and write events in p0 are in program order, but unlike the situation in p1, the load
cannot be buffered; program order has to be preserved due to a data dependence. The
preserved program order is marked in the graph by a→ppo-edge. The circumstances in
which program order is preserved or not depends on the programming language seman-
tics and/or the given hardware memory model. For example, various forms of special
fence instructions (e.g. light-weight fences, full fences, control fences) may be available
on a given platform.

Load buffering is conceptually more challenging than write buffering. Thinking op-
erationally, dispatching a write instruction in an asynchronous manner is like “fire-
and-forget,” but executing an “asynchronous” read means the corresponding process

continues regardless of whether the value it wishes to read has been obtained. This
non-blocking nature in particular problematic if it is assumed (as in our happens-before
model) that reading a value, buffered or not, is done without any synchronization.10

Subsequent code may depend on the value being read; the dependency may not only be
a data-dependency (as the write to y in Figure 4a), but also a control flow dependency,
where choosing a branch to be taken depends on a value that is not yet available.

One important aspect in connection with load buffering is illustrated in Figure 5.
It closely resembles the previous case from Figure 4. In particular, the four memory
events in the candidate execution graph in Figure 5b are identical to those in Figure 4b.
The crucial difference is an additional data dependency in p1: the write statement has a
data dependency on the preceding read event. This dependency is reflected in the graph
by a ppo-edge, as opposed to a po-edge as in Figure 4b.

p0 p1
r1 := x; r2 := y;
y := r1; x := r2;

r1 = 1 = r2 (out-of-thin-air)

(a) Litmus test

t0 t1

(n1:Rx = 1)

(n2:Wy = 1)

(n3:Ry = 1)

(n4:Wx = 1)

ppo

rf

ppo

rf

(b) Candidate execution

Fig. 5: lb+ppos

The outcome r1 = 1 = r2 of the litmus test could be justified by the following ar-
gument, as illustrated by the candidate execution graph: n1 reads the value 1 written
by n4, subsequently used in the write n2, which in turn is read by n3, and used in the
write event n4. This justification involves a circular argument, and it is able to produce
a value, the number 1, that does not even appear in the program text. Such behavior is
termed “out-of-thin-air” and is generally, though not universally, considered illegal. In
other words, the candidate graph of Figure 5b, which justifies the post-condition of the
litmus test, is a candidate that is ruled out by many memory models. Note, however,
that in the informal happens-before Go memory model, out-of-thin-air behavior of this
kind is allowed, as there are no statements or mechanisms specified which forbid the
behavior.

Note that the candidate execution from Figure 5b is, for that model, not significant.
In particular the shown →ppo-edges presuppose that the order of the reads and the
subsequent write cannot be changed, i.e., due to the data dependency of the litmus test,
there is no conceptual load-buffering in that particular situation. The Go memory model,
on the other hand, does not mention data dependencies nor “preserved program order.”
10 Remember, that basically the only way of achieving synchronization is channel communica-

tion.

Instead, it operates with the plain notion of program order→po, stipulating that→po ⊆
→hb. Therefore, in the situation of Figure 5, the out-of-thin-air observation is perfectly
acceptable.11 Certainly, the happens-before relation is assumed to be acyclic,12 but still,
the situation of Figure 5b does not constitute a happens-before cycle as →hb is not
defined making use of the read-from relation. As a final remark, it should be noted
that in [3] and similar sources, the happens-before relation is a derived relation. The
relation is defined as an extension of preserved program order→ppo, taking into account
read-from-edges. In our discussion, however, the happens-before relation consists of
→po and the dependencies implied by channel synchronization. The condition (3) can
be interpreted as analogue to a→rf -edge, though based on channel communication as
opposed to communication via an unsynchronized shared variable.

4 Memory as collection of past write events

In this section we sketch the operational formalization of our memory model by high-
lighting a few of its central rules. We slightly simplify the rules and favor communicat-
ing intuition over notational rigor.

The model is formulated as structural operational semantic rules over program con-
figurations. Our configurations contain “sets” of processes or threads, channels, and
a “memory component.” Memory consists of the collection of past write events. The
write events remembered in the configuration are written as n(|z:=v|) with n as unique
identifier. To regulate observability in accordance to the happens-before relation, each
thread keeps track of whether write events are, from the perspective of the given thread,
unobservable (we use “unobservable” and “shadowed” interchangeably). Additionally,
threads keep track of write events that are locally known to be in happens-before re-
lation to their current point of execution. Happens-before and shadowed sets form a
tuple (Ehb,Es) which is referred to as “local state” and denoted as σ in the rules of the
operational semantics.

σ = (Ehb,Es) σ ′ = (Ehb +(n,z),Es +Ehb(z)) fresh(n)
R-WRITE

p〈σ ,z := v; t〉 −→ p〈σ ′, t〉 ‖ n(|z:=v|)

σ = (,Es) n /∈ Es
R-READ

p〈σ ,let r = load z in t〉 ‖ n(|z:=v|) −→ p〈σ ,let r = v in t〉 ‖ n(|z:=v|)

Table 1: Operational steps: reads and writes

Table 1 shows the rules covering reads and writes. Executing a write instruction
spawns a new corresponding write event and updates the local state σ of the execut-
11 That is not to say that language implementations will exhibit that behavior, just that out-of-

thin-air is consistent with the specification.
12 Note that it is not stated explicitly in [14] but it is safe to assume that is what is intended.

ing thread. The update records information about the write event as part of the issuing
thread’s happens-before memory. Additionally, when it comes to the variable in ques-
tion, all events that are known to have happened-before are then marked as shadowed.
In a single-threaded setting, this book-keeping realizes visibility according to program
order, which means, the only value observable for each variable is the one written last.
This behavior is what one would expect from a sequential program.

Channels communication is responsible not only for message passing communica-
tion but also for synchronization between threads. The synchronization conditions are
spelled out in equations (3) and (4). Equation (3) corresponds to the fact that receiving
over a channel is a potentially blocking operation: the receiver has to wait until a value
is available. This blocking is a manifestation of the control-flow aspect of synchroniza-
tion, as it disables, under certain conditions, steps from being taken. More concretely,
equation (3) connects the steps of the sender before the send with the steps in the re-
ceiver after the reception; this connection is made by the →hb-relation. In the opera-
tional interpretation of our semantics a channel send and receive communicates not just
the communicated value, but also the local state σ from the sender to the receiver (see
table 2). Upon reception, the receiver updates its local state with the new information.
This update is reflected by setting σ ′ = σ +σ ′′ as shown in rule R-REC. With the up-
date, the receiver increases its knowledge about which events have happened-before,
thereby increasing the events which become unobservable from the receiver’s perspec-
tive.

Equation (4) works in reverse direction and represents synchronization due to the
boundedness of channels. Boundedness connects the happens-before knowledge of a
sender with that of a receiver on the same channel. Note that this connection is not nec-
essarily from the receiver of a value back to the sender of said value: passing a message
from a process p1 to a process p2 via a channel c makes the send of p1 to happen-
before an earlier receive on c. This earlier receive was not necessarily done by p2; it
could have been done by a “third party” p3. In the operational semantics, this “receiver-
to-sender” synchronization is captured by the transmission of local state σ in the reverse
direction. Each program level channel is thus represented by two channels, a “forward”
channel, transmitting in a conventional manner the data being transmitted (plus the
happens-before and shadow information) and a “backward” channel (transmitting only
happens-before and shadow information). Thus, receiving a value in rule R-REC not
just dequeues one entry from the forward queue, but enqueues also the receiver’s cur-
rent σ into the backward channel. Correspondingly, a send in rule R-SEND is enabled
only, if the backward queue is not empty.

Communication via synchronous channels, which can be seen as channels with ca-
pacity 0, is treated separately in rule R-SEND-REC. This rule leads to an immediate
exchange of the local states between sender and receiver. Synchronous communication,
therefore, corresponds to a full bidirectional fence between the two partners engaged
on a rendezvous. There are additional rules, left out here, that deal with creating and
closing channels.

¬closed(c f [q2]) σ ′ = σ +σ ′′
R-SEND

cb[q1 :: σ
′′] ‖ p〈σ ,c← v; t〉 ‖ c f [q2] −→ cb[q1] ‖ p〈σ ′, t〉 ‖ c f [(v,σ) :: q2]

v 6=⊥ σ ′ = σ +σ ′′
R-REC

cb[q1] ‖ p〈σ ,let r =← c in t〉 ‖ c f [q2 :: (v,σ ′′)] −→
cb[σ :: q1] ‖ p〈σ ′,let r = v in t〉 ‖ c f [q2]

σ ′ = σ1 +σ2
R-SEND-REC

cb[] ‖ p1〈σ1,c← v; t〉 ‖ p2〈σ2,let r =← c in t2〉 ‖ c f [] −→
cb[] ‖ p1〈σ ′, t〉 ‖ p2〈σ ′,let r = v in t2〉 ‖ c f []

Table 2: Operational steps: basic channel communication

5 Load buffering

In order to further relax the memory model described in the previous section, we need
to introduce load buffering, also referred to as delayed reads. The presence of load
buffering, however, gives rise to a number of complications. For one, reads have to be
executed asynchronously: a thread reading a value has to proceed even if the value is not
yet available. Such “non-blocking” reads are problematic in that a thread’s continuation
after an asynchronous read typically depends on the value read. Process p0 in the code
of Figure 4a and both processes in Figure 5a contain examples of this type of depen-
dency. In these examples, the dependency is a pure data dependency: a “subsequent”
instruction writes the value read back to memory.

Control dependencies, which have not yet been discussed in connection with the
examples from Section 3, are more complicated than data dependencies. A control de-
pendency happens, for example, when the condition of an if-then-else involves the value
read by a prior load-instruction. If the load is executed “out-of-order” and after the con-
ditional expression, then both branches are in principle possible. This superposition
leads to a form of speculative execution.

The asynchronous execution of a load instruction is similar to a simple future-like
mechanism; one involving implicit futures. While futures allow the asynchronous exe-
cution of arbitrary sequential code that produces an eventual value, asynchronous reads
execute only the load-instruction and nothing else. We say that the load is done, or
the “future” is resolved, when a concrete value can be passed back to issuer of the
asynchronous read.

Asynchronous loads and futures differ in terms of synchronization. Conventionally,
futures involve a form of synchronization that is sometimes called “wait-by-necessity,”
meaning that the caller blocks when accessing results that are not yet available. With
its strict separation between synchronization (achieved by sending-to and receive-from
channels) and communication, reads and writes are completely devoid of synchroniza-
tion. Informally, the lack of synchronization can be seen as a “don’t-wait-not-even-

when-necessary” semantics. In other words, a read and a subsequent write —subsequent
in terms of program order— can be swapped and executed out-of-order. Thus, as an ex-
ample, the “preserved-program-order” edge in Figure 4b would be represented in our
model as→po-edge instead.

To delay the read and thereby account for out-of-order execution, configurations are
extended with read events (in addition to the write events already discussed in the pre-
vious section). The semantics is also extended to deal with references to future values.
For example, before adding delayed reads, store instructions took the form z := v where
v denotes a user-level data value such as an integer. Once delays are added, a new form
of the store instruction is needed: z := n with n a “future reference” to an asynchronous
read. Note that, as shown in rule R-READ, future references are written n[(σ ,load z)].

When it comes to ensuring that “outdated” or shadowed writes are not observable
by a read instruction (see equation (2)), the semantics with asynchronous reads differs
from the semantics without them. In the presence of asynchronous reads, the future
reference n[(σ ,load z)] is responsible for making sure that shadowed writes are not
observed. In other words, the future reference must ensure that the value resulting from
an asynchronous read does not come from a write that is shadowed to the reader. In
the semantics without asynchronous reads, a thread’s shadow set was used to exclude
visibility of shadowed writes. This exclusion is captured by the corresponding premise
of the R-READ rule of Table 1.

When it comes to causality (see equation (1)), the semantics lacking asynchronous
reads trivially guarantees that a read instruction cannot observe writes that happen-after.
Once asynchronous reads are introduced, however, additional measures must be taken
so causality is not violated. Note that the σ -information of the reader is of no help here:
in the operational execution, the write event is generated after the asynchronous issuing
of n[(σ ,load z)]. Consequently, the subsequent write is unknown to n[(σ ,load z)] and,
therefore, the write is not mentioned in σ . In general, the fact that a read event does
not “know” about a write event is useless to determine whether the read can observe
said write event (as both is consistent with being not mentioned in the local σ of the
read event). Instead, it is from the perspective of the write-event that one can determine
whether a read can observe the write: if the write event “knows” that a read event has
“happened-before,” then the write should not be made observable to the read. Thus,
write events now also carry happens-before and shadow information and are of the
form n(|σ ,z := v|). Note also that the conditions corresponding to equations (1) and (2)
are captured by the premises of rule R-OBS from Table 3.

The implicit future references not only occur on the right-hand side of the let-
construct (see rule R-READ), but can also occur as stand-in for the value to be loaded
from memory. In particular, assignments may take now the form z := n where n is a
reference to a value that has not yet been resolved. Consequently, write events may take
the form n1(|σ ,z := n2|) and delayed read constructs can take the form of a reference to
a reference: n1[(n2)]. As references are resolved into concrete values, the semantics must
have rules to shorten chains of indirections. For instance, n1(|σ ,z := n2|) ‖ n2[(v)] −→
n1(|σ ,z := v|) ‖ n2[(v)]. Additionally, the semantics needs to deal with compound expres-
sions containing future references, which likewise cannot be immediately evaluated.
The corresponding dereferencing rules are left out in this discussion. Also left out of

fresh(n)
R-READ

p〈σ ,let r = load z in t〉 −→ p〈σ ,let r = n in t〉 ‖ n[(σ ,load z)]

σ = (Ehb,Es) σ ′ = (Ehb +(n,z),Es +Ehb(z)) fresh(n)
R-WRITE

p〈σ ,z := v; t〉 −→ (p〈σ ′, t〉 ‖ n(|σ ,z := v|))

σ1 = (, E1
s) σ2 = (E2

hb ,) n2 /∈ E1
s n1 /∈ E2

hb R-OBS
n1[(σ1,load z)] ‖ n2(|σ2,z := v|) −→ n1[(v)] ‖ n2(|σ2,z := v|)

Table 3: Operational semantics: shared memory

this note is the exact treatment of control dependencies in the presence of delayed reads.
When the decision on which branch to take depends on the value of a read that is not yet
resolved, the semantics allows execution to continue in a speculative manner, collecting
a symbolic representation of the branch condition in the form of a path condition.

Example 1 (Out-of-thin-air). For illustration, let us revisit the litmus test from Fig-
ure 5a. Assume that both threads start with a local state of σ0. We don’t show the
write events for initialization of the two shared variables. Now, after executing four in-
structions, the resulting configuration may continue as follows, dereferencing the load
reference:

p1〈σ1,n1〉 ‖ n1[(σ0,load x)] ‖ n′1(|σ0,y := n1|) ‖ n2[(σ0,load y)] ‖ n′2(|σ0,x := n2|) ‖ p2〈σ2,n2〉 −→
p1〈σ1,n1〉 ‖ n1[(n2)] ‖ n′1(|σ0,y := n1|) ‖ n2[(σ0,load y)] ‖ n′2(|σ0,x := n2|) ‖ p2〈σ2,n2〉 −→
p1〈σ1,n1〉 ‖ n1[(n2)] ‖ n′1(|σ0,y := n1|) ‖ n2[(n1)] ‖ n′2(|σ0,x := n2|) ‖ p2〈σ2,n2〉

After these two dereferencing steps, the configuration contains n1[(n2)] and n2[(n1)], each
attempting to solve each other’s indirect reference in some form of deadlock. Adding a
rule that “resolves” such cyclic dependencies by picking a random value (in a form of
self-justification) allows the modeling of out-of-thin-air behavior. ut

6 Conclusion

We present the ideas behind an operational specification for a weak memory model.
The semantics is accompanied by an implementation in the K framework and by several
examples and test cases [10]. We plan to use the implementation towards the verification
of program properties such as data-race freedom.

Bibliography

[1] S. V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial. Research
Report 95/7, Digital WRL, Sept. 1995.

[2] S. V. Adve and M. D. Hill. Weak ordering — a new definition. SIGARCH Computer
Architecture News, 18(3a):2–14, 1990.

[3] J. Alglave, L. Maranget, and M. Tautschnig. Herding cats: Modelling, simulation, testing,
and data-mining for weak memory. ACM TOPLAS, 36(2), 2014.

[4] D. Aspinall and J. Ševčı́k. Java memory model examples: Good, bad and ugly. Proc. of
VAMP, 7, 2007.

[5] Programming languages — C++. ISO/IEC 14882:2001, 2011.
[6] H.-J. Boehm and S. V. Adve. Foundations of the C++ concurrency memory model. In ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI).
ACM, 2008.

[7] H.-J. Boehm and B. Demsky. Outlawing ghosts: Avoiding out-of-thin-air results. In Pro-
ceedings of the Workshop on Memory Systems Performance and Correctness, MSPC ’14,
pages 7:1–7:6, New York, NY, USA, 2014. ACM.

[8] W. W. Collier. Reasoning about Parallel Architectures. Prentice Hall, 1992.
[9] A. A. A. Donovan and B. W. Kernighan. The Go Programming Language. Addison-Wesley,

2015.
[10] D. Fava. Operational semantics of a weak memory model with channel synchronization.

https://github.com/dfava/mmgo, Oct. 2017.
[11] D. Fava, M. Steffen, and V. Stolz. Operational semantics of a weak memory model with

channel synchronization. In K. H. et.al., editor, FM, volume 10951 of Lecture Notes in
Computer Science, pages 1–19. Springer Verlag, July 2018.

[12] D. Fava, M. Steffen, and V. Stolz. Operational semantics of a weak memory model with
channel synchronization: Proof of sequential consistency for race-free programs. Technical
Report 477, University of Oslo, Faculty of Mathematics and Natural Sciences, Dept. of
Informatics, Jan. 2018. Available at https://www.duo.uio.no/handle/10852/61977.

[13] The Go programming language specification. https://golang.org/ref/spec, Nov.
2016.

[14] The Go memory model. https://golang.org/ref/mem, 2014. Version of May 31, 2014,
covering Go version 1.9.1.

[15] S. I. Inc and D. L. Weaver. The SPARC architecture manual. Prentice-Hall, 1994.
[16] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communica-

tions of the ACM, 21(7):558–565, 1978.
[17] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess

programs. IEEE Transactions on Computers, C-28(9):690–691, Sept. 1979.
[18] J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In POPL ’05. ACM, Jan.

2005.
[19] L. Maranget, S. Sarkar, and P. Sewell. A tutorial introduction to the ARM and POWER

relaxed memory models (version 120), Oct. 2012.
[20] W. Pugh. Fixing the Java memory model. In Proceedings of the ACM Java Grande Confer-

ence, June 1999.
[21] J. M. Tendler, J. S. Dodson, J. S. F. Jr., H. Q. Le, and B. Sinharoy. Power4 system microar-

chitecture. IBM Journal of Research and Development, 46(1):5–25, 2002.

https://github.com/dfava/mmgo
https://www.duo.uio.no/handle/10852/61977
https://golang.org/ref/spec
https://golang.org/ref/mem

	Anything goes unless forbidden
	Introduction
	Background
	Axiomatic semantics and litmus tests
	Memory as collection of past write events
	Load buffering
	Conclusion

