
Operational Semantics of a Weak Memory
Model with Channel Communication

Daniel Fava, Martin Steffen, Volker Stolz

4. 5. 2018

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-2

In this talk

• operational semantics for a WMM
• inspired by Go
• channel communication
• based on happens-before

• proof of basic correctness property
• executable within the K rewriting framework

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-3

Memory model

MCM
A specification what to expect from from a shared memory,
what may be observed (by reads) and what not.

• bottom-line: sequential consistency Lamport
(interleaving of reads and writes),
• weak or relaxed: basically weaker than that.

shared memory

thread0 thread1

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-4

How to specify a MM

• in prose (as in https://golang.org/ref/mem)
• litmus tests
• axiomatic (candidate executions)
• operational (SOS)

T0

a: Wx=1

b: Wy=1

ppo

c: Ry=1rf

T1

d: Rx=0

ppo
 fr

https://golang.org/ref/mem

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-5

Go sales pitch

• “language for the 21st century”
• relatively new language (with some not so new
features?)
• a lot of fanfare & backed by Google no less
• existing show-case applications

• docker
• dropbox . . .

http://www.google.com
https://www.docker.com/
https://www.dropbox.com/

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-6

Go’s stated design principles

• appealing to C programmers
• KISS: “keep it simple, stupid”
• built-in concurrency
• “strongly typed”
• efficient
• fast compilation, appealing for scripting

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-7

Go’s non-revolutionary feature mix

• imperative
• object-oriented (?)
• compiled
• concurrent (goroutines)
• “strongishly” typed
• garbage collected
• portable
• higher-order functions and closures

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-8

Calculus

• simple concurrent calculus with “goroutines”
• A-normal form
• channels:

• dynamically created
• “higher-order” channels (à la π . . .)
• bounded channels
• mixed choice

• with “channel guards”
• default-clause

Syntax

v ::= r | n values
e ::= t | v | load z | z := v | if v then t else t | go t expressions
| make (chan T, v) | ← v | v ← v | close v

g ::= v ← v | ← v | default guards
t ::= let r = e in t |

∑
i let ri = gi in ti threads

• ∑
: choice (select, case, default)

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-10

Go’s concurrency model

• only sync-primitive: channel communication (but read
the fine-print)
• shared variable communication possible ⇒
• simple happens-before memory model

Mantra
Don’t communicate by sharing memory; share memory by
communicating. (R. Pike)

• straighforward and simple model, still they advise:
“If you must read the rest of this document [= the
Go MM] to understand the behavior of your pro-
gram, you are being too clever. Don’t be clever.”

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-11

Happens-before

• dates back to Lamport
• “unrelated” to actually “happening before”

Observational + “liberal”
a read can observe a write W unless
1. read definitely “too late”
2. a different write definitely “overwrites” W (shadows)

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-12

Nature of synchronization

• generally:1 restricting otherwise possible interleavings
• in connection with shared memory: intuition often (cf.
write buffers)
“Data Memory Barrier (DMB). This forces all
earlier-in-program-order memory accesses to become
globally visible before any subsequent accesses.”
(random quote, some ARM programmer’s guide)

Happens-before
synchronization = making things INVISBLE

1independent from shared memory

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/CJAIAJFI.html

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-12

Nature of synchronization

• generally:1 restricting otherwise possible interleavings
• in connection with shared memory: intuition often (cf.
write buffers)
“Data Memory Barrier (DMB). This forces all
earlier-in-program-order memory accesses to become
globally visible before any subsequent accesses.”
(random quote, some ARM programmer’s guide)

Happens-before
synchronization = making things INVISBLE

1independent from shared memory

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/CJAIAJFI.html

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-13

Two(*) ingredients for HB only

1. program order
2. channel communication

2.1 sending →hb recieving
2.2 full buffer

Sends and receives
• A send on a channel happens-before the corresponding
receive from that channel completes.
• The ith receive on a channel with capacity k
happens-before the i+ kth send from that channel
completes.

• channel close, init, thread creation, packages, locks,
once

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-14

Operational semantics (weak)

Configuration

P ::= p〈σ, t〉 | m(|z:=v|) | c[q] | • | P ‖ P | νn P (1)

thread

n〈σ, t〉

write event

n(|z:=v|)

channel

n[q]

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-14

Operational semantics (weak)

Configuration

P ::= p〈σ, t〉 | m(|z:=v|) | c[q] | • | P ‖ P | νn P (1)

thread

n〈σ, t〉

write event

n(|z:=v|)

channel

n[q]

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-14

Operational semantics (weak)

Configuration

P ::= p〈σ, t〉 | m(|z:=v|) | c[q] | • | P ‖ P | νn P (1)

thread

n〈σ, t〉

write event

n(|z:=v|)

channel

n[q]

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-14

Operational semantics (weak)

Configuration

P ::= p〈σ, t〉 | m(|z:=v|) | c[q] | • | P ‖ P | νn P (1)

thread

n〈σ, t〉

write event

n(|z:=v|)

channel

n[q]

Write & read steps

. . .

p〈σ, z := v; t〉 −→ p〈σ′, t〉 ‖ n(|z:=v|)

. . .

p〈σ, let r = load z in t〉 ‖ n(|z:=v|) −→ p〈σ, let r = v in t〉 ‖ n(|z:=v|)

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-16

Synchronization = making things
unobservable
• reads and writes: no synchronization
• program order

• the only component of happens-before
• for x:=1; x:=2: value 1 unobservable

but only locally

• channel communication; only (interesting) means of
synchronization

Channel communication
• send the communicated value from sender two receiver

• inform receiver of local knowledge of UNobservable
write events

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-16

Synchronization = making things
unobservable
• reads and writes: no synchronization
• program order

• the only component of happens-before
• for x:=1; x:=2: value 1 unobservable

but only locally

• channel communication; only (interesting) means of
synchronization

Channel communication
• send the communicated value from sender two receiver

• inform receiver of local knowledge of UNobservable
write events

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-16

Synchronization = making things
unobservable
• reads and writes: no synchronization
• program order

• the only component of happens-before
• for x:=1; x:=2: value 1 unobservable

but only locally

• channel communication; only (interesting) means of
synchronization

Channel communication
• send the communicated value from sender two receiver
• inform receiver of local knowledge of UNobservable
write events

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-17

Shadow sets and local information

• every write even: unique identifier

thread local information

1. which events are locally known to be unobservable
(shadowed)

2. which events are locally known to have happened-before
(at the current point)

n〈σ, t〉

• local “state” tuple (Ehb, Es), σ : 2(N×X) × 2N .

Read & write once more

• of course: shadow sets used to make writes invisible
• local update of “program order”

σ = (Ehb, Es) σ′ = (Ehb+(n, z), Es+Ehb(z))

p〈σ, z := v; t〉 −→ p〈σ′, t〉 ‖ n(|z:=v|)

σ = (_, Es) n /∈ Es

p〈σ, let r = load z in t〉 ‖ n(|z:=v|) −→ p〈σ, let r = v in t〉 ‖ n(|z:=v|)

Channel communication

• sending values + knowledge about σ

¬closed(cf [q2]) σ′ = σ
R-Send

p〈σ, c← v; t〉 ‖ c[q2] −→ p〈σ′, t〉 ‖ c[(v, σ) :: q2]

v 6= ⊥ σ′ = σ + σ′′

R-Rec
cb[q1] ‖ p〈σ, let r =← c in t〉 ‖ cf [q2 :: (v, σ′′)] −→

cb[σ :: q1] ‖ p〈σ′, let r = v in t〉 ‖ cf [q2]

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-20

Bounded channels

• A send on a channel happens-before the corresponding
receive from that channel completes.
• The ith receive on a channel with capacity k
happens-before the i+ kth send from that channel
completes.

Bounded channels
. There is also a “backward synchronization”
• from an “earlier” receive to a sender

• forward channel (as shown)
• backward channel, propagating local σ knowledge

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-20

Bounded channels

• A send on a channel happens-before the corresponding
receive from that channel completes.
• The ith receive on a channel with capacity k
happens-before the i+ kth send from that channel
completes.

Bounded channels
. There is also a “backward synchronization”
• from an “earlier” receive to a sender

• forward channel (as shown)
• backward channel, propagating local σ knowledge

Send and receive

¬closed(cf [q2]) σ′ = σ + σ′′

R-Send
cb[q1 :: σ′′] ‖ p〈σ, c← v; t〉 ‖ cf [q2] −→ cb[q1] ‖ p〈σ′, t〉 ‖ cf [(v, σ) :: q2]

v 6= ⊥ σ′ = σ + σ′′

R-Rec
cb[q1] ‖ p〈σ, let r =← c in t〉 ‖ cf [q2 :: (v, σ′′)] −→

cb[σ :: q1] ‖ p〈σ′, let r = v in t〉 ‖ cf [q2]

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-22

Synchronous

σ′ = σ1 + σ2
R-Send-Rec

cb[] ‖ p1〈σ1, c← v; t〉 ‖ p2〈σ2, let r =← c in t2〉 ‖ cf [] −→
cb[] ‖ p1〈σ′, t〉 ‖ p2〈σ′, let r = v in t2〉 ‖ cf []

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-23

Delayed reads

• so far: delayed or buffered writes
• also delayed reads (load buffers) possible ⇒ “read
events”

More (and more complex) “events”

m(|σ, z := n1|)p and m[(σ, ?n4)]p

• chain of “future references”
• symbolic execution
• nota bene:

• the write itself is not “delayed”
• it’s the negative information (invisibility of other writes

via the shadow sets, that travels slow)

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-24

Memory models

• WMMs, it’s a jungle . . .
• out-of-thin air

• should be avoided (or should it?)
• not even crystal clear what it is.

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-25

. . . but there’s a bottom line

No matter how “relaxed” you want your memory model one
thing is non-negotiable:

DRF-SF
Data-race free programs have to be sequentially consistent
Manson et al. [8]

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-26

Simulation

s1 t1

s2 t2

α α

R

R

“weak simulates strong”
sure thing

“strong simulates weak”

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-26

Simulation

s1 t1

s2 t2

α α

R

R

“weak simulates strong”
sure thing

“strong simulates weak”
definitely not

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-26

Simulation

s1 t1

s2 t2

α α

R

R

“weak simulates strong”
sure thing

“strong simulates weak”
conditionally, for RF programs

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-27

Races

• “simultaneous” access to a shared location, where at
least one is a write access

Manifest race (case W/W)

config C with

C
(z!)p1−−−→s

(z!)p2−−−→s

• race: reachable configuration with manifest race

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-28

Core of the proof

abstraction function/relation

“weak config” → “strong config”

• problem: configs contains “alternatives”

n1(|z:=v1|) ‖ n2(|z:=v2|)

• strong semantics: exactly one value of z

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-29

From local to global view ⇒ consensus

Lemma (Consensus possible)

Weak configurations obey the following invariant⋂
p∈P W

o
P (z@p) 6= ∅ . (2)

• adding also read events to configurations

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-30

RF programs ⇒ stronger consensus
Lemma (Race-free consensus when it counts)

Assume P0 −→∗w P with P0 race-free. If P (z?)p−−−→w or
P

(z!)p−−→w, then there exists a write event m(|z:=v|) such that⋂
pi
W o

P (z@pi) = {m} , (3)

where the intersection ranges over an arbitrary set of
processes which includes p.

Lemma (Race-free consensus)

Weak configurations for race-free programs obey the
following invariant⋂

pi∈P W
o
P (z@pi) = {m} (4)

for some write event m(|z:=v|).

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-31

Conditional simulation

s1 t1

s2 t2

α α

R

R

• augment the configuration with additional read-events
⇒ consensus lemmas
⇒ DRF-SC

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-32

K-Framework

• rewrite-based engine
• used variously for executable semantics

• C++ memory models
• “Ethereum” smart contracts platform
• . . .

• see https://github.com/dfava/mmgo

https://runtimeverification.com/blog/?p=672
https://github.com/dfava/mmgo

Receive in K

R-Rec
v 6= ⊥ σ′ = σ + σ′′

cb[q1] ‖ p〈σ, let r =← c in t〉 ‖ cf [q2 :: (v, σ′′)] −→
cb[σ :: q1] ‖ p〈σ′, let r = v in t〉 ‖ cf [q2]

1 rule <goroutine >

2 <k> <- channel(Ref:Int) => V ... </k>

3 <sigma >

4 <HB > HMap:Map => mergeHB(HMap , HMapDP) </HB>

5 <S> SSet:Set => SSet SSetDP </S>

6 </sigma >

7 <id > _ </id >

8 </goroutine >

9 <chan >

10 <ref > Ref </ref >

11 <type > _ </type >

12 <forward > ListItem(ListItem(V)

13 ListItem(HMapDP)

14 ListItem(SSetDP)) => .List </forward >

15 <backward > BQ:List => ListItem(ListItem(HMap)

16 ListItem(SSet)) BQ </backward >

17 </chan >

18 requires notBool(V ==K $eot)

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-34

Related work

• loads of material on axiomatic semantics
• operational:

• Boudol and Petri based on rewriting theory
• Kang et al.: “promising” semantics with “clocks”
• Flanagan and Freund: adversarial memory
• Demange et al. Plan B (Java buffered write semantics

BMM)
• Pichon-Pharabod and Sewell: operational semantics

avoiding OOTA
• Alrahman et al.
• Matthias Perner et al: parametrized semantics for NI

(earlier today)
• . . .

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-35

Conclusion

• formalizing WMM for some calculus with channel
• DRF-SC simulation proof
• read delays under work

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-36

Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-37

References I

Bibliography
[1] Alrahman, Y. A., Andric, M., Beggiato, A., and Lluch-Lafuente, A. (2014). Can we efficiently check

concurrent programs under relaxed memory models in Maude? In Escobar, S., editor, Rewriting
Logic and Its Applications – 10th International Workshop, WRLA 2014, Held as a Satellite Event of
ETAPS, Grenoble, France, April 5-6, 2014, Revised Selected Papers, volume 8663 of Lecture Notes in
Computer Science, pages 21–41. Springer Verlag.

[2] Boudol, G. and Petri, G. (2009). Relaxed memory models: An operational approach. In Proceedings
of POPL ’09, pages 392–403. ACM.

[3] Demange, D., Laporte, V., Zhao, L., Jagannathan, S., Pichardie, D., and Vitek, J. (2013). Plan B:
A buffered memory model for Java. In Proceedings of POPL ’13, pages 329–342. ACM.

[4] Flanagan, C. and Freund, S. N. (2010). Adversarial memory for detecting destructive races. In
Zorn, B. and Aiken, A., editors, ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 244–254. ACM.

[5] Kang, J., Hur, C., Lahav, O., Vafeiadis, V., and Dreyer, D. (2017). A promising semantics for
relaxed-memory concurrency. In Castagna, G. and Gordon, A. D., editors, Proceedings of POPL ’17,
pages 175–189. ACM.

[6] Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565.

[7] Lamport, L. (1979). How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Transactions on Computers, C-28(9):690–691.

[8] Manson, J., Pugh, W., and Adve, S. V. (2005). The Java memory model. In Proceedings of POPL
’05, pages 378–391. ACM.

[9] Pichon-Pharabod, J. and Sewell, P. (2016). A concurrency-semantics for relaxed atomics that
permits optimisation and avoids thin-air executions. In Proceedings of POPL ’16, pages 622–633.
ACM.

	Introduction
	Calculus
	Correctness
	Conclusion

