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In this talk

• operational semantics for a WMM
• inspired by Go
• channel communication
• based on happens-before

• proof of basic correctness property
• executable within the K rewriting framework
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Memory model

MCM
A specification what to expect from from a shared memory,
what may be observed (by reads) and what not.

• bottom-line: sequential consistency Lamport
(interleaving of reads and writes),
• weak or relaxed: basically weaker than that.

shared memory

thread0 thread1
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How to specify a MM

• in prose (as in https://golang.org/ref/mem)
• litmus tests
• axiomatic (candidate executions)
• operational (SOS)

T0

a: Wx=1

b: Wy=1

ppo 

c: Ry=1rf   

T1

d: Rx=0

ppo 
   fr

https://golang.org/ref/mem
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Go sales pitch

• “language for the 21st century”
• relatively new language (with some not so new
features?)
• a lot of fanfare & backed by Google no less
• existing show-case applications

• docker
• dropbox . . .

http://www.google.com
https://www.docker.com/
https://www.dropbox.com/
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Go’s stated design principles

• appealing to C programmers
• KISS: “keep it simple, stupid”
• built-in concurrency
• “strongly typed”
• efficient
• fast compilation, appealing for scripting
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Go’s non-revolutionary feature mix

• imperative
• object-oriented (?)
• compiled
• concurrent (goroutines)
• “strongishly” typed
• garbage collected
• portable
• higher-order functions and closures
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Calculus

• simple concurrent calculus with “goroutines”
• A-normal form
• channels:

• dynamically created
• “higher-order” channels (à la π . . . )
• bounded channels
• mixed choice

• with “channel guards”
• default-clause



Syntax

v ::= r | n values
e ::= t | v | load z | z := v | if v then t else t | go t expressions
| make (chan T, v) | ← v | v ← v | close v

g ::= v ← v | ← v | default guards
t ::= let r = e in t |

∑
i let ri = gi in ti threads

• ∑
: choice (select, case, default)
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Go’s concurrency model

• only sync-primitive: channel communication (but read
the fine-print)
• shared variable communication possible ⇒
• simple happens-before memory model

Mantra
Don’t communicate by sharing memory; share memory by
communicating. (R. Pike)

• straighforward and simple model, still they advise:
“If you must read the rest of this document [= the
Go MM] to understand the behavior of your pro-
gram, you are being too clever. Don’t be clever.”
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Happens-before

• dates back to Lamport
• “unrelated” to actually “happening before”

Observational + “liberal”
a read can observe a write W unless
1. read definitely “too late”
2. a different write definitely “overwrites” W (shadows)
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Nature of synchronization

• generally:1 restricting otherwise possible interleavings
• in connection with shared memory: intuition often (cf.
write buffers)
“Data Memory Barrier (DMB). This forces all
earlier-in-program-order memory accesses to become
globally visible before any subsequent accesses.”
(random quote, some ARM programmer’s guide)

Happens-before
synchronization = making things INVISBLE

1independent from shared memory

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/CJAIAJFI.html


Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-12

Nature of synchronization

• generally:1 restricting otherwise possible interleavings
• in connection with shared memory: intuition often (cf.
write buffers)
“Data Memory Barrier (DMB). This forces all
earlier-in-program-order memory accesses to become
globally visible before any subsequent accesses.”
(random quote, some ARM programmer’s guide)

Happens-before
synchronization = making things INVISBLE

1independent from shared memory

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/CJAIAJFI.html


Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-13

Two(*) ingredients for HB only

1. program order
2. channel communication

2.1 sending →hb recieving
2.2 full buffer

Sends and receives
• A send on a channel happens-before the corresponding
receive from that channel completes.
• The ith receive on a channel with capacity k
happens-before the i+ kth send from that channel
completes.

• channel close, init, thread creation, packages, locks,
once
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Operational semantics (weak)

Configuration

P ::= p〈σ, t〉 | m(|z:=v|) | c[q] | • | P ‖ P | νn P (1)

thread

n〈σ, t〉

write event

n(|z:=v|)

channel

n[q]
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Operational semantics (weak)

Configuration
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thread
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write event

n(|z:=v|)

channel

n[q]



Write & read steps

. . .

p〈σ, z := v; t〉 −→ p〈σ′, t〉 ‖ n(|z:=v|)

. . .

p〈σ, let r = load z in t〉 ‖ n(|z:=v|) −→ p〈σ, let r = v in t〉 ‖ n(|z:=v|)
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Synchronization = making things
unobservable
• reads and writes: no synchronization
• program order

• the only component of happens-before
• for x:=1; x:=2: value 1 unobservable

but only locally

• channel communication; only (interesting) means of
synchronization

Channel communication
• send the communicated value from sender two receiver

• inform receiver of local knowledge of UNobservable
write events
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Shadow sets and local information

• every write even: unique identifier

thread local information

1. which events are locally known to be unobservable
(shadowed)

2. which events are locally known to have happened-before
(at the current point)

n〈σ, t〉

• local “state” tuple (Ehb, Es), σ : 2(N×X) × 2N .



Read & write once more

• of course: shadow sets used to make writes invisible
• local update of “program order”

σ = (Ehb, Es) σ′ = (Ehb+(n, z), Es+Ehb(z))

p〈σ, z := v; t〉 −→ p〈σ′, t〉 ‖ n(|z:=v|)

σ = (_, Es) n /∈ Es

p〈σ, let r = load z in t〉 ‖ n(|z:=v|) −→ p〈σ, let r = v in t〉 ‖ n(|z:=v|)



Channel communication

• sending values + knowledge about σ

¬closed(cf [q2]) σ′ = σ
R-Send

p〈σ, c← v; t〉 ‖ c[q2] −→ p〈σ′, t〉 ‖ c[(v, σ) :: q2]

v 6= ⊥ σ′ = σ + σ′′

R-Rec
cb[q1] ‖ p〈σ, let r =← c in t〉 ‖ cf [q2 :: (v, σ′′)] −→

cb[σ :: q1] ‖ p〈σ′, let r = v in t〉 ‖ cf [q2]
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Bounded channels

• A send on a channel happens-before the corresponding
receive from that channel completes.
• The ith receive on a channel with capacity k
happens-before the i+ kth send from that channel
completes.

Bounded channels
. There is also a “backward synchronization”
• from an “earlier” receive to a sender

• forward channel (as shown)
• backward channel, propagating local σ knowledge
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Synchronous

σ′ = σ1 + σ2
R-Send-Rec

cb[] ‖ p1〈σ1, c← v; t〉 ‖ p2〈σ2, let r =← c in t2〉 ‖ cf [] −→
cb[] ‖ p1〈σ′, t〉 ‖ p2〈σ′, let r = v in t2〉 ‖ cf []
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Delayed reads

• so far: delayed or buffered writes
• also delayed reads (load buffers) possible ⇒ “read
events”

More (and more complex) “events”

m(|σ, z := n1|)p and m[(σ, ?n4)]p

• chain of “future references”
• symbolic execution
• nota bene:

• the write itself is not “delayed”
• it’s the negative information (invisibility of other writes

via the shadow sets, that travels slow)
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Memory models

• WMMs, it’s a jungle . . .
• out-of-thin air

• should be avoided (or should it?)
• not even crystal clear what it is.
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. . . but there’s a bottom line

No matter how “relaxed” you want your memory model one
thing is non-negotiable:

DRF-SF
Data-race free programs have to be sequentially consistent
Manson et al. [8]
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Simulation

s1 t1

s2 t2

α α

R

R

“weak simulates strong”
sure thing

“strong simulates weak”
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Simulation

s1 t1

s2 t2

α α

R

R

“weak simulates strong”
sure thing

“strong simulates weak”
definitely not
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Simulation

s1 t1

s2 t2

α α

R

R

“weak simulates strong”
sure thing

“strong simulates weak”
conditionally, for RF programs
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Races

• “simultaneous” access to a shared location, where at
least one is a write access

Manifest race (case W/W)

config C with

C
(z!)p1−−−→s

(z!)p2−−−→s

• race: reachable configuration with manifest race
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Core of the proof

abstraction function/relation

“weak config” → “strong config”

• problem: configs contains “alternatives”

n1(|z:=v1|) ‖ n2(|z:=v2|)

• strong semantics: exactly one value of z
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From local to global view ⇒ consensus

Lemma (Consensus possible)

Weak configurations obey the following invariant⋂
p∈P W

o
P (z@p) 6= ∅ . (2)

• adding also read events to configurations
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RF programs ⇒ stronger consensus
Lemma (Race-free consensus when it counts)

Assume P0 −→∗w P with P0 race-free. If P (z?)p−−−→w or
P

(z!)p−−→w, then there exists a write event m(|z:=v|) such that⋂
pi
W o

P (z@pi) = {m} , (3)

where the intersection ranges over an arbitrary set of
processes which includes p.

Lemma (Race-free consensus)

Weak configurations for race-free programs obey the
following invariant⋂

pi∈P W
o
P (z@pi) = {m} (4)

for some write event m(|z:=v|).
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Conditional simulation

s1 t1

s2 t2

α α

R

R

• augment the configuration with additional read-events
⇒ consensus lemmas
⇒ DRF-SC
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K-Framework

• rewrite-based engine
• used variously for executable semantics

• C++ memory models
• “Ethereum” smart contracts platform
• . . .

• see https://github.com/dfava/mmgo

https://runtimeverification.com/blog/?p=672
https://github.com/dfava/mmgo


Receive in K

R-Rec
v 6= ⊥ σ′ = σ + σ′′

cb[q1] ‖ p〈σ, let r =← c in t〉 ‖ cf [q2 :: (v, σ′′)] −→
cb[σ :: q1] ‖ p〈σ′, let r = v in t〉 ‖ cf [q2]

1 rule <goroutine >

2 <k> <- channel(Ref:Int) => V ... </k>

3 <sigma >

4 <HB > HMap:Map => mergeHB(HMap , HMapDP) </HB>

5 <S> SSet:Set => SSet SSetDP </S>

6 </sigma >

7 <id > _ </id >

8 </goroutine >

9 <chan >

10 <ref > Ref </ref >

11 <type > _ </type >

12 <forward > ListItem( ListItem(V)

13 ListItem(HMapDP)

14 ListItem(SSetDP) ) => .List </forward >

15 <backward > BQ:List => ListItem( ListItem(HMap)

16 ListItem(SSet)) BQ </backward >

17 </chan >

18 requires notBool( V ==K $eot )



Operational
Semantics of a
Weak Memory
Model with
Channel

Communication

Daniel Fava,
Martin Steffen,
Volker Stolz

Introduction

Calculus

Correctness

Conclusion

0-34

Related work

• loads of material on axiomatic semantics
• operational:

• Boudol and Petri based on rewriting theory
• Kang et al.: “promising” semantics with “clocks”
• Flanagan and Freund: adversarial memory
• Demange et al. Plan B (Java buffered write semantics

BMM)
• Pichon-Pharabod and Sewell: operational semantics

avoiding OOTA
• Alrahman et al.
• Matthias Perner et al: parametrized semantics for NI

(earlier today)
• . . .
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Conclusion

• formalizing WMM for some calculus with channel
• DRF-SC simulation proof
• read delays under work
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