
Translating Active Objects into
Colored Petri Nets for

Communication Analysis

Anastasia Gkolfi, Crystal Chang Din, Einar Broch
Johnsen, Lars Michael Kristensen, Martin Steffen,

and Ingrid Chieh Yu

Technical report Nr. 479

IFI
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

February 16, 2018

Translating Active Objects into Colored
Petri Nets for Communication Analysis

Anastasia Gkolfia, Crystal Chang Dina, Einar Broch Johnsena, Lars Michael Kristensenb,
Martin Steffena, Ingrid Chieh Yua

aDepartment of Informatics, University of Oslo, Norway
bDepartment of Computing, Mathematics and Physics, Høgskulen p̊a Vestlandet, Norway

Abstract

Actor-based languages attract attention for their ability to scale to highly parallel architectures. Ac-
tive objects combine the asynchronous communication of actors with object-oriented programming
by means of asynchronous method calls and synchronization on futures. However, the combination
of asynchronous calls and synchronization may introduce communication cycles which lead to a
form of communication deadlock and livelock. This paper addresses such communication deadlocks
and livelocks for ABS, a formally defined active object language which additionally supports coop-
erative scheduling to express complex distributed control flow, using first-class futures and explicit
process release points. Our approach is based on a translation of the semantics of ABS into colored
Petri nets, such that a program and its state correspond to a marking of this net. We prove the
soundness of this translation and demonstrate by example how the implementation of this net can
be used to analyze ABS programs with respect to communication deadlocks and livelocks.

Keywords: Colored Petri nets, modelling, model checking, semantics, static analysis, concurrency

1. Introduction

The Actor model [1, 2] of concurrency is attracting increasing attention for its decoupling of con-
trol flow and communication. This decoupling enables both scalability (as argued with the Erlang
programming language [3] and Scala’s actor model [4]) and compositional reasoning [5–7]. Actors
are independent units of computation which exchange messages and execute local code sequentially.
Instead of pushing the current procedure (or method activation) on the control stack when sending
a message as in thread-based concurrency models, messages are sent asynchronously, without any
transfer of control between the actors. In the actor model, a message triggers the execution of a
method body in the target actor, but a reply to the message is not directly supported. Extending
the basic actor model, active object languages (e.g., [8–10]) combine actor-like communication with
object orientation, use so-called futures to reintroduce synchronization by combining asynchronous
message sending with the call and reply structure of method calls. A future can be seen as a mail-
box from which a reply may be retrieved, such that the synchronization is decoupled from message

Email addresses: natasa@ifi.uio.no (Anastasia Gkolfi), crystald@ifi.uio.no (Crystal Chang Din),
einarj@ifi.uio.no (Einar Broch Johnsen), Lars.Michael.Kristensen@hvl.no (Lars Michael Kristensen),
msteffen@ifi.uio.no (Martin Steffen), ingridcy@ifi.uio.no (Ingrid Chieh Yu)

Preprint submitted to Elsevier February 16, 2018

sending and associated with fetching the reply from a method call. The caller synchronizes with
the existence of a reply from a method call by performing a blocking get-operation on the future
associated with the call. However, this synchronization may lead to complex dependency cycles in
the communication chain of a program, and gives rise to a form of deadlock with a set of mutually
blocked objects. This situation is often called a communication deadlock [11].

In this paper we work with the active object language ABS [9, 12]. ABS is characteristic in
that it supports cooperative concurrency in the active objects. Cooperative concurrency allows the
execution of a method body to be suspended at explicit points in the code, for example by testing
whether a future has received a value. Cooperative concurrency leads to a form of local race-free
interleaving for concurrently executing active objects, which allows more execution traces than in
standard active objects. However, while no progress is made at the suspension points, the scheduler
is continously activating and releasing processes. We call this situation communication livelock, in
the sense that the object is not blocked, but the generated processes can not progress due to that
each of them is busy-waiting for a process on another object.

This paper addresses the problem of communication deadlock and livelock for the active object
language ABS. Our approach to tackle these problems is based on a translation of the formal se-
mantics of ABS into colored Petri nets (CPN) [13]. Petri nets provide a basic model of concurrency,
causality, and synchronization [14, 15], which has previously been used to analyze communication
patterns and deadlock (e.g., [16, 17]). CPNs extend the basic Petri net model with support for
modeling data. In contrast to previous work, we do not produce a different Petri net for each
ABS program to be analyzed. Instead, we provide an encoding and implementation of the formal
semantics of ABS itself as a net, and use colored tokens in this net to encode the program and its
state. Consequently, the number of places in the net is independent of the size of a program, and
different programs are captured by different markings of the net. This also allows us to capture
dynamic object creation by firing transitions in the net. The main contributions of this paper are:

• an encoding of the formal semantics of ABS in CPNs;

• a translation of concrete ABS programs into markings of this net;

• a soundness proof for the translation from ABS to CPN; and

• a case study demonstrating how to analyze communication deadlocks and livelocks for active
objects in ABS using the implementation of this net in CPN Tools [18].

This paper extends a paper from FSEN 2017 [19]; compared to that paper we here present the
translation of ABS into CPN and the associated correctness proof in full detail, and add support
for livelock analysis. The communication analysis has also been improved to be directly supported
in the CPN Tools.

The paper is organized as follows: Section 2 introduces the ABS language, focusing on lan-
guage features for communication and synchronization, and Section 3 introduces colored Petri nets.
Section 4 discusses the translation from ABS semantics to colored Petri nets and Section 5 the
translation from ABS configurationts to Petri net markings, before Section 6 considers the sound-
ness of the translation. Section 7 presents ABS examples and show how the CPN Tool detects
communication deadlock and livelock, respectively. Finally, Section 8 concludes the paper with a
discussion of related and future work.

2

2. The ABS Concurrency Model

The Abstract Behavioral Specification language (ABS) [9, 12] is an object-oriented language
for modeling concurrent and distributed systems. ABS is an active object language [10] which
combines asynchronous communication from the Actor model [1, 2] with object orientation, and
supports cooperative scheduling such that process release points are explicit in the program code.

For the purposes of this paper, we focus on the communication and synchronization aspects of
ABS. Also we ignore other aspects such as concurrent object groups (i.e., we consider one object
per group), the functional sublanguage, and deployment aspects such as deployment components
and resource annotations [12]. ABS is statically typed, based on interfaces as object types [9].
Ignoring the details of the type system, we let primitive types such as Int and Bool and class
names constitute the types of a program, and ignore subtyping issues.

The above simplifications make the translation of ABS into colored Petri nets (which we will
discuss in detail in the rest of the paper) lead to coarser program over-approximations. It is possible
to add these details to the translation in a similar way, but in the current work we are interested
in the communication topologies of ABS rather than in the full functional details as our focus is on
communication analysis and the detection of deadlocks and livelocks.

2.1. The Syntax

Figure 1 presents the syntax of ABS [9], focusing on communication and synchronization. Pro-
grams P consist of class definitions CL and a main block representing the program’s initial activity.
Statements s include standard control-flow constructs such as sequential composition, assignment
statement, conditionals, and while-loops. ABS supports asynchronous method calls f “ e!mpeq
where the caller and callee proceed concurrently and f is a so-called future. A future is a “mailbox”
where the return value from the method call may eventually be returned to by the callee. A future
that contains a return value is resolved. The result of the asynchronous call can then be obtained
by f. get. Note that we may alternatively write asynchronous method call statement as e!mpeq, if
the return value is not required. ABS also supports local synchronous calls which synchronize in
the usual reentrant way, passing control directly to the called method and then back to the callee
upon completion.

The (active) objects of ABS act like monitors, allowing at most one method activation, or
process, to be executed at a time. The local execution in an object is based on cooperative scheduling
by introducing a guard statement await g: If g evaluates to true, execution may proceed; if the
guard g evaluates to false, execution is suspended and another process may execute. For a future f ,
the guard f? evaluates to true if f contains the return value from the associated method call and
otherwise it evaluates to false. The suspend statement always suspends the executing process. The
typical usage of asynchronous calls follow the pattern f “ e!mpeq; . . . ;await f?; . . . ;x “ f. get.

2.2. The Operational Semantics

The operational semantics of ABS specifies transitions between configurations. A run-time
configuration contains objects op|a, p, q|q, messages xo1.mpvqyf , resolved futures xvyf , and unresolved
futures xKyf . We use ‖ to denote the (associative and commutative) parallel composition of such
entities in a run-time configuration. Class definitions (which do not change during execution), are
assumed to be implicitly available in the operational rules. The semantics maintains as invariant
that object identities o and future identities f are unique. Objects op|a, p, q|q are instances of classes
with an identifier o, an object state a which maps instance variables to values, an active process

3

Syntactic categories.
s in Stmt
e in Expr
g in Guard

Definitions.
P ::“CL tT x; s u

CL ::“ class C pT xq tT x; Mu
Sg ::“ T m pT xq
M ::“ Sg tT x; s u
s ::“ s; s | skip | x “ rhs | if e tsu else tsu

| while e do s | suspend | await g | return e
rhs ::“ e | cm | new Cpeq
cm ::“ e!mpeq | x. get
g ::“ x? | g ^ g

Figure 1: Abstract syntax of ABS, where overline notation such as e and x denotes (possibly empty) lists over the
corresponding syntactic categories.

p, and an unordered queue q of suspended processes that are candidates to be activated by the
scheduler if the currently active process will suspend or return. A process p is a triple xl | syf with
a local state l (mapping method-local variables to values), a statement s, and a future reference
f . We omit the future reference in the rules if it is unnecessary. The special process idle is
used to represent that there is no active process. A message xo1.mpvqyf represents a method call
before it starts to execute and the resolved future xvyf the corresponding return value after method
execution.

Figure 2 gives the rules of the operational semantics, concentrating on the behavior of a single
active object. A skip statement has no effect (cf. rule Skip). In an idle object, the scheduler selects
(and removes) a process p from the queue, and starts executing it (cf. rule Activate). Executing
suspend moves the active process to the queue, resulting in an idle object (cf. rule Suspend).
Assign1 and Assign2 are the assignment rules. Assignments are either to instance variables or
local variables, where σ is used to abbreviate the pair of local states l and object states a. We
assume that these are disjoint, so the two cases are mutually exclusive. We omit the standard rules
for conditionals and while-loops.

Object creation is captured by the New-Object rule, where a1 is the initial state of the new
object (determined by an auxiliary function atts) and p1 is the object’s initial activity. An asyn-
chronous method call creates a fresh future reference f and adds a message and unresolved future
corresponding to the call to the configuration (cf. rule Async-Call). Binding a method name to
the corresponding method body is done in rule Bind-Mtd. The binding operation, locating the
code of the method body and instantiating the formal parameters, works in the standard way via
late-binding, consulting the class hierarchy. The return statement stores the return value in the
corresponding future, resolving the future (cf. rule Return).

The get statement allows the result value to be obtained from the corresponding future reference
if the future’s value has been produced, in which case the future has been resolved (cf. rule Get).
Otherwise, the get statement blocks. An attempt to fetch a future value via a get statement
does not introduce a scheduling point. Should the value never be produced, e.g., because the
corresponding method activation does not return, the client object of the future, executing the
get statement, will be blocked. A common pattern for obtaining a future value therefore makes
use of await: executing await x?;x. get checks whether or not the future reference for variable
x has been produced. If not, the semantics of the await statement introduces a scheduling point.
Once the guard x? evaluates to true, the future’s value remains available so x. get will not block
(see again rule Read-Fut). Executing an await with a guard expression which evaluates to the

4

(Skip)

op|a, xl |skip; sy, q|q
_ op|a, xl | sy, q|q

(Activate)

p “ selectpq, aq
op|a, idle, q|q _ op|a, p, qzp|q

(Suspend)

op|a, xl |suspend; sy, q|q
_ op|a, idle, xl | sy :: q|q

(Assign1)

x P domplq
op|a, xl | x “ e; sy, q|q

_ op|a, xlrx ÞÑ rressσs | sy, q|q

(Assign2)

x P dompaq
op|a, xl | x “ e; sy, q|q

_ op|arx ÞÑ rressσs, xl | sy, q|q

(Bind-Mtd)

p “ bindpo,m, v, fq
op|a, xl | sy, q|q ‖ xo.mpvqyf

_ op|a, xl | sy, p :: q|q

(New-Object)

freshpo1q a1 “ attspC, rressσ, o1q
op|a, xl | x “ new Cpeq; sy, q|q

_ op|a, xl | x “ o1; sy, q|q ‖ o1p|a1, idle,H|q

(Async-Call)

rressσ “ o1 freshpfq
op|a, xl | x “ e!mpeq; sy, q|q

_ op|a, xl | x “ f ; sy, q|q ‖ xo1.mprressσqyf ‖ xKyf
(Return)

op|a, xl |return peq; syf , q|q ‖ xKyf
_ op|a, idle, q|q ‖ xrressσyf

(Read-Fut)

f “ rressσ
op|a, xl | x “ e. get; sy, q|q ‖ xvyf
_ op|a, xl | x “ v; sy, q|q ‖ xvyf

(Await1)

rressσ “ f
op|a, xl |await e; sy, q|q ‖ xvyf

_ op|a, xl | sy, q|q ‖ xvyf

(Await2)

rressσ “ f
op|a, xl |await e; sy, q|q ‖ xKyf

_ op|a, xl |suspend;await e; sy, q|q ‖ xKyf
(Self-Sync-Call)

lpdestinyq “ f 1 rressσ “ o rressσ “ v
freshpfq bindpo,m, v, fq “ xl1 | s1y

op|a, xl | x “ e.mpeq; sy, q|q
_ op|a, xl1 | s1; contpf 1qy, xl | x “ f. get; sy :: q|q ‖ xKyf

(Self-Sync-Return-Sched)

l1pdestinyq “ f
op|a, xl | contpfqy, xl1 | sy :: q|q

_ op|a, xl1 | sy, q|q
Figure 2: Operational semantics

identifier of a resolved future, behaves like a skip (cf. rule Await1). An await on a list of futures
is equivalent to a list of awaits for individual futures. If the future corresponding to the guard
expression has not been resolved, a suspend statement is introduced to enable scheduling another
process (cf. rule Await2).

For synchronous self-calls, possession of the object directly transfers control from the current
process to the process of the invoked method and back, bypassing the Suspend and Activate
rules. Technically, a special cont instruction is here inserted at the end of the statement list of
the new process in rule Self-Sync-Call, which is then used to re-activate the caller process in
rule Self-Sync-Return-Sched. The expression destiny records the method’s future; i.e., destiny
stores the return address of the method activation.

5

1 class Service(Int limit) {
2 Producer prod = new Producer(); Proxy proxy = new Proxy(limit,this,prod);
3 Proxy lastProxy = proxy;
4

5 Void run() { this!produce(); }
6 Void subscribe(Client cl){Fut<Proxy> f; f = lastProxy!add(cl); lastProxy = f.get;}
7 Void produce(){proxy!start publish(); }
8 }
9

10 class Proxy(Int limit, Service server, Producer prod) {
11 List<Client> myClients = Nil; Proxy nextProxy;
12

13 Proxy add(Client cl){ Proxy lastProxy = this; Fut<Proxy> f’;
14 if length(myClients) < limit {myClients = append(myClients, cl);}
15 else {if nextProxy == null {nextProxy = new Proxy(limit,server,prod);}
16 f’ = nextProxy!add(cl); lastProxy = f’.get;} return lastProxy; }
17

18 Void start publish(){ Fut<Proxy> f’’; f’’ = prod!detectNews(); await f’’?;
19 News ns = f’’.get; this!publish(ns); }
20

21 Void publish(News ns){ myClients!signal(ns);
22 if nextProxy == null {server!produce();} else {nextProxy!publish(ns);} }
23 }

Figure 3: Implementation of the publisher-subscriber example.

2.3. ABS Example

We provide a publisher-subscriber example in Fig. 3 to present the ABS language. Service
objects publish news updates to subscribing clients through a chain of Proxy objects. Each proxy
object handles a bounded number of clients. Service objects handle a subscribe request effi-
ciently by delegating its time-consuming parts to Proxy objects, and the proxies publish news to
clients using asynchronous calls (without futures) to make the cooperation efficient. The code in
line 6 expresses that a Service object invokes method add on a Proxy object through method
subscribe. Similarly, the code in line 16 expresses that a Proxy object invokes method add on
the next Proxy object through method add. Note that both cases contain asynchronous blocking
calls of the form f “ e!mpeq; . . . ;x “ f.get, where there are no suspension (scheduling) points in
between. The caller of the add method is blocked until it receives the results. On the other hand, a
Proxy publishes news only when it receives the news. When there is no arrival of news, the Proxy
object meanwhile performs other actions. This interleaving behaviour is achieved by the usage of
await statement for explicit process synchronization.

3. Colored Petri Nets

Petri nets capture true concurrency in terms of causality and synchronization [14, 15], and
consist of places, transitions and arcs. Colored Petri nets (CPNs), a well-established form of high-

6

level Petri nets [20], extend the basic Petri net formalism to enable the modelling of data [13, 21].
In CPNs, the data values are multisorted or typed. Types, representing sets of values, are called
color sets in CPN terminology, and individual values are seen as colors. A type can be arbitrarily
complex, defined by many sorted algebra in the same way as abstract data types. Each place in a
CPN is typed; i.e., a place has an associated color set which determines the kind of data (“colored
tokens”) the place can contain. Tokens in a typed place represent individual values of that type.
In the following, we formally introduce CPNs in their basic form, without hierarchies. Hierarchies,
which enrich the nets with modularity for practical reasons, require a more complicated though
equivalent definition. The basic definition of CPNs suffices for our purposes as any hierarchical
CPN can be unfolded to a semantically equivalent non-hierarchical CPN [13].

Definition 1 (Colored Petri net). A colored Petri net (CPN) is a tuple pP, T,A,Σ, V, C,G,E, Iq
where

1. places P and transitions T are disjoint finite sets;

2. A is the set of arcs, such that A Ď pP ˆ T q 9Y pT ˆ P q;
3. Σ is a finite set of types (where each individual type is seen as a non-empty “color set”);

4. typed variables V form a finite set, i.e., typepvq P Σ for all v P V ;

5. a coloring C : P Ñ Σ associates a type to each place.

6. labeling functions G : T Ñ ExprV and E : A Ñ ExprV associate expressions with free
variables from V to transitions, resp. to arcs. Expressions associated with transitions are
called guards, and we write e and g for expressions resp. guards;

7. an initialization function I : P Ñ ExprH associates an expression without free variables to
every place.

The “static” structure of a Petri net forms a graph, with the places and transitions as nodes
and the arcs as edges. Places and transitions are disjoint by the arc condition from Definition 1(2),
so the places, transitions, and arcs of a Petri net form a directed, bi-partite graph: An arc pp, tq
is outgoing for a place p and incoming for a transition t, whereas an arc pt, pq is incoming for
p and outgoing for t. The guards associated with transitions express synchronization conditions
which, together with the expressions on the arcs, capture the transition semantics of CPNs. Since
tokens are individually typed values and expressions (including guards) contain free variables, the
enabledness of transitions depends on the choice of values for the free variables.

We assume that expressions are appropriately typed, as follows. Guards for transitions are
Boolean expressions (i.e., for result type of a guard g, typepgq “ Bool . Expressions for arcs, on the
other hand, are “multi-set typed”: Assume an arc connected to a place p (either as source or as
target of the arc) with Cppq as the type of p. Then the expression labelling the arc has multi-sets
over T as resulting type, (i.e., typepeq “ Cppq Ñ N. With the “tokens” of the classical Petri nets
now generalized to (appropriately typed) closed expressions, the initialization function attaches a
multiset of such closed expressions to each place of the net, such that typepIppqq “ Cppq Ñ N, for
all places p. The initialization function corresponds to the so-called initial marking of the net (for
the definition of markings, see below).

Example 2 (Colored Petri nets). Let’s use the very small net from Figure 4 to illustrate the
definition of CPNs and related concepts. The example has two places p1 and p2 and one transition
t, connected by two arcs. Cpp1q and Cpp2q are respective types from Σ of the two places (attached to
the places by the “coloring” function C). The two arcs carry expressions e1 and e2, correspondingly,

7

p1
t

g

p2

e1 e2

Figure 4: Illustration of CPN

and the transition is decorated by a guard g. The black “bullets” in the places are tokens as in
classical Petri nets; for CPNs, tokens are individual values and each token on p1 and p2 must have
a data value that belongs to Cpp1q and Cpp2q, respectively. See also Example 4 below.

Tokens in a CPN correpond to (values of) closed expressions. The guards on transitions and the
expressions attached to the arcs, which together govern the dynamic behavior of a CPN, contain
free variables, so their interpretation depends on choosing values for the those variables. Variable
bindings (or variable assignments) b are mappings from variables to values; we assume that bindings
respect the types of the involved variables. Let Varptq denote the variables of a transition (where
Varptq Ď V), which are the variables in the guard of t and the variables of the arc expressions of the
arcs connected to t. The binding of a transition covers all variables from Varptq. Let rressb denote
the value of expression e under variable binding b. A binding satisfies a guard expression g if rrgssb
evaluates to true.

The current state or configuration of a CPN is given by a so-called marking and the dynamic
behavior of such a net is described by sequences of steps.2 Markings associate multi-sets of appro-
priately typed values to places. Steps transform markings in the way specified by the expressions
on the arcs and under the condition, that the guards of the concerned transitions are satisfied.
Given a CPN, a marking M attaches to each place p a multiset of appropritately typed values, i.e.
Mppq : Cppq Ñ N. As mentioned shortly earlier, the net’s initialization function I is used to provide
the initial marking : M0ppq “ rrIppqss. Note that the expressions in Ippq don’t contain variables,
hence rrIppqss is well-defined without a variable binding (resp. under the empty variable binding).

A step is a selection of a subset of the net’s transitions together with appropriate bindings for
the variables of these transition such that the selected transitions are enabled, as defined below.
Technically, a step Y is a function of type Y : T Ñ ppVar Ñ Valq Ñ Nq, assigning (“selecting”)
a multi-set of bindings to each transition, where for all transitions t and all bindings b from Y ptq,
rrGptqssb “ true. As usual, the bindings are assumed to be consistent with the typing and addition-
ally, must cover the variables of the transition. It’s required that the step is non-empty in that for
at least one transition, the multi-set of bindings is non-empty (an empty step Y would correspond
to a stutter-transition without effect). Note that the notion of step is defined independent from a
marking, i.e., independent from the current configuration of a net. Steps can be seen equivalently
as a multi-set of pairs of transitions and bindings, i.e., of type pT ˆ pVar Ñ Valqq Ñ N. We call
the elements pt, bq of such multi-sets also binding elements.

To use a step to transform a marking into a successor marking, not only must the selected
bindings satisfy the guards of the selected transitions. In addition, the marking prior to doing the
step must assign “enough” tokens (i.e., values) to the places feeding into to the selected transitions.

2One also finds the words “token distribution” and (non-empty) “binding distribution” as alternative terminology
for markings and steps.

8

This is captured by expressions Epp, tq on the arcs of the selected transitions.

Definition 3 (Enabledness of transitions and steps). Let Ďm denote the ordering relation over
multisets. A transition t is enabled for binding b in a marking M if

1. rrGptqssb “ true, and

2. Mppq Ěm rrEpp, tqssb, for all places p P P .

A step Y is enabled in a marking M if Mppq Ěm rrEpp, tqssY for all places p, where rrEpp, tqssY
represents the multi-set

ř
pt,bqPY rrEpp, tqssb.

In abuse of notation, we use the multi-set comparison symbols Ďm, Ěm, etc. also for comparing
markings in a pointwise manner, i.e., M1 Ďm M2 iff M1ppq Ďm M2ppq, for all places p. Note that
the condition rrGptqssb “ true for guard satisfaction is not needed for the enabledness of steps, as the
notion of enabling of a binding already requires that. When t is enabled for b in M , the transition
may occur or “fire” (given b, leading to the marking M 1 where M 1ppq “ pMppq ´ rrEpp, tqssbq `
rrEpt, pqssb, for all places p, and where ` and ´ on the multiplicity of the elements correspond to
multi-set union and multi-set difference (where for the latter S1 ´ S2 is defined only if S2 Ďm S1,
which is assured by the condition on steps for being enabled). Similarly for enabled steps Y ,

M1
Y� M2 denotes that a marking M1 evolves into M2 by “firing” step Y . A (finite) occurrence

sequence is a sequence of markings and steps of the form

M1

Y1�M2

Y2�M3 . . .Mn

Yn�Mn`1 . (1)

We also need to refer to the projection of an occurrence sequence onto the involved transitions,
i.e., omitting bindings and markings: an occurrence word is a finite sequence of transitions, such
that there exist bindings and markings such that it gives rise to an ocurrence sequence as given in
equation (1).

The “true concurrency” semantics typical for Petri nets allows the simultaneous firing of tran-
sitions in a step. Whereas steps are required to be non-empty, a step which only fires one pair

of transition t and binding b, is denoted
t,bÑ. A step semantics restricted to such single transition

steps is equivalent to the unrestricted semantics, but corresponds to “interleaving concurrency”. In
the rest of the paper we consider such single transition steps and, when obvious, the binding b is
omitted.

Example 4 (Bindings, markings, steps). Let’s use Figure 5 to illustrate the introduced concepts.
Assume place p1 on the upper left is typed by a type C “ ta, b, cu, and the other two places, p2 and
p3 are typed by the natural numbers. As for the expressions on the arcs, assume the following: let
variables x and y be typed by natural numbers and z1 and z2 by the three-element type C.

e2 “ 2ˆm y
e3 “ 3ˆm p4xq
g “ z1 “ z2 ^ x ě y

Multi-set “multiplicity” is stated by the natural number left to ˆm. The arc from p1 to t is not
decorated by an expression e1, which is assumed as e1 “ 0ˆm z.

Assume further the following two bindings

b1 “ rx ÞÑ 2, y ÞÑ 1, z1 ÞÑ a, z2 ÞÑ bs and b2 “ rx ÞÑ 3, y ÞÑ 2, z1 ÞÑ a, z2 ÞÑ bs .

9

a
a c

p1

1 1

2 3

p2

t

g

5

p3
e2

e3

(a) Marking M

a
a c

p1

2 3

p2

t

g

5 8

8 8

p3
e2

e3

(b) Marking M 1 after the step

Figure 5: Illustration of markings, bindings, and steps

Both bindings satisfy the guard g, i.e., rrgssb1 “ true as well as rrgssb2 “ true. For the marking M
given in Figure 5a, though, only b1 enables the transition t. This is due to the arc pp2, tq, whose
expression e2 requires a multiplicity of 2 or more for any choice of y, and in the current marking,
that requires y ÞÑ 1. Arc pp1, tq does not impose any restrictions on the presence of values in the

marking for p1. Taking pt, b1q as a step, we get M
t,b1Ñ M 1, with M 1 given in Figure 5b on the right.

4. Translating ABS Semantics to Colored Petri Nets

In this section, we define the translation from ABS to CPNs. After a short introduction covering
the core ideas of the translation (Section 4.1), we proceed into a more in depth presentation of how
the translation has been implemented. Sections 4.2 and 4.3 highlight crucial parts of how the ABS
semantics are represented on the Petri net level, focusing on the active objects creation and the
communication mechanism respectively and, in the latter case, we see asynchronous method calls
and the resolution of futures via get statement.

4.1. Overview over the Petri Net Semantics for ABS

The starting point of the translation are abstract ABS programs, i.e. programs where data
values have been abstracted already. Remember that, among other questions, reachability in Petri
nets is decidable (see [22] for a survey of decidability issues for (classical) Petri nets) but then
again, whether data-abstracted ABS programs are Turing complete or not, is an open question.
Still, there are two remaining sources of infinity : creation of (active) objects and creation of pro-
cesses and accompanying future references via asynchronous method calls. It should be noted that
in absence of synchronous, reentrant method calls, unboundedly growing stacks do not contribute
to the potential unboundedness of the state space. In the translation, one can conceptually dis-
tinguish between language-specific aspects and program-specific aspects: the ABS language and its
semantics is represented by one CPN, common for all programs. This CPN therefore can be seen
as a translation of the ABS-language as such. Roughly, each semantic rule from the operational
semantics of Fig. 2 is represented by transitions and places, with appropriate types and guards.

As a result, one particular program, resp. a particular run-time configuration of a program, is
represented by a marking of the Petri net. The expressive power of colored Petri nets is crucial to
achieve such a conceptually clear and structural translation: since tokens are distinguishable, the
transitions and places operates on typed values making it possible to represent the components of a

10

Busy
objects
(p15)

FULLOBJ

Selected
Process
(p11)

PROC

1

Process
Counter

(p4)
PROC

0

Idle
Objects
(p16)

FULLOBJ

(p12)

OBJ

1

Blocked
Objects
(p17)

FULLOBJPROC

2`((0,0,0,[0],[0]),0)

(p13)

OPLENGTHLIST

(0,[],[])

(p14)

OPLENGTH

(0,0,0) Communication

Communication

Creation

Creation

Figure 6: Top-level module of the ABS semantics implementation in CPN Tools

configuration in a clean manner. For instance, object identities and process resp. future identities
are represented naturally by resp. types, which correspond to integers.

Here, we should notice that for the implementation of the translation, we used hierarchical CPNs
while, in Definition 1 of Section 3 we introduced CPNs without hierarchies. This was a decision
made for the sake of the simplicity at the level of the definition. Notice that hierarchical CPNs can
be reduced to non-hierarchical ones through unfolding, hence the two definitions are equivalent. At
the practical level, hierarchies add more convenience, since they allow organizing the model into
smaller parts (modules). This offers better human understanding when the size of the model is large
and reusability, if some parts of the net are needed repeatedly. Modules can have a hierarchical
structure, hence modules can have submodules. Submodules are hidden parts of the net, appearing
in the upper module as a black-box in the form of a so-called substitution transition. In the figures,
the substitution transitions are the transitions with the double outer lines. Similarly, the places
that have double lines are the places that are common in more than one module. The indications
in the little rectangular tags next to those places demonstrate their role regarding to each module,
i.e. if their marking behave like an input, output or both to the module.

From now on, we will refer to the whole of our implementation of ABS semantics in CPN Tools
as CPN–ABS. Figure 6 shows the top-level module of CPN–ABS. It consists of two substitution
transitions, one related to the object creation and one related to the communication mechanism
of ABS. As we shall see in the following sections, the representation of active objects in the net

11

Objectid
counter

(p9)
OBJ

0

(p29)

INT

1

Process
CostInitiaton

(p5)

PROCOSTLIST

Process
Counter

(p4)
In/Out

PROC

0

(p14)Out

OPLENGTH

(0,0,0)

Busy
objects
(p15)Out FULLOBJ

Selected
Process
(p11)

In/Out

PROC

1

(p12) In/Out

OBJ

1

(p13)Out

OPLENGTHLIST

(0,[],[])

InitProcess
Creator

InitProcessCreator

SelectProcess

SelectProcess

NewObject

NewObject

SelectObject

SelectObject

Figure 7: CPN–ABS module for dynamic object creation (i)

is made by tokens carrying the appropriate information. Their creation is related to the substi-
tution transition “Creation”. Following the semantics of ABS, they can be located in exactly one
among the places “Busy Objects”, “Idle Objects”, and “Blocked Objects”, which are connected to
the substitution transition “Communication”.

Recall from Section 2 that the communication between objects is achieved through method calls.
The rest of the places in Fig. 6 support the soundness of the model keeping information related
to the processes (i.e. they contain tokens acting as identifiers or achieving firing order of some
transitions). In the implementation, we named most of the transitions and the places in a way
reflecting their role to the ABS semantics. We also used a more formal (indexed) naming: pi for
the places and aj for the transitions. This naming will be used mostly in Section 6. In the rest of
this section, for the sake of simplicity, we omit referring to details like places, arcs and inscriptions
which have an indirect relation with the semantics or with an obvious meaning.

12

Class
(p2)

In/Out
CLASS

0

(p13)Out

OPLENGTHLIST

(0,[],[])

Objectid
counter

(p9)

In/Out

OBJ

0

Busy
objects
(p15)

Out
FULLOBJ

Process
CostInitiaton

(p5)
In

PROCOSTLIST

(p14)Out

OPLENGTH

(0,0,0)

(p29)Out

INT

1 New Object
(a7)

u1>0
andalso
(z=0 orelse not (mem l' z))

u1

(ob1+1,[],[])

ob1+1

(ob1+1,u1,z,pl1,cl1)

ob1

(pl1,cl1)

(ob1+1,0,0)

1

Figure 8: CPN–ABS module for dynamic object creation (iii)

4.2. Dynamic Creation of Active Objects

In this section, we describe the modules that are responsible for the dynamic object creation
and conform to the ABS active object creation semantics, hence they are submodules of the top-
level module shown in Figure 6 and related to the substitution transition “Creation”. In Fig.
7 we see such a module. Transition “New Object” substitutes the subnet, which produces tokens
representing the ABS objects at the “Busy Objects” place. According to the language, each time an
object is created, an initial (active) process is dedicated to it. As a result, a fresh process should be
created. Same in CPN–ABS, the subnet related to the substitution transition “InitProcessCreator”
produces this process and inserts it in the (initially empty) process list (p5) , which is analog to the
process pool each ABS object has.

Figure 8 shows in more detail objects creation. We can see that place p9 is responsible for
the freshness of each new object identifier since its marking is an object counter. Every time the
counter increases (var ob1 ÞÑ ob1 ` 1), the fresh value is being passed to the new object tuple
in place “Busy Objects” (p15). This tuple also contains information about the class of the object
(var u1), taken from place p2 and the process list (var pl1) from p5 (as explained above). For
more details about the process creation, the class creation module and the variable bindings, the
interested reader could see Fig. A.15, A.17, A.18 and A.19 of the Appendix.

Remark here that in the object tuples there are some “extra” variables (z and cl1). In our
current work they play no active role but their existence is a basis for further development of new
modules that add extra features of the language and are worth to analyse in the future, like for
example the cost of the programs or the modelling of some abstract execution locations (deployment
components).

13

Blocked
ObjectsList

(p26)
FULLOBJPROCLIST

[((0,0,0,[0],[0]),0)]

future
(p23)

PROC

List of
callees
(p21)

OBJPROCLIST

[]

(p22)

INT

1

(p18)

PROCLIST

[]

Communication
Pairs
(p24)

PAIRFULLOBJPROC

((0,0,0,[0],[0]),((0,0,0,[0],[0]),0))
(p25)

BOOL

false

(p19)

INT

(p27)

PAIRFULLOBJPROCLIST

[]

caller
(p28)

FULLOBJ

(p14)
In/Out OPLENGTH

(0,0,0)

Process
Counter

(p4)

In/Out

PROC

0

Busy
objects
(p15)In/Out FULLOBJ

Idle
Objects
(p16)

In/Out

FULLOBJ

(p12)

In/Out

OBJ

1

Blocked
Objects
(p17)In/Out FULLOBJPROC

2`((0,0,0,[0],[0]),0)

(p13)

In/Out OPLENGTHLIST

(0,[],[])

Selected
Process
(p11)

In/Out PROC

1

Callee

Callee

Caller

Caller

SuspendActivate

SuspendActivate

Return
(a19)

Return

Read-Fut
(a25)

ReadFut

Synch
self-call
(a16)

SynchSelfCall

Figure 9: Communication mechanism of CPN–ABS

4.3. CPN–ABS Communication Mechanism

In CPN–ABS, communication takes place between objects represented as tokens which carry
information about their identity, their class, and their process pool. These are represented as triples
of the form (id ,class,q). We implemented the process pool as a FIFO queue. CPN–ABS supports
not only the construction of the information each object carries (hence dynamic creation of objects)
as we saw in detail in Section 4.2, but also the communication between objects. We saw in Fig. 6
that those two mechanisms are represented in the top-level module of the implementation by the
two corresponding substitution transitions: the first one, corresponding to the subnet where all the
information about the objects can be dynamically created through transition firing, and the second
one, corresponding to the subnet which can simulate the possible communications between objects.

In the following, we concentrate on the CPN–ABS module which focuses on the asynchronous
communication mechanism (Fig. 9).

As we have already mentioned, there are three places where the object tokens can be located:
“Busy Objects”, “Idle Objects”, and “Blocked Objects”. These places are fusion places (in CPNs,
the places that are common in more than one module and share the same marking are called fusion
places). When a method of an (active) object returns, it resolves a future. In CPN–ABS this
behaviour is simulated by the subnet related to the substitution transition “Return”: the object is
removed from the place “Busy Objects” and added to the place “Idle Objects” (see Fig. A.22 of the
Appendix for details). At the same time, the process related to the method returned is removed
from the process list of the object token, following the Return rule of the ABS semantics. With

14

the Activate rule of ABS, a process from the pool is activated and the inverse with the Suspend
rule. This is simulated by the module related to the substitution transition “Suspend-Activate”
where, the object is being “moved” from the “Idle Objects” place to the “Busy Objects” one and
vice versa. For more details about the simulation of the process suspension and activation as well
as for how the synchronous reentrant self calls have been impplemented in CPN–ABS, the reader
can see the the appendix (Fig. A.20 and A.21 respectively).

(p20)

BOOL

false

Busy
objects
(p15)

In/Out

FULLOBJ

Blocked
ObjectsList

(p26)
In/Out

FULLOBJPROCLIST

[((0,0,0,[0],[0]),0)]

(p25)

In/Out

BOOL

false
caller
(p28)

Out

FULLOBJ

Blocked
Objects
(p17)

Out

FULLOBJPROC

2`((0,0,0,[0],[0]),0)

(p19)Out

INT

(p12)

In/Out

OBJ

1(p22)

In

INT

1

Caller
(a20)

ob4=ob7

.get
(a24)

b1

not b1 b1

if (not b1)
then 1`(ob4,u2,t4,pl3,cl3)
 else empty

fopl2

b1 (ob7,u2,t4,pl3,cl3)

if b1
then 1`((ob4,u2,t4,pl3,cl3),0)
else empty

1

ob7

(ob4,u2,t4,pl3,cl3)

1

b2

if b1
then ((ob4,u2,t4,pl3,cl3),0)::fopl2
else fopl2

Out

In/Out

In In/Out

In/Out

Out

In/Out

Out

Figure 10: Module for a method caller

Communication between objects involves two parts: the caller and the callee. The module of
the Fig. 10 is the part of the net that deals with the caller. Transition “Caller” selects the calling
object from the “Busy Objects” place. There are two cases of communication through asynchronous
method calls: immediately followed by a get statement or not. Both are simulated by firing the
transition “.get”. It is connected to the place p20 which is of colorset Bool . The color of its token
is related to the presence of the get statement in the obvious way. By firing the transition “.get”,
we alternate the value of the token. So, transition “Caller” takes the information on whether the
asynchronous call is followed by a get statement or not. In the latter case, i.e. when the value of
b1 is false, the transition “Caller” maintains the object in the “Busy Objects” place following the
Async-Call rule of the semantics, otherwise it sends the caller object to the “Blocked Objects”
place until the waiting future to be resolved (more details about how the future resolution is
simulated in CPN–ABS can be found in the appendix)

In the module of Fig. 11 we can see the details about the communication concerning the callee
object. As the places related to the status of an object are disjoint, the callee object can reside only
in one of the three corresponding places. Therefore, one among the transitions “Active callee”,
“Blocked callee”, and “Idle callee” can fire each time for the selected object. Recall that in
CPN–ABS, the process pool is implemented as a FIFO queue. As a result, all three of the tran-
sitions that refer to the callee object, update its process queue by adding at the end of the list a

15

(p27) In/Out

PAIRFULLOBJPROCLIST

[]

(p22)Out

INT

1

Blocked
ObjectsList

(p26)
In/Out

FULLOBJPROCLIST

[((0,0,0,[0],[0]),0)]

Communication
Pairs(p24) Out

PAIRFULLOBJPROC

((0,0,0,[0],[0]),((0,0,0,[0],[0]),0))

Blocked
Objects
(p17)In/Out FULLOBJPROC

2`((0,0,0,[0],[0]),0)

Idle
Objects
(p16)In/Out

FULLOBJ

Process
Counter

(p4)
In/Out

PROC

0

caller
(p28)

In
FULLOBJ

Busy
objects
(p15)

In/Out

FULLOBJ

(p25)
In/Out BOOL

false

List of
callees
(p21)

In/Out

OBJPROCLIST

[]

(p12)In/Out
OBJ

1

(p19) In

INT

The Callee
is Idle
(a21)

if b2 then
ob14 =ob25
else ob14<>ob25

The Callee
is Busy
(a22)

if b2 then ob14 =ob25
else ob14<>ob25

The Callee
is Blocked

(a23)

ob10=ob25 andalso
ob14<>ob10 andalso
(if b2 then ob26=ob14
 else ob26<>ob14)

((ob14,u10,t9,pl11,cl11),((ob25,u22,t19,ins pl22 (p12+1),ins cl21 c6),p12+1))::pfopl

1

if hd fopl1=((ob14,u10,t9,pl11,cl11),0)
then ((ob14,u10,t9,pl11,cl11),p5+1)::tl fopl1
else fopl1

((ob14,u10,t9,pl11,cl11),
 ((ob8,u5,t5,ins pl5 (p5+1),
 ins cl5 c5),p5+1))

((ob25,u22,t19,pl22,cl21),p20)

((ob25,u22,t19,pl22,cl21),p20)

if pl5=[0]
then (ob8,u5,t5,[p5+1],[c5])
else (ob8,u5,t5,ins pl5 (p5+1),ins cl5 c5)

p12

(ob14,u10,t9,
 pl11,cl11)

(ob9,u5,t5,pl5,cl5)

b2

(ob8,u5,t5,pl5,cl5)

b2

fopl1

(ob9,p5+1)::obpl

obpl

p5

pfopl

if b2=true then
((ob25,u22,t19,pl22,cl21),p5+1) else
((ob25,u22,t19,pl22,cl21),p20)

((ob25,u22,t19,ins pl22 (p12+1),
 ins cl21 c6), p20)

((ob14,u10,t9,pl11,cl11),
 ((ob25,u22,t19,
 ins pl22 (p12+1),ins cl21 c6), p12+1))

ob9

(ob14,u10,t9,pl11,cl11)

if b2 then ((ob26,u23,t20,pl23,cl22),p12+1)
else ((ob26,u23,t20,pl23,cl22),p21)

if hd fopl1=((ob14,u10,t9,pl11,cl11),0)
then ((ob14,u10,t9,pl11,cl11),p5+1)::tl fopl1 else fopl1

((ob14,u10,t9,pl11,cl11),
 ((ob9,u5,t5,ins pl5 (p5+1),
 ins cl5 c5),p5+1))

obpl

1

fopl1

1

(ob10,p12+1)::obpl ob10

p12+1

p5+1

pfopl

fopl2

if b2 then
((ob25,u22,t19,pl22,cl21),p5+1) else
((ob25,u22,t19,pl22,cl21),p20)

(ob8,p5+1)::obpl

obpl

((ob14,u10,t9,pl11,cl11),
 ((ob9,u5,t5,ins pl5 (p5+1),ins cl5 c5),
 p5+1))::pfopl

b2

((ob25,u22,t19,pl22,cl21),p20)

1

(ob9,u5,t5,ins pl5 (p5+1),ins cl5 c5)

1

1

p5

((ob26,u23,t20,pl23,cl22),p21)

if b2
then ((ob26,u23,t20,pl23,cl22),p12+1)::ins (rm ((ob25,u22,t19,pl22,cl21),p20) (tl fopl2)) ((ob25,u22,t19, ins pl22 (p12+1),ins cl21 c6),p20)
else ins (rm ((ob25,u22,t19,pl22,cl21),p20) fopl2) ((ob25,u22,t19, ins pl22 (p12+1),ins cl21 c6),p20)

(ob14,u10,t9,pl11,cl11)

ob8

((ob14,u10,t9,pl11,cl11),((ob8,u5,t5,ins pl5 (p5+1),ins cl5 c5),p5+1))::pfopl

p5+1

pfopl

Figure 11: Module for a method callee

new process, related to this particular method call. They also create a communication pair token
at the “Communication pairs” place by matching the token of the “Caller” place (created by the
“Caller” transition) with the callee object and the process created for this method execution. The
marking of this place provides the communication history of the model.

5. The Abstraction Function

In this section, we define a translation from ABS configurations to CPN–ABS markings. In its
core, it is a structural translation of ABS configurations, ignoring the data parts of the program,
i.e., the value of variables in the instance states and local states. Hence the translation yields an
abstraction at the same time, and the resulting CPN–ABS marking over-approximates the original
behavior, due to this form of data abstraction.

The translation is given in the form of an abstraction function α. Remark that in ABS, a
configuration is a multiset of objects, invocation messages and futures [12] and each object contains
its identifier, an active process and a process pool. In the following, we will define the abstraction

16

function which selects all this information from a configuration and maps it at the abstract level
in the form of CPN–ABS tokens. Then, in Section 6, we will prove that those markings abstractly
simulate CPN–ABS program behaviors.

Let C be the set of the configurations of an ABS program. Let also Obj be the set of the objects,
Class the set of its classes, Proc the set of the processes, Msg the set of the method invocation
messages and F the set of the resolved futures. Then, we define the functions that project the
above sets from ABS configurations as follows:

• ob : C Ñ Obj which projects the objects in an ABS configuration,

• cl : Obj Ñ Class which projects object classes of an ABS configuration,

• pr : Obj Ñ PpProcq which projects the process pools of the objects of ABS configurations,

• msg : C Ñ Msg which projects the messages Msg of an ABS configuration and

• fut : C Ñ F which projects the set of resolved futures that are related to get statements for
a configuration.

We define the following injections from the above sets to the set of the positive integers: h :
Obj Ñ Z`, d : Class Ñ Z`, and g : Proc Ñ Z`. Function h is an injection from the set of
objects Obj of a ABS program to the set of positive integers representing the object identifiers,
whereas d and g returns the unique identifiers of classes and processes, respectively. Then, let
m : Msg Ñ Proc be the injection which maps each invocation message to the process that will be
created for the execution of the called method. Let furthermore fr : F Ñ Proc be the injection from
the set of resolved futures F related to get statements, to the set of processes Proc. Finally, let
pq :PpProcq Ñ PpZ`q be the mapping from the process pools to sets of (unique) positive integers
such that for every process pool S, pqpSq “ tgpsq P Z` | s P Su.

In CPN–ABS, we model objects as tokens which carry information about their identity, their
class and their process pool. As a consequence, each object is represented as a triple (id ,class,q),
where id is the object identifier of type Int , class is the corresponding class of the object (class
identifier) of type Int and q is the process pool of the object of type list of integers LInt . Those
object-tokens can be located in places corresponding the particular status of the object (idle, active
or blocked). CPN–ABS also supports other useful information taken from the configurations which
are necessary for the communication between the objects, as for example which process has been
created after a method invocation or which process corresponds to a resolved future related to a get
statement. In both cases, processes are represented as tokens of type Int but this information comes
from different parts of the concrete configuration (messages and futures), hence we use different
functions for its extraction.

Now, we can define the abstraction function α, mapping ABS configurations to CPN–ABS
tokens carrying the information discussed above. In the following, P is the set of the places and
Mppq is the marking of a place p in CPN–ABS. Then, for all configurations c P C:

αpcq “ Ş tM | D p, p1, p2 P P s.t. p ‰ p1 ‰ p2 and forall obpcq P Obj ,
pph ˝ obqpcq, pd ˝ cl ˝ obqpcq, ppq ˝ pr ˝ obqpcqq PMppq
^ pm ˝msgqpcq PMpp1q
^ pg ˝ fr ˝ futqpcq PMpp2qu ,

(2)

where,
Ş

denotes intersection over sets of multisets. With the above equation we define the ab-
straction of an ABS configuration as the intersection of the CPN–ABS markings containing (i) the

17

objects (second line of equation 2), (ii) the invocation messages of the method calls, if any (third
line of equation 2) and (iii) the resolved future from a method call containing a get statement
(fourth line of equation 2). We used composition of the functions defined earlier in this section to
obtain the appropriate color of the CPN–ABS tokens, starting from ABS (concrete) configurations.
The existential quantifiers for the places mean that the above tokens can be located to different
places depending every time on the configuration. Observe that, for every ABS configuration, the
above intersection is nonempty, i.e. there is a marking such that all the objects of the configuration
are represented as tokens in specific places of the model. As we will prove in the next section,
CPN–ABS abstractly simulates ABS programs. As a consequence, there exist “extra” markings in
CPN–ABS which are not important at the level of the abstraction though they are structurally
important for the model.

6. Soundness Proof of the Translation

This section proves the the soundess of the translation. Since the translation from Section 4
involves abstraction on data, the result of the translation over-approximates the behavior of the
ABS program and the soundness of the construction is proven in a standard manner by a simulation
relation between the small step operational semantics of ABS and the transitions of CPN–ABS.

In particular, we prove that, for any ABS configuration c, if c _ c1, then there exists a marking

M 1 and an occurrence sequence αpcq Ñ˚ M 1 such that the diagram from Figure 12 commutes.

c c1

αpcq M 1 αpc1q

α α

˚ Ďm

Figure 12: Abstract (weak) simulation relation between ABS configurations and CPN–ABS markings

The ABS semantics as such will structurally be translated into one global CPN, but the dynamic
behavior executing an individual rule gives rise to a finite sequence of steps in the resulting CPN, as
depicted in the simulation of Figure 12. Remember from equation (1), that an occurrence sequence
is a sequence of markings and steps where we will focus on singleton steps of the form pt, bq, with t
being a transition and b a binding. In the translation, the run-time information, i.e., the bindings
and the markings, are not in the picture yet. Omitting that dynamic information from an occurrence
sequence, we called such a sequence an occurrence word.

So, each transition step from c to c1 is justified by one rule of the operational semantics, and
such steps are thereby translated into a sequence ~t “ t1t2 . . . tk of transitions from T of the given
net. To establish the simulation relation therefore means to prove that the transitions from ~t can
in fact fire in the order given by the translation, in other words that ~t is an occurrence word. For
occurrence sequences, remember the definition from equation (1) and that we focus here on “single
transition” steps.

In the following we give this proof in detail. After some preliminary definitions on colored Petri
nets in Section 6.1, we continue in Section 6.2 mapping each semantic rule of ABS to a sequence of

18

CPN–ABS transitions. For that mapping, we prove that these sequences correspond to occurrence
sequences, thereby establishing the relation of Fig. 12 (see Theorem 12).

6.1. Preliminaries

We start with some definitions and lemmas to achieve modularity for the construction. Let’s
call a transition enabled in a marking M , if there exists a binding b s.t., pt, bq is enabled in M .

Similarly, we write M
tÑ M 1 if M

pt,bqÑ M 1 for some b. Let EnpMq represent the set of enabled
transitions for a given marking M , and Mreach the set of reachable markings of a net.

In the definition of the translation and the subsequent proof, we often refer to the figures showing
the corresponding parts of the CPN, i.e., Figures 6 – 11 from Section 4, resp. Figures A.15 – A.23
from AppendixA. The transitions in the figures are identified by labels a1 . . . a25 and the places
by p1 . . . p29. So, when describing the translation later and in the proof, we use those labels to
identify the transitions from the net. We use the transitions and their labels intercheangably, i.e.,
also speak of a “transition ai” when ai is the label as used in the tool. Likewise, we use the notion
of occurrence words for sequences of labels, (not just for sequences of transitions) We write ε for
the empty word, for instance, for the empty sequences transitions.

In the proof later, some transitions are always enabled and can fire, when needed. That will be
the case typically for transitions capturing a “generative” or “counting” nature.

Definition 5 (Uniformely enabled transition). A transition t is called uniformely enabled if, for
any reachable M , t P EnpMq.

Obviously, a transition enabled in a given (reachable) marking can be taken arbitrarily many
times in a row.

Lemma 6 (Uniformely enabled transitions). For a uniformely enabled transition t, t˚ is an occur-
rence word.

Proof. Obvious.

Based on the notion of enabled transitions, we define a transition’s successor in an occurrence
sequence as follows:

Definition 7 (Post-transitions). The post-transitions of a transition t P T for a given reachable

marking M is defined as PostTranspt,Mq “ tt1 P EnpM 1q |M tÑM 1u.
Lemma 8 (Composition of occurrence sequences). The composition of an occurrence sequence

M1
t1Ñ M2

t2Ñ . . .
tnÑ Mn`1 with another occurrence sequence M 1

1

t11Ñ M 1
2

t12Ñ . . .
t1mÑ M 1

m`1 is the

occurrence sequence M1
t1Ñ M2

t2Ñ . . .
tnÑ Mn`1

t11Ñ M2
2

t12Ñ . . .
t1mÑ M2

m`1, whenever M 1
1 Ďm Mn`1

and rrGpt11qssbn`1 “ true and furthermore
Ź

2ďiďmrrGpt1iqssbi “ true and M 1
j Ďm M2

j , for all 2 ď j ď
m` 1.

Proof. For the prefix of the sequence which is identical to the first composed sequence, the result is
trivial . Then, since M 1

1 Ďm Mn`1, after t11, obviously, if rrGpt12qssb22 “ true, then M 1
2 Ďm M2

2 , and
so on.

For composition of occurrence words, we get as immediate corollary:

19

Corollary 9 (Composition of occurrence words). The concatenation of two occurrence words is
an occurrence word if the corresponding occurrence sequence is the composition of the occurrence
sequences of the concatenated words.

Proof. Trivial, from the labelling function and the composition Lemma 8.

6.2. Soundness of CPN–ABS

The colored Petri net CPN-ABS representing the ABS semantics has 25 transitions; we assume
them labeled a1, a2, . . . , a25. The label that corresponds to each transition appears with the form
paiq below the name of the transition on CPN-ABS. Recall that Mppq is the marking of each
individual place p, while M is the marking of the total CPN, i.e., the vector pMpp1q, . . . ,Mpplqq,
where P “ tp1, . . . , plu is the set of places of the CPN.

6.2.1. The translation function

The translation maps semantic rules from Figure 2 to sequences of net transitions, here repre-
sented by their labels ai as shown in the figures. The mapping is shown in overview in Table 1. The
translation per rule is fixed insofar the involved transitions and their order is concerned. To estab-
lish the simulation relation, some of the transitions have to fire not a fixed number of times, but a
variable number, where the number of iterations depends on the current run-time configuration in
ABS (resp. the current marking in the CPN when doing the simulation). Instead of writing a˚ for
an arbitrary iteration of a transition labelled a, the mapping from Table 1 indicates that number
when needed writing ani

i where ni indicates the number of times ai needs to fire.

rule sequence of transitions
Skip, Assigni ε

Activate an11
11 n

n12
12 a

n14
14 a

n15
15 a18

Suspend an11
11 a

n11
12 a

a14
14 a

a15
15 a17

Async-Call an14
14 a

n15
15 a

n24
24 a20a

n114
14 a

n115
15 a

n21
21 a

n22
22 a

n23
23

Return an11
11 a

n12
12 a

n14
14 a

n15
15 a19

Read-Fut a25
New-Object an1

1 an2
2 an3

3 a6a7
Sync-Self-Call an14

14 a
n15
15 a16

Table 1: Mapping from rules to sequences of transitions,

To define these numbers, we make use of the following notation: for two natural numbers n and
n1, let n ´ n1 denote the non-negative difference, i.e., n ´ n1 “ n ´ n1 if n ą n1, and 0 otherwise.
Often, the translation uses two numbers m “ n ´ n1 and conversely m̂ “ n1 ´ n to define the
sequence amâm̂. In such situations, at least one of am and âm̂ equals the empty sequence ε (due to
the law of trichotomy according to which every number is either negative, positive, or else zero).

In the following definitions and the subsequent proof, we also make use of the following notation.
In a number of cases, it will be an invariant for a place p to have exactly one value, i.e., for the
multi-set Mppq, |Mppq| “ 1. In these cases, we write also Mppq to refer to that value (as opposed
to its multiplicity, which is uniformly 1).

20

Now, for rules Activate and Suspend (covering also Sync-Self-Call and partially Async-
Call, as well), we set

n11 “ gppq´Mpp11q
n12 “ Mpp11q´ gppq
n14 “ hpoq ´Mpp12q
n15 “ Mpp12q ´ hpoq ,

(3)

where place p “ selectpq, aq according to the Activate rule.
For rule Async-Call, we set n24 “ t0, 1u. while n114 and n115 are defined as n14 and n15,

respectively, in the previous case, with the difference that the value of hpoq for n14 and n15 refers
to the caller, while for n114 and n115, it refers to the callee object of the asynchronous method call.
In the corresponding semantic rule of ABS, those values (i.e. the values of h´1) are denoted as o
and o1 respectively for the caller and the callee. Furthermore, for a21a22a23, the numbers are such
that n21 ` n22 ` n23 “ 1. Remark here that, Mpp15q, Mpp16q and Mpp17q are pairwise disjoint
(in particular Mpp15q `Mpp16q `Mpp17q “ |Obj | is a place invariant), so, at most one among the
transitions a21, a22 and a23 can fire. Cf. Figure 11 for the part of the net representing the callee of
a method.

For rule NewObject we set

n1 “ dpoq´Mpp1q
n2 “ dpoq´Mpp2q
n3 “ Mpp2q´ dpoq .

(4)

In the definition, dpoq indicates (the number representing) the class where object o belongs to.

6.2.2. Soundness

As the transitions of the target net are uniquely labeled by elements ai, we use the labels
intercheangably with the transitions, i.e. we write, for example, a P EnpMq for t P EnpMq etc. We
also omit referring to the binding elements where obvious, writing, for example, Gpaq instead of
rrGptqssb and Epp, aq instead of rrEpp, tqssb. We write |Mppq| for the number of tokens of the place
p, i.e. the cardinality of the multiset Mppq.

Now, we can proceed on the soundness proof of CPN–ABS.

Lemma 10 (Uniform enabledness for a1 and a24). Transitions a1 and a24 are uniformly enabled.

Proof. For transition a1 from Figure A.17, the relevant situation, i.e., the involved places and
transitions look as follows, the loop being responsible to increment the counter:

a1 p1

s`1

s

The guard of p1 is uniformly true, and a2, the only other transition adjacent to p1, leaves any
marking of p1 unchanged (the inscriptions on the incoming and outcoming arcs from p1 to this
transition coincide); no other arcs are adjacent to a1. Hence, transition a1 is uniformly enabled.
For transition a24 from Figure 10, the relevant portion of the nets looks similar

21

a24 p20

 b

b

toggling the boolean token in p20 (initially being false). Again, the guard of the considered transition
is true. Furthermore, transition a20, also adjacent to p20, leaves any marking of p20 unchanged,
and since no other transition interferes with p20, a24 is uniformly enabled, which concludes the
argument.

The next lemma is the core of the simulation argument, establishing, rule by rule, that the
translation simulates the steps of the operational semantics.

Lemma 11. For each rule of the operational semantics from Figure 2, if the rule’s hypothesis is
satisfied, then the translation of the rule is an occurrence word.

Proof. Proceed by case analysis on the rules of the operational semantics.

Case: Skip, Assign1, Assign2

These rules are translated to the empty sequence ε of transitions; hence their cases are immediate.

Case: Await1, Await2

These rules are syntactic sugar for Skip and Suspend; hence they are omitted from the proof.

Case: New-Object with translation an1
1 an2

2 an3
3 a6a7.

See Figures A.17 (for a1, a2, and a3), Figure A.16 (for a6), and Figure 8 (for a7). For the definition
of n1, n2, and n3, see equation (4). From that definition, either n2 or n3 is 0.

We start by establishing that the first three transitions an1
1 an2

2 an3
3 are an occurrence word. With

a1 being uniformely enabled by Lemma 10, thus, with Lemma 6, an1
1 is an occurrence sequence.

After firing an1
1 we know Mpp1q ě dpoq More precisely, for n1 ě 1, i.e., firing a1 at least once,

we know Mpp1q “ dpoq after an1
1 .

Subcase: dpoq ąMpp2q
Consequently n2 “ dpoq ´Mpp2q in this case. Note that the guard of a2 corresponds to requiring
Mpp1q ă Mpp2q as precondition for firing (the guard reads u ă s, where u and s are the variables
used in the arcs). Furthermore, in this case, n3 “ 0 and an3 “ ε, and thus an1

1 an2
2 an3

3 is an
occurrence word.

Subcase: dpoq ăMpp2q
This time n2 “ 0 and n3 “Mpp2q ´ dpoq. The guard of a3 (stating u ą 1) evaluates to true for all
successive steps of a3 (each decrementing the corresponding counter in place p2 by 1). Choosing
also n1 “ 0 makes an1

1 an2
2 an3

3 an occurrence word.

Subcase: dpoq “Mpp2q
In this case, we can choose n1 “ n2 “ n3 “ 0, in which case an1

1 an2
2 an3

3 is trivially an occurrence
word.

Now for subsequent firing of a6. In our case, Mpp3q “ 0. Furthermore, for p4 (representing a
counter for processes), we have as invariant |Mpp4q| “ 1: Initially |M0pp4q| “ 1, and

ř |Epp4, tq| “ř |Ept, p4q| where the sums range over the expressions on the arcs adjacent to place p4 (cf. Figures
6, 7, 9, 11, A.15, A.18, and A.21). So, in order for a6 to fire, it needs a token from p29 (cf. Figure
A.15 and for place p29, see Figures A.15 and A.16). Transitions a6 and a7 are connected as follows

22

a6

p29

p5

a7

where the picture shows all arcs adjacent to p29 and to p (but not all arcs connected to the
transitions are reproduced). Transition a6 can occur, either initially or only after an occurrence of
a7. Similarly, a7 can occur only after an occurrence of a6.

From the above, we can conclude that, after an1
1 an2

2 an2
3 , Mpp2q ą 0 and since Mpp7q “ 0 (cf.

Figure 7), that the guard of a6 is true. In addition, for p9 (representing a counter for objects,
cf. Figures 7, 8, A.16, and A.19), we have as invariant |Mpp9q| “ 1: Initially M0pp9q “ 1, andř
Epp9, tq “ ř

Ept, p9q, where the sums range over the expressions on the arcs adjacent to place
p9. Thus, also a7 can occur and the translation an1

1 an2
2 an3

3 a6a7 of New-Object is an occurrence
sequence, concluding the case.

Case: Activate with translation an11
11 a

n12
12 a

n14
14 a

n15
15 a18

A similar argument as before for an2
2 an3

3 shows that an11
11 a

n12
12 as well as an14

14 a
n15
15 are occurrence

sequences, and so is their composition by Lemma 8. From the definition of the function g in Section
5 and the hypothesis p “ selectpq, aq of rule Activate, there exists an object s.t., hpoq PMpp16q,
hpoq P Mpp12q, and gppq P Mpp11q. Thus, the guard of a18 is true and a18 can fire. As a result,
an11
11 a

n12
12 a

n14
14 a

n14
15 a18 is an occurrence word, which concludes the case.

Case: Suspend with translation an11
11 a

n12
12 a

n14
14 a

n15
15 a17

Similar to the previous case.

Case: Return, with translation an11
11 a

n11
12 a

n14
14 an15

15 a19
Similar to the previous cases, making use of the invariant |Mpp18q| “ |Mpp14q| “ |Mpp21q| “
|Mpp22q| “ 1, which is easy to establish, as done in a previous case, for instance for |Mpp9q|.
Case: Read-Fut with translation a25
Immediate (cf. Figures 9 and especially A.23).

Case: Async-Call and Bind-Mtd (taken as a single rule since they occur sequentially) with

translation an14
14 a

n15
15 a

n24
24 a20a

n114
14 a

n115
15 a

n21
21 a

n22
22 a

n23
23

It’s straightforward to establish that an14
14 a

n15
15 and as well as a

n114
14 a

n115
15 are occurrence words. In

addition, a24 is a uniformely enabled transition, so its iteration an24
24 is an occurrence word (cf.

Lemma 6), and consequently, with Lemma 8, the composition an24
14 a

n15
15 a

n24
24 is an occurrence word,

as well.
Places p22 and p19 play similar role for alternating occurrences of a20 and one among a21,a22

and a23 as it was the case for places p29 and p5 and transitions a6 and a7 in the case for New-
Object above. See Figure 10 for a20 (a transition crucial for dealing with the behavior of the
caller), and Figures 9 and 11, as well as Figures A.22 and A.23 for transitions a21, a22, and a23
(covering behavior of a callee), resp. the following:

23

a22

a21

a23

a20

p22p19

In addition, we have as invariant |Mpp25q| “ 1. So, a20 can fire as soon as hpoq “Mpp12q, which is
the case after an14

14 a
n15
15 a

n24
24 . So, from Lemma 8, an14

14 a
n15
15 a

n24
24 a20 is an occurrence word. As stated,

also a
n114
14 a

n115
15 is an occurrence word. Now since Mpp15q, Mpp16q, and Mpp26q are pairwise disjoint,

only one among n21, n22, and n22 can be different from 0. In addition we have |Mpp21q| “ |Mpp4q| “
|Mpp3q| “ |Mpp25q| “ |Mpp25q| “ |Mpp26q| “ |Mppq| “ 1, Mpp17q ‰ H and |Mpp28q| “ 1 after the

occurrence of a20. So, with Lemma 8, also a
n141
14 a

n115
15 a

n21
21 a

n22
22 a

n23
23 is an occurrence word and then,

so is ai14a
j
15a

t
24a20a

i1
14a

j1
15 (again with Lemma 8).

Case: Sync-Self-Call and Self-Sync-Return-Sched (taken as a single rule since they occur
sequentially) with translation ai14a

j
15a16

Similar.

With the simulation theorem that follows, the soundness proof of the translation ABS programs
into colored Petri nets is completed.

Theorem 12 (Simulation). CPN–ABS markings are in an abstract (weak) simulation relation with
ABS program configurations.

Proof. We need to prove that, for any ABS configuration c, if c _r c
1 for some semantic rule

r P Sem, then there exists a marking M 1 and an occurrence word given by Trprq, such that

αpcq TrprqÑ M 1 and αpc1q Ďm M 1. This follows straightforwardly from the definition of the abstraction
function α, the image of Tr , and from Lemma 11.

7. Communication Analysis

As we saw in detail in the previous section, CPN–ABS markings abstractly simulate ABS
program configurations. By construction, CPN–ABS follows the concurrency of ABS and contains
its full communication mechanism (see Section 4). As we have already mentioned in Sections 1
and 4, CPN–ABS was implemented in CPN Tools, a model checker for colored Petri nets. This,
together with the abstraction relation described in Sections 5 and 6, allow to CPN–ABS to behave as
an abstract interpreter for ABS programs. In particular, it overapproximates the communication
topologies of ABS programs upon initialisations arising from the application of the abstraction
function to the (static view of the) program. This make CPN–ABS useful for communication
analysis for ABS programs. In the rest of this section we will illustrate this by applying deadlock
and livelock analysis. In particular, we will express the above notions of concurrency in terms of
CPN–ABS and explain how we can use it in order to detect deadlocks and livelocks.

24

7.1. Deadlocks

CPN-ABS contains three disjoint places, where, depending on the status of objects (i.e. active,
idle or blocked), objects can be located. The place “Blocked Objects” which hosts the blocked
objects has a color set of pair (ob,p), where ob is object invoking an asynchronous call with a
get-statement, i.e. an asynchronous blocking call, and p is the process that has been added to
the process queue of the callee for the execution of the called method. Recall that ob is of color
(id ,class,q), where id is object identity, class is the class that the object belongs to, and q is the
process queue of the object.

Definition 13 (Deadlocks in CPN–ABS). In CPN-ABS, there is a deadlock cycle [23] if and only
if there exists a marking of the place “Blocked Objects”, in which there exists n tokens pob1, p1q to
pobn, pnq that form a cycle, i.e. for 1 ď i ă n, pi P qi`1 and pn P q1 (where qi is the process queue
of the ith object).

This deadlock situation can be detected by the state space report of the model checker of the
CPN Tool used to implement CPN-ABS.

7.1.1. Deadlock Detection

Communication deadlocks can be detected fully automatically using the model checker of CPN
Tools to construct the state space of the CPN model for a given ABS program. To enable this, we
have implemented a query function in CPN Tools that extract a directed graph from the marking
of the place “Blocked Objects” describing the waiting conditions between objects. The nodes of
the graph represent objects and there is an edge from an object (node) o to an object (node)
o1 if o is waiting for o. We then use Tarjan’s algorithm for computing the strongly connected
components of the graph in order to identify cycles. Any strongly connected component containing
at least two nodes (objects) represent communication deadlocks (since any two nodes in a strongly
connected component are mutually reachable and hence on a cycle). By extracting this directed
graph in all reachable markings, we can charaterise the communication deadlocks of CPN-ABS
(if any). Furthermore, using standard query functions of the model checker we can automatically
construct an occurrence sequence starting from the initial marking to any marking containing a
communication deadlocks.

If we let O be an upper bound on the number of objects |Obj | in the ABS program, then we
can extract the directed graph from the marking of “Blocked Objects” in OpO`O2q “ OpO2q time
(in worst case all objects are mutually waiting for each other). As Tarjan’s algorithm is linear in
the size of the graph then stronly connected components can be computed in time OpO2q. In the
worst case this computation must be done for all reachable markings Mreach giving a worst case
time complexity of OpO2 ¨ |Mreach |q for deadlock detection.

We now use the publisher-subscriber example of Fig. 3 to illustrate how CPN-ABS detects com-
munication deadlocks. By applying the model checker on an Intel i7 3.4 GHz, in less than 1 second
we get the full state space report in which tokens of color ppo1,Service, qq, pq and ppo3,Proxy , q1q, p1q
can be found in the place “Blocked Objects”, and for all p, p1, q, q1 we have p R q1 and p1 R q. This
shows that the implementation of the publisher-subscriber protocol is deadlock free.

Now, we slightly modify the protocol, where get-statements are added to the method calls in
lines 7 and 21 and the await statement in line 17 is removed. In this case, CPN-ABS detects
a communication deadlock cycle shown in Fig. 13, where p P q1 and p1 P q and both objects are
trapped in the place “Blocked Objects” and cannot exit from there; in Fig. 13, the third and the
fifth argument in the color tuples are outside of the scope of this work, so we ignore them, while,

25

Blocked
Objects
(p17)

FULLOBJPROC

2`((0,0,0,[0],[0]),0)4

2`((0,0,0,[0],[0]),0)++
1`((1,1,0,[1,8],[0,0]),7)++
1`((3,3,0,[3,7],[0,0]),8)

Figure 13: Deadlock detection by CPN-ABS.

1 class Client(Service server) {
2 News ns = null;
3 Void run(){server!subscribe(this);}
4 Void pay(){ FutăVoidą f1; f1 = server!subscribe(this); await f1?;
5 Fut<Void> f2; f2 = server!receive(500); f2.get;}
6 Void signal(News n){ns = n;}
7 }
8

9 class Service(Int limit) {
10 Producer prod = new Producer(); Proxy proxy = new Proxy(limit,this,prod);
11 Proxy lastProxy = proxy;
12 Int profit = 0;
13

14 Void run() { this!produce(); }
15 Void subscribe(Client cl){ FutăVoidąf3; f3 = cl!pay(); await f3?;
16 Fut<Proxy> f4; f4 = lastProxy!add(cl); lastProxy = f4.get;}
17 Void produce(){proxy!start publish(); }
18 Void receive(Int amount){profit = profit + amount;}
19 }

Figure 14: Implementation of the publisher-subscriber example.

the existence of the two zero value tokens is for initialization reasons and they do not affect the
deadlock analysis. Based on the information we obtained from this reachable marking, we can trace
back to the program code and determine the deadlock represented by the call chain.

Remark that the translation supports scalability: the size of the net is independent from the
program and represents the ABS semantics as such. I.e., by increasing the number of Proxy objects
or clients, only the number of tokens is affected and the analysis is highly automated.

7.2. Livelocks

A communication livelock is a status of two unblocked objects, in which the generated processes
can not progress due to that each of them is busy-waiting for a process on another object. No
progress is made at the suspension points, the scheduler is continuously activating and releasing
processes. Such a situation may happen, for example, when many processes are competing for
entering a critical section. In ABS, process suspension can be done explicitly through the corre-
sponding statement provided by the syntax (suspend) or implicitly, through the await statement
(see Fig. 1 and 2 of Section 2). Activation is an internal procedure, as described in Section 2 with
the Activate rule.

26

The above transitions (suspension and activation) are considered as internal, hence they can be
seen as τ transitions, since their effect is at the level of the scheduler rather than at the program
state. Notice here that, whenever two τ transitions (concerning the same object) happen, they
should be different, i.e. not both of them Suspend or both of them Activate. This is implied
by the semantics of the language (see Fig. 2). For the sake of simplicity, we will not distinguish
between them, while alternation between them from now on will be considered as obvious.

A livelock path for an object in ABS is an infinite path, where the only transitions that are
related to this object are τ transitions and there exist infinitely many of them. In ABS, there is
a livelock if there exist a reachable configuration, such that all infinite paths starting from it are
livelock paths for some object and there exists at least such an infinite path.

The CPN–ABS analog of the livelock can be defined in a similar way. Observe that the ab-
stract version τα of the τ transitions described above are the CPN–ABS transitions “Suspend” and
“Activate” (labelled as a17 and a18 respectively). They are linked to the places “Busy Objects” (p15)
and “Idle Objects” (p16) and, similarly to the ABS transitions, they alternate since they ”move”
the object-token from p15 to p16 and vice versa.

In Section 6 we defined the occurrence words over the labels of the transitions of CPN–ABS.
So far, whenever obvious, we used to omit the binding from a transition firing. Here , bindings are
important, hence occurrence words will be sequences of binding elements, i.e. sequences of pairs
consisting of a transition label and the binding pa, bq. When we are interested in the binding of a
subset of the variables of a transition t we will note it as bpsq, where V arpsq Ď V arptq. Below, we
provide a definition for livelocks in CPN–ABS.

Definition 14 (Livelocks in CPN–ABS). A livelock occurrence word for an object ob is an infinite
occurrence word ω such that ω|ob “ pτ, bpobqq8, where by ω|ob we denote the projection of the

occurrence word ω to the object ob. Let ΩpMq def“ tω | ω starts from marking Mu. Then, we say
that there is a livelock in CPN–ABS iff:

• ΩpMq ‰ H
• all ω P ΩpMq are livelock occurrence words for some object ob

• M PMreach

7.2.1. Livelock Detection

As in the case of deadlocks, CPN–ABS is able to detect possible ABS program livelocks like,
for example, in the version of the publisher-subscriber example of Figure 14, where the yellow
lines induce a livelock: Each client agrees to pay the subscription fee once the server grants the
subscription. The server grants the subscription of a client only when the client pays the fee. Both
are waiting for each other to act first.

Livelocks in CPN–ABS can can be detected based on the state space of the model by exploiting
the support in CPN Tools for computing the Strongly Connected Component (SCC) graph of the
state space. The SCC-graph has a node for each strongly connected component of the state space
containing the states and their connecting arcs, and it has an arc from one SCC c1 to an SCC c2
whenever there is a state in c1 with an outgoing arc to a state in the c2. The SCC-graph is a directed
acyclic graph and the basic idea in checking for livelocks is to identify states which has a livelock for
an object o by conducting a bottom-up classification of the strongly connected components starting
from the leafs (terminal) nodes of the SCC-graph.

27

A terminal SCC can be classified as a non-livelock SCC for an object o iff it contains arcs
corresponding to occurrences of binding elements for other than the suspend/activate transitions
for the object o. A terminal SCC can be classified as a livelock SCC for an object o iff the only
occurrences of binding elements related to o in the SCC correspond to suspend/activate transitions.
By construction of the CPN model occurrence sequences (paths) inside such a component will have
alternating occurrences of suspend and activate. Hence, all states inside such a strongly connected
component will be states that have a livelock for the object o. Finally, we can classify an SCC as
livelock-neutral if it does not contain any occurrences of binding elements for the given object.

We can now compute the classification of an SCC based on its outgoing arcs and the classification
of its successor SCCs. An SCC is classified as a livelock SCC if:

• The SCC itself only contains occurrence of suspend and activate transitions for the object,
all it successor SCCs are either neutral or livelock SCCs, and the arcs connecting the SCC to
its successor SCCs concern other objects or suspend/activate for the given object; or

• The SCC does not contain any occurrences of binding elements for the given object, at least
one successor SCC is a livelock SCC and the rest are either livelock or neutral SCCs, and the
arcs connecting the SCC to its successor SCCs concern other objects or suspend/activate for
the given object.

Similar conditions can be obtained for the cases of non-livelock and neutral SCCs and they are
similar to how the terminal SCCs are classified.

When the SCC-graph has been computed in CPN Tools the classification can be implemented
by exploiting the API in CPN Tools for traversing and querying the SCC-graph. The SCC-graph
can be computed in linear time in the size of the state space, and to compute the classification we
need to visit each strongly connected component (which is bounded by the number of nodes in the
state space) and the arcs inside and between the components (which are bounded by the number
of arcs in the state space). If we let O be an upper bound on the number of objects in the ABS
program and A the number of arcs in the state space, then this gives a worst case time complexity
of OpO ¨ p|Mreach | `Aqq for livelock detection.

8. Conclusion and Related Work

We have developed an encoding of the formal semantics of ABS as a colored Petri net, such
that a program is given as a marking for this net. The key idea in our encoding is to exploit the
colored tokens such that our net can support dynamic program behavior and different programs
can be represented without making changes to the net structure, but only requires changing the
initial marking. We provided a detailed soundness proof for our encoding and showed how a model
checker for colored Petri nets can be used for communication analysis of active objects in ABS
considering detection of deadlocks and livelocks.

Livelock and deadlock detection is traditionally concerned with the usage of locks for thread-
based concurrency. This line of work in the case of deadlocks is surveyed in [24], which develops a
type and effect system to capture lock manipulation for such a language. However, in active ob-
jects communication deadlocks are caused by call-cycles with synchronization, and the cooperative
scheduling of ABS makes the analysis more complex. The problem has been studied using differ-
ent approaches, including behavioral types [25], cost analysis [26], protocol specifications [23], and
Petri nets [17]. Previous work on deadlock analysis for active objects using Petri nets [17] follows

28

a similar approach such that places represent locks on objects, futures, and processes. Transitions
are introduced for each possible caller and callee to a method. To obtain a finite net, the approach
abstracts from the actual number of futures such that the wrong future may be accessed in the
Petri net. This makes the approach approximative, in that if the net is deadlock free, so is the
original active object program. In contrast to these approaches encoding a specific program as a
net, our approach directly encodes the language semantics as a CPN and uses markings to define
the concrete program; the colors of CPN are used to distinguish different method invocations and
to create new objects and the size of the net itself is independent of the specific program. This
makes our approach less error-prone and easier to automate as we only need a compiler that given
an ABS program generates the corresponding initial marking of our CPN model. Our modelling
approach is in this respect similar to the work in [27] and [28], where a CPN model was developed
for execution of workflows and for simulation in the planning domain.

Petri nets and its extensions are popular formalisms to model and analyze systems with con-
currency, communication and synchronization [14, 15]. Petri nets have in particular been applied
to protocol and workflow analysis, but have also been used to study process algebra (e.g., [29, 30]),
and more recently including asynchronous communication [31]. CPNs and state spaces have also
been used for deadlock analysis of Ada programs in [32], but in contrast to our approach this work
did not involve livelock analysis and also employed a non-parametric CPN model. Approaches
which encode programming language features into Petri nets have been developed for Ada [16] and
more recently for, e.g., Java [33], which focusses on how threads interact with a single synchronized
object, and for choreography languages like Orc [34]. CPNs were used in [35] in order to visualise
the execution of actor-based concurrent programs. In general, these approaches translate programs
into nets such that the size of the program determines the size of the net and dynamic invocations
or object creation cause difficulties. Petri nets was also used as a semantic foundation to support
a concurrent programming model in [36], and colored Petri nets was used in order [37] to formally
define actor semantics.

The work presented in this paper provides several direction for future work. In this paper, we
have focused on communication and synchronization for ABS programs. ABS also supports the
specification of real-time behavior, deployment architectures, and resource-aware systems [12]. One
direction for future work is to extend the CPN model to cover also these language features, and
explore the usage of colored Petri nets for resource analysis and to compare resource-management
strategies for distributed ABS programs. For the real-time aspects, we may rely on earlier work on
scheduling analysis for actor-based system [38]. For the communication analysis we used explicit
state space exploration and model checking in its most basic form. For large ABS programs, we
will inevitably encounter the state explosion problem during communication analysis. A direction
for future work is therefore to investigate state space reduction methods and identify those that are
most suited for the domain of ABS program and the communication properties we want to verify.
Exploiting symmetries between objects [39] and local progress in the execution of ABS programs
[40] are potential candidates in this direction. A third future direction is to further automate our
approach by exploring the automatic generation of the initial marking for our CPN model directly
from ABS program under analysis, and to be able to visualise any error-traces obtained from the
communication analysis at the level of the ABS program being analysed.

29

References

[1] G. Agha, C. Hewitt, Concurrent programming using actors, in: Object-Oriented Concurrent
Programming, The MIT Press, 1987, pp. 37–53.

[2] G. Agha, ACTORS: A Model of Concurrent Computations in Distributed Systems, The MIT
Press, Cambridge, Mass., 1986.

[3] J. Armstrong, Programming Erlang: Software for a Concurrent World, Pragmatic Bookshelf,
2007.

[4] P. Haller, M. Odersky, Scala actors: Unifying thread-based and event-based programming,
Theoretical Computer Science 410 (2–3) (2009) 202–220.

[5] F. S. de Boer, D. Clarke, E. B. Johnsen, A complete guide to the future, in: R. de Nicola (Ed.),
Proc. 16th European Symposium on Programming (ESOP’07), Vol. 4421 of Lecture Notes in
Computer Science, Springer, 2007, pp. 316–330.

[6] C. C. Din, R. Bubel, R. Hähnle, KeY-ABS: A deductive verification tool for the concurrent
modelling language ABS, in: A. P. Felty, A. Middeldorp (Eds.), Automated Deduction –
CADE-25 – 25th International Conference on Automated Deduction, Berlin, Germany, August
1-7, 2015, Proceedings, Vol. 9195 of Lecture Notes in Computer Science, Springer, 2015, pp.
517–526.

[7] C. C. Din, O. Owe, Compositional reasoning about active objects with shared futures, Formal
Asp. Comput. 27 (3) (2015) 551–572.

[8] D. Caromel, L. Henrio, A Theory of Distributed Objects, Springer, 2005.

[9] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, M. Steffen, ABS: A core language for abstract
behavioral specification, in: B. Aichernig, F. S. de Boer, M. M. Bonsangue (Eds.), Proc. 9th
International Symposium on Formal Methods for Components and Objects (FMCO 2010), Vol.
6957 of Lecture Notes in Computer Science, Springer, 2011, pp. 142–164.

[10] F. S. de Boer, V. Serbanescu, R. Hähnle, L. Henrio, J. Rochas, C. C. Din, E. B. Johnsen,
M. Sirjani, E. Khamespanah, K. Fernandez-Reyes, A. M. Yang, A survey of active object
languages, ACM Comput. Surv. 50 (5) (2017) 76:1–76:39.

[11] K. M. Chandy, J. Misra, L. M. Haas, Distributed deadlock detection, ACM Trans. Comput.
Syst. 1 (2) (1983) 144–156.

[12] E. B. Johnsen, R. Schlatte, S. L. Tapia Tarifa, Integrating deployment architectures and re-
source consumption in timed object-oriented models, Journal of Logical and Algebraic Methods
in Programming 84 (1) (2015) 67—91.

[13] K. Jensen, L. M. Kristensen, Coloured Petri Nets – Modelling and Validation of Concurrent
Systems, Springer, 2009.

[14] C. Petri, Kommunikation mit Automaten, Ph.D. thesis, Universität Bonn, (In German) (1962).

[15] W. Reisig, Petri Nets, Vol. 4 of EATCS Monographs in Computer Science, Springer, 1985.

30

[16] J. Ichbiah, J. G. P. Barnes, J. C. Heliard, B. Krieg-Brückner, O. Roubine, B. A. Wichmann,
Modules and visibility in the Ada programming language, in: On the Construction of Programs,
Cambrige University Press, 1980, pp. 153–192.

[17] F. S. de Boer, M. Bravetti, I. Grabe, M. Lee, M. Steffen, G. Zavattaro, A Petri net based
analysis of deadlock for active objects and futures, in: C. S. Pasareanu, G. Salaün (Eds.),
Revised Selected Papers of the 9th International Workshop on Formal Aspects of Component
Software (FACS 2012), Lecture Notes in Computer Science, Springer, 2013, pp. 110–127.

[18] A. V. Ratzer, L. Wells, H. M. Lassen, M. Laursen, J. F. Qvortrup, M. S. Stissing, M. West-
ergaard, S. Christensen, K. Jensen, CPN tools for editing, simulating, and analysing coloured
Petri nets, in: Applications and Theory of Petri Nets 2003, 24th International Conference,
ICATPN 2003, Eindhoven, The Netherlands, June 23-27, 2003, Proceedings, Vol. 2679 of Lec-
ture Notes in Computer Science, Springer, 2003, pp. 450–462.

[19] A. Gkolfi, C. C. Din, E. B. Johnsen, M. Steffen, I. C. Yu, Translating active objects into
Colored Petri Nets for communication analysis, in: M. Dastani, M. Sirjani (Eds.), Proc. 7th
International Conference on Fundamentals of Software Engineering (FSEN 2017), Vol. 10522
of Lecture Notes in Computer Science, Springer, 2017, pp. 84–99.

[20] K. Jensen, Coloured Petri nets: A high level language for system design and analysis, in:
G. Rozenberg (Ed.), Advances in Petri Nets 1990, Vol. 483 of Lecture Notes in Computer
Science, Springer, 1991, pp. 342–416.

[21] K. Jensen, Coloured Petri Nets, in: W. Brauer, W. Reisig, G. Rozenberg (Eds.), Petri Nets:
Central Models and their Properties, (Advances in Petri Nets 1986) Part I, Vol. 254 of Lecture
Notes in Computer Science, Springer, 1987, pp. 248–299.

[22] J. Esparza, M. Nielsen, Decidability issues for Petri nets – a survey, Bulletin of the EATCS 52
(1994) 245–262.

[23] O. Owe, I. C. Yu, Deadlock detection of active objects with synchronous and asynchronous
method calls, in: 27th Norsk Informatikkonferanse, NIK 2014, Høgskolen i Østfold, Fredrikstad,
Norway, November 17-19, 2014, Bibsys Open Journal Systems, Norway, 2014.

[24] K. I. Pun, Behavioural static analysis for deadlock detection, Ph.D. thesis, Department of
informatics, University of Oslo, Norway (2014).

[25] E. Giachino, C. Laneve, M. Lienhardt, A framework for deadlock detection in core ABS,
Software and System Modeling 15 (4) (2016) 1013–1048.

[26] A. Flores-Montoya, E. Albert, S. Genaim, May-happen-in-parallel based deadlock analysis for
concurrent objects, in: D. Beyer, M. Boreale (Eds.), Proc. International Conference on Formal
Techniques for Distributed Systems (FMOODS/FORTE 2013), Vol. 7892 of Lecture Notes in
Computer Science, Springer, 2013, pp. 273–288.

[27] N. C. Russell, W. M. P. van der Aalst, A. H. M. ter Hofstede, Designing a workflow system
using coloured petri nets, Trans. Petri Nets and Other Models of Concurrency 3 (2009) 1–24.

[28] B. Mitchell, L. M. Kristensen, L. Zhang, Formal specification and state space analysis of an
operational planning process, STTT 9 (3-4) (2007) 255–267.

31

[29] N. Busi, R. Gorrieri, A Petri net semantics for pi-calculus, in: I. Lee, S. A. Smolka (Eds.),
CONCUR ’95: Concurrency Theory, 6th International Conference, Philadelphia, PA, USA,
August 21-24, 1995, Proceedings, Vol. 962 of Lecture Notes in Computer Science, Springer,
1995, pp. 145–159.

[30] E. Best, R. R. Devillers, M. Koutny, Petri net algebra, Monographs in Theoretical Computer
Science. An EATCS Series, Springer, 2001.

[31] P. Baldan, F. Bonchi, F. Gadducci, G. V. Monreale, Modular encoding of synchronous and
asynchronous interactions using open Petri nets, Science of Computer Programming 109 (2015)
96–124.

[32] W. McLendon, R. Vidale, Analysis of an ada system using coloured petri nets and occurrence
graphs, in: Proc. of Application and Theory of Petri Nets, Vol. 616 of Lecture Notes in
Computer Science, Springer, 1992, pp. 384–388.

[33] B. Long, P. A. Strooper, L. Wildman, A method for verifying concurrent Java components
based on an analysis of concurrency failures, Concurrency and Computation: Practice and
Experience 19 (3) (2007) 281–294.

[34] R. Bruni, H. C. Melgratti, E. Tuosto, Translating Orc features into Petri nets and the join
calculus, in: M. Bravetti, M. Núñez, G. Zavattaro (Eds.), Proc. Third International Workshop
on Web Services and Formal Methods (WS-FM’06), Vol. 4184 of Lecture Notes in Computer
Science, Springer, 2006, pp. 123–137.

[35] B. Mikolajczak, J. Rumbut, Distributed dynamic programming using concurrent object-
orientedness with actors visualized by high-level petri nets, Computers and Mathematics with
Applications 37 (11-12) (1999) 23–34.

[36] M. Odersky, Functional nets, in: G. Smolka (Ed.), Programming Languages and Systems,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2000, pp. 1–25.

[37] Y. Sami, G. Vidal-Naquet, Formalisation of the behavior of actors by colored petri nets and
some applications, in: E. H. L. Aarts, J. van Leeuwen, M. Rem (Eds.), PARLE ’91 Parallel
Architectures and Languages Europe, Springer Berlin Heidelberg, Berlin, Heidelberg, 1991,
pp. 110–127.

[38] L. Nigro, F. Pupo, Schedulability analysis of real time actor systems using coloured petri nets,
in: G. Agha, F. de Cindio, G. Rozenberg (Eds.), Concurrent Object-Oriented Programming
and Petri Nets, Advances in Petri Nets., Vol. 2001 of Lecture Notes in Computer Science,
Springer, 2001, pp. 493–513.

[39] E. M. Clarke, R. Enders, T. Filkorn, S. Jha, Exploiting symmetry in temporal logic model
checking, Formal Methods in System Design 9 (1-2) (1996) 77–104.

[40] K. Jensen, L. Kristensen, T. Mailund, The sweep-line state space exploration method, Theo-
retical Computer Science 429 (2012) 169–179.

32

AppendixA. CPN–ABS Module Details

Here, the interested reader can find more details related to the implementation of CPN–ABS. In
addition to the parts of the model presented in Section 4, we provide some extra modules illustrating
how the object creation and the communication mechanism of ABS has been simulated with CPNs.

Process
CostInitiaton

(p5)
Out

PROCOSTLIST

(p29)

In
INT

1

Process
Counter

(p4)
In/Out

PROC

0

Init process
creator

(a6)

([p1+1],[c1])

1

p1+1p1

Figure A.15: CPN–ABS module for process creation

In Fig. A.15 we can see the mechanism of the creation of the initial process that is dedicated
to each new object upon creation. Place p4 is a counter with increasing marking, hence we obtain
fresh identifiers for the new processes. It is a fusion place, common to the modules related to the
communication. Every time a new process is created, its marking is updated, so when firing a6 we
have always a new value p ` 1 passed as a parameter to the marking of p5. As we explained in
the main body of the paper, there are some ”extra” variables (here c1) playing the role of a basis
for further development of the model. This variable will be related to future cost analysis of ABS
programs but for the scope of our current work it is set to zero, hence it can be ignored.

Class
(p2)

CLASS

0

Process
CostInitiaton

(p5)
In

PROCOSTLIST

Busy
objects
(p15)

Out

FULLOBJ

(p29)Out

INT

1

(p14)Out

OPLENGTH

(0,0,0)

Objectid
counter

(p9)

In/Out

OBJ

0

(p13)Out

OPLENGTHLIST

(0,[],[])

New Object
(a7)

New Obj

ClassId
Creation

ClassIdCreation

Figure A.16: CPN–ABS module for dynamic object creation (ii)

33

Figure A.16 shows an upper module of the one related to the object creation (see Fig. 7) which
was discussed in Section 4.2. Figure A.17 shows the place which is related to the class identifier.
In CPN–ABS classes also are represented as Integers. Transition a1 creates a fresh identifier for
every class (Mpp1q) and a2 and a3 can change the marking of place p2. Remark that the marking
of p2 cannot exceed the value of the last class created. This is useful for binding the class variables
of the objects. Similarly for the modules of Fig. A.18 and A.19 referring to the processes and the
objects respectively.

class
counter

(p1)
CLASS

0

Class
(p2)

In/Out

CLASS

0

In/Out
new Class
Identifier

(a1)

find class
by incrementing

(a2)

u<s

find class
by decrementing

 (a3)

u>1

s

s
s+1

u

u+1 u-1

u

Figure A.17: CPN–ABS module for class identifier creation

Selected
Process
(p11)

In/Out

PROC

1
Process
Counter

(p4)

In/Out

PROC

0
select

process
by incr
(a11)

p2<p1

select
process
by decr
(a12)

p2>1

p2-1

p2

p2+1

p1
p2

In/Out

In/Out

Figure A.18: CPN–ABS module for process selection

Objectid
counter

(p9)
In/Out

OBJ

0

(p12)

In/Out

OBJ

1

select
obect
by incr
(a14)

ob6<ob5

select
object
by decr
(a15)

ob6>1

ob5
ob6

ob6+1

ob6

ob6-1
In/Out

In/Out

Figure A.19: CPN–ABS module for object selection

In Figure A.20 we can see how the tokens are “moved” from the “Busy Objects” place to the
“Idle Objects” place and vice versa when we have a process suspension or activation respectively.

Figure A.21 illustrates the self synchronous call as it is simulated in CPN–ABS. Every time
that a16 fires, a new process is added at the head of the process list of the object (located in
“Busy Objects” place). In addition, the marking of place p4 is updated hence the counter is aware
of the new process.

In Fig. A.22 we can see in detail how CPN–ABS simulates the return of a method call. As
we explained in Section 4.3, when a process related to a method has been executed by an object,
then this object becomes idle. Similarly, in CPN–ABS the object token from the “Busy Objects”
place (p15) is removed and it is added to the place “Idle Objects” (p16) and, on the same time
the head of the process list, which represents the active process is removed. In the case that the
return of the method resolves a future that is related to a get statement, the corresponding process
token is produced at place p23. This is important for binding variables at the tokens of the place
“Blocked Objects” as we shall see below.

Recall from Section 4 that when an object makes a blocking call (i.e. a call followed by a get
statement), then the object is moved from the “Busy Objects” place to the “Blocked Objects” one
(Fig. 10). Figure A.23 illustrates how the model matches the resolved future of such a method call
and how the object, after that, is moved back to the “Busy Objects” place to continue execution.

34

Selected
Process
(p11)

In/Out

PROC

1

Idle
Objects
(p16)

In/Out

FULLOBJ

(p13) In/Out

OPLENGTHLIST

(0,[],[])
(p12)

In/Out

OBJ

1

Busy
objects
(p15)

In/Out

FULLOBJ

(p14) In/Out

OPLENGTH

(0,0,0)

Suspend
(a17)

p7=hd pl7 andalso
(if (mem pl26 p7)
then (ob27=ob19 andalso p23=p7)
else (ob27=0 andalso p23=0))

Activate
(a18)

pl8<>[0] andalso
p8=hd pl8

p7

(ob18,u7,t6,pl8,cl8)

(ob19,pl26,pll1)

ob18

(ob18,u7,t6,pl8,cl8)

(ob27,p23,i3)

p8

(ob19,u6,t4,union (List.drop(pl7,i3+1)) (List.take(pl7,i3+1)),
 union (List.drop(cl7,i3+1)) (List.take(cl7,i3+1)))

ob19

(ob19,u6,t4,pl7,cl7)

In/Out

In/Out

In/Out

In/Out

In/Out

In/Out

Figure A.20: Module for Activate and Suspend in CPN–ABS

The color of the tokens of place “Blocked Objects” contains not only the object that is waiting for
a future, but also the identifier of the corresponding process that has been created for that purpose
at the callee object. As we explained above for Fig. A.22, in place p23 there are located only the
futures from the methods related to get statements. As a result, when an identifier contained
in a token of place “Blocked Objects” matches with some token of place p23, then transition a25
can fire and remove the corresponding object from the “Blocked Objects” place and add it to the
“Busy Objects” one. As a result, the (previously) blocked object can continue execution (recall that
only the objects located in the “Busy Objects” place can execute, otherwise they are either idle or
blocked).

35

(p14)In/Out

OPLENGTH

(0,0,0)

(p13)In/Out

OPLENGTHLIST

(0,[],[])
Busy

objects
(p15)

In/Out

FULLOBJ

Process
Counter

(p4)
In/Out

PROC

0

COST
(p3)In/Out

COST

0

(p12)In/Out

OBJ

1

Synch
self-call
(a16)

ob20=ob3 andalso
(if mem pl25 (hd pl19)
 then (ob28=ob3 andalso p22=hd pl19)
 else (ob28=0 andalso p22=0))

if (mem pl25 (hd pl19))
then 1`(ob3,(p17+1),(i2+1))
else 1`(ob28,p22,i2)++1`(ob3,(p17+1),1)

if mem pl25 (hd pl19) then
(ob3,ins (rm (hd pl19) pl25) (p17+1),
 ins (rm (p22,i2) pll) (p17+1,i2+1))
else (ob3,(p17+1)::pl25,(p17+1,1)::pll)

(ob3,u20,t17,pl19,cl19)

p17 p17+1

(ob3,u20,t17,(p17+1)::pl19,c7::cl19)

c7

(ob28,p22,i2)

ob20

(ob3,pl25,pll)

In/Out

In/Out

In/Out

In/Out

In/Out

In/Out

Figure A.21: Module for synchronous self-call in CPN–ABS

Idle
Objects
(p16)

Out

FULLOBJ

(p13)In/Out

OPLENGTHLIST

(0,[],[])

future
(p23)

Out

PROC

(p22)
In/Out

INT

1

(p18)
In/Out

PROCLIST

[]

Selected
Process
(p11)

In/Out

PROC

1

(p14)In/Out

OPLENGTH

(0,0,0)

List of
callees
(p21)

In/Out

OBJPROCLIST

[]

(p12) In/Out

OBJ

1

Busy
objects
(p15)In

FULLOBJ

Return
(a19)

p9=hd pl9 andalso
(if (mem pl27 p9) then p24=p9
else not (p24=p9))

if pl9=[p9]
then (ob11,u8,t7,[0],[0])
else (ob11,u8,t7,(tl pl9), (tl cl9))

(ob11,
 pl27,
 pll2)

if (mem obpl (ob11,p9))
then 1`p9 else empty

1

p9::pl20

p9

(ob11,
 p24,i4)

obpl

if (mem pl27 p9 andalso i4>1)
 then 1`(ob11,hd (tl pl9),i4-1)
 else (if (mem pl27 p9 andalso i4<=1)
 then empty
 else 1`(ob11,p24,i4))

ob11

(ob11,u8,t7,pl9,cl9)

if (mem pl27 p9 andalso i4>1)
then ((ob11,ins (rm p9 pl27) (hd (tl pl9)),
 ins (rm (p9,i4) pll2) (hd (tl pl9),
 i4-1)))
else (if (mem pl27 p9 andalso i4<=1)
 then (ob11,rm p9 pl27,rm (p9,i4) pll2)
 else (ob11,pl27,pll2))

pl20

In

In/Out

In/Out

In/Out
In/Out

Out

Out

In/Out

In/Out
In/Out

Figure A.22: Module for the return of a method

36

Communication
Pairs (p24)

In/Out

PAIRFULLOBJPROC

((0,0,0,[0],[0]),((0,0,0,[0],[0]),0))

Blocked
Objects
(p17)

In

FULLOBJPROC

2`((0,0,0,[0],[0]),0)

Blocked
Objects List

(p26)
In/Out

FULLOBJPROCLIST

[((0,0,0,[0],[0]),0)]

Busy
objects
(p15)

Out

FULLOBJ
future
(p23)

In

PROC

Read-Fut
(a25)

ob15=ob24 andalso
p15=p19

((ob15,u15,t14,pl16,cl16),(o3,p15))

((ob24,u21,t18,pl21,cl20),p19)

rm ((ob24,u21,t18,pl21,cl20),p19) foplfopl

(ob24,u21,t18,pl21,cl20)

p15

Out

In

In

In/Out

In/Out

Figure A.23: Module for the future resolution

37

