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Abstract Railway capacity is complex to define and analyze, and existing tools and meth-
ods used in practice require comprehensive models of the railway network and its timetables.
Design engineers working within the limited scope of construction projects report that only
ad-hoc, experience-based methods of capacity analysis are available to them. Designs often
have subtle capacity pitfalls which are discovered too late, only when network-wide timeta-
bles are made – there is a mismatch between the scope of construction projects and the scope
of capacity analysis, as currently practiced.

We suggest a language for capacity specifications suited for construction projects, ex-
pressing properties such as running time, train frequency, overtaking and crossing. Such
specifications can be used as contracts in the interface between construction projects and
network-wide capacity analysis.

We show how these properties can be verified fully automatically by building a special-
purpose solver which splits the problem into two: an abstracted SAT-based dispatch plan-
ning, and a continuous-domain dynamics and timing constraints evaluated using discrete
event simulation. The two components communicate in a CEGAR-loop (counterexample-
guided abstraction refinement). This architecture is beneficial because it clearly distinguishes
the combinatorial choices from continuous calculations, so that the simulation can be ex-
tended by relevant details as needed. We describe how loops in the infrastructure can be
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handled to eliminate repeating dispatch plans, and use case studies based on data from exist-
ing infrastructure and ongoing construction projects to show that our method is fast enough
at relevant scales to provide agile verification in a design setting.

1 Introduction

The planning and engineering of a railway control system has safety as primary requirement.
Safety is ensured through the so-called signaling principles, and detailed requirements have
been put in place for station layouts, controller implementations, and operation procedures.

Secondary to safety, the notion of performance and capacity of a railway control system
remains more elusive. The capacity of a railway control system, and thus of railway infras-
tructure in general, is hard to define precisely (see [15,1,22]). Any capacity measure will
necessarily make assumptions about the operation of the railway. One can say that the rail-
way infrastructure does not have an inherent capacity, only capacity for specific use cases.
A fully accurate assessment of capacity can only be made under a fully specified timetable,
meaning that every train’s arrival and departure times at all stations in the network must be
known. This makes for a highly coupled analysis, as constructing an actual timetable re-
quires bringing together details about infrastructure, rolling stock, transportation demands,
and crew schedules. Systematic capacity analysis for railways is typically performed on the
scale of national railway networks, using comprehensive input on infrastructure and timeta-
bles, and only after planning and engineering has produced a final design. Moreover, the
widely used methods and tools for capacity analysis are heavy-duty methods, consisting
of complicated simulations, and require specialized knowledge, thus not being suitable for
more agile design-time verification of railway stations.

For construction projects and control system engineering, it would not be feasible to
use a fully specified timetable for verifying that the control system will be able to provide
the required capacity, because (1) detailed timetabling and capacity analysis takes too much
effort and specialized knowledge, and is usually saved for later stages of design, and (2) the
design of a control system cannot or should not depend too heavily on other parts of the
network, as these parts may also change in the future.

Another approach to capacity analysis is the so-called analytical capacity approach,
which views the railway network as a network of queues, or a maximum flow problem,
abstracting away the low-level discrete behavior while preserving the high-level continuous
behavior. These methods can give preliminary or low-precision network-wide results, but
fail to account for the critical factors which arise when performance is pushed to the limit.
Simplifying assumptions that can be suitable for network-scale capacity analysis, such as in-
stantaneous speed changes, or fixed traveling times between different locations, are usually
not suitable for infrastructure design. Specifically, disregarding the discrete allocation logic
of the interlocking system, and the position and velocities of individual trains, makes these
methods unsuitable for analysis of signalling design. The detailed optimization of signal
and detector locations needs to account for a detailed model of train dynamics and con-
trol system behavior exactly because higher-level analysis requires this assumption of local
optimization to the simplified behaviors used in network-global analysis.

As none of these techniques are particularly well-suited, railway engineers working on
construction projects usually rely on informal, vague, or even non-existant capacity speci-
fications, and need to make ad-hoc analyses of how the control system might provide this
capacity.
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Fig. 1: Two alternative dispatch plans for achieving a crossing of two trains on a two-track
station. The green areas show track segments which are currently occupied by a train going
from left to right, while the pink areas show track segments which are currently occupied by
a train going from right to left.

In consequence, this paper addresses the following problem: in the context of designing
the layout and control systems for railway stations, does the station infrastructure have the
capacity to handle the amount of trains and the desired traveling times to provide adequate
service in transportation of goods and passengers?

As an example, consider the question of crossing trains on a railway station. Fig. 1
shows two sequences of movements which result in such a crossing. There are a number of
details of the railway design which can cause this scenario to become infeasible (or take an
unacceptably long time), such as signal placement, detector placement, correct allocation
and freeing of resources, track lengths, train lengths, etc.

Railway design and construction planning is an old engineering discipline with long-
standing traditions. Demands for the highest safety, compatibility with existing infrastruc-
ture and practices, and high investment costs, make railway engineering a conservative do-
main. The design process of railways is in practice highly sequential, leading to the known
advantages and disadvantages of so-called waterfall process models.

Waterfall-style design processes require that high-level specifications can be written up-
front and afterwards implemented without feedback from the implementation process back
to the high-level specifications. This also means that verification and validation in waterfall-
style design processes is confined to the scope of each separate design activity, or destined
to have little hope of improving the design when weaknesses are uncovered.

Unfounded design assumptions which are made early in the early process stages have
been known to trickle all the way down to the final stages and require new rounds of design
starting from the top, a process which typically takes several years.

These negative effects are typically mitigated by:

a) Re-using proven design concepts, i.e. doing something the same way as somewhere else,
where it has already turned out to work well.

b) Allowing sizable margins, e.g. planning the track with more than enough space for safety
distances so that it is highly likely that control system engineers will later be able to
come up with a safe and performant design.

These mitigations exploit tradition, experience and cross-discipline knowledge in the
railway engineers, which in turn contributes to making the engineering community slow-
moving and conservative.

However, modern construction practice expects and demands optimization. When space
requirements, performance requirements and cost limitations are squeezed to the limits of
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the possible, the tradition-based railway engineering approach lacks the methods to accu-
rately reason about the limitations of the finished system from partially finished design
plans.

Using agile verification of high-level properties from the beginning of a design project,
and in every step of the process, allows engineers to better see the consequences of each de-
cision and immediately uncover errors and shortcomings that would otherwise be discovered
only months or years later.

Our goal is to develop a verification technique and tool to help engineers specify capacity
properties at design time and to check these automatically. To be agile, the tool needs to (1)
have reasonable running times so that the verification can be run on the fly as the design
is being updated by an engineer working in a drafting CAD application, and (2) keep the
required input to the minimum of information needed to verify relevant properties. This style
of verification gives engineers immediate feedback on their design decisions while requiring
small amounts of specification and verification work.

1.1 Problem definition

We consider the low-level railway infrastructure capacity verification problem, which
we define as follows:

Given a railway station track plan, including signaling components, rolling stock
dynamic characteristics, and a performance/capacity specification, verify whether
the specification can be satisfied and find a dispatch plan as a witness to prove it.

Solving this problem subsumes the following railway infrastructure design activities:

a) Low-level running time analysis – verify the time required for getting from point A to
point B.

b) Low-level schedulability analysis – verify frequency of trains arriving at a station, and
simultaneous opportunities for crossing, parking, loading, etc.

c) Combinations – verify running time requirements on schedulable operations.

1.2 Approach

In this paper we suggest a formalization of capacity requirements as a set of operational
scenarios involving a set of trains, a set of locations to visit, and a set of timing constraints.

Verification in this domain can in principle be encoded into the SMT [2,7,31] or PDDL+
[11] languages, essentially resulting in a SAT modulo non-linear real arithmetic problem
[12,20]. Many solvers can handle such problems [8,13,9], but we found that the problem
size of our test cases, in terms of the number of planned actions and in terms of number of
interacting Boolean and non-linear real logic terms, were out of reach for agile verification.
Moreover, simplifying the train dynamics to only using constant acceleration x′′ = c is
too simplistic for real-world engineering. We would like to be able to extend the dynamics
equations using, e.g., polynomials of higher order or even numerical integration.

Therefore, we have developed a verification tool chain that uses a CEGAR-loop [6]
between a SAT-based planning tool that works on a discrete abstraction of the control sys-
tem commands, and a discrete event simulation engine (DES) [37] that calculates detailed
continuous results for a specific plan, taking the physics of moving trains into account.
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The SAT-based planner uses bounded model checking (BMC) [3] where time is reduced
to a series of partially ordered actions with unknown durations, and the choice of actions are
the available commands in the control system. The DES component verifies the continuous
time/space results given the Boolean decisions of control system commands, and adds new
SAT constraints excluding unsatisfactory solutions.

The separation of discrete and continuous domains also has the advantage that the sim-
ulation component can be extended to handle more complex models, such as engine power
curves, tunnel air resistance, curve rolling resistance, train weight distribution, etc., without
affecting the planning logic or its computational complexity.

We have tested our method and tool on practical examples from existing infrastructure
and ongoing construction projects in collaboration with railway engineers from Railcom-
plete AS.

This paper extends our work from [26] in the following ways (besides expanding in
many places with more clear presentations of the concepts and ideas): (i) We provide an
expanded introduction to railway control systems and dynamics in Sec. 2, to make the work
self-contained. (ii) We give more detailed descriptions of the implementation of discrete
event simulation in Sec. 4. (iii) We have added new results for handling overlaps, overlaps
with optional timeout, and swinging overlaps in Sec. 3.2. (iv) We have added new results for
handling loops in infrastructure and eliminating repetition in dispatch plans in Sec. 3.3.

The paper is organized as follows: Sec. 2 contains an overview of the railway design
process and the principles for analysis of these designs. We present a language for capacity
specifications, together with examples of how it can be used in construction projects. Sec. 3
describes the tool chain and the solver architecture that we propose to verify performance
properties in an agile verification style, integrated in the construction project workflow. We
present in detail in Sec. 3.1 how the planner component of our solver is implemented. The
simulator component is described in Sec. 4. Sec. 5 contains performance evaluations in a set
of relevant case studies. Sec. 6 discusses further related work and presents our conclusions.

2 Problem background

The signaling and interlocking design problem for a railway station takes the track plan
as input, typically containing tracks, switches and platforms, and produces the following
artifacts:

– Track and trackside component layout, describing the locations of tracks, switches, sig-
nals and detectors (see Fig. 2).

– Interlocking specifications, describing the requirements for the logic of the control sys-
tem (see Fig. 3).

These design artifacts are the subject of verification, i.e., the model. Ensuring perfor-
mance in the context of a construction project consists of verifying properties describing a
set of trains moving on the tracks and the goals which need to be accomplished by these
movements. The design should (1) ensure safe movement while also (2) fulfilling perfor-
mance requirements. We describe each of these aspects in the sections below.

To verify performance properties, we need to find a sequence of trains and elementary
routes for the train dispatcher, i.e., a dispatch plan, which when executed under safety and
correctness constraints (described in Sec. 2.1 below), demonstrate the properties described
in the performance requirements (detailed in Sec. 2.2 below).
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Fig. 2: (a) Example schematic construction drawing. (b) Cut-out from a 2D geographical
CAD model (construction drawing) of a preliminary design of the Arna station signalling.

Train movements along the railway are coordinated by a train dispatcher, whose task it
is to choose which trains go where, and communicate this to the train drivers. The dispatcher
uses a control system to perform this task, called the interlocking, which receives input from
trackside train detectors and controls movable track elements and signals (see Fig. 4).

2.1 Safe and correct train movements

Low-level analysis of train movements covers a wide range of constraints given by the
track layout, the control system, and operational procedures, to be certain that the analy-
sis produces detailed, realistic results. The following subsections give an overview of these
constraints, divided into four classes. See [33] for a more in-depth description of railway
operation principles.

Elementary
route

Start
signal

End
signal

Switch
position

Track
segments

Conflicts

AC A C X right 1, 2, 4 AE, BF
AE A E X left 1, 2, 3 AC, BD
BF B F Y left 4, 5, 6 AC, BD
BD B D Y right 3, 5, 6 AE, BF

Fig. 3: Example of a tabular interlocking, showing available routes and their conditions.
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Fig. 4: A dispatcher (1) requests routes from the interlocking control system. The inter-
locking decides whether to accept the command (2), and signals the resulting movement
authority to the train driver (3). The control system itself is responsible for the safety of the
resulting movements.

2.1.1 Physical infrastructure

Trains travel on a network of railway tracks which have physical properties such as length,
gradient, curvature, etc. Tracks branch off using switches, whose setting determines where
the train goes. Detectors on the track are used by the control system to determine whether
track segments are occupied. The physical infrastructure also determines the sight areas: the
set of locations where a train receives information from a given signal.

2.1.2 Interlocking: allocation of resources

The safety-critical control systems for railway infrastructure are called interlockings. An
interlocking takes requests for activating routes from a dispatcher. When a route is activated,
switches are moved into correct positions and signals are set to show the go aspect. The
interlocking is also responsible for assuring that activating the route, i.e., allowing the train
to travel the route, is safe. This safety is ensured through the following requirements:

a) Routes require the exclusive allocation of track segments, so that two routes which use
some of the same track segments cannot be activated at the same time. Routes must be
allocated as a unit, i.e., all segments must be free at the time of allocation. However,
track segments may be de-allocated to other routes as soon as the train has passed a
segment.

b) Switches need to be in the correct position for the train to travel along the route. Also,
the switches must be locked, so that they cannot accidentally be moved while the train
is travelling, and detectors on the switch must report that the switch is actually locked
in the correct position.

c) A safety zone (also called overlap) beyond the end of the route must be vacant, but not
necessarily exclusively allocated, i.e., two safety zones may share track segments. The
safety zone is released after a given time which is long enough that it is unlikely that the
train is still moving forward. This timeout is calculated based on the length of the route.
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Signal A Signal C

Fig. 5: Elementary route AC from signal A to the adjacent signal C. The thick line indicates
track segments on the train’s path which are reserved for this movement, and the dashed
lines indicate reserved track segments outside the path.

d) Routes which pass through switches require specific track elements to cover any poten-
tial movements into the route path. This is known as flank protection, and cover can
typically be provided by signals, switches or other objects.

e) Signals can only show the go aspect when it is the starting point for a currently ac-
tive route; in all other states, the signal must show the stop aspect. Distant signals, i.e.,
additional signals showing information about the next upcoming route, must give infor-
mation consistent with the upcoming signal.

These constraints are explicitly expressed for a given railway station through the inter-
locking specification, which is an artifact of the design process.

Avoiding collisions by exclusive use of resources is the responsibility of the interlocking,
which takes requests from the dispatcher for activating elementary routes. An elementary
route is the smallest unit of resources that can be allocated to a train, see Fig. 5. Route
activation is a process which proceeds as follows:

a) Wait for all required resources, such as track segments and switches, to be free. Re-
sources required by a route are typically any resource in the train path (or sometimes
outside of it), which ensure that all movements are performed at a safe distance from
each other.

b) Movable elements (e.g. switches) must be set to correct positions. If they are not, start
a sub-process which moves the element into place, and wait for this process to finish
before proceeding.

c) Signals are then set to show the ’proceed’ aspect to the train when the above steps are
finished. When the front of the train has passed the signal, it is immediately reset to
show the ’stop’ aspect.

d) A release process is started, which waits for the train to finish using the allocated re-
sources (i.e., to travel over them) and frees them when this has happened.

Influence of safety zones on capacity

The safety zone, as described above, is a set of track sections and switches allocated together
with a route to ensure that slightly overrunning a signal showing the stop aspect is safe (see
Fig. 6). Different manufacturers and national regulations have various ways of specifying
how a safety zone is released and how alternative safety zones are implemented. The main
variations are:

a) The safety zone from a route end point persists until a route is allocated from the end
point. This can be problematic if the safety zone blocks other traffic or if the train is
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Signal A

Route 1

Safety zone 1

Safety zone 2

Route 2

Fig. 6: An elementary route 1 ending in signal A can protect trains from overrunning the
signal by allocating one of the safety zones (shown as safety zone 1 and 2). In some situa-
tions, safety zone 1 might be preferred so that the switch following signal A is in the correct
position for letting the train in route 1 proceed quickly. However, allocating safety zone 1
blocks route 2 from use. So in other situations, safety zone 2 might be preferred, for example
for two trains to concurrently enter a station. Some control systems may allow one safety
zone to be replaced by another after the route has been allocated.

changing directions and not proceeding past the end point. The following two methods
are the usual mitigations for these problems.

b) The safety zone is released after a pre-set time. This time should be long enough so that
the probablilty that the train is still running towards the end point is very low.

c) The safety zone it not released, but can be replaced by another safety zone from the
same route end point. This method is called swinging overlap in the United Kingdom.

2.1.3 Communication constraints

After movement has been allowed by the control system, the driver must be informed of this
fact. When a route is activated, a train inside the sight area of the route’s entry signal reads
the signal’s message that movement authority is given. The train driver may then drive the
train forward until the next signal. The following types of signalling systems are common
in railways:

a) Traditional signaling with trackside lamps. Communication is limited by how many
different aspects the lamps can show. To avoid high-speed trains slowing down at every
signal, several consecutive elementary routes can be signaled in advance using so-called
distant signals.

b) Automatic train protection systems (ATP) work similarly to signals, but may give more
information. Many ATP systems communicate information through magnets or short-
range radio at specific locations on the track, corresponding to a signal sight area of zero
length.

c) The European Rail Traffic Management System (ERTMS) currently being implemented
in many European countries replaces lamp signals with trackside marker boards, and
uses long-range radio for communication. This effectively removes the communication
constraint, as the radio can be used to update any train’s movement authority at any time.

The amount of information that can be transmitted to the train drivers through the signal-
ing puts a constraint on how far ahead the routes can be pre-allocated. Traditional signaling
can typically show information about either one or two routes, but some countries have
extended to information about three consecutive routes. It is also common to extend the
information given by signals using track-side electronic communication. See Fig. 7.
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Velocity

Known movement authority

Auth.

Fig. 7: Signal information only carries across two signals (so-called distant signals).

2.1.4 Laws of motion

Trains move within the limits of given maximum acceleration and braking power, so train
drivers need to plan ahead for braking so that the train respects its given movement authority
and speed restrictions at all times.

The speed increase from v0 to v over a time interval ∆t is limited by the train’s maxi-
mum acceleration a:

v − v0 ≤ a∆t .
However, when there is a more restrictive speed restriction ahead, the driver must start

braking in time to meet the restriction. A signal showing the ’stop’ aspect can be treated
as a speed restriction of zero. Since speed restrictions change with time, the driver must
re-evaluate their actions whenever new information is received.

A train has the following constraint on its velocity v for each restriction,

v2 − v2i ≤ 2bsi ,

where vi is the maximum allowed speed, si is the distance to the location where the restric-
tion starts, and b is the maximum retardation achieved by braking. These restrictions are
given as (1) constant maximum velocity restrictions given by signs beside the track, or (2)
dynamical velocity restriction given by the distance to the next stop signal (i.e., the length
of the movement authority).

2.2 Performance requirements specifications language

To capture typical performance and capacity requirements in construction projects, we de-
fine an operational scenario S = (V,M,C) as follows:

a) A set of vehicle types V , each defined by a length l, a maximum velocity vmax, a maxi-
mum acceleration a, and a maximum braking retardation b.

b) A set of movementsM , each defined by a vehicle type and an ordered sequence of visits.
Each visit q is a set of alternative locations {li} and an optional minimum dwelling time
td.

c) A set of timing constraints C, each constraint consisting of two visits qa, qb, and an
optional numerical constraint tc on the minimum time between visit qa and qb. The two
visits can come from different movements. If the time constraint tc is omitted, the visits
are only required to be ordered, so that tqa < tqb .
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To demonstrate how an operational scenario captures requirements of railway construc-
tion projects, we give some examples using the syntax of the file format used in our tool1.
First, we define the following vehicle types:

vehicle passengertrain length 220.0
accel 1.0 brake 0.9 maxspeed 55.0

vehicle goodstrain length 850.0
accel 0.5 brake 0.5 maxspeed 20.0

The following set of performance specifications are selected prototypical versions of
specifications that railway engineers have suggested as useful for automated verification:

a) Running time: expresses an expectation of how long it should take for a train to travel
between two locations. To specify this, we simply require that a train visits some location
b1 and later visits some other location b2. A timing constraint of 90.0s between these
visits sets the running time requirement.

movement passengertrain {
visit #a [b1]; visit #b [b2] }

timing a <90.0 b

b) Train frequency: a train station processes a set of trains arriving and departing with a
fixed frequency. On a two-track station, we exemplify a sequence of four trains and their
relative departure times as:

movement passengertrain {
visit [b1]
visit [platform1,platform2] wait 60.0
visit #e1 [b2] }

// ...3 more trains with visits e2, e3, e4.
timing e1 <90.0 e2
timing e2 <90.0 e3
timing e3 <90.0 e4

c) Overtaking: trains traveling in the same direction can be reordered. For example, we
specify a passenger train traveling from b1 to b2, and a goods train with the same visits.
Timing constraints ensure that the passenger train enters first while the goods train exits
first.

movement passengertrain {
visit #p_in [b1]; visit #p_out [b2] }

movement goodstrain {
visit #g_in [b1]; visit #g_out [b2] }

timing p_in < g_in
timing g_out < p_out

d) Crossing: trains traveling in opposite directions can visit this station simultaneously.
This example is similar to the previous one, but the goods train now travels in the op-
posite direction, and the timing constraints require that the trains are inside the model
simultaneously.

movement passengertrain {
visit #p_in [b1]; visit #p_out [b2] }

movement goodstrain {
visit #g_in [b2]; visit #g_out [b1] }

timing p_in < g_out
timing g_in < p_out

1 For details of the input file formats, see https://luteberget.github.io/rollingdocs/
usage.html

https://luteberget.github.io/rollingdocs/usage.html
https://luteberget.github.io/rollingdocs/usage.html
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Pre-processor:
convert model representation for

each solver component
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generate route

activation sequence

Simulator (DES):
execute planned

sequence up to time limit

Input

Route/conflict
abstraction

Infrastructure graph
representationCandidate plan

Eliminate plan prefixUNSAT SAT

Fig. 8: Conceptual diagram of our CEGAR architecture. Infrastructure, routes, train types,
and movement specifications are transformed into (1) the planner’s abstract representation,
containing only elementary routes and train lengths, and (2) the detailed graph representation
used in the simulator component.

Similar specifications, and combinations of such specifications, are relevant in most rail-
way construction projects. Since we typically only need to refer to locations such as model
boundaries and loading/unloading locations, these specifications are not tied to a specific
design, and can often be re-used even when the design of the station changes drastically.

Stations can be designed to be either intermediate stops, or end-of-line stops. Also, some
stations are intermediate stops for some trains while also being the end-of-line stop for other
trains. A challenge of planning for end-of-line stops is that the train must usually be allowed
to turn around and go back in the direction it came from. Allowing an unbounded number
of such turns can in principle lead to an infinite number of dispatch plans.

The turning is also related to the challenge of having loops in the infrastructure. This is
uncommon within a single station, but can sometimes occur in construction projects where
several stations together form a loop topology. Also here, we must take care not to explore
or suggest an infinite number of ways to execute an operational scenario. Such aspects are
treated in Sec. 3.2.

3 Tool chain and solver architecture

Being able to do performance verification (i.e., capacity analysis) automatically, using only
information typically available in a construction project, is a valuable tool for railway en-
gineering in the disciplines of signalling and interlocking. In this section, we describe our
approach to verifying capacity properties using the formalization of capacity given in the
previous section.

We have investigated several logic-based approaches for the domain and problem de-
scribed above. The PDDL+ language has been designed to express planning problems in
mixed discrete/continuous domains. As each discrete change is represented by a planning
step, our test case problem instances would need at least 50-100 steps to be solvable. We
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Fig. 9: Capacity verification tool chain overview. Yellow boxes represent input documents.
Note that only infrastructure and operational scenarios are strictly required – interlocking
tables can be derived, and dispatch plans can be synthesized. Blue boxes represent programs.
The green box represents the output document from the simulator, which is a history of
events which is the witness that proves the performance requirements.

were able to solve using the SMTPlan+ solver only the most trivial test cases in less than
one second, which we consider a reasonable running-time constraint for agile verification.

Encoding into SMT can be done by expressing planning as a BMC problem. This ap-
proach suffers from the same problem of having a high number of planning steps (some
improvements can be made, s.a. making train driver choices implicit in constraints on the
relation between velocity, distance and time).

To address these limitations, we developed a CEGAR-style tool which exploits the lim-
ited number of control system commands to make an abstraction of the planning problem,
see Fig. 8. A verification tool chain which solves the low-level railway infrastructure capac-
ity verification problem and supports agile verification in railway construction projects is
outlined in Fig. 9 along with information flow between the components. The manual, source
code and test cases are available online2. The tool uses the MiniSAT v2.2.0 solver.

The tool is complementary to other verification techniques in railway design, such as
static layout verification [28,27,25], static interlocking verification [17,27], interlocking
program verification [4], and timetable analysis [16].

The following input documents are used:

a) Operational scenarios defining the performance properties to verify. Examples are
given in Sec. 2.2.

b) Infrastructure given in the railML format [30,36]. In our case studies, railML was
generated using the RailCOMPLETE software, a plugin for the widely used AutoCAD
drafting software. In this way the model is taken directly from the engineers’ drafting
program with no additional model preparation needed.

2 https://luteberget.github.io/rollingdocs and
https://github.com/koengit/trainspotting

https://luteberget.github.io/rollingdocs
https://github.com/koengit/trainspotting


14 Bjørnar Luteberget et al.

c) Elementary routes (optional), given in a custom format which is compatible with the
upcoming railML interlocking format. Although subject to design, a decent guess of the
content can be straight-forwardly derived from the infrastructure by listing resources on
paths between adjacent signals, so this input is optional.

d) Dispatch plans (optional) corresponding to each operational scenario. The verification
tool can produce dispatch plans fulfilling the performance specification, so this input is
optional.

An advantage of the separation of planner and simulator is that each component can be
used separately. The planner alone may be used to enumerate different possibilities for train
movements, which might be used in an operational testing situation. The simulator alone
may be used to debug the execution of a specific dispatch plan to examine performance
deficiencies, and educationally for demonstrating the workings of the railway system. Put
together, the two components provide automated verification, which is the main goal of our
efforts. It would also, in principle, be possible to use one of the commercial simulation
packages, such as OpenTrack or RailSys, provided that all input and simulation control can
be given though a programmable interface (API).

3.1 Dispatch Planning using SAT

The planner solves the abstracted discrete planning problem of finding a dispatch plan, i.e.,
determining a sequence of trains and elementary routes which make the trains end up visiting
locations according to the movements specification.

We encode an instance of the abstracted planning problem into an instance of the Boolean
satisfiability problem (SAT). We consider the problem a model checking problem, and use
the technique of bounded model checking (BMC) to unroll the transition relation of the
system for a number of k steps, expressing state and transitions in propositional logic.

Using BMC for planning works by asserting the existence of a plan, so that when the
corresponding SAT instance is satisfiable, it proves the fulfillment of the performance re-
quirements and gives an example plan for it. When unsatisfiable, we are ensured that there
is no plan within the number of steps k. In practice plans with higher number of steps are
not of interest; i.e., the bound k is chosen based on practical considerations (e.g., twice the
number of trains was sufficient in our case studies). The SAT instance is built incrementally
by solving with k − 1 steps and then adding the kth step if necessary.

The abstracted planning problem is encoded as a SAT instance by representing states,
constraints on each state, and constraints on consecutive states. State i of the system in the
planner component is represented as:

a) Each route rj has an occupancy status oirj which is either free (oirj = Free) or occupied
by a specific train tk (ojri = tk). Each combination of route and train is represented by
a Boolean variable, but we will write constraints with oirj as a variable from the set of
trains.

b) Each route also has a choice from its associated safety zones zjrj ∈ {1 . . . n} which
determines which other routes are considered to be in conflict (see Fig. 10).

c) Each train tk has a Boolean representing appearance status bik, used to propagate to
future states that a train has started (used in constraint C2 below).

d) Each visit l has a Boolean representing required visits vil , which is used to propagate to
future states that a visit requirement has been fulfilled (used in constraint C5).
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Fig. 10: The planner component takes an abstracted view of the railway infrastructure. Lines
represent elementary routes with traveling direction given by the arrows. Boxes indicate
routes in conflict, i.e. only one of them can be in use at a time.

e) Each combination of route rj and train tk has a Boolean representing deferred progress
pij,k, used to propagate to future states that a train is not progressing, and must resolve
the conflict in the future (used in constraint C8).

A dispatch plan is produced directly from the occupancy status oirj and safety zone
choices zjrj of states by taking the difference between consecutive states and then dispatch-
ing any trains and routes which become active from one state to the next. If swinging safety
zones (also known as swinging overlaps) or safety zone timeouts are enabled, then consecu-
tive steps can have different safety zones, and when this happens, a swing command is also
added to the dispatch plan.

Constraints are applied to each state and each pair of consecutive states to ensure that:

– The plan is viable for execution (i.e., correctness):
(C1) Conflicting routes are not activated simultaneously.
(C2) Each train can only take one contiguous path.
(C3) An elementary route must be allocated as a unit, but its parts may be deallocated

separately.
(C4) (Partial) routes are deallocated only after a train has fully passed over them.
– The plan fulfills capacity specifications:
(C5) Trains perform their specified visits.
(C6) Visits happen in specified order.
– Equivalent solutions are eliminated (for performance):
(C7) Routes are deallocated immediately after the train has fully passed over them.
(C8) A train’s path is extended as far as possible in the current time step, unless hindered

by a conflicting train (i.e., maximal progress).

Equivalent plans, which result in the same trains traversing the same paths and conflicting
in the same locations, should have the same representation so that enumeration of different
plans produces meaningful alternatives. For example, the two dispatch plans for crossing
shown in Fig. 1 are the only two alternatives given by the planner for this operational sce-
nario. See Fig. 11 for other dispatch plans which fulfil the correctness constraints (C1-6) but
which do not have maximal progress in each state.

The simulator component, which evaluates the time consumption of plans, reports which
parts of the plan fail the timing constraints, and the negation of this partial plan is added
to the SAT instance. Since the timing calculations are path dependent, we use the part of
the plan starting from the beginning and going up to the step where the timing specification
violation occurs. This way of refining the abstraction can cause performance problems when
many different choices are possible early in the plan, and the timing violation can only be
found near the end of the plan, as demonstrated in Sec. 5. Finding a way to make more
precise refinements could be necessary for larger problem instances.
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Dispatch plan without (C7)/(C8): Dispatch plan without (C8):
S1

Path not extended as
far as possible (C8)S2

Route not freed when
train has passed (C7)S3

Route not freed when
train has passed (C7)S4

S1

Path not extended as
far as possible (C8)

S1

S3

Fig. 11: Examples of dispatch plans which are correct plans (constraints (C1-6)), but which
have better equivalent descriptions that allocate and deallocate as soon as possible. These
plans do not fulfil constraints (C7) and (C8). Compare with plan 1 in Fig. 1.

The implementation of each of these constraints as propositional logic statements is
described below. Constraints apply separately to all states i unless noted otherwise.

3.1.1 Resource conflicts (C1)

Any two routes which require the same resources cannot both be allocated in the same state.

∀ra ∈ Routes : ∀rb ∈ conflict(ra) : oira = Free ∨ oirb = Free.

3.1.2 Train path (C2)

At most one alternative route is taken by a train in a single state. First, ensure that only one
route from a given start signal may be taken at any time.

∀t ∈ Trains : ∀s ∈ Signal : atMostOne(
{
oir = t | entry(r) = s

}
) .

We use a standard sequential encoding to encode atMostOne and other similar constraints, as
explained in e.g. [38]. Note that entry signals for all routes entering from a model boundary
share the same null value, so that this constraint also excludes plans where a single train
appears in several positions at once. Each train should only enter the plan once, thus the
appearance Boolean changes to true in exactly one transition.

∀t ∈ Trains : bit ⇒ bi+1
t .

∀t ∈ Trains : exactlyOne
({
¬bjt ∧ b

j+1
t | j ∈ States

})
.

A train appears when an entry boundary route is allocated:

∀t ∈ Trains : ∀r ∈ {r ∈ Routes | entry(r) = null} :
(
oir 6= t ∧ oi+1

r = t
)
⇒ bi+1

t .
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Elementary route

Partial 1
Part

ial
2

Partial 3

Fig. 12: The planning abstraction of the train dispatch allocates a set of partial routes to each
train. Elementary routes are sets of partial routes which must always be allocated together.

Routes which are not entry routes can only be allocated to a train when they extend some
other route which was already allocated to the same train, i.e., consecutive routes must match
so that the exit signal of one is the entry signal of the next:

∀t ∈ Trains : ∀r ∈ {r ∈ Routes | entry(r) 6= null} :(
oir 6= t ∧ oi+1

r = t
)
⇒
∨{

oi+1
rx = t | rx ∈ Routes, entry(r) = exit(rx)

}
.

Note that this constraint ensures that the trains’ allocation to routes locally forms a path
in the graph of routes. In the presence of cycles, this constraint does not rule out cyclic
allocations disjoint from the rest of the train’s path. This problem is handled separately in
Sec. 3.2 below.

3.1.3 Partial release (C3)

Partial release is represented by splitting each elementary route into separate routes for each
component which is released separately. The set Partial contains such sets of routes. Partial
routes are allocated together (see Fig. 12):

∀t ∈ Trains : ∀q ∈ Partial : allEqual(
{
oir 6= t ∧ oi+1

r = t | r ∈ q
}

)

3.1.4 Deallocation (C4, C7)

Routes are freed when sufficient length has been allocated ahead to fully contain the train.

∀t ∈ Trains : ∀r ∈ Routes :

oir = t⇒
(

(oi+1
r = t)⇔ freeabler,t(

{
oi
}

)
)
.

Note that the equality sign on the right hand side implies that deallocation is both allowed
(C4) and required (C7). The freeable predicate is a disjunction of paths (conjunction of
routes) ahead which are long enough to contain the train. For example, on the routes shown
in Fig. 13, if route A holds a train t of length 200.0 m, freeing A is constrained by:

Ai ⇒
(
Ai+1 ∨ (Bi ∧ Ci) ∨ (Di ∧ Ei)

)
.
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Route A (200 m) Route B (100 m) Route C (400 m)

Route D (100 m) Route E (400 m)

Fig. 13: When a train of length 200.0 m has been allocated to route A, that route can only
be freed when the train has been allocated to either both B and C or both D and E.

3.1.5 Visits (C5, C6)

Visits and their order are given by the set VisitOrder, which contains pairs of (t, v), where t
is a train and v is a set of alternative routes. Visits must happen using any of the alternative
routes, and must be in an order such that the visit (t1, v1) comes before (t2, v2):

∀((t1, v1), (t2, v2)) ∈ VisitOrder :∨{
oira = t1 ∧ ojrb = t2 ∧ i ≤ j | ra ∈ (v1), rb ∈ (v2), i, j ∈ States } .

3.1.6 Forced progress (C8)

In addition to the constraints on allocation and freeing required to produce a valid plan,
we also add constraints which force each train to get allocated routes further along a path
forward unless there is a conflict. Routes ahead are either allocated, or the train is deferred
p:

∀t ∈ Trains : ∀r ∈ Routes : oir ⇒ pit,r ∨
∨{

oirx | rx ∈ Routes, entry(rx) = exit(r)
}

Deferred progress must be resolved by freeing a conflicting route, and then allocating it to
the train in the following step:

∀t ∈ Trains : ∀r ∈ Routes :

pit,r ⇒ pi+1
t,r ∨

∨{
oirc 6= Free ∧ oirx 6= t ∧ oi+1

rx = t

| rc, rx ∈ Routes, exit(r) = entry(rx), rc ∈ conflict(r)}

When i is the last state, pi+1
t,r is considered to be false, which forces the deferred progress to

be resolved eventually. Note that it is not required that the conflicting trains are distinct.

3.2 Handling turning and loops

Many railway construction projects have only acyclic infrastructure, in the sense that trains
enter from one side of the station and exit on the other side, and all paths from one side to
the other are acyclic. However, if the infrastructure has a same-directed cycle which can be
allocated without conflicting with other routes, the constraints C2 above are insufficient to
ensure train path consistency, see Fig. 14. The train path consistency constraints described in
the previous section require each active route to have a route before it already being active.
This works in the acyclic case, because the chain of routes always leads back to either a
model boundary or a route already allocated in the previous step. With cyclic infrastructure,
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however, a sequence of routes can justify each other, which would lead to a train appearing
out of nowhere. It is a known problem that expressing this kind of constraints in SAT can be
very inefficient (see e.g. [23,14]), and to handle same-directed cycles in the infrastructure,
we add instead a refinement step around the SAT solver which searches each state for this
kind of circular reasoning and adds a single constraint each time this situation appears.

The loop check procedure checks for each train ti and for each state sj , whether the set
of routes Rj

i allocated to the train has any strongly connected components sccji ⊆ Rj
i with

|sccji | > 1, and in that case adds a new constraint to the SAT problem:∨{
¬(ojr = tji ) | r ∈ sccji

}
.

Fixing these consistency errors gives valid plans even in the presence of same-directed
infrastructure cycles, but even planning on infrastructure without cycles may cause repetition
to appear in the dispatch plans. For example, at the end of a railway corridor, trains must be
able to switch directions and go back to where they came from. In the description of dispatch
planning above, if trains are allowed to stop and reverse their direction, the directed graph
of routes becomes cyclic, and there is in principle an infinite number of different possible
dispatch plans for any train movement.

Allowing trains to turn, and allowing loops in the infrastructure, will lead to the bounded
model checking planning method finding more and more solutions when increasing the num-
ber of steps. Most of these solutions will exhibit some amount of repetition in the movement
of trains, and this makes them of little value to the railway engineer. We suggest some differ-
ent solutions to this challenge below, roughly ordered by how complex the implementation
would be and how much quality would be improved:

– Unlimited: it could be feasible to have no limit on turning of trains, and no limit on the
use of loops in the infrastructure. Since the bounded model checking technique will find
the shortest plans first, they will often be the most valuable plans for the engineer, and the
planner can be aborted when plans get too long and repetitive and as such are no longer
valuable for the verification of the design. However, the fully automated verification tool
would have to set a carefully considered upper bound on the number of plan steps.

Route 1

Route 2

Fig. 14: Example of cyclic infrastructure. Here, to ensure train path consistency (C2), addi-
tional constraints are needed over the acyclic case. Route 1 and route 2 both provide each
other’s justification for a train appearing there, possibly making an error of circular reason-
ing.
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– Specified turning: the specifications of the operational scenarios can be extended to
include turning explicitly at visits. This increases the specification burden on the engi-
neer, but ensures that there cannot be an unbounded number of distinct plans. However,
it could also cause some plans to stay undetected if they require turning and the engi-
neer did not think of it. Also, this method does not help the situation with loops in the
infrastructure.

– Bounded number of turns: instead of writing out each turn explicitly, the capacity
specifications could be extended to include an upper bound on the number of turns. The
bound would have to be adjusted to balance running time and plan quality (low bound)
with the possibility of detecting more complex plans (high bound).

– State space repetition constraint: to ensure that the whole state of the system does
not repeat from one stage to another. This requires adding a constraint on each pair of
states, which could make the SAT instance significantly larger.∧

0≤i<j<k

Si 6= Sj .

Such constraints may also be added lazily, i.e. by incrementally adding the constraints
only when they are violated in a SAT solution (see [10]). This constraint would eliminate
the possibility for an infinite number of distinct plans, but could still cause unnecessary
repetition locally, since repetition in one part of the model could be accompanied by
progress in another part of the model.

– Repetition filtering: even when the state as a whole does not repeat, there may be
sequences of allocation to a subset of trains which can be considered repeating. We
would like a more domain-specific definition of repetition, based on a graph analysis
of the dispatch plans produced. This can be implemented by rejecting solutions which
exhibit such repetition. We define this more carefully in the section below.

As we find the last option to be the most complete solution requiring no change to the
specifications, we describe its implementation here in more detail.

3.3 Filtering out unnecessary repetitions

We now define the notion of unnecessary repetitions and show how to identify them on a
given dispatch plan. First, we define the notions of yield and repetition.

A train t1 yields to another train t2 if t2 is occupying a route whose resources are needed
for t1 to proceed (thereby allowing t1 to defer its progress as defined in constraint (C8),
Sec. 3.1.6). More precisely, if t2 occupies some route r2 in state s, and t1 allocates a route
r1 in state s+ 1, where r1 conflicts with r2, we say that t1 yielded to t2 in state s.

Now, consider a train t that enters the model from some model boundary and exits
through another boundary by traveling a sequence of routes r1, . . . , rm+1, which we call
the train’s path. For each pair of consecutive routes ri, ri+1, the exit signal of ri is the same
as the entry signal for ri+1 (described as constraint C2 in Sec. 3.1.2), which we call the
delimiting signal ui = delim(ri, ri+1) between the routes ri and ri+1. We say that the train
visits the sequence of signals u1, . . . , um defined in this way.

A signal appearing several times in this sequence (ui = uj with i < j) indicates a
cycle in the train path. Let sa = alloc statet(ri) be the state where route ri starting in
ui is allocated to t, and let sb = alloc statet(rj−1) be the state where route rj−1 ending
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Conflict Conflict

Example 1: No repetition (acceptable)

s1

t1 A, B

Example 2: Single train looping (unnecessary)

s1 s2

t1 A,C,D,E F,B
n1

Yields only to itself

Example 3: Let another train pass (acceptable)

s1 s2 s3

t1

t2

A,C,D,E

A,B

F,Bn1

Yield n1 → Ω

Example 3: Two trains looping (unnecessary)

s1 s2 s3 s4

t1

t2

A,C,D,E

A,C,D

F,B

E,F,B

n1

n2

n2 → n1

n1 → n2

Fig. 15: Examples of repetition justification using yields, demonstrating acceptable and un-
necessary repetitions. Each of the routes A, B, C, D, E, and F shown in the infrastructure
route graph is long enough to contain each train completely. Examples use trains t1, t2 and
states s1, s2, s3, s4. Repetitions are shown as red dashed boxes, and yields are shown as
arrows between repetitions.

in uj is allocated to t. We say that the train t repeats on the interval sa to sb and write
repeat(t, sa, sb).

In most cases, we would like to disallow such repetitions, but there are two exceptions.
Firstly, if the train fulfils a specified visit on the state interval sa to sb (see constraint (C5),
Sec. 3.1.5), the repetition is acceptable. Secondly, if the train yields to another train in a state
sy such that sa ≤ sy ≤ sb, we say that the yield justifies the repetition. For example, if a
train goes into a siding track to allow another train to pass by, the first train could reverse
into the main track again to proceed, thereby performing a repetition that is acceptable. See
Fig. 15 for a few examples. However, if one repetition is justified by yielding to another
train in a state which also has a repetition that is justified by yielding back to the first train,
this does not make these repetitions acceptable. We would like to disallow such circular
justifications, and we formalize this using the yield justification graph, G = (V,E), defined
as the directed graph where:

– The set of nodesN contains each repetition, repeat(t, sa, sb), and a special non-repetition
node Ω.

– The set of edges E contains the edge n1 → n2, where n1 = repeat(t1, sa, sb) and
n2 = repeat(t2, sc, sd), whenever these nodes n1, n2 exist in N and t1 yields to t2 in a
state s where a ≤ s ≤ b and c ≤ s ≤ d.
However, if repeat(t1, sa, sb) exists, and t1 yields to t2 in state sa ≤ s ≤ sb, but there
are no matching repetitions n2, then the edge n1 → Ω is included instead.
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Fig. 16: Main algorithm for local capacity verification (extended from Fig. 8) with two more
tests for handling loops and repetitions.

We say that a repetition is acceptable if Ω is reachable from the repetition’s corresponding
node in the yield justification graph. A repetition that is not acceptable by these two cri-
teria, is an unnecessary repetition, and we discard the candidate dispatch plan and add a
new constraint to the SAT problem to disallow it using the relevant component of the yield
justification graph. This adds another kind of abstraction refinement to our algorithm, see
Fig. 16.

The methods for handling both loops and repetitions described here may cause per-
formance problems on certain inputs. However, we have not encountered any real-world
examples where this dominates the solver’s performance.

4 Timing Evaluation using Simulation

For evaluating the behavior of a railway system in full detail, there are various well-known
simulation approaches which are routinely successfully used to analyze railway capacity.
Because a simulation works by starting in a known state and applying known input to the
system, it proceeds by executing imperative code to change the system state and to regis-
ter event handlers to processes. Deterministic simulation models can handle very complex
models in a short amount of time, but unlike a planning model, one cannot prescribe which
state the simulation will end up in, only measure the outcome. Simulation methods are com-
monly used to develop and assess time tables, and by introducing stochastic elements in the
model and repeating the simulation a large number of times, the robustness of a time table
can be analysed (e.g., see [32]).

Discrete event simulation (DES) is a simulation technique based on assuming that changes
to system state happen only at a set of discrete points in time, so that the simulation can
progress efficiently by jumping from one point in time to the next point in time where an
event is scheduled. This simulation assumption can be made to work even for the contin-
uous dynamics of train movements, because we assume that each train’s dynamics do not
interact directly with other train’s dynamics. Trains exist in separate worlds which are only
connected to each other through the control system, and the control system has only discrete
state changes. Each train acts separately on the information it has received from signals so
far, and needs only to predict how long it will take to reach the next signal or sensor where
it interacts with the control system.

In our tool architecture, the planner component works on an abstraction of the simulation
problem that is just detailed enough to ensure that trains end up where they are specified
to go, and that the system does not enter a dead-lock state. This is the reason why the
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Fig. 17: (a) On the railway network, paths p-q-r and p-q-s exist, in both directions. (b) In a
conventional undirected graph representation, there would also be a path r-q-s. (c) When the
graph is extended to include two sides of each node, there is no longer a path r-q-s.

planning model must include safety zones, partial release and the lengths of routes and
trains – the sequences of routes and trains are represented precisely so that we know what
to expect during the simulation. If it turns out that the planner’s assumptions about where
the trains end up does not work out correctly in the simulator, then the correspondence
between planning and simulation is broken, which may be a modeling error in the simulator
or errors in the route specifications, for example if the switches are configured to turn in the
wrong direction. Runnning the capacity verification assumes that the route specifications are
correct, and this may be verified through other means (e.g., see [39]).

4.1 Implementation

For our capacity verification tool for railway construction projects, we have implemented a
simulation program using techniques described in [18]. We provide a brief overview here of
the main components of this simulation program.

4.1.1 Infrastructure and interlocking specifications

For the work in this paper, we have implemented a simulation system for railways containing
main signals, detector, switches, routes, trains, partial release, safety zones and more.

The input of railway infrastructure consists of nodes, representing locations on the tracks
where transfer of information between the infrastructure and the train can happen. Objects
include switches, detectors, signal sighting locations, and points of discrete changes in track
properties such as radius and gradient. Nodes are connected by edges, which have a specified
length. Edges are not directed, because tracks can be traversed in both directions, so each
train refers to the edge it is travelling on as an ordered tuple of nodes. For example, a train
travelling between node a and node b will store its current location as either (a, b) or (b, a),
depending on the direction of travel.

However, a simple undirected graph model also lacks the information that the train needs
to figure out which edges can be followed while still travelling in the same direction. Rep-
resenting this as a directed graph would require deciding on a global notion of direction,
which is not compatible with cyclic infrastructure graphs where a train can travel back into
the same track in the opposite direction.

A more suitable data structure for simulating railway networks is the double node graph
described in [29] where each node of a conventional graph is represented as a two linked
nodes representing each of the two sides for approaching each track location, see Fig. 17. A
train reaching a node may only proceed by traveling on edges starting in the opposite node.
Also, signals typically only apply in one of the travelling directions, so a train passing a pair
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Fig. 18: The balloon loop infrastructure is an example where directionality of travel cannot
be suitably captured as a directed graph.

of nodes only reacts to the objects that are located on the exit side of the node pair. This
model allows for a local notion of directedness, and avoids deciding on a global direction
concept such as up/down or outgoing/incoming often used in railway engineering. A global
directionality requires considering special cases to handle railway networks where a train’s
up/down direction may change without the train reversing its direction, such as the balloon
loop example which is commonly seen on tram lines, see Fig. 18.

4.1.2 Dispatching trains

From the planner we extract the following dispatch plan, which serves as the external events
input to the simulation.

– Start train: start a new train process with given train parameters, initial velocity, and a
route entering from a model boundary.

– Activate route: start a new route activation process for the given route.
– Swing safety zone: replace one active safety zone with another.

Note that the times at which these events happen are not given by the planner, only their
order in time.

All the rest of the simulation output is determined from these inputs. The inputs start
processes in the simulator, which may in turn start other processes. When all processes have
finished, the simulation is done.

4.1.3 Dynamic infrastructure data

Our DES for railway simulation uses the following observable state:

– Switches: objects that fire events when they enter their left or right traversable state, and
which can be called from the route process to start switching.

– Detection sections, objects that have an allocation and an occupancy status, which are
observable through events.

– Signals: objects that have a movement authority length which can be observed by a
train.

4.1.4 Processes

The core of the discrete event simulation technique can be implemented in a mainstream
programming language as coroutine-like processes which can manipulate the state of the
world at the current point in time or choose to wait for events which will be caused by other
processes in the future. We used the Rust programming language, where coroutines are
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only experimentally available, so we used an explicit state machine model to represent the
progress of each process. The overall simulation process maintains a global clock, and when
all processes are waiting for events, the global clock is advanced until the next scheduled
event.

The main processes in railway simulation are:

– Elementary route activation waits for resources, allocates them, sets switches to given
positions and starts the following sub-processes:

– Release trigger: listens to a trigger detection section which is designated as the
release trigger for a partial route. After the detection section has first been occupied,
and later freed, resources are released for use in other elementary routes.

– Signal catcher: sets the route entry signal to the ’proceed’ aspect, then waits for a
given trigger section to become occupied before setting the signal back to ’stop’.

– Overlap timeout: releases some resources after a given timeout. The timeout is
started on the allocation of a specific track section (the trigger).

– Swing safety zone: replace one active safety zone with another. First, wait to allocate the
additional required resources. Then release the resources which are no longer required.

– Train evaluates movement authority using information from signals currently in sight,
and takes one of the following actions: accelerate, brake, or coast/wait. Braking curves
from velocity limitations are calculated, representing the train driver’s plan for when to
start braking. We calculate a guaranteed minimum time until further action is required
from the driver by taking the minimum time until one of the following happen (see also
Fig. 19):

– train arrives at a new node
– train reaches maximum velocity
– train enters the area of a new velocity restriction
– acceleration/coasting curve intersects the braking curve

After this minimum time has passed, or any signals currently in sight have changed state,
the train updates its position and velocity according to the chosen driver action and the
laws of motion.

Note that since we assume a constant maximum acceleration and braking, the equations of
motion can be solved analytically, and there is no need for discretizing the time or space
domains, except for the re-evaluation of the equations of motion at discrete events. This
ensures that the train starts braking in time using only the information available to the driver
at any given time.

4.2 Extensions and alternative simulators

In our simluation model, trains re-calculate braking curves analytically on every possibly
relevant event. This makes for a high-performance system, but in real-world engineering
there are other complexities that we do not yet handle in this system, such as:

– More complex signaling and automated train protection systems.
– Local variations and details of infrastructure, such as the inner workings of components

from different vendors performing various tasks like route allocation, de-allocation,
safety zones, partial release, level crossings, etc.

– Train dynamics models using curve radius, gradient, air/tunnel resistance, weight distri-
bution, etc.
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Distance

Velocity
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curve
targets

Critical time

Accelerate

Brake

Fig. 19: The train driver’s decision about when to accelerate/brake/coast happens at inter-
sections between acceleration curves, braking curves and velocity restriction curves. In this
example, the train can accelerate until the critical time where the acceleration intersects with
the braking curve towards the second velocity restriction ahead (the first one is not critical).

– Stochastic variation in simulation output.

Our system can be extended with these features, or it would also be possible to swap
out our simulation module with a more comprehensive solution or a commercially available
offering (see [32,24]), as long as this simulation program can be run in batch mode using
the range of input described above. Also, implementing a discrete event simulation is most
elegantly done through co-routines, such as in the SimPy3 Python library, or though special-
ized languages for simulation such as ABS4. However, for the simple simulation system we
have implemented, the number of distinct states in each type of process is so low that it can
easily be managed by explict state machine logic.

5 Case studies and performance

This section presents running times for different typical performance specifications on dif-
ferent types of railway infrastructure where the size and complexity of the model is typical
for the scope of railway construction projects. Verification performance on various test ex-
amples as well as real stations is presented in Table 1. The table shows the time spent in each
solver component, and also the number of invocations nDES of the simulator, which is very
low in most of the practical cases. This supports our hypothesis that the chosen abstraction
and CEGAR loop is efficient. The two-track station used in Fig. 1 is not too complex, having
only 6 elementary routes. Even so, this scale is still interesting for verification in practice,
since there are many possible mistakes to uncover.

The Norwegian railway infrastructure manager Bane NOR has supplied a railML infras-
tructure model of the whole national railway network [35] from which we have extracted
some more complex examples. Fig. 20 shows cut-outs from the visual representation of

3 See https://en.wikipedia.org/wiki/SimPy
4 See http://abs-models.org/

https://en.wikipedia.org/wiki/SimPy
http://abs-models.org/
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Infrastructure Property Result nDES tSAT tDES ttotal
Simple
(3 elem.)

Run.time Sat. 1 0.00 0.00 0.00
Crossing Unsat. 0 0.00 0.00 0.00

Two track
(14 elem.)

Run.time Sat. 1 0.01 0.00 0.01
Frequency Sat. 1 0.01 0.00 0.01
Overtaking 2 Sat. 1 0.00 0.00 0.01
Overtaking 3 Unsat. 0 0.01 0.00 0.01
Crossing 3 Unsat. 0 0.01 0.00 0.01

Kolbotn (BN)
(56 elem.)

Run. time Sat. 2 0.01 0.00 0.02
Overtake 4 Sat. 1 0.05 0.00 0.06
Overtake 3 Unsat. 0 0.05 0.00 0.06

Eidsvoll (BN)
(64 elem.)

Run. time Sat. 2 0.01 0.00 0.02
Overtake 2 Sat. 1 0.08 0.00 0.08
Crossing 3 Sat. 1 0.04 0.00 0.04
Crossing 4 Unsat. 0 0.21 0.00 0.21

Asker (BN)
(170 elem.)

Overtaking 2 Sat. 1 0.20 0.00 0.21
Overtaking 3 Unsat. 1 0.73 0.00 0.74
Crossing 4 Sat. 0 0.75 0.00 0.77

Arna (CAD)
(258 elem.)

Run. time Sat. 1 0.02 0.00 0.04
Overtaking 2 Sat. 1 0.50 0.00 0.51
Overtaking 3 Sat. 1 1.43 0.00 1.45
Crossing 4 Sat. 1 1.73 0.00 1.74

Gen. 3x3
(74 elem.)

High time Sat. 1 0.01 0.00 0.01
Low time Unsat. 27 0.18 0.01 0.19

Gen. 4x4
(196 elem.)

High time Sat. 1 0.01 0.00 0.03
Low time Unsat. 256 2.08 0.26 2.34

Gen. 5x5
(437 elem.)

High time Sat. 1 0.06 0.00 0.09
Low time Unsat. 3125 38.89 4.35 43.24

Table 1: Verification performance on test cases, including Bane NOR (BN) and RailCOM-
PLETE (CAD) infrastructure models. The number of elementary routes (elem.) is shown for
each infrastructure to indicate the model’s size. nDES is the number simulator runs, tSAT the
time in seconds spent in SAT solver, tDES the time in seconds spent in DES, and ttotal the
total calculation time in seconds.

these models, i.e., the stations Kolbotn, Eidsvoll, and Asker were converted from the railML
models.

We have also tested against an infrastructure model from the Arna construction project
that uses the RailCOMPLETE CAD design software, a realistic use case for agile verifica-
tion.

Finally, to test the limitations of scalability in our method, we construct a set of examples
where m stations each with n parallel tracks each are serially connected by a single track. In
this case, when a timing bound is slightly too small to be satisfiable, the planner will have to
come up with nm plans for timing evaluation. This scenario is outside the intended use case
for our method: path selection can on this scale instead be based on static speed profiles.
Capacity over many stations is better suited for the established timetabling tooling.

We attempted an alternative implementation using the PDDL+ solver SMTPlan+, but
found that even for greatly simplified models, the required number of steps and numerical
constraints put all our case studies out of reach for sub-second verification times.
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6 Conclusions and Related Work

Railway timetabling and capacity analysis has often been posed as a planning problem and
solved using mixed integer programming and similar approaches. Zwaneveld et al. [40] use
integer programming on a problem closely related to our low-level railway infrastructure
capacity verification problem. Isobe et al. [19] formulate a similar model in timed CSP, rep-
resenting train locations, velocities, and control logic. Our definition of the problem in this
paper includes non-linear constraints on train dynamics (acceleration/braking power) and
communication constraints (trains must slow down if they have not been informed of move-
ment authority), which are relevant in construction projects but less relevant in timetabling.

Many variations on discrete event simulation are used in railway dynamic analysis. A
comprehensive account of object-oriented modeling and simulation of railway infrastruc-
ture is given in D. Hürlimann’s Ph.D. thesis [18] (also based on M. Montigel’s thesis [29]),
which was later developed into the commerical simulation software OpenTrack. A similar

Fig. 20: Stations Kolbotn, Eidsvoll, and Asker from Bane NOR’s model of the Norwegian
national network [35].
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approach presented in [21] uses futures and resource analysis support in the ABS program-
ming language to simulate operational procedures.

In the planning literature, the PDDL+ language [11] has been introduced to capture
mixed discrete/continuous planning problems such as the one studied in this paper. General-
purpose solvers have recently been developed, using time domain discretization (DiNo [34])
or the SMT theory of non-linear real arithmetic (SMTPlan+ [5]).

The goal of our suggested tool chain for railway engineering is (1) to allow fully auto-
mated performance verification and (2) use minimal input documentation for the verifica-
tion. Both of these aspects encourage bringing performance verification into the frequently
changing early-stage design projects, avoiding the costly and time-consuming backtracking
required when later-stage analysis reveals unacceptable performance.

The control system design phase is lacking tools for rapid prototyping by anticipating
the verification which is to be performed in later stages.

In this paper, we have demonstrated a control system design tool that can verify perfor-
mance properties in the scope of a single project from high-level specification by synthesiz-
ing schedules. Our work thus automates the following activities:

– Detailed running time analysis – verify the time required for getting from point A to
point B, taking into account train dynamic characteristics, communication constraints,
and control system logic and latency.

– Detailed schedulability analysis – verify frequency of trains arriving at a station, and
simultaneous opportunities for crossing, parking, loading, etc.

Our approach carves a new niche in railway design automation in the following sense: the
level of detail supported by this tool is much greater than the traditional by-hand approaches
for running time and schedulability analysis – and the amount of background data and work
is much less than the whole-network stochastic operational analysis typically used for later-
stage verification. To make the method approachable for engineers, the required input is the
minimum of information needed to verify the relevant properties. For example, the specific
paths each train takes through the station is not an input, but different possibilities for re-
alizing paths are explored by the verification procedure. This also makes the method more
appropriate for early-stage design, where track lengths, topology, and component placement
might be adjusted to achieve design goals, and engineers can in this way get feedback on
design choices without requiring large efforts to repeat the verification.
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