
Ready, set, Go!

Sound and complete data-race detection

in the context of message passing

Daniel Schnetzer Fava Martin Steffen

danielsf@ifi.uio.no msteffen@ifi.uio.no

Dept. of Informatics, University of Oslo

Abstract. Most papers in the literature address synchronization in the form of

lock acquisition and release, where relevant trace events (besides reads to and

writes from memory) are acquire, release, fork, and join. We present a data-race

detector for a language with channel communication as its sole synchronization

primitive, and prove soundness and completeness of the detector.

1 Introduction

One way to deal with complexity is by partitioning a system into cooperating sub-

components. When these subcomponents compete for resources, coordination becomes

a prominent goal. One common programming paradigm is to have threads cooperate

around a pool of shared memory. In this case, coordination involves, for example, avoid-

ing conflicting accesses to memory. Two concurrent accesses constitute a data-race if

they reference the same memory location and at least one of the accesses is a write.

Because data-races can lead to counter intuitive behavior, it is important to detect them.

The problem of data-race detection in shared memory systems is well studied in

the context of lock acquisition and release. When it comes to message passing, the

problem of concurrent accesses to channels is also well studied in the absence of shared

memory; the goal in these cases is to achieve determinism rather than race-freedom

[2, 3, 24]. What is less prominent in the race-detection literature is the study of channel

communication as the synchronization primitive for shared memory systems. In this

paper, we present exactly that; a sound and complete dynamic data-race detector for a

language in the style of Go, featuring channel communication as means of coordinating

accesses to shared memory.

We fix the syntax of our calculus in Section 2 and present a corresponding oper-

ational semantics. The configurations of the semantics keep track of memory events

(i.e. of read and write accesses to shared variables) such that the semantics can be used

to detect races. A proper book-keeping of the event also involves tracking happens-

before information. The happens-before relation is instrumental to the underlying mem-

ory model, which factually is weak or relaxed. We should point out, however, that the

operational semantics presented here and used for race detection is not a weak seman-

tics. Apart from the additional information for race detection, the semantics is “strong”

in that it formalizes a memory guaranteeing sequential consistency. To focus on a form

mailto:danielsf@ifi.uio.no
mailto:msteffen@ifi.uio.no

of strong memory is not a limitation. Earlier we established that a corresponding weak

semantics1 enjoys the crucial DRF-SC property [5], meaning that for data-race free

programs, memory behaves sequentially consistent. Therefore, when it comes to race

detection, it suffices to concentrate on a sequentially consistent or “strong” memory

behavior.

The remaining of the paper is organized as follows. Below we introduce a race-

detector in the context of channel communication as sole synchronization mechanism.

Section 3 introduces a trace grammar and defines data-races on execution histories. An

independence relation on events (technically on event labels) is defined which allows

us to reason about equivalent histories. Soundness and completeness of the data-race

detector is then proven in Section 4 by relating the execution of a program in the opera-

tional semantics to histories according to the trace grammar. Section 5 examines related

work and 6 provides a conclusion and touches on future work.

2 Data-race detection

We start in Section 2.1 by presenting the abstract syntax of our calculus. Afterwards, we

present a corresponding operational semantics which can be used as a race detector. We

present the race detector incrementally. After a short general introduction in Section 2.2,

Section 2.3 starts with a simpler detector that is not complete, meaning that some types

of races may unnecessarily go unnoticed. We build onto this first iteration of the detector

in Section 2.4 in order to derive a sound and complete detector – complete in the given

happens-before interpretation of a race. Sections 2.3 and 2.4 can be seen as augmented

versions of an underlying semantics without additional book-keeping related to race

checking. This “undecorated” semantics, including the definition of internal steps and

a notion of structural congruence, can be found in Appendix A.

2.1 A calculus with shared variables and channel communication

We formalize our ideas in terms of an idealized language shown in Figure 1 and in-

spired by the Go programming language. The syntax is basically unchanged from [5].

Values v can be of two forms: r denotes local variables or registers; n is used to de-

note references or names in general and, in specific, p for processes or goroutines, m

for memory events, and c for channel names. We do not explicitly list values such as

the unit value, booleans, integers, etc. We also omit compound local expressions like

r1 + r2. Shared variables are denoted by x, z, etc., load z represents reading the shared

1 Note that while the mentioned semantics of [5] differs from the one presented here, both share

some commonalities. Both representations are based on appropriately recording information

of previous read and write events in their run-time configuration. In both versions, a crucial

ingredient of the book-keeping is connecting events in happens-before relation. The purpose

of the book-keeping of events, however, is different: in [5], the happens-before relation serves

to operationally formalize the weak memory model (corresponding roughly to PSO) in the

presence of channel communication. In the current paper, the same relation serves to obtain a

sound and complete race detector. Both versions of the semantics are connected by the DRF-

SC result, as mentioned.

2

variable z into the thread, and z := v denotes writing to z. References are dynamically

created and are, therefore, part of the run-time syntax. Run-time syntax is highlighted in

the grammar with an underline as in n. A new channel is created by make (chan T,v),
where T represents the type of values carried by the channel and v a non-negative in-

teger specifying the channel’s capacity. Sending a value over a channel and receiving a

value as input from a channel are denoted respectively as v1← v2 and← v. After the

operation close, no further values can be sent on the specified channel. Attempting to

send values on a closed channel leads to a panic.

Starting a new asynchronous activity, called goroutine in Go, is done using the go-

keyword. In Go, the go-statement is applied to function calls only. We omit function

calls, asynchronous or otherwise, as they are orthogonal to the memory model’s for-

malization. The select-statement, here written using the ∑-symbol, consists of a fi-

nite set of branches (or communication clauses in Go-terminology). These branches

act as guarded threads. General expressions in Go can serve as guards. Our syntax re-

quires that only communication statements (i.e., channel sending and receiving) and

the default-keyword can serve as guards. This does not impose any actual reduction

in expressivity and corresponds to an A-normal form representation [20]. At most one

branch is guarded by default in each select-statement. The same channel can be men-

tioned in more than one guard. “Mixed choices” [16, 17] are also allowed, meaning

that sending- and receiving-guards can both be used in the same select-statement. We

use stop as syntactic sugar for the empty select statement; it represents a permanently

blocked thread. The stop-thread is also the only way to syntactically “terminate” a

thread, meaning that it is the only element of t without syntactic sub-terms.

v ::= r | n values

e ::= t | v | load z | z := v | go t expressions

| if v then t else t

| make (chan T,v) | ← v | v← v | close v

g ::= v← v | ← v | default guards

t ::= let r = e in t | ∑i let ri = gi in ti threads

Fig. 1: Abstract syntax

The let-construct let r = e in t combines sequential composition and scoping for

local variables r. After evaluating e, the rest t is evaluated where the resulting value of

e is handed over using r. The let-construct is seen as a binder for variable r in t. When

r does not occur free in t, let boils down to sequential composition and, therefore, is

more conveniently written with a semicolon. See also Figure 16 in the appendix for

syntactic sugar.

3

2.2 Read and write conflicts

Races are, roughly speaking, “simultaneous” interactions on a shared memory location.

To make such simultaneous accesses problematic, at least one of the accesses has to be

a write, i.e., there are no read-read conflicts. A race manifests itself in an execution if a

step is immediately after another and the two are conflicting. This is the closest one can

get to a notion of simultaneity in an operational semantics where memory interactions

are modeled as instantaneous, atomic steps. While manifest races constitute consecutive

conflicting accesses, races in general may involve accesses that are arbitrarily “far apart”

temporally. To be able to report more than the most obvious races, a race checker needs

to keep extra information. The amount of “non-manifest” data-races it is able to report

depends on the amount of information the detector maintains. In general, recording

more information leads to a higher degree of “completeness” at the expense of a higher

run-time overhead.

As far as conflicts goes, there are read-write conflicts and write-write conflicts.

When running, the information the detector keeps naturally pertains to “historic” events;

it does not make use of prophetic or speculative information about future events. Taking

this temporal aspect into account, one can make a more fine-grained distinction between

read-after-write (RaW), write-after-write (WaW), and write-after-read (WaR) conflicts.

In the “after-write” situation, one has to remember additional information concerning

write-events in order to know whether a subsequent access to the same variable occurs

without proper synchronization. (See Section 2.3 for dealing with read-after-write and

write-after-write races.) Basically, when accessing a variable, it must be checked that

all write events to the same variable happened-before the current write access, where

current means from the perspective of the thread attempting the access. The question of

whether an event occurred in the “definite past” (i.e., whether an event is in happened-

before with “now”) is thread-local.

To capture these notions of ordering in an operational setting, the unadorned oper-

ational semantics is equipped with additional information: each thread tracks all write

events it is aware of having happened-before (see the component Ehb in the run-time

configurations of equation (1) below). This is not the only augmentation when compar-

ing the run-time configuration of the undecorated semantics (see equation (7)). When it

comes to race detection, it is not enough to store the last value written to each variable;

we also need to identify the event that has lead to that last value. In the undecorated

semantics, the content v of a variable z is written as a pair (|z:=v|). In the augmented se-

mantics for detecting after-write conflicts, it takes the form m(|z:=v|) where m uniquely

identifies the event associated with v having been stored into z (cf. the run-time config-

urations in equation (7) and equation (1)).

On top of RaW and WaW conflicts covered in Section 2.3, Section 2.4 describes

the detection of write-after-read conflicts. Consequently, in addition to information

about past write events, the race checker needs to remember information about past read

events. Abstractly, a read event symbolizes the fact that a load-statement has executed.

In the strong semantics, as discussed, a read always observes one definite value which

is the result of one particular write event (in contrast to a weak semantics where there

may be ambiguities when reading [5]). To check for RaW conflicts, the race checker

needs to remember the read events that observe a particular write.

4

For the presentation of the race checker, it is convenient to group the read-events

together with the write event they pertain to. There may be more than one read event

associated with a write, as write events can be read multiple times before the variable is

overwritten. Therefore, the configuration contains entries of the form w(|z:=v|)LR where

w is the identifier of the write event and LR is a set of identifiers of read events, namely

those that accumulated after w. The “records” of the form w(|z:=v|)LR can be seen as

n+1 recorded events, 1 write event together with n≥ 0 read-events. In the terminology

used in axiomatization of memory models, it can also be seen as a representation of the

read-from relation, representing ri →rf w for all ri ∈ L
R from an element w(|z:=v|)LR.

Note that, when saying that “the remembered read events occurred after the write event

they read-from,” we do not mean that the read-events happened-after the write. Instead,

they just, incidentally or not, occurred afterwards in an execution.

2.3 Detecting read-after-write (RaW) and write-after-write (WaW) conflicts

For detecting “after-write” conflicts, run-time configurations are given by the following

syntax:

R ::= p〈Ehb, t〉 | m(|z:=v|) | • | R ‖ R | c[q] | νn R . (1)

The current state of the memory is represented as m(|z:=v|) which associates the

value v with the shared variable z. Given that the identifier m is unique, term m(|z:=v|)
can be seen not just as storing the current value for z but also as recording a write event,

namely, the write event responsible for storing v in z.2 The configurations are considered

up-to structural congruence, with the empty configuration • as neutral element and ‖ as

associative and commutative. The definition is standard and included in Appendix A.1.

Likewise relegated to the appendix are local reduction rules, i.e., those not referring to

shared variables or channels (see Appendix A.2).

An initial configuration starts with one write-record per variable. The semantics

maintains this one-to-one mapping as an invariant, which mean that the collection of

write-records behave as a mapping from variable to values.3 When a variable is written

to, the record associated with the variable is updated (alternatively, we can interpret it

as an old event being supplanted by a write event with a fresh identity).

Threads t under execution are represented as p〈Ehb, t〉 at run-time, with p serving

as identifier. To be able to determine whether a next action should be flagged as race

2 We will later use the term event when talking about histories or traces. There, events carry

slightly different information. For instance, as we are interested in the question whether a

history contains evidence of a race, it won’t be necessary to mention the actual value of the

write event in the history. Both notions of events, of course, hang closely together. It should

be clear from the context whether we are referring to events as part of a linear history or

as an element of the configuration. When being precise, we refer to a configuration event as

recorded event or just record. Since recorded events in the semantics are uniquely labeled, we

also allow ourselves to use words like “event m” even if m is just the identifier for the recorded

event m(|z:=v|).
3 Behaving like a mapping is in line with the fact that the race checker works under the assump-

tion of a strong memory model.

5

or not, a goroutine keeps track of happens-before information corresponding to past

write events. An event mentioned in Ehb is an event of the past, as opposed to just

having occurred in a prior step. A memory event that occurred in a prior step but is not

in happens-before relation with the current thread state counts as “concurrent” and is,

thereby, potentially in conflict with the thread’s next step. More precisely, if m(|z:=v|) is

part of the configuration, then a p〈Ehb, t〉 is allowed to safely write to z if (m,z) ∈ Ehb,

otherwise a WaW conflict is raised. Similar when reading from a variable.

Knowledge of past events contained in Ehb is naturally monotonously increasing:

each time a goroutine learns about happens-before information, it adds to its pool of

knowledge. In particular, events that are know to have “happened-before” cannot, by

learning new information, become “concurrent” and potential candidates for conflicts.

The semantics, however, does not just accumulate happens-before information. Instead,

for efficiency’s sake, it purges outdated information. This “garbage collection” is done

in the premise of rule R-WRITE: after the write step, the identity m is no longer part of

the configuration. There is no need to remember m as it is enough to remember that m′

has happened-before in the post-configuration. Thus, m can be removed from Ehb. The

removal of happens-before information will become more pronounced in Section 2.4,

when Ehb contains also information about reads.

(m,z) ∈ Ehb fresh(m′) E ′hb = (m′,z)∪Ehb \(,z)
R-WRITE

p〈Ehb,z := v′; t〉 ‖ m(|z:=v|)−→ p〈E ′hb, t〉 ‖ m′(|z:=v′|)

(m,z) /∈ Ehb
R-WRITE-EWaW

p〈Ehb,z := v′; t〉 ‖ m(|z:=v|)−→ E

(m,z) ∈ Ehb
R-READ

p〈Ehb,let r = load z in t〉 ‖ m(|z:=v|)−→ p〈Ehb,let r = v in t〉 ‖ m(|z:=v|)

(m,z) /∈ Ehb
R-READ-ERaW

p〈Ehb,let r = load z in t〉 ‖ m(|z:=v|)−→ E

Fig. 2: Strong operational semantics augmented for RaW and WaW race detection

The placement of the new label into p’s happens-before set can be seen as recording

p’s ownership of the variable: a data-race is flagged if any other thread attempts to read

or write to z without first synchronizing with p. Data-races are marked as a transition to

E in the derivation rules of Figure 2 and later in Figure 5.

So far, the happens-before information was purely thread-local. Goroutines syn-

chronize via message passing, which means that communication via channels is how

happens-before information spreads between the goroutines. The rules for channel com-

munication are given in Figure 3. They will remain unchanged when we cover also RaW

conflicts. The exchange of happens-before information via channel communication is

also analogous to the treatment of the weak semantics in [5].

6

Suppose a goroutine p has just updated variable z as captured in the write-record

m(|z:=v|). At this point, p is only goroutine whose happens-before set contains the label

m associated with this write-record. No other goroutine can read or write to z without

constituting a data-race. When p sends a message onto a channel, the information about

m is also sent. Suppose now that a thread p′ reads from the channel and receives the

corresponding message before p makes any further modifications to z. The tuple (m,z)
containing the write-record’s label and associated variable is added to p′’s happens-

before set, so both p and p′ are aware of z’s most recent write to z. The existence of m

in both goroutine’s happens-before sets imply that either p or p′ are allowed to update

z’s value. We can think of the two goroutines as sharing the ownership of z. Among p

and p′, whoever updates z first (re)gains the exclusive “ownership” of z.

It may be worth making a parallel with hardware and cache coherence protocols.

Given the derivation rules above, we can write a race detector as a state machine. Com-

pared to MESI, the semantics above does not have the modified state: all changes to a

variable are immediately reflected in the configuration, there is no memory hierarchy

in the memory model. As hinted above, the other states can be interpreted as follows:

If the label of the most recent write to a variable is only recorded in one goroutine’s

happens-before set, then we can think of the goroutine as having exclusive ownership

of the variable. When a number of goroutines contain the pair (m,z) in their happen-

before set with m being the label of the most recent write, then these goroutines can be

thought to be sharing ownership of the variable. Other goroutines that are unaware of

the most recent write can be said to hold invalid data.

Finally, goroutine creation is a synchronizing operation; the child inherits the happens-

before set from the parent; see Figure 4.

2.4 Detecting write-after-read (WaR) conflicts as well

In the previous section we showed the detection of read-after-write and write-after-write

races. There, it sufficed for the recorded event m(|z:=v|) to contain one write-label m.

The recorded event was updated with a freshly generated label when a new write took

place. The detection of write-after-read races, however, requires more book-keeping.

We need read- in addition to write-labels. This additional information is required be-

cause a WaR conflict can ensue between an attempted write and any previous unsyn-

chronized read to the same variable. Therefore, the race-checker is equipped to remem-

ber all potentially troublesome reads to a shared variable.4 This extra book-keeping

involves an update to the run-time configuration’s syntax:

R ::= p〈Ehb, t〉 | m(|z:=v|)LR | • | R ‖ R | c[q] | νn R . (2)

A set of read-labels LR is added to a given variable’s record. We will still keep track

of one write-label per record. What also remains the same is the process of replacing

4 Since depending on scheduling, a WaR data-race can manifest itself as RaW race, one option

would be not add instrumentation for WaR race detection and, instead, hope to flag the RaW

manifestation instead. Such practical consideration illustrates the trade-off between complete-

ness versus run-time overhead.

7

q = [σ⊥, . . . ,σ⊥] |q|= v fresh(c)
R-MAKE

p〈Ehb,let r = make (chan T,v) in t〉 −→ νc (p〈Ehb,let r = c in t〉 ‖ c f [] ‖ cb[q])

¬closed(c f [q2]) E ′hb = Ehb +E ′′hb
R-SEND

cb[q1 :: E ′′hb] ‖ p〈Ehb,c← v; t〉 ‖ c f [q2] −→ cb[q1] ‖ p〈E ′hb,c; t〉 ‖ c f [(v,Ehb) :: q2]

R-SACK

p〈Ehb,c; t〉 −→ p〈Ehb, t〉

v 6=⊥ E ′hb = Ehb +E ′′hb
R-REC

cb[q1] ‖ p〈Ehb,let r =← c in t〉 ‖ c f [q2 :: (v,E ′′hb)] −→

cb[Ehb :: q1] ‖ p〈E ′hb,let r = v in t〉 ‖ c f [q2]

R-RACK

p〈Ehb,let r = v in t〉 −→ p〈Ehb,let r = v in t〉

R-REC⊥
p〈let r =← c in t〉 ‖ c f [⊥] −→ p〈let r =⊥ in t〉 ‖ c f [⊥]

R-REND

cb[] ‖ p1〈c← v; t〉 ‖ p2〈let r =← c in t2〉 ‖ c f [] −→

cb[] ‖ p1〈t〉 ‖ p2〈let r = v in t2〉 ‖ c f []

¬closed(c f [q])
R-CLOSE

p〈close (c); t〉 ‖ c f [q] −→ p〈t〉 ‖ c f [⊥ :: q]

Fig. 3: Strong operational semantics augmented for race detection: channel communi-

cation

fresh(p′)
R-GO

p〈Ehb,go t ′; t〉 −→ ν p′ (p′〈Ehb, t
′〉) ‖ p〈Ehb, t〉

Fig. 4: Strong operational semantics augmented for race detection: thread creation

a record’s write-label when a new write takes place. The novelty is that fresh labels

are also generated when reading from memory. A successful read of variable z causes

a fresh read-label, say m′, to be generated. The pair (m′,z) is added to the reader’s

happens-before set as well as to the record associate with z in memory, LR′ = (m′,z)∪
LR. The read operation is captured by rule R-READ in Figure 5. The figure shows

memory related reduction rules for WaR race detection. Differences when compared to

the detector of Section 2 are highlighted in green.

In order for a write to memory to be successful, the writing thread must not only be

aware of previous write events to a given shared variable, but also of all accumulated

8

(m,z) ∈ Ehb LR ⊆ Ehb fresh(m′) E ′hb = (m′,z)∪ (Ehb \(,z))
R-WRITE

p〈Ehb,z := v′; t〉 ‖ m(|z:=v|)LR −→ p〈E ′hb, t〉 ‖ m′(|z:=v′|) /0

(m,z) /∈ Ehb LR ⊆ Ehb
R-WRITE-EWaW

p〈Ehb,z := v′; t〉 ‖ m(|z:=v|)LR −→ E

LR * Ehb
R-WRITE-EWaR

p〈Ehb,z := v′; t〉 ‖ m(|z:=v|)LR −→ E

(m,z) ∈ Ehb fresh(m′) E ′hb = (m′,z)∪Ehb LR′ = (m′,z)∪LR

R-READ

p〈Ehb,let r = load z in t〉 ‖ m(|z:=v|)LR −→ p〈E ′hb,let r = v in t〉 ‖ m(|z:=v|)LR′

(m,z) /∈ Ehb
R-READ-ERaW

p〈Ehb,let r = load z in t〉 ‖ m(|z:=v|)LR −→ E

Fig. 5: Strong operational semantics augmented for data-race detection

reads to the variable since the last write. A write-after-read data-race is raised when a

write is attempted by a thread and the thread is unaware of some previous reads to z. In

other words, there exist some read-label in LR that is not in the thread’s happen-before

set — see precondition LR * Ehb of the R-WRITE-EWaR rule.

When compared to the detector of Section 2.3, rule R-WRITE-EWaW is augmented

with the preconditionLR ⊆ Ehb. Without this precondition, there would be non-determinism

when reporting WaW and WaR conflicts. Consider the scenario in which p writes to

and then reads from the shared variable z. Say the write to z generates a label w and

the read generates r. If a thread p′ attempts to write to z without first communicat-

ing with p, p′ will not be aware of the prior read and write events. In other words, the

happens-before set of p′ will contain neither (w,z) nor (r,z). Both rules R-WRITE-EWaW

and R-WRITE-EWaR are enabled in this case. However, as mentioned before, a race

manifests itself in an execution if a step is immediately after another and the two are

conflicting. In this example, the read by p is immediately followed by the write of p′.

Therefore, it is reasonable to report the WaR race even though the program contains

both WaW and WaR races.

Finally, similar to in the previous section, garbage collection of goroutines’s Ehb

occurs in the R-WRITE rule. The write rule also garbage collects LR. Garbage collec-

tion here is more pressing, since WaR data-race detection involves extra book-keeping

when compared to the incomplete detector of Section 2.3. We claim the proposed race-

detector is sound and complete; the claim is substantiated in Section 4.

2.5 Example

The classic example of message passing, depicted in Figure 6, involves a producer

thread that writes to a shared variable and notifies the completion of the write by send-

9

ing a message onto a channel. A consumer thread receives from the channel and reads

from the shared variable.

p1〈Ehb1,x := 42; c← 0〉

p2〈Ehb2,← c; load x〉

Fig. 6: Message passing example.

The access to the shared variable in this example is obviously properly synchro-

nized. Given the operational semantics presented in this chapter, we can arrive at this

conclusion as follows. A fresh label, say m, is generated when p1 writes to x. The mem-

ory record involving x is updated with this fresh label, and the pair (m,x) is placed

into p1’s happens-before set, thus yielding Ehb
′
1. According to rule R-SEND, the send

onto c sends not only the message value, 0 in this case, but also Ehb
′
1. The action of

receiving from c blocks until a message is available. When a message becomes avail-

able, the receiving thread receives not only a message but also the happens-before set

of the sender at the time the send took place, see rule R-REC. Thus, upon receiving

from c, p2’s happens-before set is updated to contain (m,x). In other words, receiving

from the channel places the writing to x by p1 into p2’s definite past. By inspecting p2’s

happens-before set when p2 attempts to load from x, the race-checker makes sure of the

fact that p2 is aware of p1 prior write to x.

3 Traces

In Section 2.4 we proposed a race detector and claimed its soundness and completeness.

In this section, we introduce a trace grammar for a language with shared memory;

the language also features buffered channel communication as its sole synchronization

primitive. Later in the section, we define an independence relation on events and a

partial order on traces. These relations will provide the ground work from substantiating

the soundness and completeness claim of Section 2.4.

The execution of memory and synchronization related operations yield observable

events; a finite sequence of such events is called a trace. Figure 7 introduces a trace

grammar where p denotes goroutine- or process-identifiers drawn from p′, p0, p1, . . . ,
channel identifiers c are drawn from c′,c0,c1, . . . , and z are variable names drawn from

z′,z0,z1, . . . We use � = {!,?} to represent memory operations; z� represents either a

write z! to or a read z? from variable z. Similarly, ∗ = {sdi,rvi,rv⊥,closei} stands

for channel operations send, receive, receive from a closed channel, and close. The

index i ∈ Z as in sdi, rvi, closei, etc, is described later in this section. In make c n,

the capacity of the channel being created is captured by n ∈N. A new goroutine with

identifier p is spawn by go p.

A channel is synchronous when its capacity is zero and asynchronous otherwise.

When a channel c is synchronous, a sender p and a receiver p′ rendezvous in the ex-

10

� ::= ! | ? memory operations

∗ ::= sdi | rvi | rv⊥ | closei channel operations

o ::= z� | go p | make c n | ∗c operations

e ::= (o)p | (rendi c)
p
p events

h ::= [] | h :: e traces

Fig. 7: Trace grammar

change of a message. The rendezvous is captured by the event (rendi c)p

p′
. All other

event are of the form (o)p, thus involving an operation o performed by one goroutine p.

Technically, an event is unique in a trace. To us, uniqueness is derived from the

event’s position in the trace. Thus, formally, h[i] stands for the label corresponding to

the ith event in h. When clear from the context, we take the liberty of using “event” to

refer to an index into a trace or to the label associated with the event.

3.1 Preliminary definitions

Figure 8 introduces the predicates ∈p, ∈c, ∈o, and ∈e which capture the notion of a

process, a channel, an operation, and an event being part of a trace. It is also useful to

inspect whether an event involving a particular process is part of a trace, ∈e
p, or whether

a event involving a particular channel is part of a trace, ∈e
c.

A process p is available in trace h, denoted as p ∈p h, if the process has been cre-

ated in the trace. Note that the main or initial process p0 is created by the execution

environment before a program starts running, therefore it exists in the empty trace, see

rule ∈p-MAIN. Otherwise, a process p is in h if the operation go p has taken place in

h. Similarly, a channel c is in h if (make c n)p is in h for some p. The predicate e ∈e h

denotes the existence of an event e in a trace h. An operation o is part of a trace, o ∈o h,

if there exists a process p such that the event (o)p is in h or, in the case of the ren-

dezvous operation rendi c, if (rendi c)p

p′
is in h for some p and p′. The predicate ∈e

p

(respectively ∈e
c) denotes the existence, in a trace, of an event involving a particular pro-

cess (respectively channel). Figure 9 shows the projection of an event onto the threads

involved in the event, ⌊e⌋p, and the projection of an event onto the operation performed

as part of the event, ⌊e⌋o.

Figure 10 defines the function #SdRv c h which captures the number of send events

minus receive events on a channel c occurring on a trace h. To that purpose, |h| denotes

the length of a trace h and filter f h stands for the filter function taking as parameters

a function f from event e to boolean and a trace h. The isSd c e and isRv c e are

helper functions: isSd c e evaluates to true if e is a send on a channel c; false otherwise.

Similar for isRv c e and receives. These functions come into play in the definition of a

well-formed trace. Given the well-form of a trace ⊢ h (see Figure 11), predicates FULLc

and EMPTYc capture the conditions in which a channel is full and empty respectively.

When a channel with capacity n is created, n dummy receive operations

rv−n c, rv−n+1 c, ..., rv−1 c

11

∈p-MAIN

p0 ∈p []
∈p-GO

p′ ∈p h :: (go p′)p

p ∈p h
∈p-::

p ∈p h :: e

∈c-MAKE

c ∈c h :: (make c n)p

c ∈c h
∈c-::

c ∈c h :: e

∈e
e ∈e h :: e

e ∈e h
∈e-::

e ∈e h :: e′

∈e
p-EV

p ∈e
p h :: (o)p

∈e
p-REND

p ∈e
p h :: (rendi c)

p
p′

∈e
p-REND’

p′ ∈e
p h :: (rendi c)

p
p′

p ∈e
p h

∈e
p-::

p ∈e
p h :: e

∈e
c-REND

c ∈e
c h :: (rendi c)

p
p′

∈e
c-CHAN

c ∈e
c h :: (∗c)p

c ∈e
c h

∈e
c-::

c ∈e
c h :: e

(o)p ∈e h
∈o

o ∈o h

(rendi c)
p
p′ ∈e h

∈o-REND

rendi c ∈o h

Fig. 8: Predicates pertaining to membership in a trace.

e = (o)p
PROJp

⌊e⌋p = {p}

e = (rendi c)
p
p′

PROJ-Rp
⌊e⌋p = {p, p′}

e = (o)p
PROJo

⌊e⌋o = o

e = (rendi c)
p
p′

PROJ-Ro
⌊e⌋o =rendi c

Fig. 9: Projections.

are considered to be part of the trace as specified by rule INITc. At channel creation,

the n dummy receive operations denote the fact there is room for n messages to be

deposited into the channel via send operations.5 As we will see later in the definition

of well-formed traces, a send is allowed to take place if there is a prior corresponding

receive operation on the channel. Finally, Figure 10 defines the predicates closed (c,h)
for identifying whether a channel has been closed in h and sync (c,h) for identifying

synchronous channels.

5 The negative receive operations are considered part of a trace, but they do not actually appear

in the trace. Therefore, we must not take then into account in the #SdRv c h function.

12

isSd c (sdi c′)p := c = c′ isRv c (rvi c′)p := c = c′

isSd c := false isRv c := false

#Sd c h := |filter (isSd c) h| #Rv c h := |filter (isRv c) h|
#SdRv c h := #Rv c h − #SdRv c h

⊢ h (make c n)p ∈e h #SdRv c h = n
FULLc

full (c,h)

⊢ h c ∈c h #SdRv c h = 0
EMPTYc

empty (c,h)

(make c n)p ∈e h 1≤ i≤ n
INITc

rv−i c ∈o h

(closei c)p ∈e h
CLOSEDc

closed (c,h)

(make c 0)p ∈e h
SYNCc

sync (c,h)

Fig. 10: Channel related functions and predicates.

3.2 Well-form

The predicates presented so far come together in the definition of a well-formed trace

given in Figure 11. In general, a trace is well-formed when it is composed of events

involving goroutines that have already been created, as captured by the p ∈p h premise.

When it comes to spawning a new goroutine, the identifier p′ of the child routine must

not be in use already, p′ /∈p h. Similarly, for events that create a new channel, the new

channel’s identifier c′ must be fresh, c′ /∈c h. Close, send, and receive events must in-

volve a channel c that has already been created; this requirement is captured by premise

c ∈c h (unless it is subsumed by another premise).

Sends must respect channel capacity when the channel is open. A send can only

take place if there is a prior receive asserting that there is space in the channel for a new

message. This requirement is captured by rvk c ∈o h in ⊢SEND. 6 Similarly, a receive

can only take place if a corresponding send has occurred; this condition is captured by

premise sdk c ∈o h in ⊢REC. Note that premises rvk c ∈o h of ⊢SEND and sdk c ∈o h

of ⊢REC imply that the channel is part of the trace, c ∈c h, and that it is asynchronous,

sync (c,h). Premises sdk+|c| c /∈o h and rvk c /∈o h make sure that there are no duplicate

sends or receives.

When a channel is closed, receiving is non-blocking: if the channel is empty, the

receive operation returns the zero element of the type associated with the channel,

⊢REC⊥. There is no event representing a send on a closed channel. This absence mirror

6 Readers familiar with the Go memory model may notice that premise rvk c ∈o h in ⊢SEND

captures the adage “the kth receive on a channel with capacity C happens before the k+Cth

send from that channel completes” [7].

13

⊢EMPTY

⊢ []

⊢ h p ∈p h
⊢MEM

⊢ h :: (z�)p

⊢ h p ∈p h p′ /∈p h
⊢GO

⊢ h :: (go p′)p

⊢ h p ∈p h c /∈c h
⊢MAKE

⊢ h :: (make c n)p

⊢ h p ∈p h c ∈c h (close j c)p′ /∈e h

(sdi c)p′′ ∈e h→ k = ⊓{i | (sdi c)p′′ ∈ h} (sdi c)p′′ /∈e h→ k = 0
⊢CLOSE

⊢ h :: (closek c)p

⊢ h p, p′ ∈p h p 6= p′ c ∈c h sync (c,h) rendk c /∈o h

(closei c)p′ ∈ h→ 0≤ k < i
⊢REND

⊢ h :: (rendk c)
p
p′

⊢ h p ∈p h rvk c ∈o h sdk+|c| c /∈o h

(closei c)p′ ∈ h→ 0≤ k+ |c|< i
⊢SEND

⊢ h :: (sdk+|c| c)p

⊢ h p ∈p h sdk c ∈o h rvk c /∈o h
⊢REC

⊢ h :: (rvk c)p

⊢ h p ∈p h c ∈c h closed (c,h)
⊢REC⊥

⊢ h :: (rv⊥ c)p

Fig. 11: Well-formed trace.

the operational semantics: attempting to send on a closed channel causes a thread to

panic, and the panic is modeled by the absence of an applicable reduction rule.

3.3 Independence between events and partial order on traces

Traces come from observing the execution of a program and are expressed as strings

of events. However, in a concurrent system, events may not be causally related, which

means that the order of some events is not pre-imposed. In reality, instead of sequences,

events in a concurrent system form a partially ordered set. As advocated by Mazurkiewicz

[14], it is useful to combine sequential observations with a dependency relation for

studying “the nonsequential behaviour of systems via their sequential observations.” In

Figure 12, we define the binary relation ⊲⊳ to represent trace events that are indepen-

dent. This relation allows us to reason about derivable traces: when two adjacent events

are independent, we are able to swap their position in a trace.

14

e1 ⊲⊳ e2
⊲⊳-SYM

e2 ⊲⊳ e1

p1 6= p2
⊲⊳-READ

(z?)p1
⊲⊳ (z?)p2

p1 /∈ ⌊e2⌋p ⌊e2⌋o 6= z�
⊲⊳-MEM

(z�)p1
⊲⊳ e2

p1, p′ /∈ ⌊e2⌋p e2 6= (go p1)p2
⊲⊳-GO

(go p′)p1
⊲⊳ e2

p1 /∈ ⌊e2⌋p ⌊e2⌋o /∈ {go p1, make c m, ∗ c, rendi c}
⊲⊳-MAKE

(make c n)p1
⊲⊳ e2

p1 /∈ ⌊e2⌋p ⌊e2⌋o /∈ {go p1, make c m, ∗ c, rendi c}
⊲⊳-CHAN

(∗c)p1
⊲⊳ e2

p1 6= p2
⊲⊳-SEND

(sdi c)p1
⊲⊳ (sd j c)p2

p1 6= p2
⊲⊳-REC

(rvi c)p1
⊲⊳ (rv j c)p2

p1 6= p2 i 6= j i 6= j+ |c|
⊲⊳-SDRV

(sdi c)p1
⊲⊳ (rv j c)p2

p1 6= p3 p1 6= p4

p2 6= p3 p2 6= p4
⊲⊳-REND

(rendi c)p1
p2
⊲⊳ (rend j c′)p3

p4

p1 /∈ ⌊e2⌋p ⌊e2⌋o /∈ {go p1, make c m, closei c}
⊲⊳-REC⊥

(rv⊥ c)p1
⊲⊳ e2

p1 6= p2
⊲⊳-CLOSESD

(closei c)p1
⊲⊳ (sd j c)p2

p1 6= p2
⊲⊳-CLOSERV

(closei c)p1
⊲⊳ (rv j c)p2

p1 6= p2 p1 6= p3
⊲⊳-CLOSER

(closei c)p1
⊲⊳ (rend j c)p2

p3

Fig. 12: Independent trace events.

Note that operations from the same goroutine are trivially not independent, as their

order is pre-imposed by the program: for events (o1)p1
and e2 to be independent, we

must have p1 /∈ ⌊e2⌋p. Rule ⊲⊳-READ says that reads from different goroutines to the

same variable are independent. Memory operations from different goroutines are inde-

pendent if they address different variables (⊲⊳-MEM).

The rule ⊲⊳-GO details when the goroutine-creation event (go p3)p1
is independent

from another operation o from goroutine p2: the go operation must not be creating p2, as

captured by p2 6= p3 in the rule’s premise. Similarly, p2 must not be creating the thread

executing the go operation. This last condition, captured by premise o 6=go p1, is also in

15

the premise of other rules such as ⊲⊳-MAKE, ⊲⊳-CHAN, and ⊲⊳-REC⊥. Rule ⊲⊳-MAKE

specifies that the creation of a channel c is independent from events e2 that do not

involve c. Similar for ⊲⊳-CHAN. In general, sends are independent from other sends and

receives from other receives7 — see rules ⊲⊳-SEND and ⊲⊳-REC.

The dependence between sends and receives follows the Golang memory model [7]

to the letter. The model specifies that, given a channel c with capacity k = |c|:

A send on c happens-before the corresponding receive from c completes. (3)

The ith receive from c happens-before the (i+ k)th send on c (4)

Therefore, in order for a send event (sdi c)p1
to be independent from a receive event

(rv j c)p2
, they most not be in a happens-before relation with each other. In the inde-

pendence rule ⊲⊳-SDRV, premise i 6= j captures condition (3) while i 6= j+ |c| captures

condition (4). When the channel is synchronous, condition (4) collapses into condi-

tion (3) given that |c| = 0. Note that rule ⊲⊳-REND does not explicitly require i 6= j

since it is implied from the fact that the processes involved in the two rendezvous are

required to be different.

Receiving the end-of-transmission marker⊥when receiving from a channel implies

that the channel is closed. Therefore, (rv⊥ c)p1
and (closei c)p2

are not independent

events. Aside from that, a close event on c is independent from sends (⊲⊳-CLOSESD),

receives (⊲⊳-CLOSERV), and rendezvous (⊲⊳-CLOSER) on c.

Note that the independence relation is irreflexive. If the relation were reflexive, we

would erroneously conclude, for example, that the writes to z in the code snippet z :=
1; z := 2 are independent. The relation ⊲⊳ is also not transitive; for example, (z1?)p1

⊲⊳
(z2?)p2

, (z2?)p2
⊲⊳ (z1!)p3

, but (z1?)p1
6⊲⊳ (z1!)p3

.

⊢ h :: e1 :: e2 e1 ⊲⊳ e2
⊑-CONC

h :: e1 :: e2 ⊑ h :: e2 :: e1

⊢ h1
++h h1 ⊑ h2

⊑-PREFIX

h1
++h⊑ h2

++h

h1 ⊑ h2 h2 ⊑ h3
⊑-TRANS

h1 ⊑ h3

Fig. 13: Partial order on traces.

7 Here, the motivation for attaching an index to channel operations becomes evident. We want,

for example, to record the send and receive operations in a trace yet have the recording of such

operations be “swappable” in a trace. It is not possible to swap two concurrent sends onto (or

receives from) the same channel: different runs are obtained by altering the order in which the

channel operations take effect. Yet, once the sends (or receives) have taken effect with respect

to the channel’s queue, the order in which the sends (or receives) are presented in a trace no

longer matters. For example, the ith send operation cannot be swapped with the (i+1)th send

operation on the same channel. However, having recorded that sd c is the ith send, as in sdi c,

then we can safely swap the event with sdi+1 c in a given trace.

16

In Figure 13 we define the derivable from relation⊑ on traces. Given the set of well-

formed finite traces H = {h|h = e∗ and ⊢ h}, H is a pre-ordered set with ⊑ a pre-order.

Rule R-CONC allow us to apply the independence relation in the context of traces. Rule

R-PREFIX generalizes ⊑ to prefixes of a potentially longer traces.

3.4 Identifying data-races in traces

A trace h contains a data race if h′ contains a manifest data race and h′ can be derived

from h, meaning, h⊑ h′.

Definition 1 (Data race). A well-formed trace h contains a manifest data race if either

(z!)p (z!)p′ (manifest write-after-write)

(z!)p (z?)p′ (manifest read-after-write)

(z?)p (z!)p′ (manifest write-after-read)

are a sub-sequence of h.

Note that the concept of manifest data race and the derive-from relation⊑ give us an

idealized race detector. A race is detected in an execution resulting in trace h if h ⊑ h′

and h′ contains a manifest data-race. The idealized detector may not be practical: by

consuming traces in their entirety, such a detector requires global information and can-

not be easily partitioned. Also, by operating on a trace without necessarily maintaining

internal state, a naive detector checking for races in h :: e is likely to duplicate work that

went into checking h.

The practicality of this idealized detector is not a problem, however. As we will see

in Section 4, the detector operating on traces will serve a specification against which

we establish the correctness of the race detector introduced in Section 2.4.

3.5 Example

Let us look at an example that illustrates how the independence and derivable-from

relations of Figure 12 and 13 can be used to reason about equivalences of traces. Con-

sider the scenario of Figure 14 in which three threads communicate over a channel of

capacity |c| ≥ 2. From p1’s code we see that whichever goroutine receives from c first

p1〈x := v1; c← m1; y := v2; c← m2〉

p2〈← c; load x〉

p3〈← c; load y〉

Fig. 14: Message passing, twice.

can safely read x but not y: reading y would yield a data race. On the other hand, the

goroutine that receives from c last can read x and y.

17

Trace 5 below is associated with a well-synchronized run of the program. We have

(x!)p1
→hb (x?)p2

and (y!)p1
→hb (y?)p3

where→hb is the happens-before relation.

(x!)p1
(sd0 c)p1

(y!)p1
(sd1 c)p1

(rv0 c)p2
(rv1 c)p3

(x?)p2
(y?)p3

(5)

Figure 12 and 13 define when events of a trace can be swapped with the resulting trace

being derivable from the original one. For example, according to ⊲⊳-MEM, the last two

events in Trace 5 are independent. We can use that fact along with ⊑-CONC in order to

derive an equivalent trace in which (x?)p2
and (y?)p3

are swapped.

Consider now Trace 6 below; it looks like Trace 5 except that the order of the re-

ceives is reversed.

(x!)p1
(sd0 c)p1

(y!)p1
(sd1 c)p1

(rv0 c)p3
(rv1 c)p2

(x?)p2
(y?)p3

(6)

Despite their similarities, Trace 5 and 6 are not derivable-from one another. Changing

the order of the receive operations between threads p2 and p3 fundamentally alters the

execution of the program: it changes which goroutine receives what message, thus al-

tering the program’s synchronization. As a mater of fact, while Trace 5 is well synchro-

nized, Trace 6 contains a read-after-write (RaW) conflict between (y!)p1
and (y?)p3

. As

a sanity check, note that it is not possible to derive Trace 6 by applying the rules of

Figure 12 and 13 starting from Trace 5.

In order to make the race condition in Trace 6 more evident, we can derive an

equivalent trace that contains a manifest data race. The following trace with a manifest

data race is obtained by swapping events of Trace 6 according to the rules of Figure 12

and 13:

(x!)p1
(sd0 c)p1

(y!)p1
(sd1 c)p1

(rv0 c)p3
(rv1 c)p2

(x?)p2
(y?)p3

(⊲⊳-MEM)

(x!)p1
(sd0 c)p1

(y!)p1
(sd1 c)p1

(rv0 c)p3
(rv1 c)p2

(y?)p3
(x?)p2

(⊲⊳-CHAN)

(x!)p1
(sd0 c)p1

(y!)p1
(sd1 c)p1

(rv0 c)p3
(y?)p3

(rv1 c)p2
(x?)p2

(⊲⊳-SDRV)

(x!)p1
(sd0 c)p1

(y!)p1
(rv0 c)p3

(sd1 c)p1
(y?)p3

(rv1 c)p2
(x?)p2

(⊲⊳-CHAN, ⊲⊳-SYM)

(x!)p1
(sd0 c)p1

(rv0 c)p3
(y!)p1

(sd1 c)p1
(y?)p3

(rv1 c)p2
(x?)p2

(⊲⊳-CHAN)

(x!)p1
(sd0 c)p1

(rv0 c)p3
(y!)p1

(y?)p3
(sd1 c)p1

(rv1 c)p2
(x?)p2

4 Formal properties of the data-race detector

We presented in Section 2 the operational semantics of a race detector for a language

inspired by Go. We then presented a trace grammar and defined the concept of mani-

fest data-race in Section 3. Using the independence relation on trace events ⊲⊳ and the

derive-from relation on traces⊑, we showed how to obtain a trace containing a manifest

data-race from a trace obtained from an ill-synchronized run. Here we relate the opera-

tional semantics to the trace grammar so that, in Sections 4.2 and 4.3, we can establish

18

soundness and completeness of the race detector. When reasoning about traces via the

independence relation on events and the derive-from relation on traces, one needs to ar-

gue for the correctness of the relations with respect to a labeled transition system. This

discussion is relegated to Appendix C.

4.1 Traces from the race-detector

A trace can be constructed straightforwardly from the reduction rules of the operational

semantics. Rule R-GO yields the trace event (go p′)p where p is the parent and p′ is the

child-process. R-WRITE and R-READ yields trace events (z?)p and (z!)p respectively.

Channel creation R-MAKE yields (make c v)p with v the channel buffer size. R-SEND

and send acknowledgments R-SACK yield (sd c)p and (sd c)p respectively. Similar

for R-REC and (rv c)p as well as R-RACK and (rv c)p. R-REC⊥ yields (rv⊥ c)p,

R-REND does (rend c)p

p′
, and R-CLOSE (close c)p. Except for R-SEL-DEF, which

generates no events, the rules for select also produce send, receive, and synchronous

send/receive trace events. Local reduction rules generate no trace events. The following

three rules yield events besides placing the program configuration in an irreducible er-

ror state: R-WRITE-EWaR and R-WRITE-EWaW yield trace event (z!)p, R-READ-ERaW

yields (z?)p.

The trace h obtained from the direct translation of the operational semantics’ reduc-

tion rules is post processed by the algorithm of Figure 15. This post processing outputs

a trace acc conforming to the trace grammar of Section 3. During the processing, the al-

1 process h = processRec (λx. 0) (λx. 0) (λx. 0) acc h

2

3 processRec S R I acc [] = acc

4 | S R I acc (h :: (sd c)p)
5 = process (inc S c) R (set I p (S c)) acc h

6 | S R I acc (h :: (rv c)p)
7 = process S (inc R c) (set I p (R c)) acc h

8 | S R I acc (h :: (sd c)p)

9 = process S R I (acc:: (sd(I c) c)p) h

10 | S R I acc (h :: (rv c)p)

11 = process S R I (acc:: (rv(I c) c)p) h

12 | S R I acc (h :: (rend c)
p
p′)

13 = process (inc S c) R I (acc:: (rend(S c) c)
p
p′) h

14 | S R I acc (h :: (close c)p)

15 = process S R I (acc:: (close(S c) c)p) h

16 | S R I acc (h :: e) = process S R I (acc:: e) h

17

18 inc X c = λu. if u = c then (X c)+1 else (X c)
19

20 set I p v = λu. if u = p then v else (I p)

Fig. 15: From operational semantics’ trace to trace grammar of Section 3.

19

gorithm filters out the initiation of send and receive events but keeps their acknowledg-

ments. The algorithm also attaches an index to the send and receive acknowledgments,

to rendezvous events, and to close events.

The algorithm of Figure 15 works as follows. The S and R are functions from channel

identifier to a natural number. The S keeps track of the number of send events on each

channel, while the R keeps track of the number of receives. When a send event (sd c)p is

encountered in trace h, the send-counter for channel c is incremented via (inc S c). Similar

for receive and (inc R c). The I is a function from process identifier to natural number; it

records the value for the send (or receive) counter on c at the time a goroutine initiates a

send (or receive) event on c. Send events (sd c)p in h are filtered out, meaning that they

do not get carried over to the resulting acc trace. Instead, the acknowledgment of the send

is recorded in acc, along with the send-counter at the time the send event was initiated:

acc:: (sd(I c) c)p). The same ideas apply to receive events. Rendezvous and close events are

similarly labeled with an event index. Other events in h are transferred unaltered to the

output trace acc.

From here on, when we refer to h, we are talking about the output of process having

been given as input a trace obtained from the data-race detector. Therefore, h is a trace

in the grammar of Section 3.

4.2 Soundness of the race detector

In this section we show that if a run S0
h
−→ S is flagged by the data-race detector, then

either:

– h has a manifest data-race, or

– there exists a trace hdr containing a manifest data-race and h⊑ hdr.

We will focus on WaW races, noting that proofs of the soundness of WaR and RaW

races follow similarly. Here we prove correctness with respect to a slightly simpler

version of the race detector, namely, one without the garbage collection term \(,z)
in the R-WRITE rule. This modification makes happens-before set Ehb of each thread

monotonically increasing, which, in turn, makes the proof slightly simpler.

The following notation is used in the proofs: Let idx (e,h) = i be the index of event

e in trace h. If h[i] = (o)p, then let Ehb@h[i] be the happens-before set associated with

thread p immediately after the execution of operation o. If h[i] = (rendk c)p

p′
then let

Ehb@h[i] be the union of the happens-before sets associated with thread p and p′. We

use the notation Ehb@e when it is clear from the context that e = h[i] for a given h and

i.

The race detector flags a WaW race via the reduction rule R-WRITE-EWaW , which

generates an event (z!)p. We thus consider runs of the form S0

h::(z!)p
−−−−→ S.

Lemma 2. (Existence of a prior write event.) Let S0

h::(z!)p
−−−−→ S be a run flagged as con-

taining a WaW race. The prefix S0
h
−→ must contain a write to z producing a label m such

that (m,z) is not in the happens-before set of p.

20

Proof. If m(|z:=v|)LR is the record associated with z in a configuration, in order for

R-WRITE-EWaW to be enabled given a write to z, the pair (m,z) must not be in the

happens-before set of the writing thread.

By well-formedness of the initial configuration, we have that for every shared vari-

able z, there exists a unique record m0,z(|z:=v|) /0 in S0 such that (m0,z,z) ∈ Ehb of the

main thread p0. Given that every thread is a descendant of p0 and that parents pass their

happens-before set to their children, we have that (m0,z,z) is in the happens-before set

of every thread.8 Therefore, in order for R-WRITE-EWaW to be enabled given a write to

z, the label m in the record m(|z:=v|)LR must not be the initial label m0,z.

Since R-WRITE is the only rule that alters the label associated with a record m(|z:=v|)LR,

an event corresponding to a write to z reduced via R-WRITE must exist in h in order for

the race detector to flag a WaW race in S0

h::(z!)p
−−−−→ S. ⊓⊔

Corollary 3. (Prior write by different thread.) Note that in Lemma 2, if p′ is the thread

performing the write to z producing label m with (m,z) not in the happens-before of p,

then it must be that p′ 6= p.

Proof. The write occurring in S0
h
−→ places (m,z) in the Ehb of the writing thread p′. The

write triggering the WaW race requires (m,z) not to be in the Ehb of p. By monotonicity

of the happens-before set we have that p 6= p′. ⊓⊔

Lemma 4. (Most recent write). Let S0

h::(z!)p
−−−−→ S be a run flagged as containing a WaW

race. Let w̄ be a write to z in h such that, for all other writes w to z in h, idx (w,h)<idx

(w̄,h). In other words, w̄ is the most recently occurring write-event involving z in h. The

label m̄ associated with w̄ is not in the happens-before of p.

Proof. Assume the label m̄ associated with w̄ is in the happens-before set of p. By

Lemma 2 we have that there exist a write w′ by thread p′ 6= p producing label m′ such

that (m′,z) is not in the happens before of p.

By definition of w̄, we have that idx (w′,h)<idx (w̄,h). Since the race detector did

not flag a WaW race when executing w̄, it must be that (m′,z) was in the happens-before

set of p̄ at the time w̄ took place.

Give that happens-before sets are inherited (during thread creation) or communi-

cated (via message passing) in their entirety, in order for the happens-before set of p to

contain (m̄,z) it must be that it also contains (m′,z), which is a contradiction. ⊓⊔

Lemma 5. (No reads in between). Let S0

h::(z!)p
−−−−→ S be a run flagged as containing a

WaW race. Let w̄ be a write to z in h such that, for all other writes w to z in h, idx

(w,h)<idx (w̄,h). There cannot be an event ê= (z?) p̂ such that idx (w̄,h)<idx (ê,h).

Proof. If there were a read from z in h and (m̄,z) were not in the happens-before of

p̂, then R-READ-ERaW would have fired and execution would have halted at ê. If there

were a read from z in h and (m̄,z) were in the happens-before of p̂, then R-WRITE-EWaW

would not be enabled at e and a WaR race would have been flagged instead. ⊓⊔

8 Note that we are making use of the monotonicity of the happens-before set. In the version of

the race-detector with garbage collection, because happens-before sets are not monotonically

increasing, we would have to make a more elaborate argument.

21

Because of Lemmas 4 and 5, we are able to focus on showing a manifest data-

race between two crucial memory events, irrespective of other memory operations. To

summarize, at this point we have established that if S0

h::(z!)p
−−−−→ S is a run flagged as

containing a WaW race, there exists a write event w̄ to variable z in h such that:

– w̄ splits h into h = h0 w̄ ĥ,

– there are no reads or writes to z in ĥ,

– w̄ and (z!)p constitute a WaW race.

Next, we show that we can derive a manifest data-race from the subsequence w̄ ĥ w

where w̄ = (z!) p̄ and w = (z!)p. Informally, we will use the derivable-from relation ⊑

to “move” events from ĥ to the left of w̄ or the right of w, thus hollowing ĥ so that w̄ w

will be a subsequence of the resulting trace. Since w̄ w = (z!) p̄(z!)p with p̄ 6= p, this

subsequence constitutes a manifest write-after-write data race.

Lemmas 6 and 7 are stepping stones for the more fundamental Lemma 8. When

hollowing ĥ in w̄ ĥ w, some events may need to be moved to the left of w̄ and some to

the right of w. Lemma 8 handles the case in which w̄ . . .er el . . .w with er needing to be

moved to the right of w and el needing to be moved to the left of w̄. In this case, we show

that er and el can be swapped, in other words, that w̄ . . .el er . . .w can be derived. The

ability to swap er and el hinges on their independence, which is the topic of Lemma 8.

Lemma 6. (Different threads). Let h be a well-formed trace with e1 e2 as sub-trace. If

Ehb@e1 * Ehb@e2, then ⌊e1⌋p∩⌊e2⌋p = /0.

Proof. Here we prove the contrapositive: Given that the happens-before set is mono-

tonically increasing, in each of the following four cases, if ⌊e1⌋p ∩ ⌊e2⌋p 6= /0, then

Ehb@e1 ⊆ Ehb@e2.

Case: e1 = (o1)p1
and e2 = (o2)p2

with p1 = p2

Case: e1 = (o1)p1
and e2 = (rendi c)p2

p′2
with p1 = p2 or p1 = p′2

Case: e1 = (rendi c)p1

p′1
and e2 = (o2)p2

with p1 = p2 or p′1 = p2

Case: e1 = (rendi c1)
p1

p′1
and e2 = (rend j c2)

p2

p′2
with p1 = p2, p1 = p′2, p′1 = p2, or

p′1 = p′2
⊓⊔

Lemma 7. (Channel handle propagation). Given a trace h obtained from the opera-

tional semantics, it is not possible to derive an h′ from h where (make c n)p (∗c)p′ is a

subsequence with p 6= p′.

Proof. Channel creation takes place via R-MAKE, which puts a νc-binder around the

thread p that created the channel and the channel forward and backward queues. In

order for thread p′ to get a handle to c, p′ must somehow be inside the binder. In all

the ways p′ exist inside the binder, at least one event e sits between the making and the

using of the channel with (make c n)p 6⊲⊳ e and e 6⊲⊳ (∗c)p′ .

22

Case: p creates c then spawns p′

If p creates c and then spawns p′ via go, then p′ is inside the νc-binder and can have a

handle on c. An example program would be:

let c = make(chan int , n) in go { * handle on c *\}

and reduces as follows:

p〈let r = make (chan T,v) in go t ′; t〉 R-MAKE

−→ νc (p〈let r = c in go t ′; t〉 ‖ c f [] ‖ cb[q]) R-LET

−→ νc (p〈go t ′[c/r]; t[c/r]〉 ‖ c f [] ‖ cb[q]) R-GO

−→ νc (ν p′ (p〈t[c/r]〉 ‖ p′〈t ′[c/r]〉 ‖ c f [] ‖ cb[q]))

The corresponding trace h would have the event (go p′)p in between the (make c n)p

and any event (∗c)p′ on c from a thread p′ 6= p. Since (make c n)p 6⊲⊳ (go p′)p and

(go p′)p 6⊲⊳ (o)p′ , the subsequence (make c n)p (∗c)p′ cannot exist in a trace derived

from h.

Case: p writes c onto a shared variable read by p′

In this case, we would have the following subsequence where (z!)p writes c onto the

shared variable z and (z?)p′ reads c from z.

(make c n)p (z!)p (z?)p′ (∗c)p′

In terms of the configuration, the structural congruence rule P1 ‖ νn P2 ≡ νn (P1 ‖
P2) if n /∈ fn(P1) expands the scope of the ν-binder from around p, c f , and cb to also

surround p′ before p′ reads c from z. Note that (z!)p 6⊲⊳ (z?)p′ , (make c n)p 6⊲⊳ (z!)p

because of program order, and (z?)p′ 6⊲⊳ (∗c)p′ also because of program order.

Without synchronization, it is possible for p′ to read the old value of z as opposed

to the value of z which contains c. Without synchronization, this scenario contains a

data race. If synchronization is added, for example, by p writing to z and then send-

ing on a channel and by p′ reading the message before accessing z, then the race is

eliminated. The impossibility of deriving (make c n)p (∗c)p′ now comes not only from

the dependence between the write-to and the read-from z but also from the channel

communication between the two threads.

Case: p sends c to p′ on a channel c′

The rend event below captures a synchronous message from p to p′ in which the handle

to c is communicated over a channel c′ 6= c. A similar argument can be made about

communication over asynchronous channels.

(make c n)p (rend c′)p

p′
(∗c)p′

Since (make c n)p 6⊲⊳ (rend c′)p

p′
and (rend c′)p

p′
6⊲⊳ (∗c)p′ , the subsequence (make c n)p (∗c)p′

is not derivable.9 ⊓⊔

9 Similar to the case in which c is written to z, the νc-binder is made to wrap around p′ by the

use of the congruence rule P1 ‖ νn P2 ≡ νn (P1 ‖ P2) if n /∈ fn(P1).

23

Lemma 8. (Independence). Consider the postfix w̄ ĥ w of a run flagged as containing a

write-after-write race on z where w = (z!)p, w̄ = (z!) p̄ with no memory events involving

z in ĥ. Pick two adjacent event e1 e2 from ĥ; in other words, ĥ = ĥl e1 e2 ĥr. If Ehb@w̄⊆
e1 and Ehb@w̄ * e2 then e1 ⊲⊳ e2.

Proof. Since Ehb@w̄⊆ e1 and Ehb@w̄ * e2 we have that Ehb@e1 * Ehb@e2. Thus, by

Lemma 6 we have that ⌊e1⌋p∩⌊e2⌋p = /0.

From here, the proof proceeds via case analysis on e1 and e2.

Case: e1 = (make c n)p1

First consider the case in which the operation performed at e1 does not involve c. In

these cases, we have that e1 ⊲⊳ e2 via ⊲⊳-MAKE, ⌊e1⌋p∩⌊e2⌋p = /0, and well-form. Via

Lemma 7, we have that if e2 is an operation involving a channel c′, we have that c′ 6= c.

Case: e1 = (sdi c)p1

We split on the o= ⌊e2⌋o operation, starting with operations involving c. The interesting

case is o =rv j c, where we have three options: (1) If i 6= j and i 6= j+ |c|, then e1 ⊲⊳ e2

via ⊲⊳-SDRV. (2) If i = j, according to the operational semantics, the happens-before

set of the process p2 executing e2 is augmented with the happens-before set of p1 when

p1 performed e1. Therefore, e1 = (sdi c)p1
followed by e2 = (rv j c)p2

with i = j

violates the assumption Ehb@e1 * Ehb@e2. (3) The case in which i = j + |c| is not

well-formed according to ⊢SEND: in order for there to be a send with index j+ |c| in

a trace h, there must already be a receive with index j in h. Other cases are covered as

follows: If o =sd j c then e1 ⊲⊳ e2 by ⊲⊳-SEND along with ⌊e1⌋p ∩⌊e2⌋p = /0. Similar

for o =close j c and ⊲⊳-CLOSESD as well as o =rv⊥ c and ⊲⊳-REC⊥. Note that

o =make c n or o =rendi c would not yield a well-formed trace. Finally, operations

involving c′ 6= c as well as non-channel operations are covered by ⊲⊳-CHAN along with

⌊e1⌋p∩⌊e2⌋p = /0 and the well-form condition.

Case: e1 = (rvi c)p1

Similar to e1 = (sdi c)p1
.

Case: e1 = (rendi c)p1

p′1

If e2 = (rend j c′)p2

p′2
then, given that ⌊e1⌋p∩⌊e2⌋p = /0, we have e1 ⊲⊳ e2 via ⊲⊳-REND

regardless of whether c = c′. In the case of e2 = (o)p2
, we split on the operation o. Let

us first consider operations involving c. If o =close j c then ⌊e1⌋p ∩⌊e2⌋p = /0 imply

e1 ⊲⊳ e2 via ⊲⊳-CLOSER. Similar for o =rv⊥ c and ⊲⊳-REC⊥. Note that the cases in

which o ∈ {make c n, sd j c, rv j c} are not well formed. Now consider operations

involving c′ 6= c. If o = ∗c′ then ⌊e1⌋p∩⌊e2⌋p = /0 imply e1 ⊲⊳ e2 via ⊲⊳-CHAN. Similar

for o=make c′ n and ⊲⊳-MAKE. Finally, if o is a memory operation then ⌊e1⌋p∩⌊e2⌋p =
/0 imply e1 ⊲⊳ e2 via ⊲⊳-MEM. Similarly for o =go p′ and ⊲⊳-GO.

Case: e1 = (rv⊥ c)p1

We have e1 ⊲⊳ e2 via ⊲⊳-REC⊥, ⌊e1⌋p∩⌊e2⌋p = /0, and well-form. We note that well-form

prevents the rv⊥ c in e1 to be followed by closei c.

Case: e1 = (go p′)p1

We have e1 ⊲⊳ e2 via ⊲⊳-GO, ⌊e1⌋p∩⌊e2⌋p = /0, and the fact that, in a well-formed trace,

the operation performed at e2 cannot be go p1.

24

Case: e1 = (closei c)p1

We split on the operation o = ⌊e2⌋o starting with operations involving c. The interesting

case to consider is o =rv⊥ c. According to the operational semantics, the happens-

before set of p1 when closing c is transferred to the thread receiving the end-of-transmission

marker from c. Therefore, e1 = (closei c)p1
followed by e2 = (rv⊥ c)p2

violates the

assumption Ehb@e1 * Ehb@e2. Other cases are covered as follows: If o =sd j c or

o =rv j c, then e1 ⊲⊳ e2 by ⊲⊳-CLOSESD or ⊲⊳-CLOSERV along with ⌊e1⌋p∩⌊e2⌋p = /0.

Similar for o =rend j c and ⊲⊳-CLOSER. Note that o =close j c and o =make c n

would imply that the trace is not well-formed. For the remaining cases, e1 ⊲⊳ e2 via

⊲⊳-CHAN along with ⌊e1⌋p∩⌊e2⌋p = /0 and well-form.

Case: e1 = (x�)p1

If o = (x�)p2
then both e1 and e2 must be read operations, otherwise they would consti-

tute a manifest data-race. In that case, events are independent via ⊲⊳-READ along with

⌊e1⌋p∩⌊e2⌋p = /0. For all other cases, e1 ⊲⊳ e2 via ⊲⊳-MEM and ⌊e1⌋p∩⌊e2⌋p = /0.

⊓⊔

When are now ready to show that it is possible to hollow ĥ in w̄ ĥ w in order to

derive a trace containing w̄ w as the manifest data-race.

Lemma 9. (Hollowing). Consider the postfix w̄ ĥ w of a run flagged as containing a

write-after-write race on z w̄ = (z!)p̄, where w = (z!)p, and there are no memory events

involving z in ĥ. Pick an event e from ĥ; in other words, ĥ = ĥl e ĥr. The event e can be

moved either to the left of w̄ or to the right of w. More precisely:

1. If Ehb@w̄ * Ehb@e, then w̄ ĥl e⊑ . . .e w̄ . . .
2. If Ehb@w̄⊆ Ehb@e, then e ĥr w⊑ . . .w e . . .

Proof. The proof in by induction on the size of ĥl and ĥr.

Case: Ehb@w̄ * Ehb@e

Here we need to prove that e an be moved to the left of w̄ in w̄ ĥl e. In the base case

|ĥl | = 0 and we need to show that w̄ ⊲⊳ e. Since Ehb@w̄ * Ehb@e, then e = (o)p′ with

p′ 6= p or e = (rendi c)p′

p′′
with p′ 6= p and p′′ 6= p. Given the assumption that e is not

a memory event involving z, we have that w̄ ⊲⊳ e, thus w̄ e⊑ e w̄ via ⊑-CONC.

For ĥl such that |ĥl |= n+1, let e′ be the last element of ĥl .

If Ehb@w̄ * Ehb@e′ then, since the length of the sub-trace between w̄ and e′ is n,

we can apply the induction hypothesis to move e′ to the left of w̄. Once e′ has been

moved, the length of the sub-trace between w̄ and e is less than n+1, which means we

can again apply the induction hypothesis:

w̄ . . .e′ e (induction hypothesis and Ehb@w̄ * Ehb@e′)

⊑ . . .e′ w̄ . . .e (induction hypothesis and Ehb@w̄ * Ehb@e)

⊑ . . .e′ . . .e w̄ . . .

If Ehb@w̄⊆ Ehb@e′, then:

w̄ . . .e′ e (e′ ⊲⊳ e via Lemma 8)

⊑ w̄ . . .e e′ (induction hypothesis and Ehb@w̄ * Ehb@e)

⊑ . . .e w̄ . . .e′

25

Case: Ehb@w̄⊆ Ehb@e

In the base case |ĥr|= 0 and we need to show that w ⊲⊳ e. Consider the case of e = (o)p′ .

If p′ = p, then Ehb@w̄⊆ Ehb@e⊆ Ehb@w, which contradicts Lemma 2. Similar for the

case of e = (rendi c)p′

p′′
and p′ = p or p′′ = p. Therefore, e is an event not involving p.

Since, by assumption, e is also an event not involving z, then e ⊲⊳ w.

For ĥr such that |ĥr|= n+1, let e′ be the first element of ĥr.

If Ehb@w̄⊆ Ehb@e′, then

e e′ . . .w (induction hypothesis and Ehb@w̄⊆ Ehb@e′)

⊑ e . . .w e′ . . . (induction hypothesis and Ehb@w̄⊆ Ehb@e)

⊑ . . .w e e′ . . .

If Ehb@w̄ * Ehb@e′, then

e e′ . . .w (e′ ⊲⊳ e via Lemma 8)

⊑ e′ e . . .w (induction hypothesis and Ehb@w̄⊆ Ehb@e)

⊑ e′ . . .w e . . .

⊓⊔

Theorem 10. (Soundness of the data-race detector with respect to WaW races). If S0
h
−→

S is a run flagged by the data-race detector as containing a WaW race, then h⊑ hdr with

hdr containing a manifest WaW data-race.

Proof. From Lemma 4 we have that h can be broken down into h0 w̄ ĥ w with w̄ = (z!) p̄

and w = (z!)p. From Lemma 9 we have that for every e ∈e ĥ, e can be moved to either

the left of w̄ or the right of w, meaning:

– w̄ . . .e . . .w⊑ e . . . w̄ . . .w or

– w̄ . . .e . . .w⊑ w̄ . . .w . . .e

We proceed by reducing the length of ĥ until the resulting trace contains w̄ w as a sub-

trace. ⊓⊔

4.3 Completeness of the race detector

We give a detailed sketch of the completeness proof.

Theorem 11. (Completeness of the data-race detector with respect to WaW races). Let

S
h
−→ S′ be a run such that h⊑ hdr and hdr contains a manifest WaW race; in other words,

(z!) p̄ (z!)p is a subsequence of hdr for p̄ 6= p. Then S
h
−→ S′ is flagged as containing a

data-race by the race detector; in other words, event (z!)p is emitted by a reduction via

the rule R-WRITE-EWaW rule.

Let w̄ = (z!) p̄ and w = (z!)p be events in h with h⊑ hdr and w̄ w a subsequence of

hdr. Since w̄ w is a subsequence of hdr and w̄ and w are in conflict, meaning w̄ 6⊲⊳ w, then

w̄ must occur before w in h as well. Then h0 w̄ ĥ w is a subsequence of h. We can prove

26

that the run S
h0 w̄ ĥ w
−−−−−→ S′′ is flagged by the race detector as containing a WaW race.

We can do so with a proof by contradiction: assume that S
h0 w̄ ĥ w
−−−−−→ S′′ is not flagged

as containing a WaW race, meaning, the reduction that emits w is via R-WRITE as

opposed to R-WRITE-EWaW . This assumption leads us to a contradiction, namely, that

a manifest data-race is not derivable from h0 w̄ ĥ w. The argument proceeds as follows.

Since execution did not stop at w̄, w̄ must have been emitted by the R-WRITE rule.

Say m̄ is the fresh label generated by the R-WRITE reduction. Then (m̄,z) is placed in

the happens-before set of p̄. For w to be reduced via R-WRITE as opposed to R-WRITE-EWaW ,

the pair (m̄,z) must be in the happens-before set of p in the configuration preceding w,

meaning, in S
h0 w̄ ĥ
−−−→.10

The proof proceeds by looking at the ways in which (m̄,z) becomes part of the

happens-before set of p. All such ways involve one or more reductions which emit an

event e such that w̄ 6⊲⊳ e and e 6⊲⊳ w. In other words, the manifest WaW race w̄ w is not

derivable from w̄ ĥ w:

w̄ . . .e . . .w 6⊑ . . . w̄ w . . .

The impossibility of deriving a manifest data-race contradicts our initial assumption and

implies that (m̄,z) must not exist in the happens-before set of p. This implication means

that w must have been emitted by a reduction via the R-WRITE-EWaW rule. Therefore,

the run S
h0 w̄ ĥ w
−−−−−→ is flagged by the race detector as containing a WaW race.

5 Related work

In this paper, soundness of a race detector refers to the absence of false positives, mean-

ing that a detector only flags racy executions. Soundness is also referred to in the race-

detection literature as precision. Precise race detectors typically use vector clocks to

represent the happen-before relation over operations in a trace [13]. Vector clocks (VC)

are, however, expensive. Common operations on VC consume O(n) time and, a VC’s

representation requires O(n) storage where n is the number of threads spawn during

the execution of a program [6]. A line of research in race-detection has been to reduce

the dependence on VCs by, for example, employing static analysis to remove runtime

checks [6][19].

Another way of achieving better space or time utilization is by letting go of either

completeness or precision. By allowing races to sometimes go undetected, sampling

race detectors trade completeness for lower a overhead. One common heuristic, called

the cold region hypothesis, is to sample more frequently from less executed regions of

the program. This rule-of-thumb hinges on the assumption that faults are more likely

to already have been identified and fixed if they occur in the hot regions of a program

[12].

10 Technically S
h
−→ is a set of configurations, all of which are equivalent from the point of view

of the proof.

27

By going after a proxy instead of an actual race, imprecise race detectors let go

of soundness. For example, Eraser’s LockSet [21] and Locksmith [18] enforce a lock-

based synchronization discipline. A violation of the discipline is a code smell but not

necessarily a race. Extensions of LockSet that incorporate static analyses have also been

made [1]. There also exist hybrid approaches that combine lockset-based detection with

happens-before information reconstructed from vector clocks [15].

Golang has a race detector integrated to its tool chain [8]. The -race command-

line flag instructs the go compiler to instrument memory accesses and synchronization

events. The race detector is built on top of Google’s sanitizer project [9] and the thread

sanitizer, TSan, in particular [22, 10]. Thread sanitizer is part of the LLVM’s runtime

libraries [23, 11]. It works by instrumenting memory accesses as well as monitoring

locks acquisition and release as well as thread forks and joins. Note, however, that

channel communication is the vehicle for achieving synchronization in Go. Even though

locks exist, they are part of a package, while channels are built into language. Yet, the

race detector for Go sits at a layer underneath. In this paper we study race detection

with channel communication taking a central role.

A number of papers address race detection in the context of channel communication

[2, 3, 24]. Some of the papers, however, do not speak of shared memory but, instead,

define races as conflicting channel accesses. In that setting, the lack of conflicting ac-

cesses to channels imply determinacy. A different angle is taken by Terauchi and Aiken

[24], who, among different kinds of channels, define a buffered channel whose buffer

is overwritten by every write (i.e. send) but never modified by a read (i.e. receive).

This kind of channel, referred to as a cell, behaves, in essence, as shared memory. The

goal of [24] is again determinacy. Having conflated the concept of shared memory as a

channel, determinacy is then achieved by ensuring the absence of conflicting accesses

to channels. Our goal, however, is different: we aim to detect data-races but do not want

to go as far as ensuring determinacy. Therefore, our approach allows “races” on chan-

nel accesses. From a different perspective, however, the work of Terauchi and Aiken

[24] can be seen as complementary to our approach. They proposed a type system for

checking confluence. We conjecture that their type system can serve as the basis for a

static race-detector.

6 Conclusion

We presented a dynamic race detector for a language in the style of Go: featuring chan-

nel communication as sole synchronization primitive. The proposed detector records

and analyzes information locally and is well-suited for online detection. The operational

semantics of the detector is given along with a proof of soundness and completeness.

The proofs relate reductions in the semantics to events in a trace grammar. A trace h

contains a data race if h′ contains a manifest data race (see Definition 1) and h′ can be

derived from h. Thus, the concept of manifest data race and the derive-from relation ⊑
give us an idealized race detector that serves as specification against which we establish

the correctness of proposed race detector’s operational semantics. Soundness is proven

by showing that, if the race detector flags an execution as racy, there exists a manifest

data-race in the trace underlying the given program’s execution. Similarly, for com-

28

pleteness, if a trace containing a manifest data-race can be derived from an execution,

then the execution is flagged as racy by the detector.

In a previous result [5], we proposed a weak memory model for a Go like language

and proved what is called the sequential-consistent data-race freedom guarantee, or SC-

DRF for short. The guarantee says that if a program is data-race free, then it behaves

sequentially consistent when executing under the proposed weak memory. In the proof,

we show that if a program is racy, it behaves sequentially consistent up to the point in

which the first data-race is encountered. In other words, this first point of divergence

sets in motion all behavior that is not sequentially consistent and which arise from the

weakness in the memory model. With this observation, we argue that a race detector can

operate under the assumption of sequential consistency. This is a useful simplification,

as sequential consistent memory is conceptually much simpler than relaxed memories.

If the data-race detector flags the first evidence of a data-race, then program behavior is

sequentially consistent up to that point.
Avenues for future work abound. For example, one notable extension would be to

statically analyze a target program with the goal of removing dynamic checks. Here we
may be able to borrow from the research on static analysis for dynamic race-detection
in the context of lock-based synchronization disciplines.

29

Bibliography

[1] Choi, J., Lee, K., Loginov, A., O’Callahan, R., Sarkar, V., and Sridharan, M. (2002). Efficient

and precise datarace detection for multithreaded object-oriented programs. In ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI) Berlin, Germany,

pages 258–269. ACM.

[2] Cypher, R. and Leu, E. (1995). Efficient race detection for message-passing programs with

nonblocking sends and receives. In Proceedings. Seventh IEEE Symposium on Parallel and

Distributed Processing, pages 534–541. IEEE.

[3] Damodaran-Kamal, S. K. and Francioni, J. M. (1993). Nondeterminancy: testing and debug-

ging in message passing parallel programs. ACM SIGPLAN Notices, 28(12):118–128.

[4] Dijkstra, E. W. (n.d.). Over de sequentialiteit van procesbeschrijvingen. circulated privately.

[5] Fava, D., Steffen, M., and Stolz, V. (2018). Operational semantics of a weak memory model

with channel synchronization. Journal of Logic and Algebraic Methods in Programming. An

extended version of the FM’18 publication with the same title.

[6] Flanagan, C. and Freund, S. N. (2009). FastTrack: Efficient and precise dynamic race de-

tection. In Hind, M. and Diwan, A., editors, ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), pages 121–133. ACM.

[7] Go memory model (2014). The Go memory model. https://golang.org/ref/mem. Ver-

sion of May 31, 2014, covering Go version 1.9.1.

[8] golang.race.detector (2013). https://blog.golang.org/race-detector.

[9] google.sanitizer (2014). https://github.com/google/sanitizers.

[10] google.thread.sanitizer (2015). https://github.com/google/sanitizers/wiki/ThreadSanitizerAlgorithm.

[11] llvm.thread.sanitizer (2011). https://clang.llvm.org/docs/ThreadSanitizer.html.

[12] Marino, D., Musuvathi, M., and Narayanasamy, S. (2009). Literace: effective sampling for

lightweight data-race detection. In ACM Sigplan notices, pages 134–143.

[13] Mattern, F. (1988). Virtual time and global states in distributed systems. In Proceedings of

the International Conference on Parallel and Distributed Algorithms, pages 215–226.

[14] Mazurkiewicz, A. (1987). Trace theory. In Brauer, W., Reisig, W., and Rozenberg, G., ed-

itors, Petri Nets: Applications and Relationships to Other Models of Concurrency, (Advances

in Petri Nets 1986) Part II, volume 255 of Lecture Notes in Computer Science, pages 279–324.

Springer Verlag.

[15] O’Callahan, R. and Choi, J.-D. (2003). Hybrid dynamic data race detection. In Proceed-

ings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

PPOPP 2003, June 11-13, 2003, San Diego, CA, USA, pages 167–178.

[16] Palamidessi, C. (1997). Comparing the expressive power of the synchronous and the asyn-

chronous π-calculus. In Proceedings of POPL ’97, pages 256–265. ACM.

[17] Peters, K. and Nestmann, U. (2012). Is it a “good” encoding of mixed choice? In Proceed-

ings of the International Conference on Foundations of Software Science and Computation

Structures (FoSSaCS ’12), volume 7213 of Lecture Notes in Computer Science, pages 210–

224. Springer Verlag.

[18] Pratikakis, P., Foster, J. S., and Hicks, M. W. (2006). LOCKSMITH: Context-sensitive

correlation analysis for race detection. In Proceedings of the 27th ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI), pages 320–331. ACM.

[19] Rhodes, D., Flanagan, C., and Freund, S. N. (2017). Bigfoot: Static check placement for

dynamic race detection. In Proceedings of the 38th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017,

pages 141–156.

https://golang.org/ref/mem
https://blog.golang.org/race-detector
https://github.com/google/sanitizers
https://github.com/google/sanitizers/wiki/ThreadSanitizerAlgorithm
https://clang.llvm.org/docs/ThreadSanitizer.html

[20] Sabry, A. and Felleisen, M. (1992). Reasoning about programs in continuation-passing

style. In Clinger, W., editor, Conference on Lisp and Functional Programming (San Francisco,

California), pages 288–298. ACM.

[21] Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., and Anderson, T. (1997). Eraser:

A dynamic data race detector for multithreaded programs. ACM Transactions on Computer

Systems, 15(4):391–411.

[22] Serebryany, K. and Iskhodzhanov, T. (2009). Threadsanitizer: data race detection in prac-

tice. In Proceedings of the workshop on binary instrumentation and applications, pages 62–

71. ACM.

[23] Serebryany, K., Potapenko, A., Iskhodzhanov, T., and Vyukov, D. (2011). Dynamic race

detection with llvm compiler. In International Conference on Runtime Verification, pages

110–114. Springer.

[24] Terauchi, T. and Aiken, A. (2008). A capability calculus for concurrency and determinism.

ACM Transactions on Programming Languages and Systems (TOPLAS), 30(5):27.

31

A Strong semantics

For completeness sake and for reference, we include here the operational semantics

without augmenting it with any information relevant for race checking. It’s thereby a

conventional operational semantics and corresponds to the strong semantics from [5].

e; t ::= let r = e in t when r /∈ fn(t)
stop ::= ∑0

Fig. 16: Syntactic sugar

The surface syntax is unchanged from Figure 1. The operational semantics is for-

mulated using run-time configurations as given in equation (7).

R ::= 〈t〉 | (|z:=v|) | • | R ‖ R | c[q] | νn R . (7)

For race detection, we used the “same” run-time syntax, except that they were aug-

mented with additional information (cf. equation for the intermediate formulation (1) of

the race detecting semantics resp. equation (2). Compared to the race detecting seman-

tics, the configurations carry less information. In particular, the recorded events don’t

carry identifying labels and threads don’t keep track of happens-before information as

for the race checker.11

A.1 Structural congruence

Configurations are interpreted up-to structural congruence, only: Parallel composition

is associative and commutative, with the empty configuration as neutral element. The ν-

binder is used to manage the scopes for dynamically created names. Besides that, syntax

is considered tacitly up-to renaming of bound names, in particular, ν-bound names.

Dynamically created names are channel names. In the augmented semantics, where

processes are named and also events carry a label, also names for those entities can be

created on-the-fly and they are subject to the congruence rules for ν-bound names.

A.2 Local steps

The rules from Figure 17 concern reduction steps that don’t affect the memory or in-

volve channel communication.

11 Note in passing, also in the formalization of the weak semantics in [5], the threads keep track

of happens-before information. Here, the additional information is needed to do race detection

on the strong semantics, where the semantics itself works without that information, whereas

in [5], the additional information is required to describe the (weak) semantics itself.

32

R1 ‖ R2 ≡ R2 ‖ R1

(R1 ‖ R2) ‖ R3 ≡ R1 ‖ (R2 ‖ R3)
• ‖ R ≡ R

R1 ‖ νn R2 ≡ νn (R1 ‖ R2) if n /∈ fn(R1)
νn1 νn2 R ≡ νn2 νn1 R

Table 1: Structural congruence

let x = v in t t[v/x] R-RED

let x1 = (let x2 = e in t1) in t2 let x2 = e in (let x1 = t1 in t2) R-LET

if true then t1 else t2 t1 R-COND1 if false then t1 else t2 t2 R-COND2

Fig. 17: Local steps

〈z := v′; t〉 ‖ (|z:=v|)−→ 〈t〉 ‖ (|z:=v′|) R-WRITE

〈let r = load z in t〉 ‖ (|z:=v|)−→ 〈let r = v in t〉 ‖ (|z:=v|) R-READ

B Rules for the select statement

Rules dealing with the select statement semantics are given on Figure 18. The R-SEL-SEND

and R-SEL-REC rules apply to asynchronous channels and are analogous to R-SEND

and R-REC. The R-SEL-SYNC rules apply to open synchronous channels (i.e. the for-

ward and backward queues are empty). The R-SEL-REC⊥ is analogous to R-REC⊥.

Finally, the default rule (R-SEL-DEF) applies when no other select rule applies.

C Correctness of the independence and derivable-from relations

The correctness of the independence and derivable-from relations of Figure 12 and 13

can be proven with respect to the race detector semantics of Section 2 by interpreting

the operational semantics as inducing a labeled transition system (LTS).

Let (S,L,−→) be a labeled transition system over a set of states S , set of labels L

and transition relation −→⊆ S ×L×S . We write S
l
−→ S′ when (S, l,S′) ∈−→. If h is the

sequence l1 :: . . . :: ln, then S
h
−→ S′ if there are S1, ..., Sn−1 such that S

l1−→ S1 . . .Sn−1
ln−→ S.

We define S
h
−→= {S′|S

h
−→ S′}. Given

a
−→ and

b
−→, we define their composition straight-

forwardly as
a
−→

b
−→= {(S,S′)|∃Ŝ. S

a
−→ Ŝ

b
−→ S′}.

33

gi = c← v ¬closed(c f [q f]) E ′hb = Ehb +E ′′hb
R-SEL-SEND

cb[qb :: (E ′′hb)] ‖ p〈Ehb,∑i let ri = gi in ti〉 ‖ c f [q f] −→

cb[qb] ‖ p〈E ′hb, ti[()/ri]〉 ‖ c f [(v,Ehb)) :: q f]

gi =← c q f = q′f :: (v,E ′′hb) v 6=⊥ q′b = (Ehb) :: qb E ′hb = Ehb +E ′′hb
R-SEL-REC

cb[qb] ‖ p〈Ehb,∑i let ri = gi in ti〉 ‖ c f [q f] −→

cb[q
′
b] ‖ p〈E ′hb,let ri = v in ti〉 ‖ c f [q

′
f]

gi = c← v Ehb = E ′hb +E ′′hb cb[] c f []
R-SEL-SYNC1

p1〈E
′
hb,∑i ri = gi in ti〉 ‖ p2〈E

′′
hb,let r =← c in t2〉 −→

p1〈Ehb, ti[()/ri]〉 ‖ p2〈Ehb,let r = v in t2〉

gi =← c Ehb = E ′hb +E ′′hb cb[] c f []
R-SEL-SYNC2

p1〈E
′
hb,c← v; t1〉 ‖ p2〈E

′′
hb,∑i let ri = gi in ti〉 −→

p1〈Ehb, t1〉 ‖ p2〈Ehb,let ri = v in ti〉

gi = c← v g j =← c Ehb = E ′hb +E ′′hb cb[] c f []
R-SEL-SYNC3

p1〈E
′
hb,∑i let ri = gi in ti〉 ‖ p2〈E

′′
hb,∑ j let r j = g j in t j〉 −→

p1〈Ehb, ti[()/ri]〉 ‖ p2〈Ehb,let r j = v in t j〉

gi =← c c f [(⊥,E
′′
hb)] E ′hb = Ehb +E ′′hb

R-SEL-REC⊥
p〈Ehb,∑

i

let ri = gi in ti〉 −→ p〈E ′hb,let ri =⊥ in ti〉

gi =default ¬∃ j. i 6= j. p〈Ehb,∑ j let r j = g j in t j〉 ‖ P−→ p〈E ′hb, t
′〉 ‖ P′

R-SEL-DEF

p〈Ehb,∑
i

let ri = gi in ti〉 ‖ P −→ p〈Ehb, ti[()/ri]〉 ‖ P

Fig. 18: Operational semantics: Select statement

Definition 12 (Swap). Given a state S0 ∈ S and a sequence of labels h = l1, l2, ..., ln,

we say that
a
−→ and

b
−→ are swappable in S0

h
−→ if, for all S′ ∈ S0

h
−→, S′

a
−→

b
−→⊆ S′

b
−→

a
−→.

We call uniform swap a swap that holds for all traces h.

Definition 13 (Uniform swap). Given
a
−→

b
−→, we say that

a
−→ and

b
−→ are uniformly

swappable if
a
−→

b
−→⊆

b
−→

a
−→.

Let S0
h::e1::e2−−−−→ S be a run starting from the initial state S0, emitting the trace h :: e1 ::

e2, and terminating on state S. The lemmas below capture the notion of soundness and

completeness of the derivable-from relation.

34

S0

S′

h

a b

b a

Fig. 19: Swappable in S0
h
−→.

a b

b a

Fig. 20: Uniformly swappable.

Lemma 14 (Soundness). If the relation h :: e1 :: e2 ⊑ h :: e2 :: e1 is derivable according

to the trace rules, then it must be that S0
h::e2::e1−−−−→ S.

Lemma 15 (Completeness). If
e1−→ and

e2−→ are swappable in S0
h
−→, then h :: e1 :: e2 ⊑

h :: e2 :: e1.

Note that ⊲⊳ is related uniform swap, while ⊑ is related to the concept of swap.

35

	Ready, set, Go!
	Introduction
	Data-race detection
	A calculus with shared variables and channel communication
	Read and write conflicts
	Detecting read-after-write (RaW) and write-after-write (WaW) conflicts
	Detecting write-after-read (WaR) conflicts as well
	Example

	Traces
	Preliminary definitions
	Well-form
	Independence between events and partial order on traces
	Identifying data-races in traces
	Example

	Formal properties of the data-race detector
	Traces from the race-detector
	Soundness of the race detector
	Completeness of the race detector

	Related work
	Conclusion
	Strong semantics
	Structural congruence
	Local steps

	Rules for the select statement
	Correctness of the independence and derivable-from relations

