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Abstract

When compared to other synchronization methods (such as locks), channels communi-
cation has arguably received lesser attention from the data race checking community. In
this talk, we will present a novel data race checker for a concurrent language featuring
channel communication as its sole synchronization primitive.

Background

Early on, the concept of race, meaning the competition for access to a shared resource,
was explored in the context of channels [12]. Memory models were absent in that setting
and, instead, agents were said to race when sending or receiving messages from the same
channel “at the same time.” Race checking was then conflated often with confluence or
determinacy checking [1], with different schedules leading to potential variations in the
flow of information through a system.

Today, more often than not, the word race is used to denote a data race, where threads
compete when performing read and write accesses to the same location in shared memory.
Because locks have become a very common mechanism for ensuring race-freedom, the
contemporary discussion on data race checking is often devoid of the notion of channels;
neither does confluence tend to enter the picture. A notable exception is Terauchi and
Aiken [17], who give a modern treatment of confluence checking in the context of channel
communication. Their work incorporates a form of shared memory, which the authors
call cell channels. Their treatment, however, does not address data race checking as a
first class property but only as a consequence of determinacy. Although related, data-race
freedom is different from determinacy and confluence. There exist non-confluent scenarios
that are properly synchronized. It is interesting to note, however, that the task of data
race checking in the context of channels has received little attention.

Even though mutual-exclusion has dominated the synchronization landscape, languages
based on message passing do have a strong footing. Take the Go programming language
as an example [7, 2]. Go has gained traction in networking applications, web servers, dis-
tributed software and the like. “It prominently features goroutines, which are asynchronous
functions resembling lightweight threads, and buffered channel communication in the tra-
dition of CSP [9] (resp. the m-calculus [13]) or Occam [10]. While encouraging message
passing as the prime mechanism for communication and synchronization, threads can still
exchange data via shared variables. Go’s specification includes a memory model [5] which
spells out, in precise but informal English, the few rules governing memory interaction at
the language level” [3].

Our approach

In prior work, we have given an operational formalization of a relaxed memory model
inspired by the Go memory model’s specification. We also proved what is called the DRF-
SC guarantee [3], meaning that the memory model behaves sequentially consistently when
executing data-race free programs. We now propose a data race checker based on our
relaxed memory model and the DRF-SC result in particular.
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Figure 1: Strong operational semantics augmented for data-race detection

The detector works by recording read- (m,?z) and write-events (m’, !z), where m, m/,
etc. are unique identifiers. These events are recorded along a variable’s memory cells and
in thread-local storage. The memory cell associated with a shared variable z takes the form
m(E},, z:=v) where m is the identifier of the most recent write to z, Ej, is a set holding
read events for loads that have accumulated since the most recent write to z, and v is the
variable’s current value. Threads are equipped with a set Ej, which holds information
about read- and write-events that are “known” to the thread as having happened-before.
When a thread attempts to access a memory location, the detector checks whether there
exists a concurrent memory event that conflicts with the attempted access—rules R-WRITE
and R-READ of Figure 1. Not shown here are the rules regarding channel communication.
Communication carries over happens-before information between threads, thereby affecting
synchronization.

In this talk, we will show that the information needed for race checking is contained in
the scaffolding of the DRF-SC guarantee proof. Given our experience, we conjecture that,
in general, race checkers may be (semi-)automatically derivable from memory models and
their corresponding DRF-SC proofs. We should point out, however, that the operational
semantics we propose for data race detection is not a weak semantics. Apart from the addi-
tional bookkeeping, the semantics is “strong” in that it formalizes a memory guaranteeing
sequential consistency. Note that, to focus on a form of strong memory is not a limitation.
Given that even racy program behaves sequentially consistently up to the point in which
the first data-race is encountered, a complete race detector can safely operate under the
assumption of sequential consistency.

When it comes to channel communication, our treatment focuses on bounded channels,
including synchronous ones. While channels are often used to enforce order between events
from different threads (e.g. a send happens before the corresponding receive completes),
we revisit the link between channels and locks and discuss how the effects of a channel’s
boundedness can be used to ensure mutual-exclusion. The pervasiveness of the notion
of mutual-exclusion might explain why it is often thought that a data race involves two
(or more threads) accessing memory at the same time—or, if not at the same time, that
there exists an alternate yet equivalent run in which the conflicting accesses can be placed
side-by-side. We argue that this interpretation is misleading. Specifically, we show that
there exist race conditions in which conflicting accesses are necessarily ordered and neces-
sarily separated in time by other operations. This observation has interesting and subtle
consequences relating back to anomalies discussed by Lamport in his seminal paper on
vector-clocks and distributed systems [11]. In the talk, we will discuss anomalies arising
from the fact that the first-in-first-out nature of channels is not fully accounted for in
the happens-before relation as defined by the Go memory model’s description. We show
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alternatives for handling the anomalies, but settle with a race detector formalization that
is faithful to the Go language specification.

Finally, we compare our approach to modern data race checkers based on vector clocks.

In particular, we contrast our work against that of Pozniansky and Schuster, which in-
troduced an algorithm sometimes referred to as DJitt [14], and to Flanagan and Freund
and their work on FASTTRACK [4]. Such algorithms have influenced the Thread Sanitizer
library [15, 16, 8] upon which the current Go race detector [6] is implemented.
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