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Abstract. This paper introduces a type system for resource manage-
ment in the context of nested virtualization. With nested virtualization,
virtual machines compete with other processes for the resources of their
host environment in order to provision their own processes, which could
again be virtual machines. The calculus of virtually timed ambients for-
malizes such resource provisioning, extending the capabilities of mobile
ambients to model the dynamic creation, migration, and destruction of
virtual machines. The proposed type system is compositional as it uses
assumptions about the outside of a virtually timed ambient to guaran-
tee resource provisioning on the inside. We prove subject reduction and
progress for well-typed virtually timed ambients, expressing that upper
bounds on resource needs are preserved by reduction and that processes
do not run out of resources.

1 Introduction

Virtualization enables the resources of an execution environment to be repre-
sented as a software layer, a so-called virtual machine. Software processes are
agnostic to whether they run on a virtual machine or directly on physical hard-
ware. A virtual machine is itself such a process, which can be executed on another
virtual machine. Technologies such as VirtualBox, VM Ware ESXi, Ravello HVX,
Microsoft Hyper-V, and the open-source Xen hypervisor increasingly support
running virtual machines inside each other in this way. This nested virtualization,
originally introduced by Goldberg [1], is necessary to host virtual machines with
operating systems which themselves support virtualization [2], such as Microsoft
Windows 7 and Linux KVM. Use cases for nested virtualization include end-user
virtualization for guests, software development, and deployment testing. Nested
virtualization is also a crucial technology to support the hybrid cloud, as it
enables virtual machines to migrate between different cloud providers [3].

To study the logical behavior of virtual machines in the context of nested vir-
tualization, this paper introduces a type-based analysis for a calculus of virtual
machines. An essential feature of virtual machines, captured by this calculus, is
that a virtual machine competes with other processes for the resources available
in their execution environment, in order to provision resources to the processes
inside the virtual machine. Another essential feature of virtual machines is mi-
gration. From an abstract perspective, virtual machines can be seen as mobile
processes which can move between positions in a hierarchy of nested locations.



We develop the type system for virtually timed ambients [4], a calculus of
mobile virtual locations with explicit resource provisioning, based on mobile
ambients [5]. The goal is to statically approximate an upper bound on resource
consumption for systems of virtual machines expressed in this calculus. The
calculus features a resource called virtual time, reflecting local execution capacity,
which is provisioned to an ambient by its parent ambient, similar to time slices
that an operating system provisions to its processes. With several levels of nested
virtualization, virtual time becomes a local notion which depends on an ambient’s
position in the location hierarchy. Virtually timed ambients are mobile, reflecting
that virtual machines may migrate between host virtual machines. Migration
affects the execution speed of processes inside the virtually timed ambient which
is moving as well as in its host before and after the move. Consequently, the
resources required by a process change dynamically when the topology changes.

The distinction between the inside and outside of a virtually timed ambi-
ent (or a virtual machine) is a challenge for compositional analysis; we have
knowledge of the current contents of the virtual machine, but not of what can
happen outside its borders. This challenge is addressed in our type system by
distinguishing assumptions about ambients on the outside of the virtually timed
ambient from commitments to ambients on the inside. To statically approximate
the effects of migration, an ambient’s type imposes a bound on the ambients it
can host. If type checking fails, the ability to provision resources for an incoming
ambient in a timely way cannot be statically guaranteed in our type system.

The ambient calculus has previously been enriched with types (e.g., [6]). Ex-
ploiting the explicit notion of resource provisioning in virtually timed ambients
(including a fair resource distribution and competition for resources between
processes), our type system captures the resource capacity of a virtually timed
ambient and an upper bound on the number of its subambients. The type sys-
tem thereby provides concrete results on resource consumption in an operational
framework. Resource dependency in the type system is expressed using coeffects.
The term coeffect was coined by Petricek, Orchard, and Mycroft [7,|8] to cap-
ture how a computation depends on an environment rather than how it affects
the environment. In our setting, coeffects capture how a process depends on its
environment by an upper bound on the resources needed by the process.

Contributions. The main technical contributions of this paper are

— an assumption commitment type system with effects and coeffects, which
provides a static approximation of constraints regarding the capacity of vir-
tually timed ambients and an upper bound on their resource usage; and

— a proof of the soundness of resource management for well-typed virtually
timed ambients in terms of a subject reduction theorem which expresses
that the upper bounds on resources and on the number of subambients are
preserved under reduction, and a progress theorem which expresses that
well-typed virtually timed ambients will not run out of resources.

To the best of our knowledge, this is the first assumption commitment style type
system for resource types and nested locations.



Paper overview. Section [2]introduces virtually timed ambients. Section 3] presents
the type system for resource management. In Section [d] we prove the soundness
of the type system in terms of subject reduction and progress. We discuss related
work and conclude in Sections [B] and [6l

2 Virtually Timed Ambients

Mobile ambients [5] are processes with a concept of location, arranged in a hi-
erarchy which may change dynamically. Interpreting these locations as places of
deployment, virtually timed ambients |4,9] extend mobile ambients with notions
of virtual time and resource consumption. The timed behavior of a process de-
pends on the one hand on the local timed behavior, and on the other hand on the
placement or deployment of the process in the hierarchical ambient structure.
Virtually timed ambients combine timed processes and timed capabilities with
the mobility and location properties of the mobile ambient calculus.

Compared to Johnsen et al. [4,9], we here present a slightly simplified version
of virtually timed ambients which assumes a uniform speed for all ambients in
the hierarchy. This simplification does not mean the ambients proceed uniformly
with respect to time: the progress of an ambient still depends on its position in
the hierarchy and the number of sibling ambients that compete for time slices
at the given level. When discussing the reduction rules from Table [1] later, we
provide further details on how the more general non-uniform setting relates to
the presentation here. Since an ambient system can change its structure, i.e., its
hierarchy, an ambient’s local access to time slices may also dynamically change.
Thus, the simplification by uniform speed is not conceptual, but it allows a
simpler formulation of the type system by removing fractional representations
of speed in scheduling and the resulting (easy but cumbersome) calculations.

Definition 1 (Virtually timed ambients). The syntazx of virtually timed am-
bients is as follows:

P:=0|(vn)P|P|P |!C.P |C.P|n|P]
C:=inn|outn|openn|c

The syntax is almost unchanged from that of standard mobile ambients
(e.g., [5]); the only syntactic addition is an additional capability e explained
below. In the sequel, we mostly omit the qualification “timed” or “virtually
timed” when speaking about processes, capabilities, etc. Processes include the
inactive process 0, parallel composition P | P and replication !C.P, the latter
conceptually represents an unbounded parallel composition of a process, with
capability C' as “guard”. The v-binder or restriction operator, makes the name
n local, as in the w-calculus, ambient calculus, and related formalisms. Ambients
n[P] are named processes. The standard mobile ambient capabilities in, out,
and open allow a process to change the nested ambient structure by moving an
ambient into or out of another ambient, or by dissolving an ambient altogether.



The additional capability e is specific for the virtually timed extension and
abstractly represents the need of the process for a resource in order to continue
its execution (i.e., ¢ can be read as “consume”). Thus, the consume capability
relates to resource cost in frameworks for cost analysis (e.g., [10L/11]). In our
setting, the c-capabilities consume resources which can be thought of as time
slices and which are governed by a scheduler. A scheduler is local to an ambient
and its responsibility is to schedule resources to the processes directly contained
in this ambient. Since ambients are nested, the scheduler also has to allocate time
slices or resources to subambients, thereby delegating the allocation of time slices
at the level of the subambients to their respective schedulers. To achieve a fair
distribution of resources, the semantics adopts a simple round-based scheduling
strategy. Intuitively, no process is served twice, unless all other processes that
need resources at that level have been served at least once. This round-based
scheme is slightly more refined in that the number of processes per ambient is
not fixed as ambients may move inside the hierarchy and even dissolve.

To capture the outlined scheduling strategy in operational rules working on
the syntax of ambients, we augment the grammar of Def. [[| with additional run-
time syntax (highlighted below). When needed, we refer to the original syntax
from Def. [T) as static syntax. The run-time syntax uses the notation ~ to indicate
that processes, including ambients, are frozen and 7 to denote either n or 7.

P:=0|(wn)P| P|P |IC.P | tick? | tick! |@[P]|C.P

nmu=n|n
yu=c| &
C:=inn|outn|openn| tick? |~

Frozen processes are not eligible for scheduling. For regular (non-ambient) pro-
cesses, only processes prefixed by the consume capability ¢ will be controlled
in this way; other processes are unconditionally enabled. Consequently, we only
need as additional run-time syntax &, capturing a deactivated resource capabil-
ity. Similarly n[P] denotes a timed ambient which is not eligible for scheduling.
Apart from scheduling, a frozen ambient [ P] is treated as any other ambient
n[P]: the ordinary, untimed capabilities address ambients by their name with-
out the additional scheduling annotation. Likewise, v-binders and corresponding
renaming and algebraic equivalences treat names n as identical to n. Unless
explicitly mentioned, we assume in the following run-time syntax, i.e., P may
contain occurrences of 7 and &. Time slices are denoted by ticks, and come in
two forms tick? and tick!. We may think of the first form tick? as repre-
senting incoming ticks into an ambient, typically from the parent ambient, the
second form tick! represents time slices handed out to the local processes by
the local scheduler. The tick?-capability similarly accepts an incoming tick.
Let names(P) denote the set of names for ambients contained in P.

Semantics. The semantics of virtually timed ambients is given as a reduction
relation P — @ (see Tables [I| and . Processes are considered up-to structural
congruence P = ) and reduction is defined modulo =. The corresponding rule



(R-IN) nlinm.P1 | P] | m[Q] — m[Q | n[P1 | P2]]
(R-Out) m[n[out m.P1 | P2] | Q] = n[P1 | P2] | m[Q]
(R—OPEN) open n.P, ‘ ﬁ[PQ] — P ‘ 1\52

Table 1. Reduction rules (1). The symbol m occuring both on the left and the right
side of a reduction rule represents either i on both sides, or else m on both sides.

is omitted here, as is the standard axiomatization of P = @. We further omit
the standard congruence rules (e.g., P — P’ = m[P] — m[P’]), which also
correspond to those for mobile ambients. The rules in Table [1| (with rule names
to the left) cover ambient reconfiguration. Apart from the annotations used for
scheduling, the rules are exactly the ones for the (untimed) mobile ambients [5].

Ambients can undergo restructuring in three different ways. First, an ambient
can move horizontally or laterally by entering a sibling ambient (rule R-IN).
Second, it can move vertically up the tree, leaving its parent ambient (rule
R-OuT). Finally, a process can cause the dissolution of its surrounding ambient
(rule R-OPEN). These forms of restructuring are untimed in that they incur
no resource cost. If an ambient changes its place, the scheduler of the target
ambient will, from that point on, become responsible for the new ambient, and
the treatment is simple: Being frozen, the newcomer will not be served in the
current round of the scheduler, but waits for the next round. Considering the
source ambient (i.e., the ambient which contained the process executing the out
or in capability), no process inside the source ambient looses or changes its
status. A similar discipline is followed (for P;) when opening an ambient in rule
R-OPEN (the interpretation of ]32 as opposed to P, follows shortly). Note that
a process in an ambient can execute a capability in, out, or open independent
of the status of the affected ambient, which is indicated in the rules by n and m.

Scheduling, in particular the handling of ticks and the resource capabilities,
is covered by the reduction rules in Table [2| Scheduling ultimately means to dis-
criminate and select between processes which are allowed to proceed at a given
point, and those which are not. To capture that distinction in the rules, P rep-
resents the former, i.e. P is eligible for a new time-slice (“unfrozen”). Dually, P
represents P after having been served (“frozen”). The exact formulation of the
freeze and unfreeze operation will be given in Def. 3] below, after discussing the
rules themselves. The first rule translates “incoming” ticks to ticks available for
local processes. The translation ratio is uniform; i.e., one incoming tick produces
one outgoing tick (this is the simplification compared to previous work mentioned
earlier, where the ratio between incoming and local ticks could more generally
be a rational number). A tick! process can be consumed in two ways. First by
scheduling a e-prefixed process which undergoes the steps ¢.P — tick?.P — p
(consuming tick! in the second step)E Second, by scheduling a subambient,

! The rules and the calculus may be simplified, e.g., by avoiding the two-step behavior
just described. The formulation here was chosen as it more aligned with versions of



tick? — tick! tick! |tick?.P — P 10t(Pli i cks)
c.P — tick?.P tick! | n[P] — n[tick? | P] n[P] — n[P]

Table 2. Reduction rules (2)

such that an incoming tick tiek? occurs one level down in the hierarchy. To en-
sure the round-based scheduling, the scheduled entity must not have been served
yet in the current round. For this purpose, the process before the transition must
be of the form tick?.P or n[P], and after the transition the continuation of
the process is frozen, using Def. |3} The last rule completes one scheduling round
and initiates the next round by changing the ambient’s processes P to P. This
unfreezing step can be done only if all the ambient’s processes have been served,
which is captured be the rule’s negative premise, stipulating that no process at
the level of n can proceed.

This inability to proceed by a tick-step at the end of a round is formulated
using the notion of observables, also known as barbs. Barbs, originally introduced
for the m-calculus [12], capture a notion of immediate observability. In the am-
bient calculus, these observations concern the presence of a top-level ambient
whose name is not restricted |13]. In our context, the barbs are adapted to ex-
press top-level schedulability, i.e., an ambient’s ability to receive a tick. Later,
to formulate progress properties, we will additionally need to capture the same
condition for t a sub-process deeper inside the system and not necessarily at
top-level. For that, we denote by C[-] (or simply by C) a context, i.e., a process
with a (unique) hole [-] in place of a process, and write C[P] for the context
with its hole replaced by P (for the formal definition, see [13]). The observabil-
ity predNicfates (or “tick-barbs”) | 3 k7 resp- lf_' ickr A€ then defined as follows,
where m is a tuple of names:

Definition 2 (Barbs). A process P has a strong barb on tick?, written
Pleickr if P = (vim)(n[P1] | P2) or P = (vim)(tick?.Py | Pp). A process
P has a strong barb on tick? in context C, written Pliick’?’ if P =C[P'] for
some process P with P'| ¢ j ager- ‘

Note that the ambient name n may well be hidden, i.e., mentioned in m. Barb-
ing on the ambient name n, written P|,,, would require that P = (vm)(n[P1] |
P;) where n ¢ m, in contrast to the definition of Py 3 ok,- This more con-
ventional notion of strong barbs [13] expresses that an ambient is available for
interaction with the standard ambient capabilities; ambients whose name is un-
known are not available to be contacted by other ambients and therefore, their
name is excluded in the observability predicate |,. In contrast, strong barbs as

virtually timed ambients allowing non-uniform speeds across ambients, mentioned
earlier in this section. Thus, the type system here would allow a more straightforward
generalization to ambients with non-uniform speed.



defined in Def. 2| capture an ambient’s ability to receive ticks and thus, the def-
inition will allow hidden ambients to be served by the local scheduler. However,
the name of the ambient must not be frozen n: ambients that have been served
a tick in the current round are not eligible for another allocation before a new
round has started, in which case the ambient’s name has “changed” to n.

To complete the presentation of the semantics, we provide the operations
used in the rules that allow processes to conceptually switch back and forth
between waiting to be served in the current round, and having been served and
thus waiting for the next round to begin.

Definition 3 (Freezing and unfreezing). Let P denote the process where all
top-level occurrences of n[Q] are replaced by R[Q] and all top-level occurrences
of ¢ replaced by e. Conversely, let P denote the process where all top-level oc-
currences of € are replaced by ¢ and all top-level occurrences of n[Q] replaced
by n[Q]. Define P by induction on the syntactic structure as follows:

(vn) P = (Vn)lB c=¢
P1|P2:1\3/1 |PE c=¢
n[P] = i[P] i=n
NP =4P h=
cpP=CP C +~
P=pP otherwise

The definition of]3 is analogous (e.g., c= c) and omitted here.

Remark that the congruence relation, which is part of the reduction seman-
tics, works with scheduling in the sense that both operations defined in Def.
are preserved under congruence: P, = P, implies Py = P, and P, = P, .

Ezample 1. Consider the process cloud [0] | vm[in cloud.c.0]. If we place this
process in a context root with one tick! process, three reduction steps become
possible, as tick! can propagate to either ambients and ambient vm can move
into cloud. One way this process can reduce, is as follows:

root[tick! | cloud[0] | vm[in cloud.c.0]] — root[tick! | cloud[0 | vin[e.0]]]
— root[cloud [tick? | O | vin[e.0]]] — root[cloud[tick! | O | vm[e.0]]]
— root[cloud [0 | vin[tick? | €.0]]] — root[cloud [0 | vin[tick! | c.0]]]
— root[cloud [0 | vin[tick! | tick?.0]]] — root[cloud[0 | vin[0]]] .

However, the time slice could also enter the ambient vm, and move with this
ambient, resulting in a reduction sequence starting as follows:

root[tick! | cloud[0] | vm[in cloud.c.0]]
— root[cloud [0] | vin[tick? | in cloud.c.0]]
— root[cloud [0 | vin[tick? | €.0]]] — ...

Generally, a process P will be placed in a runtime environment which provi-
sions it with a given amount of resources (e.g., root in Ex. [1| with one tick!).



When executed in a surrounding ambient without enough resources, some sub-
process of P may not receive a sufficient number of resources and may get
“stuck”. This inability to progress for lack of resources can be captured by (con-
textually) having a barb on an irreducible process: P 4> and Plf:. , for some
C, i.e., P cannot proceed despite the fact that there is a sub-process that could
proceed by consuming a resource, if one were still available. This intuition is
used to formulate progress (Theorem , stipulating that well-typed processes
will not get stuck.

3 An Assumption-Commitment Type System

We consider a type system which analyzes the timed behavior of virtually timed
ambients in terms of the movement and resource consumption of a given pro-
cess. Statically estimating the timed behavior is complicated because the place-
ment of an ambient in the process hierarchy influences its resource consumption,
and movements inside the hierarchy change the relative speed of the ambients.
The proposed type system is loosely based on Cardelli, Ghelli, and Gordon’s
movement control types for mobile ambients [14]; however, its purpose is quite
different, and therefore the technical formulation will be rather different as well.

Types and typing contexts. Processes will be typed with respect to nominal
resource contracts for virtually timed ambients, which are tuples of the form

T = {cap, bnd, tkn).

Here, cap € N specifies the ambient’s resource capacity, i.e., the upper bound
on the number of resources that the subprocesses of the ambient are allowed to
require; bnd € N specifies the ambient’s hosting capacity, i.e., the upper bound
on the number of timed subambients and timed processes allowed inside this
ambient; and tkn € N specifies the ambient’s currently hosted processes, i.e., the
number of taken slots within the ambient’s hosting capacity. The number of
currently hosted processes inside an ambient can change dynamically, due to the
movements of ambients. These changes must be captured in the type system. In
this sense, a type for ambient names T contains an accumulated effect mapping.

Typing environments or contexts associate ambient names with resource con-
tracts. They are finite lists of associations of the form n : T. In the type system,
when analyzing an ambient or process, a typing environment will play a role as
an assumption, expressing requirements about the ambients outside the current
process. Dually, facts about ambients which are part of the current process are
captured in another typing environment which plays the role of a commitment.
Notationally, we use I” for assumption and A for commitment environments. We
write (J for the empty environment, and I',n : T for the extension of I" by a new
binding n : T. We assume that ambient names n are unique in environments,
so n is not already bound in I'. Conversely, I"\n : T represents an environment
coinciding with I" except that the binding for n is removed. If n is not declared
in I', the removal has no effect. The typing judgment for names is given as



'+ n:T. Since each name occurs at most once, an environment I" can be seen
as a finite mapping; we use I'(n) to denote the ambient type associated with n
in I' and write dom(I") for all names bound in I". In the typing rules, the typing
environment I' may need to capture the ambient in which the current process
resides; this ambient will conventionally be denoted by the reserved name this.

‘We now define domain equivalence, context addition, error-free environments,
and an ordering relation on types and environments to capture subtyping.

Definition 4 (Domain equivalence). Two contexts It and Iy are domain
equivalent, denoted It ~ I, iff dom(I'y) = dom([%).

Definition 5 (Additivity of contexts). Let Iy and I be contexts such that
I ~ Iy, and I;(n) = {cap, bnd, tkn;) for n € dom(I'y) and i = 1,2. The context
I @ Iy with domain dom(I) is defined as follows: for n € dom(I)

(I'n ® I)(n) = {cap, bnd, thny + tkns).

If the number of currently hosted ambients is smaller than the hosting capac-
ity of all ambients in an environment, we say that the environment is error-free:

Definition 6 (Error-free environments). An environment I' is error-free,
denoted - I : ok if thkn < bnd for all n € dom(I") and I'(n) = {cap, bnd, tkn).

Resource contracts can be ordered by their contents and environments by
their resource contracts. The bottom type L is a subtype of all resource contracts.

Definition 7 (Ordering of resource contracts and environments). Let
Ty = {cap;, bndy, thny) and Ty = {capy, bnds, tkny) be resource contracts. Then
Ty is a subtype of Ty, written Ty < T», if and only if cap; < capy, bndy < bnds
and tkny = tkng. Typing environments Iy and I3 are ordered by the subtype
relation as follows: It € Iy if and only if dom(I1) € dom(I3) and I'1(n) <
Iy(n), for all n € dom(I7).

Typing judgments. A typing judgment for a process P has the form
I'; req = P : ok{prov, subsy; A

where req and prov are the required and provided resources for P, subs is the
number of subambients of P, and I" and A are the assumptions and commitments
of P, respectively. Scheduling is reflected in the type rules by the calculation of
the required resources req, which capture the number of resources a process will
need to make progress. We call req the coeffect of the process. Coeffects |7,18]
capture how a computation depends on an environment rather than how it affects
this environment. We use the perspective of coeffects since a computation may
require resources from its environment to terminate. Similarly, provis the number
of provided resources in P; these resources are available in P independent of its
environment, and subs approximates the number of subambients in P. We may
think of {prov, subs) as the effect of the typing judgment, where effects express
what the process P potentially provides to its environment.



For each process, the domain of the assumptions is assumed to contain all
names which are not in the domain of the commitments; i.e., for two paral-
lel processes Py and P, such that I7; req; - Py : ok(provy, subs;y; A; and
Iy; reqy = Po : ok{prov,, subs2y; Ay, we will have that Ay € I, Ay € I and
dom (A1) n dom(As) = . Since ambient names are assumed to be unique, it
follows for type judgments that dom(A) n dom(I") = &, as an ambient is either
inside the process and has its contract in the commitments, or outside and has
its contract in the assumptions. Further, dom(A) € names(P).

In Table [3, Rule T-ZERO types the inactive process, which does not require
nor provide any time slices. Rule T-TI1CK1 expresses the availability of tick!
and Rule T-TIckK2 that a time slice tick? is ready to be consumed. Both
judgments express that a time slice is provided without requiring any time slice.
The assumption rule T-ASS types an ambient with the resource contract it has
in the environment. The restriction rule T-RES removes the resource contract
assumption in the environment for the restricted name. Subsumption relates
different resource contracts; e.g., in subtypes (T-TSUB), the subsumption rule
T-SuB allows a higher number of required resources, a lower number of provided
resources and a higher number of subambients to be assumed in a process.

For the typing of ambients in Rule T-AMB, the reserved name this is used
to denote the current environment of P in the premise of the rule; the assumed
typing of this becomes the typing of n in the commitment of the conclusion.
Note that the required resources in the co-effect of the premise may be smaller
than the bnd of the contract; for example, n may already have received the time
slices prov. Furthermore, the number of resources a process P requires changes
if it becomes enclosed in an ambient n; i.e., we move to the resource contract T'
of n, provided the process P satisfies its part of the contract.

The parallel composition rule T-PAR makes use of the fairness of the schedul-
ing of time slices in virtually timed ambients. While the branches agree on the re-
quired resources req, the provided resources and subambients accumulate. It fol-
lows from T-PAR that several ambients in parallel will at most need as many re-
sources req from the parent ambient as the slowest of them. Furthermore, T-PAR
changes assumptions and commitments depending on the assumptions and the
commitments of the composed processes, using the context composition opera-
tor from Def. |5 to compose environments. We have dom(Ap) n dom(Ag) = &,
which is a consequence of the uniqueness of ambient names. The assumptions
of the branches split the resource contracts of the environment I" between the
type judgments for P, and P, and the commitments split such that A} is the
assumption for P; and vice versa. The replication rule T-REP imposes the re-
striction that the process being replicated does not incur any cost; allowing that
would amount to an unbounded resource need, which cannot be provisioned in
a setting with a finite amount of resources.

Now consider the capability rules. In T-CONSUME, the resource consumption
is a requirement to the environment, expressed by increasing the coeffect to
req+ 1. Since the process requires a time slice, it is counted among the currently
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(T-ZERO) (T-Tick1) (T-T1iCcK2)
;0 0:0k(0,0); & ; 0+ tick?:0k(1,0); & ;0 tick!: ok(1,0); &

(T-Ass) (T-REs) (T-TsuB)
I'n)=T Ik :T; req P : ok(prov, subsy; A I'tn:Th Ty < T
I'-n:T I'; req - (vk : T)P : ok(prov, subsy; A I'n:T;

(T-AMB) (T-Sus)
T'=(cap, bnd, tkn+ subsy regx bnd < cap+ prov red < req prov < prov

thn+subs < bnd I''; req - P : ok{prov, subsy; A TI'"c T Ac A" subs < subs
I'" = I'yn:{cap, bnd, tkny, this:{cap, bnd, tkn) I'"; red + P : ok{prov, subs'y; A’

T; cap - [ P] : ok(0, bnd + 1); n:T", A I'; req - P : ok{prov, subsy; A
(T-PAR)
A1~A/1 AQ'\’AIQ I—F:Ok I—A:ok
r=normh I ~1Iy I, A; req = Pr : ok{provy, subsiy; Ay

A= (A1 @AY, (A AY) I, AL req = P 2 ok(prov,, subsa); As
I'; req = P1 | Ps : ok{prov, + provy, subsi + subszy; A

(T-CoNsuMEL) (T-CONSUME2)
subs’ = max{subs, 1} subs’ = max{subs, 1}
I';req - P : ok(prov, subsy, A I'; req - P : ok(prov, subsy, A

I;req+ 1+ e.P : ok{prov, subs’y, A I';req+ 1+ tick?.P : ok{prov, subs’y, A

(T-1In)
T = {cap, bnd, tkn) T' = {cap, bnd, tkn + bnd’ + 1) (T-REP)
I'ym:T;req P : ok{prov, subsy, A bnd x req < cap I';0 - P :ok(0,0),Ap
I'+ this : {cap/, bnd’, tkn’) tkn + bnd’ +1 < bnd C € {inn, out n, open n}

I'ym:T'; req - in m.P : ok{prov, subs); A ;0 HIC.P : 0k(0,0), Ap
(T-Our) (T-OPEN)
I';req = P : ok{prov, subsy, A I';req - P : ok{prov, subsy, A

I'; req - out m.P : ok{(prov, subsy, A I'; req - open m.P : ok{prov, subsy, A

Table 3. Type rules for the virtually timed ambients.

hosted processes. If it was already counted as a timed process, subs remains
unchanged, but since it could have been untimed, we let subs’ = max{subs, 1}.
Rule T-IN derives an assumption about ambient m under which the move-
ment inm.P can be typed. Since the movement involves all processes co-located
with inm.P, the rule depends on the resource contract of this, the ambient in
which the current process is located. The rule has a premise expressing that if P
can be typed with a resource contract T' for m, then inm.P can be typed with
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the resource contract 7" for m. In addition, the hosting capacity bnd of this
and this itself are added to the assumed currently hosted processes tkn of the
premise. The premise bnd x req < cap expresses that the required resources regq
must be within the resource capacity cap if scheduled to all processes within the
hosting capacity bnd of m. The effect and co-effect carry over directly from the
premise, as the movement does not modify the required or provided resources or
subambients of P. In contrast, rules T-OPEN and T-OUT simply preserve the
co-effect and effect of its premise, since the actual movement is captured by the
worst-case assumption in T-AMB.

Ezample 2 (Typing of in-capabilities). We revisit Example [1] to illustrate the
typing of cloud[0] | vm[in cloud.c.0]. From T-ZERO and T-CONSUMEL, we get
;1 e.0 : ok(0,1); . The in-capability will move the ambient containing
this process, which is captured by this in the typing environment. Let us type
this by 7' = (1,1, 1). In this case cloud will need a hosting capacity of at least
2, so let us type cloud by T' = (2,2,2). Then, from T-IN, we get

cloud : T',this : T;1 - in cloud.c.0 : ok{0, 1); .

By T-AMB, we get cloud : T";1 - vm[in cloud.c.0] : ok{0,2);vm : T. Simi-
larly, &5;2 b cloud[0] : ok{0,1); cloud : (2,2,0) and T-PAR gives us

;2 + cloud|[0] | vm[in cloud.c.0] : ok(0,3);vm : T, cloud : T";

Ezample 3 (Typing of open-capabilities). We consider the typing of a process
cloud[open vm.0 | vm[e.0]]. From T-ZERO and T-CONSUME, we get ;1
c.0 : ok(0,1); &. Let vm have type T = (1,1, 1). Then, by T-AMB,

;1 vm[e.0] : ok(0,2);vm : T.

By T-ZERO, T-OPEN and T-SUB, we have ¢J; 1 - open vm.0 : ok(0,0); &J. By
T-PAR, we obtain ¢J;1 - open vm.0 | vm[e.0] : ok(0,2);vm : T. Let cloud
have type T" = (2,2,2). By T-AMB, we get

;2 + cloud[open vm.0 | vm[ec.0]] : ok{0,3);vm : T, cloud : T".
Ezample 4 (Typing of out-capabilities). We consider the typing of a process
cloud[vm|[out cloud.c.0] | 0]

By T-ZERO and T-CONSUME, we have ;1 I ¢.0 : ok{0, 1); &, and by T-OuT
we get
;1 out cloud.c.0 : ok(0, 1); &

Let T =(1,1,1). We can type vm by
;1 + vm[out cloud.c.0] : ok{0,2);vm : T
and, with 7" = (2,2,2), we get

;2 + cloud[vm[out cloud.c.0] | 0] : ok{0,3);vm : T, cloud : T"

12



Ezample 5 (Failure of type checking). Type checking fails if the provisioning of
resources for an incoming ambient in a timely way cannot be statically guaran-
teed. This can occur for different reasons. One reason is that an ambient may lack
sufficient hosting capacity to take in the processes that want to enter. Let T =
(2,2,2) as before and consider again the process cloud[0] | vm[in cloud.c.0]
from Example Now assume a second virtual machine vms[in cloud.c.0] which
aims to enter the cloud ambient, resulting in the parallel process

cloud[0] | vm[in cloud.c.0] | vms[in cloud.c.0]
We can type vms similarly to vm in Example [2}:
cloud : T'; 1 + vms[in cloud.c.0] : ok{0,2);vmy : T.

In contrast to Example [2| the hosting capacity for cloud in T’ cannot accom-
modate both vm and vms; type checking fails when giving cloud the resource
contract T”. (Remark that type checking would succeed if cloud get more re-
sources, e.g., the resource contract {4,4,4).)

Another reason is that the resource contract of cloud may have a too low
resource capacity. Consider a third virtual machine vmg[in cloud.c.c.c.0] which
can be typed with the resource contract (3,1,1) for vms. Again, type checking
cloud[0] | vms[in cloud.c.c.c.0] fails if cloud were given the resource contract
T’, since the resource capacity of cloud must here be at least 6 with hosting
capacity 2. (Here, cloud would need a resource contract such as (6,2,2) for the
expression to be well-typed.)

Ezample 6 (Capacity of an ambient). Assume that the process
ni[in m.Pi] | na[in m.Pz] | m[Q]

is well-typed. Let T} = {cap, bnd, tkny ), To = {cap, bnd, tkny)y and T3 = {cap, bnd, tknz)
be resource contracts such that

m : Ty; req; - n;[in m.P;] : ok{prov,, subs;y; A;

fori € {1,2}, and ; regs - m[Q] : ok{provs, subss); m : T5. Let r12 = max(ry, r2)
and Tyo = {cap, bnd, thny ®tkns). Since ni[in m.P] | ne[in m.P;] is well-typed,
we have tkny @ tkny < bnd and, by T-PAR,

m : Ti9;reqo - ni[in m.Pi] | na[in m.Ps] : ok{prov,,, subsia); A1

where proviy = prov; + provy, subsia = subs; + subsy and A = Ay, Ay, By
applying T-PAR again, we get

s req - ny[in m.Py] | na[in m.Py] | m[Q] : ok{prov, subsy;m : T, A

where req = max{req,, req3}, prov = provy, + provs, subs = subsiz + subss
and T = {cap, bnd, tkn1o + tknsy. Thus, the weakest resource contract which
types m and allows both n; and ns to enter, will have bnd = tknis + tkng and
cap = bnd x req.
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4 Soundness of Resource Management

The soundness of resource management can be perceived similarly to that of
message exchange [14]. We prove a subject reduction theorem, stating that the
number of resources required for a boxed process to make progress is preserved
under reduction.

Theorem 1 (Subject Reduction). Assume I, req - n[P] : ok{prov, subsy; A
and n[P] — n[Q], then there are environments I' < I' and A’ < A such that
I red + n[Q] : ok{prov/, subs'y; A’ and req < req or req = req A prov/ = prov.

Proof. By induction on the derivation of n[P] — n[Q] (For details, see App. 77?).
[

Further, we prove a progress theorem, which shows that a well-typed boxed
process which receives the approximated number of resources from its environ-
ment will not get stuck due to missing resources. Obviously, a well-typed pro-
cess may be non-progressing due to other reasons. For instance, the terminated
process 0 cannot “proceed” no matter how many ticks it may be served. To
characterize a situation where inside the process, there is a sub-process in need
of a tick to proceed, be it an unserved ambient or a process guarded by a tick?-
capability, we use the contextual variant of barbs from Def. [2] .

Theorem 2 (Tick progress). Assume I';req = P : ok{prov, subsy; A where
P =m[R], and let Q = 7i[P | tick!| ... | tick!] , where P is running in par-
allel with req occurrences of tick! inside some enclosing ambient. If Ql(i::ick?
for some context C, then Q — Q' for some process Q. .

Proof sketch. This follows from the definition of the typing rules. If P contains
the subprocess e.P’ it follows from the typing rule for the consume capability
that req > 1. From the other typing rules it the number of resources is sufficient
to trigger the reduction e¢.P’ — P’. Thus, @ can reduce to Q’. O

With the properties of subject reduction and progress the type system guar-
antees the soundness of resource management.

Corollary 1 (Soundness). The type system guarantees the soundness of re-
source management, i.e., the transitive closure of the progress result holds.

5 Related Work

We first discuss related work on modeling virtualization, time and resources,
mainly focusing on process algebra, and then related work on type systems.
The calculus presented here differs from Stumpf et al’s original work on vir-
tually timed ambients [4,9] by assuming uniform time and by the use of freezing
and unfreezing operations, which allow a significantly simpler formulation of the
calculus. The behavior of the original calculus, with non-uniform time, can be
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recaptured by modifying the rule tick? — tick! to cater for different numbers
of input and output ticks, and to contextualize the rule for specific ambients.
Stumpf et al. provide more elaborate examples of how aspects of virtualization
(such as scaling and load balancing) can be modeled in virtually timed ambients
(e.g., [4L[9]). For the original calculus of virtually timed ambients, a modal logic
with somewhere and sometime modalities [15] captures aspects of reachability
for these ambients. Whereas this work can express more complex properties of
a given process than the contract-based types in our paper, the logic cannot
capture properties for all processes, in contrast to our work.

Gordon proposed a simple formalism for virtualization loosely based on mo-
bile ambients [16]. Virtually timed ambients [4] stay closer to the syntax of the
original ambient calculus, while including notions of time and resources. This
model of resources as processing capacity over time builds on deployment com-
ponents [17,/18], a modeling abstraction for cloud computing in ABS [19]. Com-
pared to virtually timed ambients, ABS does not support nested deployment
components nor the timed capabilities of ambients.

Timers have been studied both for the distributed m-calculus [20}[21] and
mobile ambients (e.g., [22]) to express the possibility of a timeout, controlled by
a global clock. In membrane computing, rule execution similarly takes exactly
one time unit, as given by a global clock [23]. Timed P systems [24] overcome
this restriction by associating with each rule an integer representing the time
needed to complete its execution. This resembles the timer approach on mobile
ambients [22]. In contrast, schedulers in virtually timed ambients recursively
control the execution power of the nested location structure. Modeling timeouts
is a straightforward extension of virtually timed ambients.

A process algebra with resources as primitives has been proposed in ACSR [25].
In contrast to the e-capability in virtually timed ambients, ACSR uses a set of
consume actions with a priority relation, which can be used to encode, e.g.,
scheduling policies. PADS [26] extends ACSR with hierarchical approaches to
scheduling, making the provisioning of resources explicit and introducing refine-
ment relations on supply and demand. PARS [27] similarly uses explicit resource
provisioning to specify that process needs, e.g., one processor and 100 units of
memory for a given duration. Neither of these calculi combine resources with
locations and mobility. The Kell calculus [28] supports mobility, inspired by
mobile ambients, through higher order communication, but does not model re-
source provisioning. Whereas Kell has a type system to enforce the uniqueness of
names [28], none of these calculi provide contract-based abstractions for resource
analyses such as our type system for resource contracts.

A type system for the ambient calculus was defined in [14] to control com-
munication and mobility. For communication, a basic ambient type captures
the kind of messages that can be exchanged within. For mobility, the type sys-
tem controls which ambients can enter. Types are often enriched with effects
to capture the aspects of computation which are not purely functional. In pro-
cess algebra, session types have been used to capture communication in the
m-calculus [29]. Orchard and Yoshida have shown that effects and session types
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are similar concepts as they can be expressed in terms of each other [30]. Session
types have been defined for boxed ambients in [31] and behavioral effects for the
ambient calculus in [32], where the original communication types by Cardelli and
Gordon are enhanced by movement behavior. This is captured with traces, the
flow-sensitivity hereby results from the copying of the capabilities in the type.
Type-based resource control for resources in the form of locks has been proposed
for process algebras in general [33] and for the m-calculus in particular [34}35].

The idea of assumptions and commitments (or relies and guarantees) is quite
old, but has mainly been explored for specification and compositional reasoning
about concurrent or parallel processes (e.g., [36H38]). Assumption commitment
style type systems have previously been used for multi-threaded concurrency |39,
40); the resources controlled by the effect-type system there are locks and a
general form of futures, in contrast to our work.

To capture how a computation depends on an environment instead of how
the computation affects it, Petricek, Orchard and Mycroft suggest the term
coeffect as a notion of context-dependent computation [7)8]. Dual to effects, which
can be modeled monadically, the semantics of coeffects is provided by indexed
comonads [41},42]. We use coeffects to control time and resources. An approach
to control timing via types can be found in |43], which develops types and typed
timers for the timed m-calculus. Another approach to resource control without
coeffects can be found in [44], which proposes a type system to restrict resource
access for the distributed m-calculus. In [45] a type system for resource control for
a fragment of the mobile ambients is defined by adding capacity and weight to
communication types for controlled ambients. Simplified non-modifiable mobile
ambients with resources, and types to control migration and resource distribution
are proposed in [46]. Another fragment of the ambient calculus, finite control
ambients with only finite parallel composition, are covered in [47]. Here the
types are a bound to the number of allowed active outputs in an ambient.

6 Concluding Remarks

Virtualization opens for new and interesting models of computation by explic-
itly emphasizing deployment and resource management. This paper introduces
a type system based on resource contracts for virtually timed ambients, a cal-
culus of hierarchical locations of execution with explicit resource provisioning.
Resource provisioning in this calculus is based on virtual time, a local notion of
time reminiscent of time slices provisioned by operating systems in the context of
nested virtualization. The proposed assumption-commitment type system with
effects and coeffects enables static checking of timing and resource constraints for
ambients and gives an upper bound on the resources used by a process. The type
system supports subsumption, which allows relating subtypes to supertypes. We
show that the proposed type system is sound in terms of subject reduction and
a progress property. Although these are core properties for type systems, the
results are here given for a non-standard assumption-commitment setting in an
operational framework. The type system further provides reusable properties as
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it supports abstraction and the results would also hold for other operational
accounts of fair resource distribution. The challenge of how to further general-
ize the distribution strategy and type system for, e.g., earliest deadline first or
priority-based scheduling policies, remains.

The virtually timed ambients used for the models in this paper extend the
basic ambient calculus without channel communication. Introducing channels
would lead to additional synchronization, which could potentially be exploited
to derive more precise estimations about resource consumption. Such an exten-
sion would be non-trivial as the analysis of the communication structure would
interfere with scheduling.
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