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Abstraet. In many actor-based programming models, asynchronous
method calls communicate their results using futures, where the fulfil-
ment oceurs under-the-hood. Promises play a similar role to futures,
except that they must be explicitly ereated and explicitly fulfilled: this
makes promises more flexible than futures, though promises lack fulfil-
ment guarantees: they can be fulfilled once, multiple times or not at
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—— Abstract

Concurrent programs often make u

f futures, handles to the results of asynchronous operations.

Futures provide means to communicate not vet computed results, and simplify the implementation
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{R-SENDBLOCK) (R-SENDUNBLOCK) (R-CoFY)
H(t) = chan {_ @} H{i) = chan {i' v} iso# K H(z) =1 localOwner(H i,4")
ifresh  H' = H[uw chan {i,v}] v=2ViFEi OkDup( H, K, H(x)) = (H',1)
HElt e v] — H E[l; H EM, o] — H:E[{ H: E[K copy a|* — H'; E[i]*

Casting an object (E-CASTLOC) checks that the object has the specified capability,
throwing a permission error, otherwise. The function R-COPY deep copies the object
pointed by ¢, returning a heap that contains the copy of the object graph with capability
K and a fresh location that points to the object copied.!® The helper functions used
above are defined thus:

{REFCHECK) {HELPER-LOCALOWNER)
H{)= K'obj {_]} K <K' isLocal( H, v) = isOwner( H, i, 1)
OkRet( H, I, t) localOwner( I 1, v}

For simplicity, we have gathered some rules that trap capability errors at run-time in
Fig. 9. Common errors when accessing non-existent fields and methods throw a Erry; er-
ror (e.g., E-NOSUCHFIELD, E-NOSUCHMETHOD, and E-NOSUCHFIELDASSIGN).
Accessing values which are absent due to a destructive read yields a Erry (e.g., E-
ABSENTVAR, E-ABSENTTARGET, and E-ABSENTTARGET). Assigning an illegal
value to a field is not allowed (e.g., E-ALIASISO and E-ISOFIELD). Casts to the wrong
capability reduce to Err. (Remaining rules in Appendix A, Fig. 11.)

(E-NoSUCHFIELD) (E-NOSUCHMETHOD) {E-NoSUCHFIELDASSIGN)
Hi{z)=¢ H{) = _obj{ 3}
Hxf)=1 me & names(3T) Hizr.f)=1
H:Elz.f] ~ H:Ey Hi E[z.m{v)] — H;Erry H:Elx.f = v] ~ H;Erry

(E-ABSENTVAR) (E-CONSUME) (E-ABSENTTARGET)
Hiz)=T Hiz)=T H{z)=T
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Doing things at the “same” time may lead
to chaos

Necessary

communication & synchronization



Communication & synchronization

orch., coord. pipelining

deep copying




second phase, which invokes DIAGRAM to output the as-
sembly language program. The third phase s the assembly
of the code, The compilr will utput approsimately 300
nguage instructions per second on the CDC-

mbly

Futures: past, present, and future

AVALADIC 10 PETINIL GBIy Sucns,
the compiled program is about 85 percent as zﬂ'lcwnt asa
hand translation except where array references are wsed in
the Arcor program.

Thunks

with Some Comment

A Way of Compiling

on Precedure Declarations*

P. Z. Ingerman
University of Pennsylvanio, Philadelphic, Po.

Introduction

This paper presents a technique for the implementation
of procedure statements, with some comments on the
implementation of procedure_declarations. [t was felt
that o selution which had both elegance and meshaniza-
This work was suppartedd by e
Offca of Computer Tovcarch an
T o o 058 1.

Urierdty of Pennsylvanis,
on, and the U. . Air

bility was more desimble than o brute-forco solution. i
s to be explicitly understood that this solution is one
aceeptable solution o s problem soluble in many ways.

Origin of Thunk
The basic problem involved in the compilation of pro-
cedure statements and declarations is one of transmission
of mlmnmuol\ I a procedure declaration is invoked
s by several different, procedure statements,

Communications of the ACM 55

the actual parameters which arc substituted for the formal

rameters may differ. Even if the several invocations are
from. the sume procedure statement, the value of the
actual parameters may change from call to call.

There are three basic types of information thai, need
t0 be transmitted. first, the valuc of & parameter; sccond,
the place where a value is to be stored; and thind, the
location to which a transfer is to be mady

T each of the three eases above, the requirements can
be met by providing an address: first, the address in
which the desired value is located; second,
into whieh a value is to be stored; and
b a transfer is to be made. (This is somewhat
mplified; more details are considered below.)
A thunt is a piece of coding which provides an address.
When executed, it leaves in some standard location
(memory, accumulator, or index register, for exumple)
the address of the variable with which it s associated
“There is precisely one thunk associated with exch actual

parameter in each specific procedure statement. (The
Randling of rmys i a alghly extendod defition
—see below.) Tf an actual parameter is an expression, the

return-jump to gl
thunk
thunk b

thunk m
thunk o

The procedure declaration heading corresponding 1)

ihe above procedure statement contains in part:
procedurs b, 6, -+ 15, 2)

it which formal parameter p eorresponds fo actual paran.
oter g, ot

I the simple case under consdeuton, e r e
types of parumeters; those on the r
thosoon the ke s of o -, and those embrdded i
statements. Also, a formal parameter in the procedure
dy i deniiabl ok of it pprarane. i the p
cedure heading,

When a formal paramcter appears on the right side o

rated coding may be described thus:
1y mecessary registors
LA

(1) St
) Retnmn



A balancing act



Aspects (among others)




Further abstractions: “types”

® types & concurrency

® safety

® sharing & mutating

® many design decision there, as well

® capabilities
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Typing of otherwise (p1-113)

(TS-OTHERWISE)

I'-,e1:Part I'F,ex:ParT

e

I'F,er > ez : Par T
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Multi-core (p1-117)

Meseguer et al. [1] used rewriting logic semantics and Maude to provide a
distributed implementation of Orc. Their focus on the semantic model allows
them to model check Orc programs. In this paper, our semantics is more fine-
grained, and guides the implementation in a multicore setting.
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Substrural type systems not useful (p2:164)

Promises are problematic because they diverge from the commonplace call-return
control flow, there is no explicit requirement to actually fulfil a promise, and care
is required to avoid fulfilling multiple times. This latter issue, fulfilling a promise
multiple times, can be solved by a substructural type system, which guarantees a
single writer to the promise [3,6]. Substructural type systems are more complex
and not mainstream, which rules out adoption in languages such as Java and
C#£. Our solution relies on futures and is suitable for mainstream languages.

® bisims
® translational fa?, fa-compilation

® semantics
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Substrural type systems not useful (p2:164)

Promises are problematic because they diverge from the commonplace call-return
control flow, there is no explicit requirement to actually fulfil a promise, and care
is required to avoid fulfilling multiple times. This latter issue, fulfilling a promise
multiple times, can be solved by a substructural type system, which guarantees a
single writer to the promise [5,6]. Substructural type systems are more complex
and not mainstream, which rules out adoption in languages such as Java and
C#£. Our solution relies on futures and is suitable for mainstream languages.

Abraham et al. [5] present an extension of the Creol language with promises.
The type system uses linear types to track the use of the write capability (ful-
filment) of promises to ensure that they are fulfilled precisely once. In contrast
to the present work, their type system is significantly more complex, and no
forward operation is present. Curiously, Encore supports linear types, though
lacks promises and hence does not use linear types to keep promises under con-
trol.

® bisims
® translational fa?, fa-compilation

® semantics
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Empty config (p2:165)

Conﬁgumtions, config, give a partial view on the system and are (non-empty)
multisets of tasks, futures and chains. They have the following syntax:

configu= (fuly) | (futy; v) | (tasky €) | (chaing [ €) | config config
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Evaluation order (p2:170)

Ex=e| EFe|vE | Ee| get I | fulfil(£,e) | fulfil(v, &)
| Task(E.¢) | Chain(e, £, ¢) | Chain(E, v,e) | Chain(v, v, E)
| if £ then € else e
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Chaining syntax (p2:166,171)

Source language

(RED-CHAIN-CREATE)

fresh g

(tasks Elh % c]) — (futy) (chaing h Az.c) (task; Elg])

Target language

(RI-CHAIN)
(task E[Chain(f, g, (Az.€))]) — (chain g e[f/z]) (task E[f])
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Double-write errors (p2-173)

(TI-CoNsTaNT) (TI-Proaise) (TI-VARIABLE) (TL-Unrr)
¢ is a constant of type T J:Promrel z:Tel
TkFe:ir I'vf:Promt Iba:ir I'F () :unit
(TLSror) {TI-Prouise-New) (TLIF)
Ike:bool ThFe :r Fke':r
I'kstop: T I'F Prom: Prom + I'Fif e then ¢/ else ¢” : 7
(TI-STATEMENT) (TI-ABSTRACTION) (TL-Arp)
Fhe:r Ihey:r Nz:rhe:r Tke:r’ = IF
TFepjer it TFAzeir —7 Tree
(TI-FuLriL) {TI-Task)
I'Fe:Promr Thke:r T'kFe:Promr T'ke':Promr— 7
I'F fulfil(e,e’) s unit I' k- Task(e,e') : Prom 7
(TL-Ger) (TI-Chaix)
I'te:Promr IFhe:Promt ke :Prom7s ke’ Promr—7v — 7'
Ibgete:r I Chainfe, e, ') : Prom
(Proxi) (F-Prou) (CHAN-TARGET)
f e dom{I") fiPromrel 't f: Promt IFre:r—7"
I+ (prmg) ok L (prm g v) ok I'F (chain f e) ok
(Task-TARGET) (CoNFIG-TARGET)
T'ke:r I+ configy ok I'F config, ok
Ik (task e) ok Ik config, config, ok
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Double-write errors (p2-173)

Source

(CoNFIG)
'k configyok Tt config, ok
defs(config,) N defs(config,) = @
writers(config,) N writers(configy) = @

I+ config; config, ok

Target

(ConFIG-TARGET)
I'F config, ok I' & config, ok

I'F config, config, ok
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Syntax of chaining (p3 2:10)

2:10

Godot: All the Benefits of Implicit and Explicit Futures

¢ = .| thenfe.c) | forvarde E = ...|then(£.c)|then(r, E) | foruard

We show the most interesting reduction rules in Figure 4@ RED-GET capi
synchronisation through get on a future f. RED-CHAIN-NEW attaches a callback e on a
fature f to be execnted (rule REp-CHAIN-RUN) once f is fulfilled. Chaining on a fute
immediately returns another future which will be fulfilled with the result of the callback.
RED-FORWARD captures delegation. Like return it immediately finishes the current task,
replacing it with a “chain task” that will fulfil the same future as the removed task, This
chain will be exeented when the delegated task is finished, i.e., when the future h is fulfilled.

s blocking

Reduction rules: e - o

(Reo-Ger) (Ren- R
(tasks E[get i) Cuti v) = (tasky E[u]) (fubi v} (chaing J e} (futy v) = (task, (e v)) [fuly )

(RED.CHAIN-NEW)
(R Fom

(tasty E[forward i) = (chains k Asx)

Sreshg
[task, E[then(k,e]]) —+ (Jaly) (chuing b a.c) (task; Elg])

Typing rules: T'bye:r

(T-Crasx) (T-Fowann)
Thye:Putr T oairey el:rl Thye:Futp pse
. then(e.e’) Futs Tr, forvarde .+

Figure 4 Reduction and typing rules of forward caleulus.
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Typing for chaining
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Typing rule for the empty config? (p3 2:12)
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(T-GCoONFIG)
I' - config ok
dom(I") = defs(config)
'+ config
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Well-formedness
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Prevent the collapse of the futures (p2
2:22)
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Prevent the collapse of the futures (p2
2:22)

Concluding Remarks. In addition to addressing all three problems of Section 2, Godot
overcomes a limitation in the initial DeF proposal for data-flow explicit futures in [20]
by adding support for parametric polymorphism. In fact, DeF did not study parametric
polymorphism and it is not trivial to add, as standard techniques [33] prevent the collapsing
of nested future types. For example, in DeF the following function problematic = (AX.\y :
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Promotion

* what'’s (capability) promotion? C#

The cost of safe efficient data sharing is complexity: capability type systems intro-
duce complex semantics such as capability promotion, capability subtyping, capability
recoverability (e.g., getting back a linear reference after it was shared), compositional
capability reasoning (i.e., combining capabilities to produce new capabilities), and view-
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Promotion

* what's (capability) promotion? C**

The cost of safe efficient data sharing is complexity: capability type systems intro-
duce complex semantics such as capability promotion, capability subtyping, capability
recoverability (e.g., getting back a linear reference after it was shared), compositional
capability reasoning (i.e., combining capabilities to produce new capabilities), and view-
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A-normal form/SSA (p4:15)

(R-LET)

x & dom{ H)

H:letx = vint -~ H,x — vt
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Progress

Abstractions to
control the future

Definition 2 (Terminal Configuration). A well-formed configuration I' + H:T is Martin Steffen
terminal if it contains zero threads (T = ¢). it is an error (T = Err), or if it is a

deadlock configuration (Deadiock(I" = H:T)). Presentation
Definition 3 (Deadlock Configuration). A deadlocked configuration is a well-formed (s 18 (RrU

configuration where all threads are blocked on sends and receives. Paper 2: Forward

T = E[+ | A H(1) = chan {_, &}
Deadlogh({' = H;T) = T#eAVT' € T.v{ T' = E[x + ] A H(t) = chan 1
}

T = E[M; ] A H(e) = chan {i, _
Theorem 1 (Progress). A well-formed configuration I' = H; T is either a terminal
configuration or H: T -~ H" T7.

Paper 3: Godot

Paper 4: Dala

Theorem 2 (Preservation). If '+ H:tTisa weh’-fonuecg(ﬂﬁgumﬁan, and Hit T ~

H':T'T then, there existsa I s.t. I' 2 Nand I' - H, T T



Dynamic gradual guarantee (p4:21)

Theorem 4 (Dynamic Gradual Guarantee). Ler H;t Ty, be a configuration and I’ a
store type such that I' - H;t Ty. Let © be a function that replaces safe capabilities with
unsafe in heaps, terms, etc (Definition 10). Then:

LT (Hit Ty
2 (a) If Hit Ty ~ H'; Ty Ty and Ty # Err then, (H;tTy)° ~ (H'; T} Ty)*.
(b) If H;t Ty ~ H'; Ty Ty and Ty = Err oV Erry then, (H;t T)® ~ H" T} T,
3. (a) If (H;tTp)¢ ~ (H'; Err T) then, Hit Ty ~ H'; Ene' T
(b) If (H;t Tp) ~~ (H T T5)° and T # Errthen, H;t Ty ~~ H"; T" T}, and
T = Errp WV Erra v T.

The Dynamic Gradual Guarantee (Theorem 4) uses a single step reduction to guar-
antee that the capabilities are semantics preserving, modulo permission and cast errors.
‘We extend the Dynamic Gradual Guarantee to account for multistep reductions, starting
from an initial configuration until reaching a terminal configuration, i.e., e; P ~* H: C.
To remove non-determinism of program reductions, we define the trace of a program
as a list pairs that contain the reduction step and the thread id on which the reduction
happens. We extend the reduction relation to account for the trace, named the replay re-
duction relation, which is the standard reduction relation except that it deterministically
applies the expected reduction step on the expected thread id (Appendix, Definitions 4
to 6 and Theorem 3). The basic idea is to reduce a safe program to a terminal configura-
tion, which produces a trace. We use this trace to replay the reductions on the capability
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Dynamic gradual guarantee (p4:21)
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Type inference

(TI-STop) (TI-ProMISE-NEW)
I'ke

I'kstop: T I'FProm: Prom T Il

(TI-STATEMENT) (TI-ABSTRACTION)
I'kFer:7 TbFex:T Fr:the:7

I'kFej;ea:r I'FXxe:T— 1

® Curry-style formulation
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Type inference

(TI-STop) (TI-ProMISE-NEW)
I'ke

I'kstop: T I'FProm: Prom T Il

(TI-STATEMENT) (TI-ABSTRACTION)
I'kFer:7 TbFex:T Fr:the:7

I'kFej;ea:r I'FXxe:T— 1

® Curry-style formulation

e System F
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Costs of abstractions

Buzz-word

Zero-cost abstractions
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Further questions

® weak memory models

® compositional typing
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