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Abstract

System FZ is an extension with subtyping of Girard’s higher-order polymorphic A-calculus. We develop
the fundamental metatheory of this calculus: decidability of #-conversion on well-kinded types, elimin-
ation of the “cut-rule” of transitivity from the subtype relation, and the soundness, completeness, and
termination of algorithms for subtyping and typechecking.
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1 Introduction

Since the early 1980’s, increasing attention in the programming language community has been devoted to
formal models for statically typed object-oriented languages. Cardelli [Car84] observed that refinement of
object interfaces can be modeled by records and a simple form of subtyping. To account for the types of
message-sending operations, Cardelli and Wegner [CW85] introduced bounded quantification. Fully capturing
the object model of languages like Smalltalk required one further refinement, the extension to calculi with
higher-order polymorphism, to deal properly with the interaction between subtyping and object encapsula-
tion.

A number of typed object models have been given in this general setting.! Cook, Canning, Hill,
Olthoff, and Mitchell [CCHY89, CHC90] proposed a variant called F-bounded quantification, which was
used by Bruce [Bru93] to give the first full account of static typing for Smalltalk-style objects. Pierce and
Turner [PT93a, PT93b] gave a similar model using existential types instead of recursive types to capture ob-
ject encapsulation, effectively working within pure F'¢'. These two approaches were generalized by Hofmann
and Pierce [HP94] to an abstract, axiomatic presentation of objects and subtyping.
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I Models for various object-oriented features have also been given using different techniques [MHF93, Aba93, CGL92, Cas92,
Car92, AC94b, AC94a, Mit90, Wan87, Wan88, Wan89, etc.].



The core calculus underlying all of these models is an extension of Girard’s higher-order polymorphic
A-calculus, System F'“, with subtyping. Many of the ideas behind this system, called F& (“F-omega-
sub”), are due to Cardelli, particularly to his 1988 paper, “Structural Subtyping and the Notion of Power
Type” [Car88]; the extension of the subtype relation to type operators was developed by Cardelli and
Mitchell [Car90, Mit90, BM92]. An early semantic model was given by Cardelli and Longo [CL91] using
partial equivalence relations. Compagnoni and Pierce [CP93] gave a model for an extension of F¢& with
intersection types. A more powerful model including recursive types was given by Bruce and Mitchell [BM92].

The second order fragment of Fi&', called F<, has been studied in detail, yielding both positive [Mar88,
BL90, BCGS91, Ghe90, CG92, CGI1, CMMS91, Ghe93b] and some surprising negative results [Ghe93a,
Ghe93b, GP92, Pie92] including undecidability. Decidable variants of F< have been proposed [CW85, KS92,

CP94] (our formulation of F' is based on [CW85]). But for the full w-order calculus, next to nothing is

known.?

The analysis of F.¢ is significantly more challenging than that of F<, principally because F&' introduces
a rule of conversion guaranteeing that S-convertible types occupy the same equivalence class in the subtype
relation. This rule interacts with the rule of transitivity, requiring a substantial generalization of the standard
cut-elimination argument — a key step in the proof of decidability, where uses of transitivity are restricted
to a well-behaved form. Another significant difficulty is showing the termination of the final algorithm; in
decidable variants on F<, this is fairly straightforward; here, the proof depends on the strong normalization
of an unusual notion of reduction on types, in which type variables may be replaced by their upper bounds
from the context.

Our goal is to establish fundamental meta-theoretic results for F¢', leading up to sound and complete
algorithms for checking the subtyping and typing relations. We begin in Section 2 by introducing F£.
Sections 3, 4, and 5 develop preliminary results needed in Section 6, the core of the paper, where the
decidability of subtyping is proved. Section 7 extends the analysis to the decidability of typing.

In the technical development, we sometimes elide routine proofs. Those not shown are straightforward
when performed in the order given.

2 Definition of F;

Girard’s System F'“ [Gir72] is a typed A-calculus with higher-order polymorphism. Besides the term ab-
straction (fun (z:T)t) and application (f a) of the simply typed A-calculus [Chu40] and the type abstraction
(fun (A:K)t) and application (¢ [T]) of the second-order polymorphic A-calculus [Gir72, Rey74], it includes
the possibility of abstraction (Fun(A:K)T) and application (T" U) within type expressions. To guarantee
the well-formedness of applications within types, an extra level of kinds is introduced: the kind x classifies
ordinary types (which are inhabited by terms), while kinds of the form K;— K, classify type operators:
functions mapping types of kind K; to types of kind Ky. The basic typing judgement for Fi&' isT 1t ¢ T,
read “term ¢ has type T in context T',” where I' records the type of each free term variable z and the kind
of each free type variable A.

To extend F'* with subtyping, we introduce an ordering S < T on the elements of each kind K. The
declaration of each type variable A in I is extended with an upper bound, written A<T', which constrains A to
range only over subtypes of T"in the appropriate kind. To allow new constraints of this form to be introduced

2Compagnoni [Com94] has independently achieved some results closely related to ours. After early joint work on the
formulation of F' (c.f. [CP93]), vagaries of geography led our efforts onto separate, but parallel, tracks. Leaving aside inessential
technical differences — our “reducing” system in Section 6.2 performs reduction in the premises of the rules, where her analogous
“normalizing system” assumes that the conclusion is already normalized; she proves Church-Rosser by marking redices, while
we adapt Tait and Martin-Lof’s method of parallel reduction; etc. — the two proofs are broadly similar in structure. The
major differences are as follows. 1) Compagnoni’s results are for a more powerful system, F\’, that includes intersection types
in addition to the machinery of F'2. 2) Our development addresses the decidability of typechecking in addition to subtyping.
3) Compagnoni’s version of the crucial substitution lemma (our Lemma 6.4.3) is phrased more cleverly and its proof requires
a less Intricate analysis. 4) Our proof of the termination of the subtyping algorithm is based on showing strong normalization
for an extended notion of reduction in which type variables may be replaced by their upper bounds from the context; the
argument is rather difficult, but introduces techniques that may be useful in a broader ranger of calculi including, for example,
type abbreviations. Compagnoni uses a more direct term rewriting technique.



into the context, we extend the universal quantifier, AU(A:K) U, to a bounded quantifier AU(ALT) U’

To ensure that the new system can still type all the terms of 7', we assume that the subtype relation
in every kind K has a maximal element Top(K'). The assumption A< Top(K) replaces A:K.

For kinds of the form K;— K5, the subtype relation is just the pointwise extension of subtyping for K:
a function S € Ky— K5 is smaller than a function T'e K1 —Ksif S U < T U for every U € K A

At the base kind *, the subtype relation also includes rules for the type constructors 77—75% and
All(A<Ty)Ts. The rule for arrow types embodies the familiar contravariant/covariant inclusion of func-
tion spaces:

re7 <5 FE S <71
F l_ Sl—>52 S T1—>T2

Intuitively, a function f whose results inhabit S5 whenever its arguments inhabit S; may safely be substituted
for a function in 71 —T5, provided that any element of 77 that might be given as an argument to f can safely
be used as an element of S; and that f’s result, an element of S5, can be used in place of the expected T5.

The subtyping rule for bounded quantifiers is equally simple:

T ASU b Sy, < T
T F AUA<U) S, < AUA<UYT,

That is, a polymorphic function f e AU(A<U)S; can be used in a context that expects an element of
All(ALU) Ty, provided that, for each legal argument type T', the value of f at T' can safely be used as an
element of T5.

It would be semantically sensible to refine the right-hand premise of this rule so that it only requires
Sy < Ty when A 1s constrained to the common part of their domain:

re7n <% AT B Sy < Th
I F AlALS))S: < AUALT) TS

This, indeed, is the form in which the rule appears in most presentations of second-order bounded quantific-
ation (c.f. [CP94] for a survey). However, the extra flexibility offered by this refinement does not seem to be
useful in practice and it is very costly: this rule is responsible for the failure of a number of important proof-
theoretic properties in standard formulations of F< [Ghe93a, Ghe93b, GP92, Pie92], including decidability
of subtyping.

Another variant of the quantifier subtyping rule allows the bounds to differ but requires that the bodies
be in the subtype relation under the trivial assumption on the bound variable:

I+ T1 S Sl F,ASTO})([{) F SZ S T2
I F AlALS))S: < AUALT) TS
(where K is the kind of Sy and T3). Indeed, an earlier draft of this paper used this rule instead of the equal-
bounds variant. All of the results about subtyping hold for both systems (with nearly identical proofs).
But the algorithm for synthesizing minimal types works only for the equal-bounds rule, and not (as we
erroneously claimed) for the top-rule. Indeed, the top-rule actually destroys the minimal typing property!
For example, in the context
I'=Y<Top(x)
the term
e = fun(X<Y) fun@:X) =
has both of the types
AUXYYX = X
AlX<Y)X =Y,

bl

but these types are incomparable (using the top-rule) and have no common lower bound. We are endebted
to Giorgio Ghelli for this example.

3We could also extend type operators Fun (A:K) U to bounded operators Fun (AST) U, but it is not clear that this refinement
would be useful in practice, and it would complicate the metatheory, since we would then need to introduce a subkinding relation.
4 Again, richer definitions of operator subtyping are possible: for example, we might allow monotone subtyping, antimonotone
subtyping, etc. [Car90]. This extension does seem useful in practice (e.g. [HP94]), but its algorithmic implications are unclear.



2.1 Syntax

The kinds, types, terms, and contexts of F'Z' are defined by the following abstract grammar:

K = * kind of types
| K—K kind of type operators
T = A type variable
| Fun (A:K)T type operator
| T application of a type operator
| Top(K) maximal type
| T—T function type
| AllA<TYT universally quantified type
t = z variable
| Jun(x:T)t abstraction
| tt application
| fun(A<T)t type abstraction
| tT type application
T = . empty context
| T, «T variable binding
| r, AT type variable binding with bound

The inference rules that follow define sets of derivable statements of the following forms:

FT ok I' is a well-formed context
F'FTeK type T" has kind K in context T
res<rT S is a subtype of T'in T’
FkteT term ¢ has type T in T

Terms, types, contexts, and statements that differ only in the names of bound variables are regarded as
identical.

2.2 Contexts and Kinding

Well-formed contexts are constructed from the empty context by adding well-kinded type and term variable
declarations.

F e ok (C-EMPTY)

I'T e K A ¢ dom(T)
F T, A<T ok (C-TVar)

T'ET e x z ¢ dom(T)
F L, zT ok (C-Var)

Since the side conditions guarantee that the bindings in well-formed contexts are always for distinct variables,
we often consider them as finite functions from variables to types; for example, the upper bound of A in I'
is written T'(A). We write dom(T) for the set of term and type variables bound by T'. If T is a prefix of I”,
we say that T’ is an extension of T.

The definition of the kinding relation is standard. Type variables have the same kind as their upper
bounds; abstraction and application provide introduction and elimination forms for arrow-kinds; Top(K)
has kind K; arrow- and All-types are well-kinded if their components are. We maintain the invariant that
kinding statements are only derivable in well-formed contexts.



I+ T(A) e K

TFAek (K-TVar)
I A<Top(K1) F T € K
ol x,l) . xz, (K-ArRrROW-T)
I+ Fun(AAl)T e Ki—Ks
' =95 e Ki—K, T e Ky
. (K-ARROW-E)
ST e Ky
T ok KT
T F Top(K) € K (K-Tor)
I+ T1 € % Ik T2 € % K-A
T F 1T, ¢ = (K-Arrow)
[LAST, F Ty € %
. . (K-ALL)

Ik A”(ASTl)TQ € %

(The kinding and context well-formedness judgements are mutually recursive, but the two main judgement
forms — subtyping and typing — only depend non-recursively on other judgements.)

2.3 Conversion

The presence of abstractions and applications in type expressions leads us to consider converston within
types. For technical convenience, we use a slight extension of the standard [-conversion relation: in ad-
dition to reductions of the usual form (Fun(A:K1)T) U —5[U/A]T we allow reductions of the form
Top(K1—K3) T —1 Top(K2), which relate the maximal elements of different kinds. We could achieve the
same effect by extending the rule S-ToP below, but this way seems cleaner.

2.3.1 Definition [fT-reduction]: One-step ST-reduction is the smallest relation on types closed under
the following rules:

Top(K1—K») S —»p1 Top(K>) (0 (Fun(A:K)S) T —» g1 [T/A]S #
p—— T—pr T’
ST —wpr S'T ST —wpr ST
p—— T—pr T’

(5=T) —p7 (5'=T) (5—=T) —p7 (S—T")
p—— T—pr T’
AU(ASS)T —>p1 AU(ASS)T AU(ASS)T —> 5t AU(ASS)T'

p——

Fun(A:K)S —p7 Fun(A:K)S/

The many-step ST-reduction relation —»fﬂ— is the reflexive and transitive closure of one-step reduction;

=g7 is its reflexive, transitive, and symmetric closure. When T has a normal form (it will necessarily be
unique), we denote it by T'. Reduction to ST-normal form is written —»lm— .



2.4 Subtyping

The FZ subtyping relation I' = S < T'is a straightforward extension of the subtyping relation of F« [CW85,
CG92, CP94]. We start by stipulating that 3T-convertible types always lie in the same equivalence class
in the subtype ordering (S-CoNv), and that the subtype relation at every kind is reflexive (R-REFL) and
transitive (R-TRaNS). Type assumptions from the context may be used as axioms (S-TVaR). Top(K)
is maximal in the ordering for kind K (S-Top). Type operators (S-ABs) and applications (S-APP) are
subtyped pointwise. Arrow- and All-types have the rules discussed above (S-ARROW and S-ALL).

In several places in the definition, we add premises to ensure that a proper kinding discipline is respected
(e.g. S < Top(K) only when S € K| etc.). But for readability, these are kept to a minimum: we maintain the
invariant that whenever the conclusion of a subtyping judgement is well-kinded, the types on the right- and
left-hand sides of the < will have the same kind and all of the subderivations will be similarly well behaved.

re=s<vu U e K U=37T

recs<T (S-Conv)
r-|r<rT (S-REFL)
PFS<U THUST TFHUEK
r-s<1mT (S-TRANS)
PhasIE) (S-TVAR)
S e K .
-Top
IS < Top(K) ( )
[A<Top(K) F S < T s
I b Fun(A:K)S < Fun(A:K)T (S-ABs)
r-s<mT ‘.
I'FSU<TU (S-ApP)
rkF Tl S Sl T+ 5’2 S T2
I+ S1—S8y < Ti—Ts (S-ARROW)
[VASU F Sy < T
’ LI (S-ALL)

T F AUA<U) S, < AUA<UYT,

2.5 Typing

The typing relation T' F ¢ € T is standard [CW85, CG92], modulo a few extra kinding assumptions. The rule
T-SUBSUMPTION captures the intended interpretation of subtyping as “safe substitutability.” The others
are straightforward extensions of the arrow- and All-introduction and -elimination rules of pure F'“.

F'seS LT e x res<rT

(T-SUBSUMPTION)

'k seT
F T ok
m (T-VaRr)
Iely Ftely (T-ARROW-I)
I'F fun@Ti)t e Tv—T>

'E fe =T, F'Facely

RS (T-ArRROW-E)
I'VA<STY Bt e Ty

(T-ALL-T)

I F fun(A<Th)t € AUAST) T,
I'FfeAlAsT)T, ThHSeK TFS<TN (T-ALL-E)

TF fS e [S/AT



3 Properties of Reduction

We now pause to establish some technical properties of the reduction relation and to define an auxiliary
notion of parallel reduction that will simplify some of the inductive arguments in later sections. The main
result of this section is the Church-Rosser property, by a straightforward adaptation of Tait and Martin-Lof’s
proof for ordinary f-reduction (c.f. [Bar84]).

3.1 Definition [Parallel reduction]: Single-step parallel reduction is the least relation closed under the
following rules:

S —rpT S’ T —g7 T

Top(K1—K>) T —seg1 Top(K>)  (Fun(A:K) S) T —sepr [T'/A]S'

S —rpT S’ T —g7 T T —rp7 T
ST —»saT ST Fun(A:K) T —s»pg7 Fun(A:K) T
S —rpT S’ T —g7 T S —rpT S’ T —g7 T
S—T —srpr S'=T' AN(ALS) T —»p7 All(ASS/) T
T —srpsr T

Ordinary single-step reduction is a subrelation of single-step parallel reduction, which is a subrelation of
multi-step ordinary reduction. The reflexive, transitive closures of the two relations coincide:

3.2 Fact:

3. —’;T = _»;T
Substitution commutes with parallel and multi-step reduction:
3.3 Lemma:
L If S —spg7r S and T —s>g7 1" then [T/A]S —sg1 [T'/A]S".
2. If S —%1 5" and T —% T" then [T/A]S —=51 [T7/A]S".
3. If S —5+ 5 and T ——5¢ T" then [T/A]S —5+ [T"/A]S".
In the proof of 3.3, we need the following property of substitution:
3.4 Fact: If A+ A" and A" ¢ FV(S), then [S/A|([T/ANU) = [[S/AIT/A([S/AV).

One useful consequence of 3.3(3) is that if an expression with an outermost redex has a reduction path
in which this redex is reduced at some point, then this reduction can be performed first without changing
the result:

3.5 Corollary [Outermost reduction]: If (Fun(A:K)S)T' —% U, where U # (Fun(A:K)S")T" with
S ——57 5" and T ——51 T", then [T/A]S —51 U.



3.6 Lemma [Diamond property for —»57 |: For all types S, S, and Sy with S —»57 S7 and
S —=37 S, there is a type Sz such that S; —>37 S3 and 59 —»57 S3.

S
1 1
BT BT
S1 Sa

" =
BT 8 BT
S3

Proof: Straightforward extension of the standard argument (c.f. [Bar84]). O

3.7 Corollary [Church-Rosser for —»fﬂ— ]z For all types S, Sy, and Sy with S —»fﬂ— S1 and S —%
Sa, there 1s a type Ss such that S —»fﬂ— S3 and S —’ET Ss.

The proof of strong normalizationfor ——37 has to be deferred until after we have studied the properties
of the kinding system, since our proof of normalization requires that the types involved by well kinded.
One more property of —>37 will be needed for the induction in the proof of Lemma 6.4.8.

3.8 Lemma [ —»37 and —»fﬂ—]: If S—ss37 51 and S —»fﬂ— Ss, then there is an S3 with

S
*
BT BT
Sl S2

e
BT & 6T

S3

Sl —PET 53 and Sg 5T 53.

Proof: By induction on the length of S —»fﬂ— Sa, using 3.2(1) and Church-Rosser. (]

4 Kinding
Next, we state some basic technical properties of the context well-formedness and kinding judgements.
4.1 Lemma [Generation of contexts]:

1. f =T ok, then:

(a) T =e;0r
(b) T =Ty, «:T, with F Ty ok and Ty F T € x as subderivations; or
(¢) T =Ty, AST, with F Ty ok and Ty F T € K for some K as subderivations.

2. fT'F S e K, then - T' ok as a subderivation.
4.2 Lemma [Generation of types]:
I.LITF Ae K, then T - T(A4) € K.
2. f T F Fun(A:K1)T € K, then, for some K5, we have T', A<Top(K1) F T € Ky and K = K1 —K>.
3. T F ST e K, then, for some K’ wehave ' F S e K'=K and ' T ¢ K'.
4. ITFHS—=Te K, then K =xand ' - 5,7 € «.
5. IfT - Top(K) € K, then K = K'.



6. If T+ Al(A<S)T € K, then K = xand I', ASS F T ¢ «.

Moreover, the implied derivations are all subderivations of the originals.

We prove the decidability of the kinding system by showing that it is equivalent to a different system
whose decidability is obvious.

4.3 Definition [Algorithmic kinding]: The algorithmic kinding relation T' k4 T € K is the least relation
closed under the kinding rules; where instead of rule K-TVAR we use the following:
Fl "A T e K "A Fl,AST,FQ ok
Fl,AST, Fz "A Ae K

(K-TVAR/)

The algorithmic context well-formedness relation F4 I' ok is defined as before, using algorithmic kinding.
4.4 Lemma [Context strengthening for algorithmic kinding]:

1. If 'y, A<S, I's b4 T e K and A is not free in I's or in T, then I'y, I's b4 T € K.

2. If k4 'y, A<SS, T's ok and A is not free in 'y, then k4 'y, I's ok.

3. 0y, S, MobaT e K thenI'1, '3 b4 T e K.

4. If b4 Iy, 2.5, T'o ok, then 4 'y, ['s ok
4.5 Lemma [Decidability of kinding]: The relations F T' ok and T'F S € K are decidable.

Proof: It is easy to prove by induction that the two kinding systems and the two definitions of context
well-formedness are equivalent. In each direction, we only have to consider the rule for variables, since all
other rules coincide.

Case K-TVAR: T+T(4) e K
By Lemma 4.1(2) - T'y, A<T, T'y ok as subderivation. So by the induction hypothesis, F4 Ty, AT, Ty ok
and 'y, AST  T's -4 T € K. Repeated application of Lemma 4.4 yields I'y F4 T € K.

Case K-TVAR: T\ k4T e K and ' 4 Ty, AST, Ty ok
By the induction hypothesis, I'y = T ¢ K and - 'y, AST, I's ok, so the result follows by K-TVAR and
weakening.

Now, the algorithm obtained by reading the algorithmic kinding rules from bottom to top as Horn clauses
always terminates, since in each step the total number of characters in the conclusion is greater than the
number of characters in any of the premises. Since the systems are equivalent, I' = S: K is also decidable.

4.6 Lemma [Uniqueness of kinding]: f TF Se K and '+ S e K’ then K = K.
This justifies the following notation:
4.7 Definition: The unique kind of a well-kinded type S in a context I' is written Kindp(S).

4.8 Lemma [Transposition and weakening for kinding]: Suppose that I is a well-formed extension

of [y, A'<ST, A<S, Ty, If T'y, A<S, A'’ST Ty F U € K and A ¢ FV(T), then I' U € K.

4.9 Lemma [Context update for kinding]: If I';, A<S, I's v T € K and I'y + 5,8 € K’, then
Fl, ASS/, Fz FTeK.

4.10 Lemma [Top reduction]: If T+ Top(K) Ty ...T,, € K', then Top(K) Ty ...T, —»fﬂ— Top(K').
4.11 Lemma [Kinding and substitution]: Suppose I'y - T e K'.

1. If - 'y, A<Top(K'), Ty ok, then - T'y, [T/A]Ty ok.

9. I Ty, A<Top(K'), s F S ¢ K, then Ty, [T/A]s F [T/A]S € K.



Proof: Both parts are proved simultaneously by induction on derivations. O

4.12 Lemma [Subject reduction for types and contexts]:
1. fT'-Se K andS—»ETTthenFI—TeK.

2. 0T HSeK andF—»ZTF/,then I'SekK.

4.13 Corollary [Kind invariance under conversion]: If S =g1 T, where T'F S ¢ Kg and I' - T € Kr,
then [(5 = [(T.

5 Strong Normalization of Types

We shall often need the fact that fT-reduction is strongly normalizing for well-kinded types. In fact, we
prove the strong normalization of a more general reduction relation, called GTI-reduction, which will be
used to prove the termination of the subtyping and typing algorithms. Besides the usual g and T reductions,
we allow variables to be replaced by their upper bounds from the context. I'-reduction is reminiscent of the
common operation in type checker and proof checker implementations of replacing a type definition by its
expansion (c.f. [SP93]).

We begin by proving the strong normalization of ST-reduction, using by a straightforward translation
argument.

5.1 Definition: Define a family of types Tk, one for each kind K, as follows:

T, = All(A:x)A
TK1—>K2 = Fun(AKl) TK2

Note that e F Tk ¢ K for each K.

5.2 Lemma [Strong #T-normalization]: Suppose I' = S € K. Then there is no infinite 8T-reduction
from S.

Proof: Define a translation function F' mapping F'¢ types to F'“ types:

F(T(K) = Tx
FAUALS)T) = AlA)F(S)— F(T)
F(Fun(A:K)S) = Fun(A:K) F(S)
F(ST) = F(S) F(I)
F(S—T) = F(S)— F(T).

On contexts, F' replaces each type variable binding A<T in ' by the kinding assumption A:K, where K is
the kind of T'in T'. Tt is easy to check that if 'F S e K in F&, then F(T')F F(S) e K in F'*

Now, any @T-reduction in F¢ from S can be mirrored by a B-reduction from F'(S) of the same length
in F'“. The existence of an infinite 3T-reduction in F¢ would thus contradict the strong normalization of

F* [Gir72, Gal9Q]. O

Next, we define the notion of I'-reduction and establish some of its basic properties.
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5.3 Definition: Single-step I'-reduction is the least family of relations closed under:

T(A) # Top(K) S ——(r, a<rop(iy) '
A——r T(A) . Fun(A:K)S —r Fun(A:K)S/
S ——>p S’ T—p T’
ST —wp §'T ST—wp ST
S ——>p S’ T—p T’
(5—T) —er (5—1) (5—T) —er (5—1)
§—p 8 T —ir, acs) T’

AU(ASS)T —>p AU(ASS)T  AU(ASS)T —p Al(ASS)T

Single-step GTI'-reduction, written ——gtr , is the least family of relations closed under these rules and
the rules (3) and (T) of Definition 2.3.1. The corresponding multi-step reductions are defined as usual.
Note that in a multi-step ['-reduction sequence, the I' at each stage remains the same; I' is only extended
“internally,” in the course of a single reduction, to keep track of variable bindings in those rules that define
reduction under binders.

Note that we are careful to separate Allbound variables, whose bounds may be different from Top and
which may thus act as I'-redexes, from Fun-bound variables, whose bounds are always Top and which can
never be ['-reduced.

5.4 Lemma [Strong I'-normalization]: If ' S € K, then there is no infinite I'-reduction from S.

Proof: We show, by induction on the defintion of ——r | that if S ——r 7 in one step, then I' - T ¢ K
by a shorter derivation. Most cases are straightforward; we list only the the ones for type variables and for
All-types.

Case: S=A and T =T(A)
By the generation lemma for types, I' F T'(A) € K by a shorter derivation.

Case: § = All(A<S1)S; and T = All(A<S])S,

By the generation lemma for types and contexts and Lemma4.1, I' 57 € K1, so by the induction hypothesis
[+ S} € K; by a shorter derivation. Finally I' = All(A<S])Ss € « by K-ALL, by a shorter derivation than
the original.

Case: § = All(A<S1)S, and T = All(A<S))S)
By the generation lemma I', A<S; F Sy € Ks. The induction hypothesis gives I', A<S; F S}, € Ky by a
shorter derivation, so by K-ALL we have I' - All(A<S])5) by a shorter derivation than the original. O

We shall often use the subject-reduction property silently in what follows, to guarantee that a reduction
sequence from a well-kinded term only contains well-kinded terms.

5.5 Lemma [Subject reduction]: If I't+ S ¢ K and S —57p 5, then T't 5" € K.

Proof: By induction on the length of the reduction S —’ETF S’ with an inner induction on the definition
of single-step BT -reduction. O

5.6 Fact:
1. If A”(ASTl)TQ —T *All(ASVl) Vz, then T1 —T *Vl and T2 —>§ AT, Vz.
2. If Fun(A:K) Ty —r *Fun(A:K) Va, then T —»; A<Top(K) V.

3. 1f T1 T2 —T *Vl Vz, then T1 —T *Vl and T2 —T *Vz.
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4. If (T1 — Tz) —T *(Vl — Vz), then T1 —T *Vl and T2 —T *Vz.

Proof: We give the proof in detail for part (1); the rest are similar, but simpler. For part (1), we prove
the more refined statement

a *
if T1 —T *Ul and T2 —P‘(kr ASTl) U2 and A”(ASUl)UQ —PFA”(Afvl)VQ, then

T1 —T *Vl and Tz —>E<F7 ASTl) VQ,

by induction on the length of «.

Case: « 1s empty
Immediate.

@q Q2 *
Case: All(A<Uy) Uy —>r AU(ASU) Uy —»p AU(ASVY) V2
(I.e., « consists of a single-step reduction «; followed by a multi-step reduction aa, where ay replaces a
single variable in U by its upper bound to yield U3.) To apply the induction hypothesis, we need to check
that Us —>?F, A<TY) Uy, which immediately gives T% —>?F, A<TY) Us.

But if oy replaces an occurrence of A by Uy in Uy, i.e. Us = Us[A] —(r, a<0y) Us[U4], then we can
build a reduction Us[A] — 4<p,) U2[T1] —>‘()<F7AST1) Us[U1] by replacing this occurrence of A with
Ty and then using the assumption that 7y —sr *U; (and hence T} —{F, AST) U1) to develop T3 to Uy
in-place. On the other hand, if ay replaces some other variable, then Us —»E‘F A<TY) U, is immediate. In
both cases, the induction hypothesis then applies, directly yielding the desired result.

@q Q2 *
Case: All(A<Uy) Uy —r AU(ASU]) Uy —>p AU(A<V) V2
Here
the induction hypothesis applies directly (since Ty —p *U) ——1 U{ and we have T —>?F, A<T) U,
by assumption) to yield the desired result.

5.7 Lemma [Weak diamond property for I'-reduction]:
r

T U
r T
* A\
| VA - W.
r

Proof: By induction on the form of T'.

Case: T=A

Then V =U =T(A4) and we may take W = T'(A4).

Case: T = All(A<T)) Ty

We must find W = AlU(A<IW,) Wy such that the required diagram commutes; this will follow from the
commutativity of a smaller diagram for 77, Uy, V1 and W; and another diagram for 7%, Us, Vo and Ws.
There are three subcases to consider, depending on whether both of the reductions from 7" to U and V are in
Ty, both are in T5, or one is in 77 and one in T5. (Since the last case is symmetric, we may assume without
loss of generality that 77 is reduced to produce V and T3 to produce U.)

Subcase: U = AUALU) Ty and V = All(A<V1) T

Begin by applying the induction hypothesis to 71, Uy, and V; to yield a common reduct W;. We must then

12



show:

r
T U1
‘ I, A<Ty
r T2 — 2
F{* :
r :
Vi " Wh * I, A<U,
I, A<Ty|= :
“* A\
Tl e - Ws.
I, A<V;
Set Wo = 15 and we are done.
Subcase: U = AUALT)Us and V = AIl(A<TY) Vs
We must find a W5 such that
r
T1 — Tl
I, A<Ty
Tl= Ty Us
F{: :
r :
T1 — T1 *:F, ASTl
I, A<Ty :
* v
R - W
I, A<Ty

The existence of such a W5 is given by the induction hypothesis.
Subcase: U = AUALT) Uy and V = All(A<V) T
Set W1 = Vi. Then we must show:

T1 — Tl
T, A<T)
T T2 2
| ,
r :
V1 — V1 *:F, ASTl
I, A<Ty|= :
* v
Ty e - W
T, A<V,

If Ty —T, A<Ty) Us by a T-reduction on some occurrence of A in Ty, then we have Ty = T5[A] and
Us = T[Th]; set Wo = To[V1]. If T —(r, A<Ty) U, by a I'-reduction on some occurrence of a variable other
than A in 75, then we can set Wy = Us, since 15 —>?F, A<V U follows directly from 715 —>?F, A<Ty) Us

in this case.
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Other cases:
Straightforward. O

5.8 Lemma [Church-Rosser for I'-reduction]:

T U
r .

IT'ix I'x
* v

Voo - W.
r

Proof: By Newman’s Lemma, which states that the weak diamond property and strong normalization

together imply Church-Rosser (c.f. [Bar84]). O

5.9 Lemma [Substitution commutes with I-reduction]: If U —— *V and S _{Fy A<Top(K)) T
then [U/A]S —r *[V/A]T.

Proof: Since A’s bound is Top(K), it is not a (I, A<Top(K))-redex, so [U/A]S —r *[U/A]T. Then
[U/A]T —r *[V/A]T by applying the reduction from U to V at each point in [U/A]T where A appeared
inT. (|

At this point, we can start proving properties relating I-reduction and ST-reduction. First, a technical
property that handles a key step of the following lemma.

5.10 Lemma: If 7} —»fﬂ— Uy and Ty —»E‘F A<TY) Va2, then there is some W5 such that:

T
T, A<yl -1, Aty
*
* A
Vo covveennnn - Ws.
8T
Proof: By induction on the length of the reduction from 75 to V.
Case: 15 =1V,
Then set Wy = 15 and we are done.

Case: Tj —>‘()<F,AST1) vy (T, ASTY) V2

Apply the induction hypothesis to find a W satisfying the desired property. We must now show:

T
T, A<T|% I, A<ty
*
*
L
T, A<T) »T, A<U,
. ;
Vo wovveeennnn - Wo.
AT
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If vy —>(r, a<r,) V2 by contracting a redex other than A, then Vy = V4 [B] and Vs = V5[['(B)]. In reducing
from V, to W3, this redex may be copied a number of times: Wy = W4[B][B]...[B]. Let W3 be the result of
contracting the residuals of this redex in W3, i.e. Wa = W4[[(B)][[(B)]...[[(B)]. Similarly, if V; = Vj[A]
and Vo = V3[T1]; again, let W be the result of contracting the residuals of this redex in Wj. Reduce

The next lemma establishes a confluence property for I' and 8T reductions. The proof i1s similar to
that of Lemma 5.7. This lemma and Lemma 5.8 jointly handle the crucial step in the strong normalization
argument that follows.

5.11 Lemma [3T-reduction and T'-reduction]:

L
BT .
I'ix * T
O/ v
Voo - W.
BT

Moreover, o’ has length at least 1.

Proof: By induction on «.

Case: T = Top(Ky — Ka) T —1 Top(K2) =U

Any T-reduction from T must reduce only redexes in 77, so V has the form Top(K; — K2) V1. But then
V ——1 U, and we can take W = U. Note that V ——31 W by a nonempty reduction.

Case: T =(Fun(AK) ) Th —p [To/AI=U

Any T-reduction from T consists of a number of separate reductions in 77 and 73 by Fact 5.6(2,3), so
V has the form (Fun(A:K) V1) Va2, with Ty —’EKF,ASTop(K)) Vi and Ty —r *V5. By Lemma 5.9,
[T»/A)T) —r *[Va/A]V1, so we can take W = [V5/A]V;. Note that V' —g1 W by a nonempty re-
duction.

Case: Ty ——p7 U

T = AUAST) Ty —>pr AUASUNT, = U

By Fact 5.6(1), V has the form All(A<Vi) Vs, with Ty ——r *V; and T —>2KF7AST1) Va. Apply the
induction hypothesis to find a Wi with

T T
1 6T 1
T'ix *|I'
Vi — W

1 6T‘k 1,

where a7 has length at least 1. By Lemma 5.10, there is some W5 such that:

T T
2 BT 2
I, A<T % *|I', A<Uq
V. W
2 BT 2.

So W = AlI(A<W7) W2 has the required property.
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Case: T, —p7 Us

T = AUAST:) Ty — gt AUAST) Uy = U
By Lemma 5.6(1), V has the form AUA<V}) Va, with T ——r V4 and T5 —(r, 4<Ty) V5. We must show

T
Ty 6_ Ty
T
Tlx T2 6 UZ
F{* :
T :
Vl 6_ Vl *:F, ASTl
F, ASTl * :
e Y
Vg eeeeeee - W,
*
which follows directly from the induction hypothesis.
Other cases:
Similarly, using parts (2) to (4) of 5.6. O

With this in hand, we can proceed to the main body of the strong normalization argument. Its two main
steps are captured by this lemma and the next one.

5.12 Lemma [T postponement]: If T 5T U r X grT - - - then there is some Vj such that

For the proof, we need a simple fact:

5.13 Fact: If S —37 T'"——r U, then S —r U’ for some U’. (That is, the redex that is contracted
between 7" and U 1s a residual of a redex already present in 5.

Proof: Since §T-reduction cannot create a I'-redex, the I'—redex appearing in 7" must be a residual of a
I'-redex already appearing in S. O

Proof of Lemma 5.12: By Fact 5.13, there is some V{ such that:

T Vo
o)
U
6Tfloo
By Lemma 5.11, there is some V; such that
T Ve
T 0
gT ﬁT*l
U Vi
I'x
BTF*L)O
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Since U ——r X, we can now apply Lemma 5.8:

T Vo

r
BT ﬁTF*l
U Vi

I'x
T F%
X Vs
I'x ?

BT Tvoo

We can continue in this way, applying either 5.8 or 5.11 to successive elements of the infinite reduction
beginning from X to obtain an infinite sequence of multi-step ST '-reductions on the right:

T Vo
r
BT BT
U Vi
I'x
T I'x
X Vs
I'x ?
AN BT«
Us T Vs
8 TFloo

*ﬁ Tf*loo

But the sequence of reductions on the left must contain infinitely many ST steps (otherwise it would have
an infinite T-tail), so Lemma 5.11 also tells us that infinitely many of the individual multi-step reductions
on the right are nonempty. The reduction T'——r Vo —pg7r% Vi -+ —37r 18 the desired one.

5.14 Proposition [Strong ST T-normalization]: If S is well-kinded in T, then there is no infinite sTT-
reduction from S.

Proof: Assume, for a contradiction, that R is an infinite §T I'-reduction beginning from S. Let Ry = R.
Now repeat the following process as long as possible to construct a sequence R;, Rs, ... of infinite 8T-
reductions, all starting from S:

If R; contains no I'-reduction that is immediately preceded by a GT-reduction, then stop. Oth-
erwise, form R;41 from R; by using Lemma 5.12 repeatedly to move the first such I'-reduction
before any S T-reduction.

Note that all of the R; are infinite and that the first ¢ steps in each R; are all I'-reductions. Now, there are
two possibilities:

e The sequence of R's eventually terminates, having reached some R, in which all I-reductions precede
the first GT-reduction. But this means that R, contains only I'-reductions, contradicting Lemma 5.4,
or has an infinite tail consisting only of GT-reductions, contradicting Lemma 5.2.

o The sequence of R's is infinite. But since each R; begins with at least ¢ [-reductions, we can use this
to exhibit an infinite I-reduction beginning from S, contradicting Lemma 5.4. (]
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6 Subtyping

Usually, in proof-theoretic analyses of calculi with subtyping, the subtyping relation itself presents the most
challenging problems. This is also the case in F&'.

6.1 Proof Outline

Although the details of our development will be somewhat more involved, it is helpful to start by reviewing
the standard argument [CG92, Ghe90, CMMS91, BCGS91, etc.] for the decidability of subtyping in the

second-order system F<:

1. Begin with an “original” presentation of the subtyping system that directly expresses its intended
meaning, but which is not directly implementable.

2. Propose an alternative presentation of the same relation by a syntax-directed set of inference rules, in
which the premises of each rule contain only metavariables whose values are uniquely determined by the
form of the conclusion, and in which all the derivations of any given subtyping statement I' - .S < T
must end with the same rule. (More precisely: more than one rule may be used to derive a given
statement, as long as only one of them has premises whose applicability cannot be checked directly,
without making any recursive calls.) This system can be implemented by a proof-search algorithm
that will never have to guess or backtrack.

3. Check that this algorithm is indeed a decision procedure for the syntax-directed system by showing
that proof search must terminate in finite time when started with any statement as its initial goal.

4. Show that the syntax-directed system is sound, in the sense that any subtyping statement derived by
the algorithm is also derivable in the original system. This step is typically straightforward.

5. Finally, prove that the syntax-directed system is complete: that any statement derivable in the original
system is also derivable by the algorithm. This step is where a deeper understanding is required.

The syntax-directed system may be viewed as a version of the original from which all “problematic” rules
have been removed. In the case of Fi¢, there is just one such rule:

T-S<U THrHUSLT

TFS<T (S-TrANS)

By analogy with proof theory, this rule is sometimes called the cut rule of the subtyping system: the type
U appearing in the subderivations is cut out when moving to the conclusion. By analogy with the sequent
calculus or the simply typed A-calculus (c.f. [GLT89]), this cut rule can be almost completely eliminated by
rewriting derivations.

But not completely. In one situation, transitivity is actually essential. Statements with variables on the
left-hand side cannot, in general, be proved without using transitivity. For example,

C'<Top(x), B<C, ASBF A< C

must be proved using two instances of S-TVAR to establish the connections between A and B and between B
and C', which are then joined by a single instance of transitivity. Thus, to eliminate S-TRANS while retaining
completeness, it is necessary to refine the treatment of variables, extending each instance of S-TVAR with
an “internal” use of transitivity:
r-=T(A) <T
r-A<T

It is easy to see that replacing S-TVAR with S-TVAR-PLUS-TRANS in the original system does not affect
its power. Moreover, S-TRANS can now be completely eliminated without losing any derivable statements.
The resulting subtyping algorithm (i.e., the recursive procedure obtained from the syntax-directed system
by ordering overlapping rules so that the “easy” ones come first) is:

(S-TVAR-PLUS-TRANS)
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check(TFS <T)=
if T = Top(x)
then true
else if S=T
then true
else if S= A
then check(T FT(A4)<T)
else if S = S1—S; and T = T1—T5
then check(T'F Ty < .51)
and check(T - Sy < Th)
else if S = AUALU) Sy and T = AU(ASU) Ty
then check(T', ASU F Sy < T3)
else

false.

The behavior of this algorithm reveals a great deal about the structure of the F'« subtyping relation. The
first cases deal with the easy rules for Top and reflexivity. The third case says that a statement of the form
I'F A <T, where A is not identical to T" and T 1s not Top, can only be true if A’s upper bound is less that
T. In other words, the region between A and its upper bound is empty: there are no types strictly greater
than A and strictly less than T'(A).

Since this concept of “the smallest proper supertype of A” will also be crucial for our development, it is
worth introducing some special notation for it. Write A Tp T'(A) for “A promotes to T'(S).” We can then
reformulate the enriched variable subtyping rule S-TVAR-PLUS-TRANS as

AfrT(4) TFHS<T
THFA<T

(S-PrOMOTE-TVAR)

or, more generally, as

STrU TFrRUS<T
TFS<T

where the partial function |r is undefined except on variables. The subtyping algorithm becomes:

check(TFS <T)=

(S-PROMOTE)

else if S v U
then check(THU L T)

Now, let us generalize these intuitions to the case of full F£'. Here, we encounter one new kind of situation
in which transitivity plays an essential role. For example, in the context

I'= A<Top(*), F<(Fun(B: %) B),

the statement T' = F' A < A is provable as follows (ignoring kinding):

S-TVar
't F < (Fun(Bx*)B
S-App S-ConNv
I'FF A< (Fun(Bx*)B) A I'F (Fun(Bx)B) A< A
S-TRANS
rFFA<A

The instance of transitivity in this derivation is again essential, but it is not an instance of the schema
that motivated S-TvAR-PLUS-TRANS. In fact, it is possible to construct more involved examples where the
instance of S-TVAR is separated from the instance of S-TRANS by arbitrarily many applications of S-APpp.
This suggests the following generalization of the promotion relation:

6.1.1 Definition [Promotion]: The promotion of a type A S;...S, in a well-formed context T is
T(A) Sy...S,, written A Sy...S, Tr T(4) S1...5.
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With this relation and S-PROMOTE, both examples above can be derived without explicitly using
S-TRANS.

To extend the algorithm check to full F¢, one thing obviously missing is a clause for type abstraction
matching the pointwise subtyping rule S-ABs. We add one as follows:

check(TFS <T)=

else if S = Fun(A:K1)Ss and T = Pun(A: K1) Ty
then check(T, A<Top(K1) F S2 < T3)

Surprisingly, we do not need a similar clause for application,

check(TFS <T)=

else if S=S1U and T=1T1 U
then check(T'F S, <TY)

because its effect turns out to be covered by the promotion clause. But we do need to deal with the possibility
of conversion; otherwise, for example, the statement T' F (Fun (B:%) B)S1—S2 < T1—T5 will not be derivable.
Clearly, we need to perform some reduction on the arguments before choosing which clause of the al-
gorithm to apply. We can make life easy by simply normalizing the arguments before looking at them.?
Since the arguments to recursive calls in all of the clauses except promotion will remain in normal form
if the original arguments are given in normal form, we only need to re-normalize in the promotion clause to
preserve normality. The final algorithm, then, is:

check(TFS <T)=
check' (T S' < T7)

check (TS <T) =

if T = Top(Kindr(S))
then true

else if S=T
then true

else if S v U
then check!(F FU' < T)

else if S = S1—S; and T = T1—T5
then check!(F FTy <5)

and check!(F FSe <Th)

else if S = AUALU) Sy and T = AU(ASU) Ty
then check' (T, A<U F Sy < Ty)

else if S = Fun(A:K1)Ss and T = Pun(A: K1) Ty
then check!(F, ALTop(K1) F S2 < T3)

else

false.

Our task for the remainder of the section will be to show that this algorithm is sound and complete for
the rules in Section 2.4. Our first step is a technical reformulation of the original system, which provides a
convenient setting for the arguments to follow: we remove the general rule of conversion and regain its effect

5In a real implementation it is not desirable to fully normalize type expressions: this wastes time (in the vast majority
of calls to the subtyping algorithm, the types being compared are identical) and results in the unnecessary expansion of type
abbreviations, making the compiler’s diagnostic output difficult for the programmer to understand. In practice, we reduce types
only to weak head normal form, exposing only their outermost constructors at each step. The completeness of this modification
rests on the observation that the reflexivity check in the algorithm can be restricted to type variables, applications, and the
left-hand sides of quantifiers.
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by generalizing each of the remaining rules to allow arbitrary reduction in the premises. For example, the
rule for subtyping arrow types

r-=17 <95 'k Sy <7
F l_ Sl—>52 S T1—>T2

becomes:
S —PET Sl—>52 T —>g-|— T1—>T2

F"T1§51 F'_SZSTZ
res<rT
It is not hard to show that this reducing system is equivalent to the original. Next, we introduce two
important properties of certain derivations in the reducing system:

e A cui-free derivation is one with no instances of the rule of transitivity.
e A strong derivation is one in which every —»fﬂ— reduction is actually a reduction to normal form.

Cut-free derivations are close to the form of those discovered by the algorithm check. Strength is a more
technical property, which reduces the complexity of the case analyses required at some crucial points. Using
these properties, the main facts that we need are:

1. The rule of transitivity can be eliminated from strong derivations.
2. The validity of subtyping is preserved by fT-reduction in cut-free derivations.

From these, we can show the central theorem: any derivation in the reducing system can be transformed to
a strong, cut-free derivation of the same statement. Finally, to obtain the algorithm, we observe that the
rule of application can also be eliminated from strong, cut-free derivations.

6.2 The Reducing System

The main difference between the reducing system and the original subtyping system presented in Section 2 is
that we remove the rule S-CoNv and distribute its effects over the remaining rules in form of extra premises.
We also replace the rule S-TVAR by the more general rule of promotion, R-PROMOTE.

6.2.1 Definition [Reducing System]:

S——i U T U

ITrS<T (R-RerL)
re=s<vuU r-uv<TtT U e K
TF S <7T (R-TrANS)
S —k U Ulr U’ r-uv <mT
Al T |—le§ =T = (R-PROMOTE)
T—% Top(K) T'F SeK
TFr ST (R-Tor)
S —PET Sl—>52 T—>g-|— T1—>T2
r=17 <5 'k Sy <7
TF S <7 (R-ARROW)
S —hr AUASU) Sy T —hr AUAST) T, T,ASU F So < T
THS<T (R-ALL)
S ——51 Pun (A:K) S T —51 Pun (A:K)T'
[, A<Top(K) + S < T’
THS<T (R-ABs)
S _>*T S/ U T_>*T T/ U F '_ S/ S T/
} Fr ST (R-ApP)

21



6.2.2 Notation: To avoid confusion, we sometimes distinguish derivations in different systems by marking
the turnstile symbol: ko for the original system, Fx for the reducing system, ks for strong derivations in the
reducing system, k¢ for cut-free derivations in the reducing system, and F¢gs for strong, cut-free derivations
in the reducing system.

Our task for the remainder of Section 6.2 is to establish the equivalence of the reducing system and the
original one. We begin by establishing some technical properties of the original.

6.2.3 Lemma [Kind invariance under promotion]: If '+ S € K and S | S then T+ 5" € K.
6.2.4 Lemma [Promotion and Subtyping]: If S {1 5/, then T'Fp S < 5.

6.2.5 Lemma [Well-kinded subderivations]:

1. Suppose ' - S € Kg and T T € Kp. If d is a derivation of ' o S < T and d’ is a derivation of
I"to S < T’ with d' a subderivation of d, then IV + §', 7" ¢ K for some K.

2. Suppose ' S € Kg and ' - T € Kp. If dis a derivation of T' b S < T and d' is a derivation of
I"tr S < T, with d' a subderivation of d, then IV S, T € K for some K.

6.2.6 Lemma: The following rules are derivable:

IFSTeK TroU<T TrUeK U=srS
Thto S<T

(S-Conv(L))

TFSTeK TFSTeK
F l_o S/ S T/ S:ﬁT S/ T:ﬁT T/
Tro S<T

(S-Conv(2))

Proof: For S-Conv(1):

ko <8 'ESeKR S =31 U
S-Conv ,
'k S<U o U<T I'+tUeK
'kt ST

S-TRANS

For S-Conv(2), the proof is similar. O

6.2.7 Lemma [Equivalence]: The original and the intermediate subtyping systems are equivalent for well-

kinded types: if [F ST € K, then 'kp S<T iff TFg S<T.
Proof: By induction on derivations. O

For the remainder of Section 6, we will work exclusively within the reducing system.

6.3 Cut Elimination

We begin our analysis of the reducing system with a proof that R-TRANS is inessential: any derivation
ending with it can be rewritten as a derivation in the cut-free subsystem. To control the complexity of the
combinatorial analysis, we do not show this property for arbitrary uses of transitivity, but only for uses of
a restricted form: we consider only cut-terms in normal form and ask that the subderivations of the cut be
strong. The following section will show that these conditions can always be achieved.

With these restrictions, the proof of cut elimination is a straightforward extension of standard proofs for

the second-order fragment (c.f. [BCGS91, CG92, CMMS91, CP94]). We begin with one technical lemma.
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6.3.1 Lemma: Suppose ' F S ¢ Kgand ' ATy... T, ¢ Kp. If I' s S < ATy ...T,, then this
statement can be proved using a sequence of instances of R-PROMOTE preceded by a single instance of

R-REFL. ' '
Sp—br V. AT Ty ——r V

Sp—1 —j7 Ir Sn Thes Sn <ATL... T,

S—’!ﬁT TFSl F"CSSlSATlTn
Thres S<AT... T,

Proof: By induction on the given subtyping derivation. The R-REFL case is immediate; R-PROMOTE
makes straightforward use of the induction hypothesis. R-APP uses the induction hypothesis to construct a
derivation of the required shape for the left-hand sides of the application (I Fes S" < A Ty ...T,_;); it is
then easy to check that the right-hand side (7},) can be adjoined to all the steps in this derivation. O

6.3.2 Proposition [Cut elimination]: Suppose T F S ¢ Kgand T F T ¢ Kp and T - U ¢ Ky. If
I'Fes S<U and I' Fes U < T, where U is in normal form, then I' Feg S < T

Proof: By induction on the combined size of the given subderivations. Proceed by a case analysis on the
last rule in each.

Case: R-REFL on the left / anything on the right: S _’iBT U U _’iBT U

ThesS<U

!

To prove I' bes S <T', we can directly use the subderivations of I' bFes U < T, since .S —31 U.
Case: Anything on the left / R-REFL on the right:

Similar.
Case: Anything on the left / R-ToP on the right: T —yr Top(K) [hes U e K
Thes U<T
By the well-kindedness of subderivations, we obtain I' Fes S < T immediately by R-Top.
Case: R-PROMOTE on the left / anything on the right: S—br 10 S Thes S'<U
Thes S<U
By induction (using well-kindedness of subderivations) and R-PROMOTE.
Case: Anything on the left / R-PROMOTE on the right: U=AU ... U0 V Phes VLT
Thes U<T

By Lemma 6.3.1, we may assume that the derivation of I' F¢s S < U consists of a sequence of instances of
R-PROMOTE preceded by an instance of R-REFL:

Sp——or U AU..Un=U

Sn—1 —’!;31'5;1—1 Tr Sn IF'kes Sn <AUL...Un

S—’!ﬁTS/TF‘Sl F"CSS1§AU1Un
Thes S<AU...Un
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Replacing the final instance of R-REFL by an additional instance of R-PROMOTE, we obtain

Sp——r TtV ThesV<T
Sn_1 —>i3-r Sn—1 Tr Sn Ihes S <T

S ——br 8 1r S Thes S1<T
Phes S<T

as desired.

This takes care of 29 of the 49 cases. The remaining cases are listed in the following table.

Thes UST
| | R-ArrRow | R-ALL | R-ABs | R-Arp |
R-Top X X X X
R-ARROW N4 X X X
I'btes S<U
€87 = R-ALL X 4 X X
R-ABs X X N4 X
R-Arp X X X 4

The cases marked +/ are dealt with individually below. Those marked x can never occur, since the two rules
in question would place incompatible constraints on the form of U. (This can easily be checked by inspecting
the rules; the assumption that the given derivations are strong is needed in several places.)

Case R-ALL: g Lo AlI(A<UL)S: U = Al(ASUL) Uy U=AllASU) Uz T —'47 AUASU) T
I ASUL F Sy < U» IASUL R U, <T5
Fl—csSSU I‘l_CSUST

By the well-kindedness of subderivations, the induction hypothesis applies, giving:

S ——gr AU(ASTL) Sz T ——yr AUASUL) T
[, ASUL F S2 < T

Ihes S<T

Case R-ArRrROW, R-ABs:

Similar.

Case R-APP: S—lr S’V U=U'V U=U'V T—4T'V
Ihes 8 < U’ Dhes U < T’
Phes S<U PhesTHUKLT

By the well-kindedness of subderivations, the induction hypothesis applies, giving:

S—»iBT SV T—’!/STT/ V Ikes S'<T

ThesS<T
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6.4 Reduction and Subtyping

The main task of this subsection i1s to show that, for cut-free derivations, ST-reduction in types does not
interfere with the subtyping judgement.

The cornerstone of the argument is a substitution lemma saying (informally) that if S < T then [V/A]S <
[V/A]T. From this, we can show that the reduction of an outermost redex on either the left-hand or the
right-hand side of a subtyping statement preserves its derivability. As in the proof of Church-Rosser in
Section 3, we extend these properties to a proof of the preservation of subtyping under arbitrary multi-step
reduction by passing through an intermediate step where we show it for one-step parallel reduction.

In outline, then, the major steps are as follows:

reduction (6.4.9)

|

parallel reduction (6.4.8)

/ N

outer reduction (left) (6.4.7) outer reduction (right) (6.4.5)

N /

substitution (6.4.3)

We begin with two technical lemmas:

6.4.1 Lemma [Expansion preserves subtyping]: Suppose 'S e Kgand'FT e Ky. IfT'ke 8" < T’
with S —»fﬂ— S and T —»fﬂ— T’ then D¢ S < T.

Proof: By inspection of the rules, using the properties of kinding and reduction. O

6.4.2 Lemma [Maximality of Top]: Suppose I' b Top(K) S1...5, € Kgand T F T e Kp. If T ¢
Top(K) Sy...S, < T, then T —»fﬂ— Top(Kr).

Proof: Straightforward induction, using the properties of kinding and reduction. O

Now we come to the key result of this subsection: the preservation of subtyping under substitution.

6.4.3 Lemma [Substitution preserves subtyping]: Let I' = I'y, A<Top(K), I's and I" = I'y, [V/A]Ts.
Suppose that 'y Ve Kandthat T+ S e Kgand'H T e Kp. If ¢ S < T, then I b¢ [V/A]S < [V/A]T.

Proof: The cases other than R-PROMOTE are straightforward; we give the argument for R-ALL as an
6
example.

Case R-ALL: S ——%r AU(A'SU) 52 T ——%r AU(A'SU) T
[LASU be S, <To

TFeS<T

By Lemma 3.3(3), we have
[V/A]S —51 AU(A'<[V/AIU) [V/A]Ss
[V/AIT —5+ AU(A'[V/AIU) [V/A]Ts.

By the well-kinded subderivations lemma and the induction hypothesis, T, A’<[V/A)U k¢ [V/A]S: <
[V/A]T2. Now R-ALL applies as follows:

[V/A]S —%r AU(A'S[V/AIU) [V/A]S:  [V/AIT —%+ AU(A'S[V/AJU) [V/A]T:
', A'S[V/AU ke [V/A]Ss < [V/A]TS

I' ke [V/A]S < [V/A]T

%Note that the more general form of this property, in which I'(A4) is allowed to be any supertype of V', would be much more
difficult to prove. Here we obtain a straightforward proof by considering only the form that will actually be required later: in
the critical case — the one for R-PROMOTE — the fact that I'(A4) = Top(K) allows a direct argument using Lemma 6.4.2.
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Case R-PROMOTE: S _.gT S’ S U Pk ULT

TheS<T
The definition of promotion gives S’ = A’ U; ... U, for somen > 0, and U = F(A/) Ui...U,. Now there are
two subcases to consider:
Subcase: 4’ £ 4
By induction, I t¢ [V/A|(T(A") Uy ... Uy,) < [V/A]T. Now,

[V/A(D(A)) Uy ... Uy) = ([V/ANT(AD)) [V/AWU; ... [V/AU, = T'(A)) [V/AU; ... [V/A)U,,
and by Lemma 3.3(3), [V/A]S —%1 A" [V/AJU: .. .[V/A]U,. So, by the definition of promotion, we can
apply R-PROMOTE to obtain the desired result as follows:
[V/A)S — % A" [V/AU ... [V/AJU, T [V/AIT(A)) Us ... Un)
T Fe [V/IAT(A)) Uy ... Un) < [V/AIT
T’ ke [V/A]S < [V/A]T

Subcase: g’ = 4

Since T'(4) = Top(K), we have T' ¢ Top(K) Uy...U, < T. By the well-kinded subderivations
lemma (6.2.5), U is well kinded in T'. So by Lemma 6.4.2, we have T' —’ZT Top(K7). By Lemma 3.3,
also [V/A]T —»fﬂ— Top(K7). By the well-kindedness of subderivations, T' = S € Kp, so by the fact that
substitution preserves kinding (Lemma 4.11), rule R-Top

[T/AIT —%1 Top(Kr)  T'+[V/A]S € Kr
I' ke [V/A]S < [V/A]T

gives us the desired result. O

The next lemma introduces a technical property needed for the following one: a subtype of a Fun-type
is either a Fun-type itself or can be promoted to one in a finite number of steps.

6.4.4 Lemma [Fun-right]: Suppose 'F S e KgandT'HT e Kp. If T' k¢ S < Fun(A:K)T, then this
statement can be derived by a sequence of instances of R-PROMOTE preceded by one instance of R-FUN:
Sh —»’g-r Fun(A:K)S),
Fun(A:K)T ——%1 Fun(A:K)T"
T, A< Top(K) Fe S < T
Spot —%7 Shoy 1 Sn The S < Fun(A:K)T

S ——%r 5" 11 Sy I'be S < Fun(A:K)T

I'be S < Fun(A:K)T

Proof: By induction on a derivation of T' ¢ S < Fun(A:K)T. By the form of the right-hand side and the
fact that the derivation is cut free, there are three cases to consider. (Note, in passing, that this is one point
where we crucially depend on the absence of cut: this argument fails on arbitrary reducing derivations.)

Case R-REFL: S—51 U Fun(A:K)T —51 U

I'be S < Fun(A:K)T

By definition of —’ZT , the type U must be of the form Fun(A:K)T", with T' —>g T'. So, by R-ABS and

R-REFL:
S ——% Fun(A:K)T" Fun(A:K)T ——%¢ Fun(A:K)T"
T, A< Top(K)Fe T' < T’

I'be S < Fun(A:K)T
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Case R-ABs:

Immediate.
Case R-PROMOTE: S——%r 8 10 U T'Fe U < Fun(A:K)T
I'ke § < Fun(A:K)T
By the well-kinded subderivations lemma, the induction hypothesis, and R-PROMOTE. O

6.4.5 Lemma [Outer reduction on the right]: Suppose I'F S e Kg and T'F (Fun(A:K)T) U € Kp. If
Tke S < (Fun(A:K)T) U, then T'F¢ S < [U/A]T.

Proof: By induction on a proof of T ¢ S < (Fun(A:K)T) U. The only difficult case is R-APP, which
we give in full below. R-REFL uses the Church-Rosser property. R-PROMOTE uses only the induction
hypothesis. All the other cases follow a common pattern: we show just R-ALL.
Case R-ALL: S ——5r AUA'SV) S, (FPun(A:K)T) U —%r AUA'SV) T
[, AV ke S2 < Ty
The S < (Fun(A:K)T) U

By the outermost reduction corollary (3.5), [U/A]T —’ZT Al(A’<V)Ty. The result follows immediately by
R-ALL.

Case R-APp:

There are two cases to consider, depending on whether the redex (Fun(A:K)T) U is itself contracted at
some point in the reduction sequence (Fun(A:K)T) U —’ZT e
Subcase:  (Pun(A:K) T) U —%¢ (Fun(A:K)T') U — g1 [U'JA]T —5: T3 V

S—5 WV e W<Th

[ he S < (Fun(A:K)T) U

Since [U/A]T —%1 [U'/A]T' —%+ Ty V (by Lemma 3.3(3)), the result follows immediately from R-App.
Subcase: g — WU (Fun(A:K) T) U —51 (Fun(A:K)T") U’

Dhe W < Fun(A:K)T"

[ he S < (Fun(A:K)T) U

Here we cannot directly use the subderivation of I' k¢ W < Fun(A:K)T". Intuitively, we must “look inside”
this derivation to find an inner subderivation in which 7" appears by itself on the right-hand side, and use
this to rebuild a subderivation ending with [U/A]T on the right. (More precisely, the inner subderivation
will have T" on the right, where 7" —’ZT T".) This we accomplish as follows.

First, we use the Fun-right lemma (6.4.4) to obtain a derivation of I' F¢ W < Fun(A:K)T" in a very
rigid form: a sequence of n instances of R-PROMOTE ending with an instance of R-ABs:

W, —»’g-r Fun(A:K)X
Fun(A:K)T" —%¢ Fun(A:K)T"
T, A< Top(K) Fe X < T"

Wn-1 —>}§-|— Tr W, ke W, < Fun(A:K)T'

W —5r 0 Wi I'ke Wy < Fun(A:K)T'
I'ke W < Fun(A:K)T'

From the instance of R-ABs at the top, we obtain ' k¢ [U'/A]X < [U'/A]T” by the substitution
lemma (6.4.3). (To check that the lemma applies, we need the following observations: (1) I' - U’ € K
by the assumption T' F (Pun(A:K)T)U € Krp, the fact that U —’ZT U’, the generation lemma for types,
and subject reduction. (2) X and 7" are both well-kinded in T', A<Top(K), by the well-kindedness of
subderivations.)

At this point, we have accomplished a substitution operation, but not quite the one we need. We must
now work backwards to the desired result.
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From I' ¢ [U'/A]X < [U'/A]T” and the fact that [U/A]T —%+ [U'/A]T” (Lemma 3.3), we use the
expansion lemma (6.4.1) to obtain I' k¢ [U'/A]X < [U/A]T, after remarking that [U'/A]X and [U/A]T are
well-kinded by subject reduction. This gives us what we need on the right-hand side; now we turn to fixing
the left-hand side.

W, U is well-kinded and W, U" —%+ (Fun(A:K) X) U' —37 [U'/A]X, so by the expansion lemma,
['te W, U < [UJA]T. We use this as the starting point for a new sequence of R-PROMOTE steps where an
application to U’ has been added to each intermediate term:

Wit U'—%1 10 W U Tke Wy, U' < [UJAIT

S i W U —%50 10 Wy U I'ke Wy U' < [UJAIT
I'ke S < [UJAIT

The conclusion of this derivation is the desired statement. O
We proceed for the left-hand side of < in the same way as we have done for the righthand side.

6.4.6 Lemma [Fun-left]: Suppose T'+ Fun(A:K)S e Kgand T e Kp. IfT' k¢ Fun(A:K)S < T, then
one of the following cases holds:

1. T—»Zﬂ— Top(Kr); or
2. Fun(A:K)S —’ZT Fun(A:K)S" and T —’ZT Fun(A:K)T', with T'; A<Top(K) ke 5" <T'.

Proof: By inspection of the rules. By the form of the left-hand side of the statement and the fact that we
consider only cut-free derivations, there are only three cases to consider:

Case R-REFL: Fun(A:K)S —%: U T —5: U

ke Fun(A:K)S < T

U must be of the form Fun(A:K)S’ where S —»Zﬂ— S’ so we can conclude:

S’ —5r S’ S’ — 5 S’

I, A< Top(K) ke §' < 8

Case R-Topr, R-ABs:
By case 1 and 2, respectively. O

6.4.7 Lemma [Outer reduction on the left]: Suppose I' - (Fun(A:K)S) U € Kg and ' T € Kp. If
Tke (Fun(A:K)S) U < T, then T' k¢ [U/A]S < T.

Proof: By induction. Again, R-App is the only difficult case. If the reduction starting from
(Fun(A:K)S) U reduces the outer redex at some point, then this case proceeds as in the analogous case on

the right-hand side (6.4.5). Otherwise, we have:

(Fun(A:K) S) U —%1 (Fun(A:K)S") U’ T —35t WU
T e Fun(A:K)S' < W

ke (Fun(A:K)S) U <T

By the well-kindedness of subderivations, both Fun(A:K) S" and W are well kinded. By the Fun-left lemma,
there are two cases to consider:

1. We are given W —’ZT Top(K—Kr). Since T' - [U/A]S € Kr (by subject reduction and unique-
ness of kinding) and T —’ETW Vv —»fﬂ— Top(K—Kr) V —g7 Top(Kr), we can conclude
I'te [U/A]S < T by R-TopP.
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2. We are given
Fun(A:K) S’ —>g Fun (A:K) 5"
%4 —’ZT Fun (A:K)Y
[, A<Top(K) k¢ S” <.

Both S” and Y are well kinded in I, A<Top(K) (by well-kindedness of subderivations, subject reduc-
tion, and the generation lemma), so I' ¢ [U’/A]S" < [U’/A]Y by the substitution lemma (6.4.3).

As in the analogous case on the right, we have now accomplished a substitution operation, but not
quite the one we need. We must again work backwards to the desired result.

From T k¢ [U'/A]S" < [U'/A]Y and the fact that [U/A]S ——%+ [U'/A]S” (Lemma 3.3), we can
use the expansion lemma to obtain I' k¢ [U/A]S < [U'/A]Y. (Note that [U/A]S is well kinded
by subject reduction and [U’/A]Y by subject reduction and the generation lemma.) Then we have
T —51 WV —51 (Fun (A:K)Y) U —p7 [U'/A]Y, which yields the desired result by the ex-
pansion lemma. O

Using the two outer reduction lemmas, we can do one reduction step at the outside of a type while
preserving the subtyping judgement. The next step is to generalize this to an arbitrary reduction. For this
purpose, we choose the relation —»57 .

6.4.8 Proposition [Parallel reduction preserves subtyping]: Suppose 'S¢ Kg and T+ T ¢ Kp.
1. If T "c S S T with S 3T S/ and ' 3T F/, then F/ "c S/ S T.
2. If T "c S S T with T—>>@T T/ and I’ 3T F/, then F/ "c S S T/.
arallel reduction of contexts, written I' —»g1 1", 1s the pointwise extension of parallel reduction of types.
Parallel reducti f i r @F/'h i i i f llel reducti f

Proof: By simultaneousinduction on derivations. The only difficult cases are R-APP and R-PrROMOTE. We
show only the arguments for part (1), where S —s>g7 S’; part (2) is similar except in the case R-PROMOTE,
which is easier.

Case R-REFL: S—5r U T —3U

The S<T

By Lemma 3.8 there is a type U’ with U —s»g U’ and S’ —»fﬂ— U’ as well as T —»fﬂ— U’. The result
follows by R-REFL.

Case R-Top: T— % Top(K') T+ Sek’
TheS<T
By subject reduction and uniqueness of kinding we have K' = Kz. So by subject reduction, the well-
kindedness of subderivations, and Lemma 4.12, the result follows by R-Top.
Case R-ARROw: S ——kr 515, T —5+ Ti—Ts
TheTi <SS  Tred <D
TheS<T

By Lemma 3.8 and the definition of parallel reduction (3.1), there are types S| and S5 with S; —sg7 S|
and Sy —sgT Sg and:
S — 8

8T

*|BT *|BT

Si1—8 —> Sy —S55

Since the S; and 7; are well-kinded, the result follows by induction.
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Case R-ALL: S ——ir AUASD)YW T ——p AU(ASU)W
D, ASU bc V< W

The ST

By Lemma 3.8 and the definition of parallel reduction (3.1), there are types U’ and V' with U —s»g7 U’

and V —51 V' and:

S — . 5

BT
*|BT *|BT
All(ASU)V —r All(ASUYV!
Since the V' and W are well-kinded in I'; ASU, the result follows by induction:

S ——kr AN(ASUY' T ——%1 AU(ASUYW
I, ASU e Vi<W

T'te S’ <T
Case R-ALL, R-ABs:
Similar.
Case R-PROMOTE: S _.gT w Wir U TrUKLT
TheS<T

By the definition of the promotion relation, we have W = A S;...S, r T(A) St ..

3.8 and the definition of —»57 , there are Si .. .S;l with S; —57 SZ/» and:

S s’

8T

*|BT *| BT

A S Sy — ASy...S)

Let U' = T'(A) S} ...S;,. By well-kindedness of subderivations and subject reduction,

.S, = U. By Lemma

U and U’ are well kin-

ded. The result follows by induction, the fact that I'(4) Sy ...S, —s=g1 ['(4) S} ...S),, and R-PROMOTE.

Case R-App: S——5UW T—ht VW It ULV

Tke S<T
By Lemma 3.8, there 1s some X such that:

S — 8
*|BT *|BT

UW — X
8T

By subject reduction, ' U W e Kgand ' -V W € Kp. By the generation lemma, this implies that U and
V are well kinded. Continue by cases on the form of U. (The interesting one is when U is a type operator.)
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Subcase: [ = A or U=U; U,
By the definition of parallel reduction, X must have the form U’ W' with U —s»g7 U’ and W —s»g1 W'
By subject reduction, U’ is well kinded. The result then follows by induction and R-ApP:

S st U W Teslie VW ——5 VW T ke U <V

I"FeS'<T

Subcase: 7 = Top(K")
S—hr Top(K'Y W T —be VW
D he Top(K'y <V
TheS<T
By Lemma 6.4.2, V —»fﬂ— Top(K'). Since T has kind Kr, so does Top(K') W, and, by Lemma 4.10,
T —»fﬂ— Top(K"Y W —g7 Top(Kr). The result then follows by R-ToP (using subject reduction, well-
kindedness of subderivations, and lemma 4.12).

T —%: Top(Kr) T’k S e Ky

I"FeS'<T

Subcase: {/ = Fun(A:K)U;
We have (Fun(A:K)U1) W —s=g1 X. By the definition of parallel reduction, X can have one of two forms:
Subsubcase: x — (Fun(A:K)U{) W'
Fun(A:K)Uy —s>s7 Fun(A:K)U]
W —>s1 w'
The result follows by induction (using subject reduction and generation for the kinding hypothesis) and

R-Arp:
S ——hr (Fun(AK)U) W' T ——5 VW —52 VW T ke Fun(A:K)U{ <V

I"FeS'<T

Subsubcase: x = [W'/A]U]
U —sps7 U]
w —> 5T w'
Then”

I'Fe Fun(A:K)U; <V

' be Fun(A:K)U] <V

' be Fun(A:K) U, W <V W/
I be (W/AU; <V W

I'e §' < T,

= (by induction)

= (by R-APP)

= (by outer reduction on the left (6.4.7))

= (by the expansion lemma (6.4.1))

using subject reduction and the generation lemma for the required kinding hypotheses in the first step and
subject reduction in the third and fourth steps. O

6.4.9 Corollary [Reduction preserves subtyping]: Suppose I' v S ¢ Kg and ' v T ¢ Kp. If
S —»fﬂ— S" and T—»Zﬂ— T withT ke S<T,thenT k¢ &' < T,

"Here we can be more precise about why we choose parallel reduction to carry out this proof. A “commutation lemma”
similar to the Church-Rosser property — the existence of a type S; for S — 5T S" and S —»:g.r S where S’ —V/; S
and S} —»>g7 S{ (lemma 3.8) — is crucial for the induction. This immediately excludes the one-step reduction relation
— 37 . Ordinary many-step reduction, _’:{;T , is another obvious choice; but it cannot be used in the case of R-APP,
since here we need to know the form of the reduct of the application, which cannot be recovered from _’:{;T . Other, even
more deterministic, reduction strategies such as normalizing reduction, leftmost-outermost reduction, or complete development
might work here, but these all seem to fail in the R-PROMOTE case. There, we have S _’:{;T AS ... .S IrT(A4) S1...5,
where I'(A4) S1 can contain redices not present in A S;. For the induction to work in this case, we need to be able to ignore
these new redices when reducing further from I'(4) S; ... S, which we would not be not free to do if we were using a more
deterministic reduction strategy.
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Proof: If we can do one —s»g7 step, we can do many. So the result follows by the observation (3.2)
that the reflexive, transitive closure of parallel reduction coincides with ordinary many-step reduction. [

6.4.10 Corollary [Cut-free derivations can be strengthened]: Suppose 'S e Kgand '+ T ¢ Krp.
Ifrl_c SST, then F"cg SST

Proof: By induction. O

6.5 Completeness of Strong, Cut-free Subtyping

6.5.1 Theorem: Suppose 'S e Kgand I'-T e Kp. f 'k S <7, then I'tes S <T.

Proof: By induction on derivations. In all the cases except R-TRANS, we argue as follows: By the induction
hypothesis (using the well-kindedness of subderivations), we may assume that all the subtyping premises are
proved by cut-free derivations. Since the conclusion is not a cut, the whole derivation is cut-free and can be

strengthened using Corollary 6.4.10.
Now, suppose the final rule is R-TRANS:

Thtr S<U TrULT Uek
Thr S<T

By induction, we may assume that the derivations of the premises are cut-free. Moreover, by Corollary 6.4.9,
we can put U in normal form: T' ¢ S < U' and T ¢ U' < T. Corollary 6.4.10 allows these derivations to
be strengthened: T Feg S < U'and T Fes U' < T'. The result now follows from Proposition 6.3.2. O

6.6 The Algorithm

We now show that the algorithm we developed informally in Section 6.1 is indeed a decision procedure for
the subtype relation.

The first thing we must verify 1s that this recursively defined procedure is really an algorithm — that it
halts in finite time on all well-kinded inputs.

6.6.1 Proposition [Termination of the algorithm]: Suppose ' S € Kg and '+ T € Kp. Then check
halts when presented with I' .S < T as input.

Proof: We use the fact that the TI-reduction defined in Section 5 is strongly normalizing to define a
simple termination ordering for the algorithm.

First, note that the recursive call in the third clause (the clause for promotion) is guaranteed to halt on
the next step if U, the promotion of S, reduces to Top(K) for some K. Thus, we need only consider the
possibility of nontermination in the case where the promotion of S is different from Top — i.e., where the
variable being promoted is a ['-redex.

Let the rank of a well-kinded type V' in a context T' be the pair (r, s), where r is the maximum length
of a fTT-reduction sequence starting from V' and s is the number of characters in V. Let the rank of
a well-kinded subtyping statement I' F S < T the pairwise sum of the ranks of S and 7. Order ranks
lexicographically. Then the rank of every recursive call of check in its definition is smaller than the rank of
the input (using the observation that we need only consider “interesting promotions” in the third clause).

O

The algorithm check does not include a case corresponding to the pointwise application rule R-App. But
this rule can easily be shown to be inessential in strong, cut-free derivations.

6.6.2 Lemma [Eliminability of R-APP]: Suppose TF S e Kgand TF T € Kp. If T Fes S < T, then
this statement can also be proved by a (strong, cut-free) derivation with no instances of R-APp.

Proof: Straightforward induction on derivations, using Lemma 6.3.1 for the R-APP case. In effect, each
instance of the application rule is replaced by a sequence of instances of the promotion rule. O
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Finally, we verify that the algorithm defines the same relation as the original subtyping rules.

6.6.3 Theorem: The algorithm check is sound and complete for the original subtyping relation (on well-
kinded types).

Proof: On well-kinded inputs, the original subtyping relation is equivalent to the reducing subtyping
relation (6.2.7) restricted to strong, cut-free derivations (6.5.1) with no uses of R-APP (6.6.2). Now, each
of the rules in this restricted system begins by normalizing both sides of the conclusion. Nothing changes
if we present the rules in a form where the conclusion is assumed to be in normal form, adding a single
normalization step at the very end of the derivation and inserting a re-normalizing step at each premise
that is not guaranteed to be in normal form when the conclusion is; indeed, there is just one of these: the
last premise of R-PROMOTE. We may now observe that proof search for derivations in the reformulated
system is an essentially linear process: any given subtyping statement can match the conclusion of only one
subtyping rule for which further search may be required. That is, a given statement may match R-REFL
and/or R-Top and/or one of the remaining rules R-PROMOTE, R-ARROW, R-ALL, and R-APP. Since the
premises of R-REFL and R-ToP can be checked directly, the applicability of these two rules can be tested
first. Using this strategy, no backtracking is required. Moreover, all the metavariables appearing in the
premises the rules may be calculated from the conclusion: no guessing is required. The algorithm check
implements this strategy. O

7 Typing

In Section 6, we derived an algorithm for checking the subtyping relation by controlling the non-syntax-
directed rules of transitivity and conversion. In this section, we carry out an analogous exercise for the
typing relation, eliminating the rule of subsumption from the system defined in Section 2.5 and accounting
for its effects by extending some of the other rules.

Compared to what we had to do for subtyping, this is actually a rather simple task. Indeed, the resulting
algorithm strongly resembles standard algorithms for typechecking F'<. The only essential difference comes
from the fact that the promotion relation here must deal with application in addition to the promotion of
type variables. As usual, we obtain the algorithm by analyzing the shapes of minimal types.

First, we check that the typing relation guarantees well-kindedness of derivable statements:

7.1 Lemma: f ' -¢ e 7T, then ' T € x.

The minimal type of an expression is a type smaller or equal to all the other types of the expression. For
the algorithm, we also need to talk about a term’s minimal types of certain specific shapes.

7.2 Definition [Minimal, arrow-minimal, and All-minimal types]:

1. A type S is minimal for a term s in a context I' if I' = s € S and, for all 7" with ' F s € T', we have
res<rtr.

2. A type S1—S53 is arrow-minimeal for s in ' if ' b s € S;—55 and, for all arrow-types 77 —7T5 with
I'kFse T1—>T2, we have I' Sl—>52 S T1—>T2.

3. A type AU(A<51)Ss is All-minimalfor sin TifT' F s € All(A<S1)Ss and, for all All-types AU(A<Ty) T
with T'F s € AII(A<TY) T, we have T'F All(A<Sy) S2 < AU(ALTY) Ts.

7.3 Definition: Let T be well kinded in I'. The promote-normal form of T in T is

- 12U T pU;or
r—=—1r if T' cannot be promoted.

We next show how All-minimal and arrow-minimal types of a term can be calculated from its minimal
type.
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7.4 Lemma:

1. Suppose S and 71 —T5 are well kinded. If T' = S < 71 —T5, then T‘F S =5—=5 and I' F §1—=55 <
T1—>T2.

2. Suppose S and Al(A<Ty) Ty are well kinded. If T'+ S < AU(A<T)) T, then 1+ S= All(A<S1) Sz and
T'F AUALS)) So < AUALSTY) Ts.

Proof:

1. On well-kinded inputs, the original subtyping relation is equivalent to the reducing subtyping relation
(6.2.7) restricted to strong, cut-free derivations (6.5.1). Proceed by induction on a derivation of T' Fe¢g
S S T1 —>T2.

2. Similar. O
7.5 Corollary:

1. If S' is minimal for s in ' and T‘F S has the form S;— S5, then S;—55 is arrow-minimal for s in I'.

2. If S is minimal for s in ' and T‘F S has the form Al[(A<Sy) Ss, then Al(A<Sy) S2 is All-minimal for s
inT.

The typing algorithm can now be obtained directly from the original typing relation by removing
T-SUBSUMPTION — in effect, restricting the set of types derivable for a well-typed term to one of its minimal
types — and generalizing the application and type application rules to compensate for this restriction in
their premises. We use 4 to distinguish the typing algorithm from the original typing relation.

7.6 Definition [Typechecking algorithm]:

F I ok

A-
I' gz e T(a) (A-Var)
et F T
LA C € (A-ArrROW-I)
I'Fa fun@Ti)e € Thi—T>
10 S =T1—T
Ik S F'FateT re7T<T;
40 € A€ = ! (A-ArRROW-E)
r "A st € T2
I, A<TY T
’ L T4 €€ (A-ALL-T)
r "A fun(ASTl)e € A”(ASTl)TQ
10T = Al(A<STY) Ty
F'FateT '=5eK r=s<m
(A-ALL-E)

T FatS e [S/AT

The termination of this algorithm is straightforward, given the decidability of kinding, the termination of
the subroutine for checking subtyping, and the strong normalization of T I'-reduction, which guarantees
that 1% 7 can be calculated in finite time whenever 7' is well kinded.

7.7 Fact:
la. If T ok, then T'(z) is a minimal type of z in T.
1b. If / ' ok, then x has no type in I'.
2a. If T3 is a minimal type of e in T', #:7}, then 77 — T3 is a minimal type of fun (@:T1)e in T.

2b. If e has no type in T', x:T1, then fun (z:71)e has no type in T.
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3a. If S is a minimal type for s in ' and T'F S =11 — T5 and T is aminimal type for £ in ' and I' = T" < 77,
then 75 is a minimal type for s £ in I,

3b. If s or ¢t has no type in ', or if S is a minimal type for s in [' and 7" is a minimal type for ¢ in T but
T}S#TlﬁTz,orifT!FS:TlﬁTz but 't/ 7" < 71, then s ¢ has no type in I

da. If T is a minimal type of e in T, A<T}, then Al(A<T})T5 is a minimal type of fun (A<Ti)e in T.
4b. If e has no type in I, A<T}, then fun (A<T))e has no type in T.

5a. If S is a minimal type for s in T and |} S = AllA<T)) To and T+ U < T, then [U/A]T5 is a minimal
type for s U in I'.

5b. If s has no type in I' or if S is a minimal type for s in I' but T‘F S # AUMALT) T, or if T‘F S =
ANALT)Ts but T /U < Ty, then s U has no type in T.

7.8 Theorem [Soundness and completeness]:
1. fT'FgqteT then'FT exand THteT.
2. fT'FseT then 'FT e xand I' -4 s € 5, where S is minimal for s in I'.

Proof: By induction, using the previous facts. O
This brings us to our final result:
7.9 Corollary [Decidability of F'Z typing]: The original typing relation I' - ¢ € 7" is decidable.

Proof: To check whether a statement I' - ¢ € 7" is derivable, first check that 7" is well kinded, then calculate
the minimal type S of ¢ in I using the algorithm above and use the subtyping algorithm check to verify that
res<T. O
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