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The core calculus underlying all of these models is an extension of Girard's higher-order polymorphic�-calculus, System F !, with subtyping. Many of the ideas behind this system, called F !� (\F-omega-sub"), are due to Cardelli, particularly to his 1988 paper, \Structural Subtyping and the Notion of PowerType" [Car88]; the extension of the subtype relation to type operators was developed by Cardelli andMitchell [Car90, Mit90, BM92]. An early semantic model was given by Cardelli and Longo [CL91] usingpartial equivalence relations. Compagnoni and Pierce [CP93] gave a model for an extension of F !� withintersection types. A more powerful model including recursive types was given by Bruce and Mitchell [BM92].The second order fragment of F !� , called F�, has been studied in detail, yielding both positive [Mar88,BL90, BCGS91, Ghe90, CG92, CG91, CMMS91, Ghe93b] and some surprising negative results [Ghe93a,Ghe93b, GP92, Pie92] including undecidability. Decidable variants of F� have been proposed [CW85, KS92,CP94] (our formulation of F !� is based on [CW85]). But for the full !-order calculus, next to nothing isknown.2The analysis of F !� is signi�cantly more challenging than that of F�, principally because F !� introducesa rule of conversion guaranteeing that �-convertible types occupy the same equivalence class in the subtyperelation. This rule interacts with the rule of transitivity, requiring a substantial generalization of the standardcut-elimination argument | a key step in the proof of decidability, where uses of transitivity are restrictedto a well-behaved form. Another signi�cant di�culty is showing the termination of the �nal algorithm; indecidable variants on F�, this is fairly straightforward; here, the proof depends on the strong normalizationof an unusual notion of reduction on types, in which type variables may be replaced by their upper boundsfrom the context.Our goal is to establish fundamental meta-theoretic results for F !� , leading up to sound and completealgorithms for checking the subtyping and typing relations. We begin in Section 2 by introducing F !� .Sections 3, 4, and 5 develop preliminary results needed in Section 6, the core of the paper, where thedecidability of subtyping is proved. Section 7 extends the analysis to the decidability of typing.In the technical development, we sometimes elide routine proofs. Those not shown are straightforwardwhen performed in the order given.2 De�nition of F !�Girard's System F ! [Gir72] is a typed �-calculus with higher-order polymorphism. Besides the term ab-straction (fun (x:T ) t) and application (f a) of the simply typed �-calculus [Chu40] and the type abstraction(fun (A:K) t) and application (t [T ]) of the second-order polymorphic �-calculus [Gir72, Rey74], it includesthe possibility of abstraction (Fun (A:K)T ) and application (T U ) within type expressions. To guaranteethe well-formedness of applications within types, an extra level of kinds is introduced: the kind ? classi�esordinary types (which are inhabited by terms), while kinds of the form K1!K2 classify type operators:functions mapping types of kind K1 to types of kind K2. The basic typing judgement for F !� is � ` t 2 T ,read \term t has type T in context �," where � records the type of each free term variable x and the kindof each free type variable A.To extend F ! with subtyping, we introduce an ordering S � T on the elements of each kind K. Thedeclaration of each type variableA in � is extended with an upper bound, written A�T , which constrains A torange only over subtypes of T in the appropriate kind. To allow new constraints of this form to be introduced2Compagnoni [Com94] has independently achieved some results closely related to ours. After early joint work on theformulationof F !� (c.f. [CP93]), vagaries of geography led our e�orts onto separate, but parallel, tracks. Leaving aside inessentialtechnical di�erences| our \reducing" system in Section 6.2 performs reduction in the premises of the rules, where her analogous\normalizing system" assumes that the conclusion is already normalized; she proves Church-Rosser by marking redices, whilewe adapt Tait and Martin-L�of's method of parallel reduction; etc. | the two proofs are broadly similar in structure. Themajor di�erences are as follows. 1) Compagnoni's results are for a more powerful system, F !̂ , that includes intersection typesin addition to the machinery of F !� . 2) Our development addresses the decidability of typechecking in addition to subtyping.3) Compagnoni's version of the crucial substitution lemma (our Lemma 6.4.3) is phrased more cleverly and its proof requiresa less intricate analysis. 4) Our proof of the termination of the subtyping algorithm is based on showing strong normalizationfor an extended notion of reduction in which type variables may be replaced by their upper bounds from the context; theargument is rather di�cult, but introduces techniques that may be useful in a broader ranger of calculi including, for example,type abbreviations. Compagnoni uses a more direct term rewriting technique.2



into the context, we extend the universal quanti�er, All (A:K)U , to a bounded quanti�er All (A�T )U .3To ensure that the new system can still type all the terms of F !, we assume that the subtype relationin every kind K has a maximal element Top(K). The assumption A�Top(K) replaces A:K.For kinds of the form K1!K2, the subtype relation is just the pointwise extension of subtyping for K2:a function S 2 K1!K2 is smaller than a function T 2 K1!K2 if S U � T U for every U 2 K1.4At the base kind ?, the subtype relation also includes rules for the type constructors T1!T2 andAll (A�T1)T2. The rule for arrow types embodies the familiar contravariant/covariant inclusion of func-tion spaces: � ` T1 � S1 � ` S2 � T2� ` S1!S2 � T1!T2Intuitively, a function f whose results inhabit S2 whenever its arguments inhabit S1 may safely be substitutedfor a function in T1!T2, provided that any element of T1 that might be given as an argument to f can safelybe used as an element of S1 and that f 's result, an element of S2, can be used in place of the expected T2.The subtyping rule for bounded quanti�ers is equally simple:�; A�U ` S2 � T2� ` All (A�U )S2 � All (A�U )T2That is, a polymorphic function f 2 All (A�U )S2 can be used in a context that expects an element ofAll (A�U )T2, provided that, for each legal argument type T , the value of f at T can safely be used as anelement of T2.It would be semantically sensible to re�ne the right-hand premise of this rule so that it only requiresS2 � T2 when A is constrained to the common part of their domain:� ` T1 � S1 �; A�T1 ` S2 � T2� ` All (A�S1)S2 � All (A�T1)T2This, indeed, is the form in which the rule appears in most presentations of second-order bounded quanti�c-ation (c.f. [CP94] for a survey). However, the extra exibility o�ered by this re�nement does not seem to beuseful in practice and it is very costly: this rule is responsible for the failure of a number of important proof-theoretic properties in standard formulations of F� [Ghe93a, Ghe93b, GP92, Pie92], including decidabilityof subtyping.Another variant of the quanti�er subtyping rule allows the bounds to di�er but requires that the bodiesbe in the subtype relation under the trivial assumption on the bound variable:� ` T1 � S1 �; A�Top(K) ` S2 � T2� ` All (A�S1)S2 � All (A�T1)T2(where K is the kind of S1 and T1). Indeed, an earlier draft of this paper used this rule instead of the equal-bounds variant. All of the results about subtyping hold for both systems (with nearly identical proofs).But the algorithm for synthesizing minimal types works only for the equal-bounds rule, and not (as weerroneously claimed) for the top-rule. Indeed, the top-rule actually destroys the minimal typing property!For example, in the context� = Y �Top(?)the terme = fun (X�Y ) fun (x:X) xhas both of the typesAll (X�Y )X ! XAll (X�Y )X ! Y;but these types are incomparable (using the top-rule) and have no common lower bound. We are endebtedto Giorgio Ghelli for this example.3We could also extend type operators Fun (A:K)U to bounded operatorsFun (A�T )U , but it is not clear that this re�nementwould be useful in practice, and it would complicate the metatheory, since we would then need to introduce a subkinding relation.4Again, richer de�nitions of operator subtyping are possible: for example, we might allow monotone subtyping, antimonotonesubtyping, etc. [Car90]. This extension does seem useful in practice (e.g. [HP94]), but its algorithmic implications are unclear.3



2.1 SyntaxThe kinds, types, terms, and contexts of F !� are de�ned by the following abstract grammar:K ::= ? kind of typesj K!K kind of type operatorsT ::= A type variablej Fun (A:K) T type operatorj T T application of a type operatorj Top(K) maximal typej T!T function typej All (A�T )T universally quanti�ed typet ::= x variablej fun (x:T ) t abstractionj t t applicationj fun (A�T ) t type abstractionj t T type application� ::= � empty contextj �; x:T variable bindingj �; A�T type variable binding with boundThe inference rules that follow de�ne sets of derivable statements of the following forms:` � ok � is a well-formed context� ` T 2 K type T has kind K in context �� ` S � T S is a subtype of T in �� ` t 2 T term t has type T in �.Terms, types, contexts, and statements that di�er only in the names of bound variables are regarded asidentical.2.2 Contexts and KindingWell-formed contexts are constructed from the empty context by adding well-kinded type and term variabledeclarations. ` � ok (C-Empty)� ` T 2 K A =2 dom(�)` �; A�T ok (C-TVar)� ` T 2 ? x =2 dom(�)` �; x:T ok (C-Var)Since the side conditions guarantee that the bindings in well-formed contexts are always for distinct variables,we often consider them as �nite functions from variables to types; for example, the upper bound of A in �is written �(A). We write dom(�) for the set of term and type variables bound by �. If � is a pre�x of �0,we say that �0 is an extension of �.The de�nition of the kinding relation is standard. Type variables have the same kind as their upperbounds; abstraction and application provide introduction and elimination forms for arrow-kinds; Top(K)has kind K; arrow- and All-types are well-kinded if their components are. We maintain the invariant thatkinding statements are only derivable in well-formed contexts.4



� ` �(A) 2 K� ` A 2 K (K-TVar)�; A�Top(K1) ` T 2 K2� ` Fun (A:K1)T 2 K1!K2 (K-Arrow-I)� ` S 2 K1!K2 � ` T 2 K1� ` S T 2 K2 (K-Arrow-E)` � ok� ` Top(K) 2 K (K-Top)� ` T1 2 ? � ` T2 2 ?� ` T1!T2 2 ? (K-Arrow)�; A�T1 ` T2 2 ?� ` All (A�T1)T2 2 ? (K-All)(The kinding and context well-formedness judgements are mutually recursive, but the two main judgementforms | subtyping and typing | only depend non-recursively on other judgements.)2.3 ConversionThe presence of abstractions and applications in type expressions leads us to consider conversion withintypes. For technical convenience, we use a slight extension of the standard �-conversion relation: in ad-dition to reductions of the usual form (Fun (A:K1)T ) U -� [U=A]T we allow reductions of the formTop(K1!K2) T ->Top(K2), which relate the maximal elements of di�erent kinds. We could achieve thesame e�ect by extending the rule S-Top below, but this way seems cleaner.2.3.1 De�nition [�>-reduction]: One-step �>-reduction is the smallest relation on types closed underthe following rules: (>)Top(K1!K2) S -�> Top(K2) (�)(Fun(A:K)S) T -�> [T=A]SS -�> S0S T -�> S0 T T -�> T 0S T -�> S T 0S -�> S0(S!T ) -�> (S0!T ) T -�> T 0(S!T ) -�> (S!T 0)S -�> S0All(A�S)T -�> All(A�S0)T T -�> T 0All(A�S)T -�> All(A�S)T 0S -�> S0Fun(A:K)S -�> Fun(A:K)S0The many-step �>-reduction relation -?�> is the reexive and transitive closure of one-step reduction;=�> is its reexive, transitive, and symmetric closure. When T has a normal form (it will necessarily beunique), we denote it by T !. Reduction to �>-normal form is written -!�> .5



2.4 SubtypingThe F !� subtyping relation � ` S � T is a straightforward extension of the subtyping relation of F� [CW85,CG92, CP94]. We start by stipulating that �>-convertible types always lie in the same equivalence classin the subtype ordering (S-Conv), and that the subtype relation at every kind is reexive (R-Refl) andtransitive (R-Trans). Type assumptions from the context may be used as axioms (S-TVar). Top(K)is maximal in the ordering for kind K (S-Top). Type operators (S-Abs) and applications (S-App) aresubtyped pointwise. Arrow- and All-types have the rules discussed above (S-Arrow and S-All).In several places in the de�nition, we add premises to ensure that a proper kinding discipline is respected(e.g. S � Top(K) only when S 2 K, etc.). But for readability, these are kept to a minimum: we maintain theinvariant that whenever the conclusion of a subtyping judgement is well-kinded, the types on the right- andleft-hand sides of the � will have the same kind and all of the subderivations will be similarly well behaved.� ` S � U � ` U 2 K U =�> T� ` S � T (S-Conv)� ` T � T (S-Refl)� ` S � U � ` U � T � ` U 2 K� ` S � T (S-Trans)� ` A � �(A) (S-TVar)� ` S 2 K� ` S � Top(K) (S-Top)�; A�Top(K) ` S � T� ` Fun (A:K) S � Fun (A:K)T (S-Abs)� ` S � T� ` S U � T U (S-App)� ` T1 � S1 � ` S2 � T2� ` S1!S2 � T1!T2 (S-Arrow)�; A�U ` S2 � T2� ` All (A�U )S2 � All (A�U )T2 (S-All)2.5 TypingThe typing relation � ` t 2 T is standard [CW85, CG92], modulo a few extra kinding assumptions. The ruleT-Subsumption captures the intended interpretation of subtyping as \safe substitutability." The othersare straightforward extensions of the arrow- and All-introduction and -elimination rules of pure F !.� ` s 2 S � ` T 2 ? � ` S � T� ` s 2 T (T-Subsumption)` � ok� ` x 2 �(x) (T-Var)�; x:T1 ` t 2 T2� ` fun (x:T1) t 2 T1!T2 (T-Arrow-I)� ` f 2 T1!T2 � ` a 2 T1� ` f a 2 T2 (T-Arrow-E)�; A�T1 ` t 2 T2� ` fun (A�T1) t 2 All (A�T1)T2 (T-All-I)� ` f 2 All (A�T1)T2 � ` S 2 K � ` S � T1� ` f S 2 [S=A]T2 (T-All-E)6



3 Properties of ReductionWe now pause to establish some technical properties of the reduction relation and to de�ne an auxiliarynotion of parallel reduction that will simplify some of the inductive arguments in later sections. The mainresult of this section is the Church-Rosser property, by a straightforward adaptation of Tait and Martin-L�of'sproof for ordinary �-reduction (c.f. [Bar84]).3.1 De�nition [Parallel reduction]: Single-step parallel reduction is the least relation closed under thefollowing rules: Top(K1!K2) T --�> Top(K2) S --�> S0 T --�> T 0(Fun(A:K) S) T --�> [T 0=A]S0S --�> S0 T --�> T 0S T --�> S0 T 0 T --�> T 0Fun(A:K) T --�> Fun(A:K) T 0S --�> S0 T --�> T 0S!T --�> S0!T 0 S --�> S0 T --�> T 0All (A�S) T --�> All (A�S0) T 0T --�> TOrdinary single-step reduction is a subrelation of single-step parallel reduction, which is a subrelation ofmulti-step ordinary reduction. The reexive, transitive closures of the two relations coincide:3.2 Fact:1. -�> � --�>2. -?�> � --�>3. -?�> = --?�>Substitution commutes with parallel and multi-step reduction:3.3 Lemma:1. If S --�> S0 and T --�> T 0 then [T=A]S --�> [T 0=A]S0.2. If S --?�> S0 and T --?�> T 0 then [T=A]S --?�> [T 0=A]S0.3. If S -?�> S0 and T -?�> T 0 then [T=A]S -?�> [T 0=A]S0.In the proof of 3.3, we need the following property of substitution:3.4 Fact: If A 6= A0 and A0 =2 FV (S), then [S=A]([T=A0]U ) = [[S=A]T=A0]([S=A]U ).One useful consequence of 3.3(3) is that if an expression with an outermost redex has a reduction pathin which this redex is reduced at some point, then this reduction can be performed �rst without changingthe result:3.5 Corollary [Outermost reduction]: If (Fun(A:K)S)T -?�> U , where U 6= (Fun (A:K) S0)T 0 withS -?�> S0, and T -?�> T 0, then [T=A]S -?�> U .7



3.6 Lemma [Diamond property for --�> ]: For all types S, S1, and S2 with S --�> S1 andS --�> S2, there is a type S3 such that S1 --�> S3 and S2 --�> S3.S		��1 �> @@1�>RRS1 S2........1�>RR 		........1 �>S3Proof: Straightforward extension of the standard argument (c.f. [Bar84]). �3.7 Corollary [Church-Rosser for -?�> ]: For all types S, S1, and S2 with S -?�> S1 and S �!?�S2, there is a type S3 such that S1 -?�> S3 and S2 -?�> S3.The proof of strong normalization for -�> has to be deferred until after we have studied the propertiesof the kinding system, since our proof of normalization requires that the types involved by well kinded.One more property of --�> will be needed for the induction in the proof of Lemma 6.4.8.3.8 Lemma [ --�> and -?�> ]: If S --�> S1 and S -?�> S2, then there is an S3 withS1 -?�> S3 and S2 --�> S3. S		���> @@?�>RS1 S2........?�>R 		........�>S3Proof: By induction on the length of S -?�> S2, using 3.2(1) and Church-Rosser. �4 KindingNext, we state some basic technical properties of the context well-formedness and kinding judgements.4.1 Lemma [Generation of contexts]:1. If ` � ok, then:(a) � = �; or(b) � = �1; x:T , with ` �1 ok and �1 ` T 2 ? as subderivations; or(c) � = �1; A�T , with ` �1 ok and �1 ` T 2 K for some K as subderivations.2. If � ` S 2 K, then ` � ok as a subderivation.4.2 Lemma [Generation of types]:1. If � ` A 2 K, then � ` �(A) 2 K.2. If � ` Fun(A:K1)T 2 K, then, for some K2, we have �; A�Top(K1) ` T 2 K2 and K = K1!K2.3. If � ` S T 2 K, then, for some K0, we have � ` S 2 K0!K and � ` T 2 K0.4. If � ` S!T 2 K, then K = ? and � ` S; T 2 ?.5. If � ` Top(K) 2 K0, then K = K0. 8



6. If � ` All(A�S)T 2 K, then K = ? and �; A�S ` T 2 ?.Moreover, the implied derivations are all subderivations of the originals.We prove the decidability of the kinding system by showing that it is equivalent to a di�erent systemwhose decidability is obvious.4.3 De�nition [Algorithmic kinding]: The algorithmic kinding relation � `A T 2 K is the least relationclosed under the kinding rules, where instead of rule K-TVAR we use the following:�1 `A T 2 K `A �1; A�T ; �2 ok�1; A�T ; �2 `A A 2 K (K-TVAR0)The algorithmic context well-formedness relation `A � ok is de�ned as before, using algorithmic kinding.4.4 Lemma [Context strengthening for algorithmic kinding]:1. If �1; A�S; �2 `A T 2 K and A is not free in �2 or in T , then �1; �2 `A T 2 K.2. If `A �1; A�S; �2 ok and A is not free in �2, then `A �1; �2 ok.3. If �1; x:S; �2 `A T 2 K, then �1; �2 `A T 2 K.4. If `A �1; x:S; �2 ok, then `A �1; �2 ok.4.5 Lemma [Decidability of kinding]: The relations ` � ok and � ` S 2 K are decidable.Proof: It is easy to prove by induction that the two kinding systems and the two de�nitions of contextwell-formedness are equivalent. In each direction, we only have to consider the rule for variables, since allother rules coincide.Case K-TVAR: � ` �(A) 2 KBy Lemma 4.1(2) ` �1; A�T ; �2 ok as subderivation. So by the induction hypothesis, `A �1; A�T ; �2 okand �1; A�T ; �2 `A T 2 K. Repeated application of Lemma 4.4 yields �1 `A T 2 K.Case K-TVAR0: �1 `A T 2 K and � `A �1; A�T ; �2 okBy the induction hypothesis, �1 ` T 2 K and ` �1; A�T ; �2 ok, so the result follows by K-TVAR andweakening.Now, the algorithm obtained by reading the algorithmic kinding rules from bottom to top as Horn clausesalways terminates, since in each step the total number of characters in the conclusion is greater than thenumber of characters in any of the premises. Since the systems are equivalent, � ` S:K is also decidable. �4.6 Lemma [Uniqueness of kinding]: If � ` S 2 K and � ` S 2 K0, then K = K0.This justi�es the following notation:4.7 De�nition: The unique kind of a well-kinded type S in a context � is written Kind�(S).4.8 Lemma [Transposition and weakening for kinding]: Suppose that �0 is a well-formed extensionof �1; A0�T ; A�S; �2. If �1; A�S; A0�T ; �2 ` U 2 K and A =2 FV (T ), then �0 ` U 2 K.4.9 Lemma [Context update for kinding]: If �1; A�S; �2 ` T 2 K and �1 ` S; S0 2 K0, then�1; A�S0; �2 ` T 2 K.4.10 Lemma [Top reduction]: If � ` Top(K) T1 : : :Tn 2 K 0, then Top(K) T1 : : :Tn -?�> Top(K 0).4.11 Lemma [Kinding and substitution]: Suppose �1 ` T 2 K0.1. If ` �1; A�Top(K0); �2 ok, then ` �1; [T=A]�2 ok.2. If �1; A�Top(K0); �2 ` S 2 K, then �1; [T=A]�2 ` [T=A]S 2 K.9



Proof: Both parts are proved simultaneously by induction on derivations. �4.12 Lemma [Subject reduction for types and contexts]:1. If � ` S 2 K and S -?�> T then � ` T 2 K.2. If � ` S 2 K and � -?�> �0, then �0 ` S 2 K.4.13 Corollary [Kind invariance under conversion]: If S =�> T , where � ` S 2 KS and � ` T 2 KT ,then KS = KT .5 Strong Normalization of TypesWe shall often need the fact that �>-reduction is strongly normalizing for well-kinded types. In fact, weprove the strong normalization of a more general reduction relation, called �>�-reduction, which will beused to prove the termination of the subtyping and typing algorithms. Besides the usual � and > reductions,we allow variables to be replaced by their upper bounds from the context. �-reduction is reminiscent of thecommon operation in type checker and proof checker implementations of replacing a type de�nition by itsexpansion (c.f. [SP93]).We begin by proving the strong normalization of �>-reduction, using by a straightforward translationargument.5.1 De�nition: De�ne a family of types TK , one for each kind K, as follows:T? = All (A: ? )ATK1!K2 = Fun (A:K1) TK2Note that � ` TK 2 K for each K.5.2 Lemma [Strong �>-normalization]: Suppose � ` S 2 K. Then there is no in�nite �>-reductionfrom S.Proof: De�ne a translation function F mapping F !� types to F ! types:F (Top(K)) = TKF (All (A�S) T ) = All (A)F (S)! F (T )F (Fun (A:K) S) = Fun (A:K) F (S)F (S T ) = F (S) F (T )F (S ! T ) = F (S)! F (T ):On contexts, F replaces each type variable binding A�T in � by the kinding assumption A:K, where K isthe kind of T in �. It is easy to check that if � ` S 2 K in F !� , then F (�) ` F (S) 2 K in F !.Now, any �>-reduction in F !� from S can be mirrored by a �-reduction from F (S) of the same lengthin F !. The existence of an in�nite �>-reduction in F !� would thus contradict the strong normalization ofF ! [Gir72, Gal90]. �Next, we de�ne the notion of �-reduction and establish some of its basic properties.
10



5.3 De�nition: Single-step �-reduction is the least family of relations closed under:�(A) 6= Top(K) (�)A -� �(A) S -(�; A�Top(K)) S0Fun(A:K)S -� Fun(A:K)S0S -� S0S T -� S0 T T -� T 0S T -� S T 0S -� S0(S!T ) -� (S0!T ) T -� T 0(S!T ) -� (S!T 0)S -� S0All(A�S)T -� All(A�S0)T T -(�; A�S) T 0All(A�S)T -� All(A�S)T 0Single-step �>�-reduction, written -�>� , is the least family of relations closed under these rules andthe rules (�) and (>) of De�nition 2.3.1. The corresponding multi-step reductions are de�ned as usual.Note that in a multi-step �-reduction sequence, the � at each stage remains the same; � is only extended\internally," in the course of a single reduction, to keep track of variable bindings in those rules that de�nereduction under binders.Note that we are careful to separate All-bound variables, whose bounds may be di�erent from Top andwhich may thus act as �-redexes, from Fun-bound variables, whose bounds are always Top and which cannever be �-reduced.5.4 Lemma [Strong �-normalization]: If � ` S 2 K, then there is no in�nite �-reduction from S.Proof: We show, by induction on the de�ntion of -� , that if S -� T in one step, then � ` T 2 Kby a shorter derivation. Most cases are straightforward; we list only the the ones for type variables and forAll-types.Case: S = A and T = �(A)By the generation lemma for types, � ` �(A) 2 K by a shorter derivation.Case: S = All(A�S1)S2 and T = All(A�S01)S2By the generation lemma for types and contexts and Lemma 4.1, � ` S1 2 K1, so by the induction hypothesis� ` S01 2 K1 by a shorter derivation. Finally � ` All(A�S01)S2 2 ? by K-All, by a shorter derivation thanthe original.Case: S = All(A�S1)S2 and T = All(A�S1)S02By the generation lemma �; A�S1 ` S2 2 K2. The induction hypothesis gives �; A�S1 ` S02 2 K2 by ashorter derivation, so by K-All we have � ` All(A�S1)S02 by a shorter derivation than the original. �We shall often use the subject-reduction property silently in what follows, to guarantee that a reductionsequence from a well-kinded term only contains well-kinded terms.5.5 Lemma [Subject reduction]: If � ` S 2 K and S -?�>� S0, then � ` S0 2 K.Proof: By induction on the length of the reduction S -?�>� S0, with an inner induction on the de�nitionof single-step �>�-reduction. �5.6 Fact:1. If All (A�T1)T2 -� ?All (A�V1)V2, then T1 -� ?V1 and T2 -?�; A�T1 V2.2. If Fun (A:K)T2 -� ?Fun (A:K)V2, then T2 -?�; A�Top(K) V2.3. If T1 T2 -� ?V1 V2, then T1 -� ?V1 and T2 -� ?V2.11



4. If (T1 ! T2) -� ?(V1 ! V2), then T1 -� ?V1 and T2 -� ?V2.Proof: We give the proof in detail for part (1); the rest are similar, but simpler. For part (1), we provethe more re�ned statementif T1 -� ?U1 and T2 -?(�; A�T1) U2 and All (A�U1)U2 �-?�All (A�V1)V2, thenT1 -� ?V1 and T2 -?(�; A�T1) V2,by induction on the length of �.Case: � is emptyImmediate.Case: All (A�U1)U2 �1-�All (A�U1)U 02 �2-?�All (A�V1)V2(I.e., � consists of a single-step reduction �1 followed by a multi-step reduction �2, where �1 replaces asingle variable in U2 by its upper bound to yield U 02.) To apply the induction hypothesis, we need to checkthat U2 -?(�; A�T1) U 02, which immediately gives T2 -?(�; A�T1) U 02.But if �1 replaces an occurrence of A by U1 in U2, i.e. U2 = U2[A] -(�; A�U1) U2[U1], then we canbuild a reduction U2[A] -(�; A�T1) U2[T1] -?(�; A�T1) U2[U1] by replacing this occurrence of A withT1 and then using the assumption that T1 -� ?U1 (and hence T1 -?(�; A�T1) U1) to develop T1 to U1in-place. On the other hand, if �1 replaces some other variable, then U2 -?(�; A�T1) U 02 is immediate. Inboth cases, the induction hypothesis then applies, directly yielding the desired result.Case: All (A�U1)U2 �1-�All (A�U 01)U2 �2-?�All (A�V1)V2Herethe induction hypothesis applies directly (since T1 -� ?U1 -� U 01 and we have T2 -?(�; A�T1) U2by assumption) to yield the desired result. �5.7 Lemma [Weak diamond property for �-reduction]:T � - UV�?. . . . . . . . .?� - W:??.........�Proof: By induction on the form of T .Case: T = AThen V = U = �(A) and we may take W = �(A).Case: T = All (A�T1)T2We must �nd W = All (A�W1)W2 such that the required diagram commutes; this will follow from thecommutativity of a smaller diagram for T1, U1, V1 and W1 and another diagram for T2, U2, V2 and W2.There are three subcases to consider, depending on whether both of the reductions from T to U and V are inT1, both are in T2, or one is in T1 and one in T2. (Since the last case is symmetric, we may assume withoutloss of generality that T1 is reduced to produce V and T2 to produce U .)Subcase: U = All (A�U1) T2 and V = All (A�V1)T2Begin by applying the induction hypothesis to T1, U1, and V1 to yield a common reduct W1. We must then12



show: T1 � - U1T2 �; A�T1= - T2V1�? �? - W1�??T2�; A�T1?=.. . . . . . . . . . . . . . . . . . . . . .?�; A�V1 - W2:??.............�; A�U1Set W2 = T2 and we are done.Subcase: U = All (A�T1)U2 and V = All (A�T1)V2We must �nd a W2 such thatT1 �= - T1T2 �; A�T1- U2T1�?= �= - T1�?=V2�; A�T1?. . . . . . . . . . . . . . . . . . . . . . .?�; A�T1 - W2:??.............�; A�T1The existence of such a W2 is given by the induction hypothesis.Subcase: U = All (A�T1)U2 and V = All (A�V1)T2Set W1 = V1. Then we must show:T1 �= - T1T2 �; A�T1- U2V1�? �= - V1�?T2�; A�T1?=.. . . . . . . . . . . . . . . . . . . . . .?�; A�V1 - W2:??.............�; A�T1If T2 -(�; A�T1) U2 by a �-reduction on some occurrence of A in T2, then we have T2 = T2[A] andU2 = T2[T1]; set W2 = T2[V1]. If T2 -(�; A�T1) U2 by a �-reduction on some occurrence of a variable otherthan A in T2, then we can set W2 = U2, since T2 -?(�; A�V1) U2 follows directly from T2 -?(�; A�T1) U2in this case. 13



Other cases:Straightforward. �5.8 Lemma [Church-Rosser for �-reduction]:T ?� - UV�?? . . . . . . . . .?� - W:�?.........?Proof: By Newman's Lemma, which states that the weak diamond property and strong normalizationtogether imply Church-Rosser (c.f. [Bar84]). �5.9 Lemma [Substitution commutes with �-reduction]: If U -� ?V and S -?(�; A�Top(K)) T ,then [U=A]S -� ?[V=A]T .Proof: Since A's bound is Top(K), it is not a (�; A�Top(K))-redex, so [U=A]S -� ?[U=A]T . Then[U=A]T -� ?[V=A]T by applying the reduction from U to V at each point in [U=A]T where A appearedin T . �At this point, we can start proving properties relating �-reduction and �>-reduction. First, a technicalproperty that handles a key step of the following lemma.5.10 Lemma: If T1 -?�> U1 and T2 -?(�; A�T1) V2, then there is some W2 such that:T2 ..............�; A�U1? RV2�; A�T1?? . . . . . . . . . .?�>- W2:Proof: By induction on the length of the reduction from T2 to V2.Case: T2 = V2Then set W2 = T2 and we are done.Case: T2 -?(�; A�T1) V 02 -(�; A�T1) V2Apply the induction hypothesis to �nd a W 02 satisfying the desired property. We must now show:T2 @@@@@�; A�U1? RV 02�; A�T1?? ?�> - W 02V2�; A�T1?. . . . . . . . . . . .?�> - W2:??.........�; A�U114



If V 02 -(�; A�T1) V2 by contracting a redex other than A, then V 02 = V 02 [B] and V2 = V 02 [�(B)]. In reducingfrom V 02 to W 02, this redex may be copied a number of times: W 02 = W 02[B][B] : : : [B]. Let W2 be the result ofcontracting the residuals of this redex in W 02, i.e. W2 = W 02[�(B)][�(B)] : : : [�(B)]. Similarly, if V 02 = V 02 [A]and V2 = V 02 [T1]; again, let W2 be the result of contracting the residuals of this redex in W 02. ReduceV2 = V 02 [T1] to W2 = W 02[U1][U1] : : : [U1] by V 02 [T1] -?�>W 02[T1][T1] : : : [T1] -?�>W 02[U1][U1] : : : [U1]. �The next lemma establishes a conuence property for � and �> reductions. The proof is similar tothat of Lemma 5.7. This lemma and Lemma 5.8 jointly handle the crucial step in the strong normalizationargument that follows.5.11 Lemma [�>-reduction and �-reduction]:T ��> - UV�?? . . . . . . . . .�0�>?- W:??.........�Moreover, �0 has length at least 1.Proof: By induction on �.Case: T = Top(K1 ! K2) T1 -> Top(K2) = UAny �-reduction from T must reduce only redexes in T1, so V has the form Top(K1 ! K2) V1. But thenV -> U , and we can take W = U . Note that V -�> W by a nonempty reduction.Case: T = (Fun (A:K) T1) T2 -� [T2=A]T1 = UAny �-reduction from T consists of a number of separate reductions in T1 and T2 by Fact 5.6(2,3), soV has the form (Fun (A:K) V1) V2, with T1 -?(�; A�Top(K)) V1 and T2 -� ?V2. By Lemma 5.9,[T2=A]T1 -� ?[V2=A]V1, so we can take W = [V2=A]V1. Note that V -�> W by a nonempty re-duction.Case: T1 -�> U1T = All (A�T1)T2 -�> All (A�U1)T2 = UBy Fact 5.6(1), V has the form All (A�V1)V2, with T1 -� ?V1 and T2 -?(�; A�T1) V2. Apply theinduction hypothesis to �nd a W1 with T1 �> - T 01V1�?? �1�>?- W1;??�where �1 has length at least 1. By Lemma 5.10, there is some W2 such that:T2 =�> - T2V2�; A�T1?? ?�> - W2:??�; A�U1So W = All (A�W1)W2 has the required property. 15



Case: T2 -�> U2T = All (A�T1)T2 -�> All (A�T1)U2 = UBy Lemma 5.6(1), V has the form All (A�V1)V2, with T1 -� V1 and T2 -(�; A�T1) V2. We must showT1 �>= - T1T2 �> - U2V1�?? �>= - V1�??V2�; A�T1?? . . . . . . . . . . . . . . . . . . . . . . .�>? - W2;??.............�; A�T1which follows directly from the induction hypothesis.Other cases:Similarly, using parts (2) to (4) of 5.6. �With this in hand, we can proceed to the main body of the strong normalization argument. Its two mainsteps are captured by this lemma and the next one.5.12 Lemma [�> postponement]: If T -�> U -� X -1�>� : : :, then there is some V0 such thatT -� V0 -1�>� : : : :For the proof, we need a simple fact:5.13 Fact: If S -�> T -� U , then S -� U 0 for some U 0. (That is, the redex that is contractedbetween T and U is a residual of a redex already present in S.Proof: Since �>-reduction cannot create a �-redex, the ��redex appearing in T must be a residual of a�-redex already appearing in S. �Proof of Lemma 5.12: By Fact 5.13, there is some V0 such that:T � - V0U�>?...�>�?1By Lemma 5.11, there is some V1 such that T � - V0U�>? �? - V1�>??...�>�??1 16



Since U -� X, we can now apply Lemma 5.8:T � - V0U�>? �? - V1�>�??X�? �? - V2�??...�>�?1We can continue in this way, applying either 5.8 or 5.11 to successive elements of the in�nite reductionbeginning from X to obtain an in�nite sequence of multi-step �>�-reductions on the right:T � - V0U�>? �? - V1�>??X�? �? - V2�??U3�>�? �? - V3�>�??...�>�?1 ...�>�??1But the sequence of reductions on the left must contain in�nitely many �> steps (otherwise it would havean in�nite �-tail), so Lemma 5.11 also tells us that in�nitely many of the individual multi-step reductionson the right are nonempty. The reduction T -� V0 -�>�? V1 � � � -�>�? is the desired one.5.14 Proposition [Strong �>�-normalization]: If S is well-kinded in �, then there is no in�nite �>�-reduction from S.Proof: Assume, for a contradiction, that R is an in�nite �>�-reduction beginning from S. Let R0 = R.Now repeat the following process as long as possible to construct a sequence R1, R2, : : : of in�nite �>-reductions, all starting from S:If Ri contains no �-reduction that is immediately preceded by a �>-reduction, then stop. Oth-erwise, form Ri+1 from Ri by using Lemma 5.12 repeatedly to move the �rst such �-reductionbefore any �>-reduction.Note that all of the Ri are in�nite and that the �rst i steps in each Ri are all �-reductions. Now, there aretwo possibilities:� The sequence of R0s eventually terminates, having reached some Rn in which all �-reductions precedethe �rst �>-reduction. But this means that Rn contains only �-reductions, contradicting Lemma 5.4,or has an in�nite tail consisting only of �>-reductions, contradicting Lemma 5.2.� The sequence of R0s is in�nite. But since each Ri begins with at least i �-reductions, we can use thisto exhibit an in�nite �-reduction beginning from S, contradicting Lemma 5.4. �17



6 SubtypingUsually, in proof-theoretic analyses of calculi with subtyping, the subtyping relation itself presents the mostchallenging problems. This is also the case in F !� .6.1 Proof OutlineAlthough the details of our development will be somewhat more involved, it is helpful to start by reviewingthe standard argument [CG92, Ghe90, CMMS91, BCGS91, etc.] for the decidability of subtyping in thesecond-order system F�:1. Begin with an \original" presentation of the subtyping system that directly expresses its intendedmeaning, but which is not directly implementable.2. Propose an alternative presentation of the same relation by a syntax-directed set of inference rules, inwhich the premises of each rule contain only metavariables whose values are uniquely determined by theform of the conclusion, and in which all the derivations of any given subtyping statement � ` S � Tmust end with the same rule. (More precisely: more than one rule may be used to derive a givenstatement, as long as only one of them has premises whose applicability cannot be checked directly,without making any recursive calls.) This system can be implemented by a proof-search algorithmthat will never have to guess or backtrack.3. Check that this algorithm is indeed a decision procedure for the syntax-directed system by showingthat proof search must terminate in �nite time when started with any statement as its initial goal.4. Show that the syntax-directed system is sound, in the sense that any subtyping statement derived bythe algorithm is also derivable in the original system. This step is typically straightforward.5. Finally, prove that the syntax-directed system is complete: that any statement derivable in the originalsystem is also derivable by the algorithm. This step is where a deeper understanding is required.The syntax-directed system may be viewed as a version of the original from which all \problematic" ruleshave been removed. In the case of F�, there is just one such rule:� ` S � U � ` U � T� ` S � T (S-Trans)By analogy with proof theory, this rule is sometimes called the cut rule of the subtyping system: the typeU appearing in the subderivations is cut out when moving to the conclusion. By analogy with the sequentcalculus or the simply typed �-calculus (c.f. [GLT89]), this cut rule can be almost completely eliminated byrewriting derivations.But not completely. In one situation, transitivity is actually essential. Statements with variables on theleft-hand side cannot, in general, be proved without using transitivity. For example,C�Top(?); B�C; A�B ` A � Cmust be proved using two instances of S-TVar to establish the connections between A and B and between Band C, which are then joined by a single instance of transitivity. Thus, to eliminate S-Trans while retainingcompleteness, it is necessary to re�ne the treatment of variables, extending each instance of S-TVar withan \internal" use of transitivity: � ` �(A) � T� ` A � T (S-TVar-Plus-Trans)It is easy to see that replacing S-TVar with S-TVar-Plus-Trans in the original system does not a�ectits power. Moreover, S-Trans can now be completely eliminated without losing any derivable statements.The resulting subtyping algorithm (i.e., the recursive procedure obtained from the syntax-directed systemby ordering overlapping rules so that the \easy" ones come �rst) is:18



check (� ` S � T ) =if T � Top(?)then trueelse if S � Tthen trueelse if S � Athen check (� ` �(A) � T )else if S � S1!S2 and T � T1!T2then check (� ` T1 � S1)and check (� ` S2 � T2)else if S � All (A�U )S2 and T � All (A�U )T2then check (�; A�U ` S2 � T2)else false.The behavior of this algorithm reveals a great deal about the structure of the F� subtyping relation. The�rst cases deal with the easy rules for Top and reexivity. The third case says that a statement of the form� ` A � T , where A is not identical to T and T is not Top, can only be true if A's upper bound is less thatT . In other words, the region between A and its upper bound is empty: there are no types strictly greaterthan A and strictly less than �(A).Since this concept of \the smallest proper supertype of A" will also be crucial for our development, it isworth introducing some special notation for it. Write A "� �(A) for \A promotes to �(S)." We can thenreformulate the enriched variable subtyping rule S-TVar-Plus-Trans asA "� �(A) � ` S � T� ` A � T (S-Promote-TVar)or, more generally, as S "� U � ` U � T� ` S � T (S-Promote)where the partial function "� is unde�ned except on variables. The subtyping algorithm becomes:check (� ` S � T ) =: : :else if S "� Uthen check (� ` U � T ): : :Now, let us generalize these intuitions to the case of full F !� . Here, we encounter one new kind of situationin which transitivity plays an essential role. For example, in the context� = A�Top(?); F�(Fun (B: ? )B);the statement � ` F A � A is provable as follows (ignoring kinding):S-TVar� ` F � (Fun(B:?)B) S-App� ` F A � (Fun(B:?)B) A S-Conv� ` (Fun(B:?)B) A � A S-Trans� ` F A � AThe instance of transitivity in this derivation is again essential, but it is not an instance of the schemathat motivated S-Tvar-Plus-Trans. In fact, it is possible to construct more involved examples where theinstance of S-TVar is separated from the instance of S-Trans by arbitrarily many applications of S-App.This suggests the following generalization of the promotion relation:6.1.1 De�nition [Promotion]: The promotion of a type A S1 : : : Sn in a well-formed context � is�(A) S1 : : : Sn, written A S1 : : : Sn "� �(A) S1 : : : Sn.19



With this relation and S-Promote, both examples above can be derived without explicitly usingS-Trans.To extend the algorithm check to full F !� , one thing obviously missing is a clause for type abstractionmatching the pointwise subtyping rule S-Abs. We add one as follows:check (� ` S � T ) =: : :else if S � Fun (A:K1)S2 and T � Fun (A:K1)T2then check (�; A�Top(K1) ` S2 � T2)Surprisingly, we do not need a similar clause for application,check (� ` S � T ) =: : :else if S � S1 U and T � T1 Uthen check (� ` S1 � T1)because its e�ect turns out to be covered by the promotion clause. But we do need to deal with the possibilityof conversion; otherwise, for example, the statement � ` (Fun (B:?)B)S1!S2 � T1!T2 will not be derivable.Clearly, we need to perform some reduction on the arguments before choosing which clause of the al-gorithm to apply. We can make life easy by simply normalizing the arguments before looking at them.5Since the arguments to recursive calls in all of the clauses except promotion will remain in normal formif the original arguments are given in normal form, we only need to re-normalize in the promotion clause topreserve normality. The �nal algorithm, then, is:check (� ` S � T ) =check!(� ` S! � T !)check!(� ` S � T ) =if T � Top(Kind�(S))then trueelse if S � Tthen trueelse if S "� Uthen check!(� ` U ! � T )else if S � S1!S2 and T � T1!T2then check!(� ` T1 � S1)and check!(� ` S2 � T2)else if S � All (A�U )S2 and T � All (A�U )T2then check!(�; A�U ` S2 � T2)else if S � Fun (A:K1)S2 and T � Fun (A:K1)T2then check!(�; A�Top(K1) ` S2 � T2)else false.Our task for the remainder of the section will be to show that this algorithm is sound and complete forthe rules in Section 2.4. Our �rst step is a technical reformulation of the original system, which provides aconvenient setting for the arguments to follow: we remove the general rule of conversion and regain its e�ect5In a real implementation it is not desirable to fully normalize type expressions: this wastes time (in the vast majorityof calls to the subtyping algorithm, the types being compared are identical) and results in the unnecessary expansion of typeabbreviations, making the compiler's diagnostic output di�cult for the programmer to understand. In practice, we reduce typesonly to weak head normal form, exposing only their outermost constructors at each step. The completeness of this modi�cationrests on the observation that the reexivity check in the algorithm can be restricted to type variables, applications, and theleft-hand sides of quanti�ers. 20



by generalizing each of the remaining rules to allow arbitrary reduction in the premises. For example, therule for subtyping arrow types � ` T1 � S1 � ` S2 � T2� ` S1!S2 � T1!T2becomes: S -?�> S1!S2 T -?�> T1!T2� ` T1 � S1 � ` S2 � T2� ` S � TIt is not hard to show that this reducing system is equivalent to the original. Next, we introduce twoimportant properties of certain derivations in the reducing system:� A cut-free derivation is one with no instances of the rule of transitivity.� A strong derivation is one in which every -?�> reduction is actually a reduction to normal form.Cut-free derivations are close to the form of those discovered by the algorithm check . Strength is a moretechnical property, which reduces the complexity of the case analyses required at some crucial points. Usingthese properties, the main facts that we need are:1. The rule of transitivity can be eliminated from strong derivations.2. The validity of subtyping is preserved by �>-reduction in cut-free derivations.From these, we can show the central theorem: any derivation in the reducing system can be transformed toa strong, cut-free derivation of the same statement. Finally, to obtain the algorithm, we observe that therule of application can also be eliminated from strong, cut-free derivations.6.2 The Reducing SystemThe main di�erence between the reducing system and the original subtyping system presented in Section 2 isthat we remove the rule S-Conv and distribute its e�ects over the remaining rules in form of extra premises.We also replace the rule S-TVar by the more general rule of promotion, R-Promote.6.2.1 De�nition [Reducing System]:S -?�> U T -?�> U� ` S � T (R-Refl)� ` S � U � ` U � T � ` U 2 K� ` S � T (R-Trans)S -?�> U U "� U 0 � ` U 0 � T� ` S � T (R-Promote)T -?�>Top(K) � ` S 2 K� ` S � T (R-Top)S -?�> S1!S2 T -?�> T1!T2� ` T1 � S1 � ` S2 � T2� ` S � T (R-Arrow)S -?�>All (A�U )S2 T -?�>All (A�U )T2 �; A�U ` S2 � T2� ` S � T (R-All)S -?�> Fun (A:K)S0 T -?�> Fun (A:K)T 0�; A�Top(K) ` S0 � T 0� ` S � T (R-Abs)S -?�> S0 U T -?�> T 0 U � ` S0 � T 0� ` S � T (R-App)21



6.2.2 Notation: To avoid confusion, we sometimes distinguish derivations in di�erent systems by markingthe turnstile symbol: `O for the original system, `R for the reducing system, `S for strong derivations in thereducing system, `C for cut-free derivations in the reducing system, and `CS for strong, cut-free derivationsin the reducing system.Our task for the remainder of Section 6.2 is to establish the equivalence of the reducing system and theoriginal one. We begin by establishing some technical properties of the original.6.2.3 Lemma [Kind invariance under promotion]: If � ` S 2 K and S "� S0 then � ` S0 2 K.6.2.4 Lemma [Promotion and Subtyping]: If S "� S0, then � `O S � S0.6.2.5 Lemma [Well-kinded subderivations]:1. Suppose � ` S 2 KS and � ` T 2 KT . If d is a derivation of � `O S � T and d0 is a derivation of�0 `O S0 � T 0, with d0 a subderivation of d, then �0 ` S0; T 0 2 K for some K.2. Suppose � ` S 2 KS and � ` T 2 KT . If d is a derivation of � `R S � T and d0 is a derivation of�0 `R S0 � T 0, with d0 a subderivation of d, then �0 ` S0; T 0 2 K for some K.6.2.6 Lemma: The following rules are derivable:� ` S; T 2 K � `O U � T � ` U 2 K0 U =�> S� `O S � T (S-Conv(l))� ` S; T 2 K � ` S0; T 0 2 K0� `O S0 � T 0 S =�> S0 T =�> T 0� `O S � T (S-Conv(2))Proof: For S-Conv(1):� `O S � S � ` S 2 K S =�> U S-Conv� `O S � U � `O U � T � ` U 2 K 0 S-Trans� `O S � TFor S-Conv(2), the proof is similar. �6.2.7 Lemma [Equivalence]: The original and the intermediate subtyping systems are equivalent for well-kinded types: if � ` S; T 2 K, then � `O S � T i� � `R S � T .Proof: By induction on derivations. �For the remainder of Section 6, we will work exclusively within the reducing system.6.3 Cut EliminationWe begin our analysis of the reducing system with a proof that R-Trans is inessential: any derivationending with it can be rewritten as a derivation in the cut-free subsystem. To control the complexity of thecombinatorial analysis, we do not show this property for arbitrary uses of transitivity, but only for uses ofa restricted form: we consider only cut-terms in normal form and ask that the subderivations of the cut bestrong. The following section will show that these conditions can always be achieved.With these restrictions, the proof of cut elimination is a straightforward extension of standard proofs forthe second-order fragment (c.f. [BCGS91, CG92, CMMS91, CP94]). We begin with one technical lemma.22



6.3.1 Lemma: Suppose � ` S 2 KS and � ` A T1 : : :Tn 2 KT . If � `CS S � A T1 : : :Tn, then thisstatement can be proved using a sequence of instances of R-Promote preceded by a single instance ofR-Refl. S -!�> "� S1 Sn�1 -!�> "� Sn Sn -!�> V A T1 : : : Tn -!�> V� `CS Sn � A T1 : : : Tn...� `CS S1 � A T1 : : : Tn� `CS S � A T1 : : : TnProof: By induction on the given subtyping derivation. The R-Refl case is immediate; R-Promotemakes straightforward use of the induction hypothesis. R-App uses the induction hypothesis to construct aderivation of the required shape for the left-hand sides of the application (� `CS S0 � A T 01 : : :T 0n�1); it isthen easy to check that the right-hand side (T 0n) can be adjoined to all the steps in this derivation. �6.3.2 Proposition [Cut elimination]: Suppose � ` S 2 KS and � ` T 2 KT and � ` U 2 KU . If� `CS S � U and � `CS U � T , where U is in normal form, then � `CS S � T .Proof: By induction on the combined size of the given subderivations. Proceed by a case analysis on thelast rule in each.Case: R-Refl on the left / anything on the right: S -!�> U U -!�> U� `CS S � UTo prove � `CS S � T , we can directly use the subderivations of � `CS U � T , since S -!�> U .Case: Anything on the left / R-Refl on the right:Similar.Case: Anything on the left / R-Top on the right: T -!�> Top(K) � `CS U 2 K� `CS U � TBy the well-kindedness of subderivations, we obtain � `CS S � T immediately by R-Top.Case: R-Promote on the left / anything on the right: S -!�> "� S0 � `CS S0 � U� `CS S � UBy induction (using well-kindedness of subderivations) and R-Promote.Case: Anything on the left / R-Promote on the right: U = A U1 : : : Un "� V � `CS V � T� `CS U � TBy Lemma 6.3.1, we may assume that the derivation of � `CS S � U consists of a sequence of instances ofR-Promote preceded by an instance of R-Refl:S -!�> S0 "� S1 Sn�1 -!�> S0n�1 "� Sn Sn -!�> U A U1 : : : Un = U� `CS Sn � A U1 : : : Un...� `CS S1 � A U1 : : : Un� `CS S � A U1 : : : Un23



Replacing the �nal instance of R-Refl by an additional instance of R-Promote, we obtainS -!�> S0 "� S1 Sn�1 -!�> Sn�1 "� Sn Sn -!�> "� V � `CS V � T� `CS Sn � T...� `CS S1 � T� `CS S � Tas desired.This takes care of 29 of the 49 cases. The remaining cases are listed in the following table.� `CS U � T� `CS S � U R-Arrow R-All R-Abs R-AppR-Top � � � �R-Arrow p � � �R-All � p � �R-Abs � � p �R-App � � � pThe cases marked p are dealt with individually below. Those marked � can never occur, since the two rulesin question would place incompatible constraints on the form of U . (This can easily be checked by inspectingthe rules; the assumption that the given derivations are strong is needed in several places.)Case R-All: S -!�> All (A�U1)S2 U = All (A�U1)U2�; A�U1 ` S2 � U2� `CS S � U U = All (A�U1)U2 T -!�> All (A�U1) T2�; A�U1 ` U2 � T2� `CS U � TBy the well-kindedness of subderivations, the induction hypothesis applies, giving:S -!�> All (A�U1)S2 T -!�> All (A�U1)T2�; A�U1 ` S2 � T2� `CS S � TCase R-Arrow, R-Abs:Similar.Case R-App: S -!�> S0 V U = U 0 V� `CS S0 � U 0� `CS S � U U = U 0 V T -!�> T 0 V� `CS U 0 � T 0� `CS � ` U � TBy the well-kindedness of subderivations, the induction hypothesis applies, giving:S -!�> S0 V T -!�> T 0 V � `CS S0 � T 0� `CS S � T �24



6.4 Reduction and SubtypingThe main task of this subsection is to show that, for cut-free derivations, �>-reduction in types does notinterfere with the subtyping judgement.The cornerstone of the argument is a substitution lemma saying (informally) that if S � T then [V=A]S �[V=A]T . From this, we can show that the reduction of an outermost redex on either the left-hand or theright-hand side of a subtyping statement preserves its derivability. As in the proof of Church-Rosser inSection 3, we extend these properties to a proof of the preservation of subtyping under arbitrary multi-stepreduction by passing through an intermediate step where we show it for one-step parallel reduction.In outline, then, the major steps are as follows:reduction (6.4.9)parallel reduction (6.4.8)6��� I@@outer reduction (left) (6.4.7) outer reduction (right) (6.4.5)I@@ ���substitution (6.4.3)We begin with two technical lemmas:6.4.1 Lemma [Expansion preserves subtyping]: Suppose � ` S 2 KS and � ` T 2 KT . If � `C S0 � T 0with S -?�> S0 and T -?�> T 0, then � `C S � T .Proof: By inspection of the rules, using the properties of kinding and reduction. �6.4.2 Lemma [Maximality of Top]: Suppose � ` Top(K) S1 : : :Sn 2 KS and � ` T 2 KT . If � `CTop(K) S1 : : : Sn � T , then T -?�>Top(KT ).Proof: Straightforward induction, using the properties of kinding and reduction. �Now we come to the key result of this subsection: the preservation of subtyping under substitution.6.4.3 Lemma [Substitution preserves subtyping]: Let � = �1; A�Top(K); �2 and �0 = �1; [V=A]�2.Suppose that �1 ` V 2 K and that � ` S 2 KS and � ` T 2 KT . If � `C S � T , then �0 `C [V=A]S � [V=A]T .Proof: The cases other than R-Promote are straightforward; we give the argument for R-All as anexample.6Case R-All: S -?�> All(A0�U) S2 T -?�> All(A0�U) T2�; A0�U `C S2 � T2� `C S � TBy Lemma 3.3(3), we have[V=A]S -?�> All(A0�[V=A]U ) [V=A]S2[V=A]T -?�>All(A0�[V=A]U ) [V=A]T2:By the well-kinded subderivations lemma and the induction hypothesis, �0; A0�[V=A]U `C [V=A]S2 �[V=A]T2: Now R-All applies as follows:[V=A]S -?�> All(A0�[V=A]U) [V=A]S2 [V=A]T -?�> All(A0�[V=A]U) [V=A]T2�0; A0�[V=A]U `C [V=A]S2 � [V=A]T2�0 `C [V=A]S � [V=A]T6Note that the more general form of this property, in which �(A) is allowed to be any supertype of V , would be much moredi�cult to prove. Here we obtain a straightforward proof by considering only the form that will actually be required later: inthe critical case | the one for R-Promote| the fact that �(A) = Top(K) allows a direct argument using Lemma 6.4.2.25



Case R-Promote: S -?�> S0 S0 "� U � `C U � T� `C S � TThe de�nition of promotion gives S0 = A0 U1 : : :Un for some n � 0, and U = �(A0) U1 : : :Un. Now there aretwo subcases to consider:Subcase: A0 6= ABy induction, �0 `C [V=A](�(A0) U1 : : :Un) � [V=A]T . Now,[V=A](�(A0) U1 : : :Un) = ([V=A](�(A0))) [V=A]U1 : : : [V=A]Un = �0(A0) [V=A]U1 : : : [V=A]Un;and by Lemma 3.3(3), [V=A]S -?�>A0 [V=A]U1 : : : [V=A]Un. So, by the de�nition of promotion, we canapply R-Promote to obtain the desired result as follows:[V=A]S -?�> A0 [V=A]U1 : : : [V=A]Un "�0 [V=A](�(A0) U1 : : : Un)�0 `C [V=A](�(A0) U1 : : : Un) � [V=A]T�0 `C [V=A]S � [V=A]TSubcase: A0 = ASince �(A) = Top(K), we have � `C Top(K) U1 : : :Un � T . By the well-kinded subderivationslemma (6.2.5), U is well kinded in �. So by Lemma 6.4.2, we have T -?�>Top(KT ). By Lemma 3.3,also [V=A]T -?�>Top(KT ). By the well-kindedness of subderivations, � ` S 2 KT , so by the fact thatsubstitution preserves kinding (Lemma 4.11), rule R-Top[T=A]T -?�> Top(KT ) �0 ` [V=A]S 2 KT�0 `C [V=A]S � [V=A]Tgives us the desired result. �The next lemma introduces a technical property needed for the following one: a subtype of a Fun-typeis either a Fun-type itself or can be promoted to one in a �nite number of steps.6.4.4 Lemma [Fun-right]: Suppose � ` S 2 KS and � ` T 2 KT . If � `C S � Fun(A:K)T , then thisstatement can be derived by a sequence of instances of R-Promote preceded by one instance of R-Fun:S -?�> S0 "� S1 Sn�1 -?�> S0n�1 "� Sn Sn -?�> Fun(A:K)S0nFun(A:K)T -?�> Fun(A:K)T 0�; A�Top(K) `C S0n � T 0� `C Sn � Fun(A:K)T...� `C S1 � Fun(A:K)T� `C S � Fun(A:K)TProof: By induction on a derivation of � `C S � Fun(A:K)T . By the form of the right-hand side and thefact that the derivation is cut free, there are three cases to consider. (Note, in passing, that this is one pointwhere we crucially depend on the absence of cut: this argument fails on arbitrary reducing derivations.)Case R-Refl: S -?�> U Fun(A:K)T -?�> U� `C S � Fun(A:K)TBy de�nition of -?�> , the type U must be of the form Fun(A:K)T 0, with T �!?� T 0. So, by R-Abs andR-Refl: S -?�> Fun(A:K)T 0 Fun(A:K)T -?�> Fun(A:K)T 0�; A � Top(K) `C T 0 � T 0� `C S � Fun(A:K)T26



Case R-Abs:Immediate.Case R-Promote: S -?�> S0 "� U � `C U � Fun(A:K)T� `C S � Fun(A:K)TBy the well-kinded subderivations lemma, the induction hypothesis, and R-Promote. �6.4.5 Lemma [Outer reduction on the right]: Suppose � ` S 2 KS and � ` (Fun(A:K)T ) U 2 KT . If� `C S � (Fun(A:K)T ) U , then � `C S � [U=A]T .Proof: By induction on a proof of � `C S � (Fun(A:K)T ) U . The only di�cult case is R-App, whichwe give in full below. R-Refl uses the Church-Rosser property. R-Promote uses only the inductionhypothesis. All the other cases follow a common pattern: we show just R-All.Case R-All: S -?�> All (A0�V )S2 (Fun(A:K)T ) U -?�> All (A0�V )T2�; A0�V `C S2 � T2� `C S � (Fun(A:K)T ) UBy the outermost reduction corollary (3.5), [U=A]T -?�>All (A0�V )T2. The result follows immediately byR-All.Case R-App:There are two cases to consider, depending on whether the redex (Fun(A:K)T ) U is itself contracted atsome point in the reduction sequence (Fun(A:K)T ) U -?�> � � �.Subcase: (Fun(A:K) T ) U -?�> (Fun(A:K)T 0) U 0 -�> [U 0=A]T 0 -?�> T1 VS -?�>W V � `C W � T1� `C S � (Fun(A:K)T ) USince [U=A]T -?�> [U 0=A]T 0 -?�> T1 V (by Lemma 3.3(3)), the result follows immediately fromR-App.Subcase: S -?�>W U 0 (Fun(A:K) T ) U -?�> (Fun(A:K)T 0) U 0� `C W � Fun(A:K)T 0� `C S � (Fun(A:K)T ) UHere we cannot directly use the subderivation of � `C W � Fun(A:K)T 0. Intuitively, we must \look inside"this derivation to �nd an inner subderivation in which T 0 appears by itself on the right-hand side, and usethis to rebuild a subderivation ending with [U=A]T on the right. (More precisely, the inner subderivationwill have T 00 on the right, where T 0 -?�> T 00.) This we accomplish as follows.First, we use the Fun-right lemma (6.4.4) to obtain a derivation of � `C W � Fun(A:K)T 0 in a veryrigid form: a sequence of n instances of R-Promote ending with an instance of R-Abs:W -?�> "� W1 Wn�1 -?�> "� Wn Wn -?�> Fun(A:K)XFun(A:K)T 0 -?�> Fun(A:K)T 00�; A�Top(K) `C X � T 00� `C Wn � Fun(A:K)T 0...� `C W1 � Fun(A:K)T 0� `C W � Fun(A:K)T 0From the instance of R-Abs at the top, we obtain � `C [U 0=A]X � [U 0=A]T 00 by the substitutionlemma (6.4.3). (To check that the lemma applies, we need the following observations: (1) � ` U 0 2 Kby the assumption � ` (Fun (A:K)T )U 2 KT , the fact that U -?�> U 0, the generation lemma for types,and subject reduction. (2) X and T 00 are both well-kinded in �; A�Top(K), by the well-kindedness ofsubderivations.)At this point, we have accomplished a substitution operation, but not quite the one we need. We mustnow work backwards to the desired result. 27



From � `C [U 0=A]X � [U 0=A]T 00 and the fact that [U=A]T -?�> [U 0=A]T 00 (Lemma 3.3), we use theexpansion lemma (6.4.1) to obtain � `C [U 0=A]X � [U=A]T , after remarking that [U 0=A]X and [U=A]T arewell-kinded by subject reduction. This gives us what we need on the right-hand side; now we turn to �xingthe left-hand side.Wn U 0 is well-kinded and Wn U 0 -?�> (Fun (A:K)X) U 0 -�> [U 0=A]X, so by the expansion lemma,� `C Wn U 0 � [U=A]T . We use this as the starting point for a new sequence of R-Promote steps where anapplication to U 0 has been added to each intermediate term:S -?�>W U 0 -?�> "� W1 U 0 Wn�1 U 0 -?�> "� Wn U 0 � `C Wn U 0 � [U=A]T...� `C W1 U 0 � [U=A]T� `C S � [U=A]TThe conclusion of this derivation is the desired statement. �We proceed for the left-hand side of � in the same way as we have done for the righthand side.6.4.6 Lemma [Fun-left]: Suppose � ` Fun(A:K)S 2 KS and � ` T 2 KT . If � `C Fun(A:K)S � T , thenone of the following cases holds:1. T -?�> Top(KT ); or2. Fun(A:K)S -?�> Fun(A:K)S0 and T -?�> Fun(A:K)T 0, with �; A�Top(K) `C S0 � T 0.Proof: By inspection of the rules. By the form of the left-hand side of the statement and the fact that weconsider only cut-free derivations, there are only three cases to consider:Case R-Refl: Fun(A:K)S -?�> U T -?�> U� `C Fun(A:K)S � TU must be of the form Fun(A:K)S0 where S -?�> S0 so we can conclude:S0 -?�> S0 S0 -?�> S0�; A�Top(K) `C S0 � S0Case R-Top, R-Abs:By case 1 and 2, respectively. �6.4.7 Lemma [Outer reduction on the left]: Suppose � ` (Fun(A:K)S) U 2 KS and � ` T 2 KT . If� `C (Fun(A:K)S) U � T , then � `C [U=A]S � T .Proof: By induction. Again, R-App is the only di�cult case. If the reduction starting from(Fun(A:K)S) U reduces the outer redex at some point, then this case proceeds as in the analogous case onthe right-hand side (6.4.5). Otherwise, we have:(Fun(A:K) S) U -?�> (Fun(A:K)S0) U 0 T -?�>W U 0� `C Fun(A:K)S0 � W� `C (Fun(A:K)S) U � TBy the well-kindedness of subderivations, both Fun(A:K) S0 andW are well kinded. By the Fun-left lemma,there are two cases to consider:1. We are given W -?�>Top(K!KT ). Since � ` [U=A]S 2 KT (by subject reduction and unique-ness of kinding) and T -?�>W V -?�>Top(K!KT ) V -�> Top(KT ); we can conclude� `C [U=A]S � T by R-Top. 28



2. We are given Fun (A:K)S0 �!?� Fun (A:K)S00W -?�> Fun (A:K)Y�; A�Top(K) `C S00 � Y:Both S00 and Y are well kinded in �; A�Top(K) (by well-kindedness of subderivations, subject reduc-tion, and the generation lemma), so � `C [U 0=A]S0 � [U 0=A]Y by the substitution lemma (6.4.3).As in the analogous case on the right, we have now accomplished a substitution operation, but notquite the one we need. We must again work backwards to the desired result.From � `C [U 0=A]S0 � [U 0=A]Y and the fact that [U=A]S -?�> [U 0=A]S00 (Lemma 3.3), we canuse the expansion lemma to obtain � `C [U=A]S � [U 0=A]Y . (Note that [U=A]S is well kindedby subject reduction and [U 0=A]Y by subject reduction and the generation lemma.) Then we haveT -?�>W V -?�> (Fun (A:K)Y ) U 0 -�> [U 0=A]Y , which yields the desired result by the ex-pansion lemma. �Using the two outer reduction lemmas, we can do one reduction step at the outside of a type whilepreserving the subtyping judgement. The next step is to generalize this to an arbitrary reduction. For thispurpose, we choose the relation --�> .6.4.8 Proposition [Parallel reduction preserves subtyping]: Suppose � ` S 2 KS and � ` T 2 KT .1. If � `C S � T with S --�> S0 and � --�> �0, then �0 `C S0 � T .2. If � `C S � T with T --�> T 0 and � --�> �0, then �0 `C S � T 0.(Parallel reduction of contexts, written � --�> �0, is the pointwise extension of parallel reduction of types.)Proof: By simultaneous induction on derivations. The only di�cult cases are R-App and R-Promote. Weshow only the arguments for part (1), where S --�> S0; part (2) is similar except in the case R-Promote,which is easier.Case R-Refl: S -?�> U T �!?� U� `C S � TBy Lemma 3.8 there is a type U 0 with U --�> U 0 and S0 -?�> U 0 as well as T -?�> U 0. The resultfollows by R-Refl.Case R-Top: T -?�> Top(K 0) � ` S 2 K 0� `C S � TBy subject reduction and uniqueness of kinding we have K0 = KT . So by subject reduction, the well-kindedness of subderivations, and Lemma 4.12, the result follows by R-Top.Case R-Arrow: S -?�> S1!S2 T -?�> T1!T2� `C T1 � S1 � `C S2 � T2� `C S � TBy Lemma 3.8 and the de�nition of parallel reduction (3.1), there are types S01 and S02 with S1 --�> S01and S2 --�> S02 and: S �>-- S0S1!S2??�> �>-- S01!S02??�>Since the Si and Ti are well-kinded, the result follows by induction.29



Case R-All: S -?�> All(A�U)V T -?�> All(A�U)W�; A�U `C V � W� `C S � TBy Lemma 3.8 and the de�nition of parallel reduction (3.1), there are types U 0 and V 0 with U --�> U 0and V --�> V 0 and: S �> -- S0All(A�U)V??�> �>-- All(A�U 0)V 0??�>Since the V and W are well-kinded in �; A�U , the result follows by induction:S0 -?�> All(A�U 0)V 0 T -?�> All(A�U 0)W�0; A�U 0 `C V 0 � W�0 `C S0 � TCase R-All, R-Abs:Similar.Case R-Promote: S -?�>W W "� U � `C U � T� `C S � TBy the de�nition of the promotion relation, we have W = A S1 : : :Sn "� �(A) S1 : : : Sn = U . By Lemma3.8 and the de�nition of --�> , there are S01 : : :S0n with Si --�> S0i and:S �>-- S0A S1 : : : Sn??�> �>-- A S01 : : : S0n??�>Let U 0 = �0(A) S01 : : :S0n. By well-kindedness of subderivations and subject reduction, U and U 0 are well kin-ded. The result follows by induction, the fact that �(A) S1 : : :Sn --�> �0(A) S01 : : :S0n, and R-Promote.Case R-App: S -?�> U W T -?�> V W � `C U � V� `C S � TBy Lemma 3.8, there is some X such that: S �>-- S0U W??�> �>-- X??�>By subject reduction, � ` U W 2 KS and � ` V W 2 KT . By the generation lemma, this implies that U andV are well kinded. Continue by cases on the form of U . (The interesting one is when U is a type operator.)
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Subcase: U = A or U = U1 U2By the de�nition of parallel reduction, X must have the form U 0 W 0 with U --�> U 0 and W --�> W 0.By subject reduction, U 0 is well kinded. The result then follows by induction and R-App:S0 -?�> U 0 W 0 T -?�> V W -?�> V W 0 �0 `C U 0 � V�0 `C S0 � TSubcase: U = Top(K 0) S -?�> Top(K 0) W T -?�> V W� `C Top(K 0) � V� `C S � TBy Lemma 6.4.2, V -?�>Top(K0). Since T has kind KT , so does Top(K 0) W , and, by Lemma 4.10,T -?�> Top(K0) W -�> Top(KT ). The result then follows by R-Top (using subject reduction, well-kindedness of subderivations, and lemma 4.12).T -?�> Top(KT ) �0 ` S0 2 KT�0 `C S0 � TSubcase: U = Fun(A:K)U1We have (Fun(A:K)U1) W --�> X. By the de�nition of parallel reduction, X can have one of two forms:Subsubcase: X = (Fun(A:K)U 01) W 0Fun(A:K)U1 --�> Fun(A:K)U 01W --�> W 0The result follows by induction (using subject reduction and generation for the kinding hypothesis) andR-App: S0 -?�> (Fun(A:K)U 01) W 0 T -?�> V W -?�> V W 0 �0 `C Fun(A:K)U 01 � V�0 `C S0 � TSubsubcase: X = [W 0=A]U 01U1 --�> U 01W --�> W 0Then7 � `C Fun(A:K)U1 � V ) (by induction)�0 `C Fun(A:K)U 01 � V ) (by R-App)�0 `C Fun(A:K)U 01 W 0 � V W 0 ) (by outer reduction on the left (6.4.7))�0 `C [W 0=A]U 01 � V W 0 ) (by the expansion lemma (6.4.1))�0 `C S0 � T;using subject reduction and the generation lemma for the required kinding hypotheses in the �rst step andsubject reduction in the third and fourth steps. �6.4.9 Corollary [Reduction preserves subtyping]: Suppose � ` S 2 KS and � ` T 2 KT . IfS -?�> S0 and T -?�> T 0, with � `C S � T , then � `C S0 � T 0.7Here we can be more precise about why we choose parallel reduction to carry out this proof. A \commutation lemma"similar to the Church-Rosser property | the existence of a type S01 for S --�> S0 and S -?�> S1 where S0 �!?� S01and S1 --�> S01 (lemma 3.8) | is crucial for the induction. This immediately excludes the one-step reduction relation-�> . Ordinary many-step reduction, -?�> , is another obvious choice; but it cannot be used in the case of R-App,since here we need to know the form of the reduct of the application, which cannot be recovered from -?�> . Other, evenmore deterministic, reduction strategies such as normalizing reduction, leftmost-outermost reduction, or complete developmentmight work here, but these all seem to fail in the R-Promote case. There, we have S -?�> A S1 : : : Sn "� �(A) S1 : : : Sn ,where �(A) S1 can contain redices not present in A S1. For the induction to work in this case, we need to be able to ignorethese new redices when reducing further from �(A) S1 : : : Sn, which we would not be not free to do if we were using a moredeterministic reduction strategy. 31



Proof: If we can do one --�> step, we can do many. So the result follows by the observation (3.2)that the reexive, transitive closure of parallel reduction coincides with ordinary many-step reduction. �6.4.10 Corollary [Cut-free derivations can be strengthened]: Suppose � ` S 2 KS and � ` T 2 KT .If � `C S � T , then � `CS S � T .Proof: By induction. �6.5 Completeness of Strong, Cut-free Subtyping6.5.1 Theorem: Suppose � ` S 2 KS and � ` T 2 KT . If � `R S � T , then � `CS S � T .Proof: By induction on derivations. In all the cases except R-Trans, we argue as follows: By the inductionhypothesis (using the well-kindedness of subderivations), we may assume that all the subtyping premises areproved by cut-free derivations. Since the conclusion is not a cut, the whole derivation is cut-free and can bestrengthened using Corollary 6.4.10.Now, suppose the �nal rule is R-Trans:� `R S � U � `R U � T U 2 K� `R S � TBy induction, we may assume that the derivations of the premises are cut-free. Moreover, by Corollary 6.4.9,we can put U in normal form: � `C S � U ! and � `C U ! � T . Corollary 6.4.10 allows these derivations tobe strengthened: � `CS S � U ! and � `CS U ! � T . The result now follows from Proposition 6.3.2. �6.6 The AlgorithmWe now show that the algorithm we developed informally in Section 6.1 is indeed a decision procedure forthe subtype relation.The �rst thing we must verify is that this recursively de�ned procedure is really an algorithm | that ithalts in �nite time on all well-kinded inputs.6.6.1 Proposition [Termination of the algorithm]: Suppose � ` S 2 KS and � ` T 2 KT . Then checkhalts when presented with � ` S � T as input.Proof: We use the fact that the �>�-reduction de�ned in Section 5 is strongly normalizing to de�ne asimple termination ordering for the algorithm.First, note that the recursive call in the third clause (the clause for promotion) is guaranteed to halt onthe next step if U , the promotion of S, reduces to Top(K) for some K. Thus, we need only consider thepossibility of nontermination in the case where the promotion of S is di�erent from Top | i.e., where thevariable being promoted is a �-redex.Let the rank of a well-kinded type V in a context � be the pair (r; s), where r is the maximum lengthof a �>�-reduction sequence starting from V and s is the number of characters in V . Let the rank ofa well-kinded subtyping statement � ` S � T the pairwise sum of the ranks of S and T . Order rankslexicographically. Then the rank of every recursive call of check in its de�nition is smaller than the rank ofthe input (using the observation that we need only consider \interesting promotions" in the third clause).� The algorithm check does not include a case corresponding to the pointwise application rule R-App. Butthis rule can easily be shown to be inessential in strong, cut-free derivations.6.6.2 Lemma [Eliminability of R-App]: Suppose � ` S 2 KS and � ` T 2 KT . If � `CS S � T , thenthis statement can also be proved by a (strong, cut-free) derivation with no instances of R-App.Proof: Straightforward induction on derivations, using Lemma 6.3.1 for the R-App case. In e�ect, eachinstance of the application rule is replaced by a sequence of instances of the promotion rule. �32



Finally, we verify that the algorithm de�nes the same relation as the original subtyping rules.6.6.3 Theorem: The algorithm check is sound and complete for the original subtyping relation (on well-kinded types).Proof: On well-kinded inputs, the original subtyping relation is equivalent to the reducing subtypingrelation (6.2.7) restricted to strong, cut-free derivations (6.5.1) with no uses of R-App (6.6.2). Now, eachof the rules in this restricted system begins by normalizing both sides of the conclusion. Nothing changesif we present the rules in a form where the conclusion is assumed to be in normal form, adding a singlenormalization step at the very end of the derivation and inserting a re-normalizing step at each premisethat is not guaranteed to be in normal form when the conclusion is; indeed, there is just one of these: thelast premise of R-Promote. We may now observe that proof search for derivations in the reformulatedsystem is an essentially linear process: any given subtyping statement can match the conclusion of only onesubtyping rule for which further search may be required. That is, a given statement may match R-Refland/or R-Top and/or one of the remaining rules R-Promote, R-Arrow, R-All, and R-App. Since thepremises of R-Refl and R-Top can be checked directly, the applicability of these two rules can be tested�rst. Using this strategy, no backtracking is required. Moreover, all the metavariables appearing in thepremises the rules may be calculated from the conclusion: no guessing is required. The algorithm checkimplements this strategy. �7 TypingIn Section 6, we derived an algorithm for checking the subtyping relation by controlling the non-syntax-directed rules of transitivity and conversion. In this section, we carry out an analogous exercise for thetyping relation, eliminating the rule of subsumption from the system de�ned in Section 2.5 and accountingfor its e�ects by extending some of the other rules.Compared to what we had to do for subtyping, this is actually a rather simple task. Indeed, the resultingalgorithm strongly resembles standard algorithms for typechecking F�. The only essential di�erence comesfrom the fact that the promotion relation here must deal with application in addition to the promotion oftype variables. As usual, we obtain the algorithm by analyzing the shapes of minimal types.First, we check that the typing relation guarantees well-kindedness of derivable statements:7.1 Lemma: If � ` t 2 T , then � ` T 2 ?.The minimal type of an expression is a type smaller or equal to all the other types of the expression. Forthe algorithm, we also need to talk about a term's minimal types of certain speci�c shapes.7.2 De�nition [Minimal, arrow-minimal, and All-minimal types]:1. A type S is minimal for a term s in a context � if � ` s 2 S and, for all T with � ` s 2 T , we have� ` S � T .2. A type S1!S2 is arrow-minimal for s in � if � ` s 2 S1!S2 and, for all arrow-types T1!T2 with� ` s 2 T1!T2, we have � ` S1!S2 � T1!T2.3. A type All(A�S1)S2 is All-minimal for s in � if � ` s 2 All(A�S1)S2 and, for all All-typesAll(A�T1) T2with � ` s 2 All(A�T1) T2, we have � ` All(A�S1) S2 � All(A�T1) T2.7.3 De�nition: Let T be well kinded in �. The promote-normal form of T in � is"!� T = � "!� U if T ! "� U ; orT ! if T ! cannot be promoted.We next show how All-minimal and arrow-minimal types of a term can be calculated from its minimaltype. 33



7.4 Lemma:1. Suppose S and T1!T2 are well kinded. If � ` S � T1!T2, then "!� S = S1!S2 and � ` S1!S2 �T1!T2.2. Suppose S and All (A�T1)T2 are well kinded. If � ` S � All (A�T1)T2, then "!� S = All (A�S1) S2 and� ` All (A�S1)S2 � All (A�T1)T2.Proof:1. On well-kinded inputs, the original subtyping relation is equivalent to the reducing subtyping relation(6.2.7) restricted to strong, cut-free derivations (6.5.1). Proceed by induction on a derivation of � `CSS � T1!T2.2. Similar. �7.5 Corollary:1. If S is minimal for s in � and "!� S has the form S1!S2, then S1!S2 is arrow-minimal for s in �.2. If S is minimal for s in � and "!� S has the form All (A�S1)S2, then All (A�S1)S2 is All-minimal for sin �.The typing algorithm can now be obtained directly from the original typing relation by removingT-Subsumption | in e�ect, restricting the set of types derivable for a well-typed term to one of its minimaltypes | and generalizing the application and type application rules to compensate for this restriction intheir premises. We use `A to distinguish the typing algorithm from the original typing relation.7.6 De�nition [Typechecking algorithm]: ` � ok� `A x 2 �(x) (A-Var)�; x:T1 `A e 2 T2� `A fun (x:T1) e 2 T1!T2 (A-Arrow-I)"!� S = T1!T2� `A s 2 S � `A t 2 T � ` T � T1� `A s t 2 T2 (A-Arrow-E)�; A�T1 `A e 2 T2� `A fun (A�T1) e 2 All (A�T1)T2 (A-All-I)"!� T = All(A�T1) T2� `A t 2 T � ` S 2 K � ` S � T1� `A t S 2 [S=A]T2 (A-All-E)The termination of this algorithm is straightforward, given the decidability of kinding, the termination ofthe subroutine for checking subtyping, and the strong normalization of �>�-reduction, which guaranteesthat "!� T can be calculated in �nite time whenever T is well kinded.7.7 Fact:1a. If ` � ok, then �(x) is a minimal type of x in �.1b. If 6` � ok, then x has no type in �.2a. If T2 is a minimal type of e in �; x:T1, then T1 ! T2 is a minimal type of fun (x:T1) e in �.2b. If e has no type in �; x:T1, then fun (x:T1) e has no type in �.34
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