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Abstract 

System Fz is an extension with subtyping of the higher-order polymorphic I-calculus - an 

orthogonal combination of Girard’s system F 0 with Cardelli and Wegner’s Kernel Fun variant of 
System F4. We develop the fundamental metatheory of this calculus: decidability of /?-conversion 
on well-kinded types, elimination of the “cut-rule” of transitivity from the subtype relation, and 
the soundness, completeness, and termination of algorithms for subtyping and typechecking. 

Keywords; Lambda-calculus, Type systems, Subtyping, Polymorphism, Bounded quantification, 

Typechecking 

1. Introduction 

Since the early 198Os, increasing attention in the programming language commu- 

nity has been devoted to formal models for statically typed object-oriented languages. 

Cardelli [8] observed that refinement of object interfaces can be modeled by records 

and a simple form of subtyping. To account for the types of message-sending opera- 

tions, Cardelli and Wegner [13] introduced bounded quantijcation. Fully capturing the 
object model of languages like Smalltalk required a further refinement, the extension to 

calculi with higher-order polymorphism, to deal properly with the interaction between 

subtyping and object encapsulation. 

A number of typed object models have been given in this general setting. 3 Cook 

and co-workers [7,21] proposed a variant called F-bounded quanti$cation, which was 
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and Calculi (PROCOMET ‘94). 

2 E-mail: benjamin.pierce@cl.cam.ac.uk. 

3 Models for various object-oriented features have also been given using different techniques; see [l] and the 

references cited there. 
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used by Bruce [4] to give the first full account of static typing for Smalltalk-style 

objects. Pierce and Turner [38,39] gave a similar model using existential types instead 

of recursive types to capture object encapsulation, effectively working within pure Fz. 

These two approaches were generalized by Hofmann and Pierce [32] to an abstract, 

axiomatic presentation of objects and sub-typing. 

The core calculus underlying all of these models is an extension of Girard’s higher- 

order polymorphic &calculus, System F CO, with subtyping. Many of the ideas behind 

this system, called F,W (“F-omega-sub”), are due to Cardelli, particularly to his 1988 

paper, “Structural Subtyping and the Notion of Power Type” [8]; the extension of the 

subtype relation to type operators was developed by Cardelli and Mitchell [lo, 341. An 

early semantic model was given by Cardelli and Longo [l l] using partial equivalence 

relations. Compagnoni and Pierce [20] gave a model for an extension of Fz with 

intersection types. A more powerful model including recursive types was given by 

Bruce and Mitchell [6]. 

The second-order fragment of Fz has been studied in detail [3,5,12,23,24,26,27, 

331. This system exists in several versions, the two most common variants being 

the original Kernel Fun of Cardelli and Wegner [ 131 and the richer Full F, of 

Curien and Ghelli [24] (some others are surveyed in Section 8). For Full FQ, some 

surprising negative results have emerged [27-29,371; in particular, the subtype re- 

lation is undecidable. For this reason, many researchers have focused on the de- 

cidable (and theoretically more tractable) Kernel Fun variant. The formulation of 

Fz used in this paper generalizes the this variant and inherits its desirable 

properties. 

The analysis of Fz is significantly more challenging than that of F<, principally 

because Fz introduces a rule of conversion guaranteeing that /?-convertible types oc- 

cupy the same equivalence class in the subtype relation. This rule interacts with the 

rule of transitivity, requiring a substantial generalization of the standard cut-elimination 

argument - a key step in the proof of decidability, where uses of transitivity are re- 

stricted to a well-behaved form. Another significant difficulty is showing the termina- 

tion of the final algorithm; in decidable variants on F,, this is fairly straightforward; 

here, the proof depends on the strong normalization of an unusual notion of reduction 

on types, in which type variables may be replaced by their upper bounds from the 

context. 

Our goal is to establish fundamental meta-theoretic results for Fz, leading up to 

sound and complete algorithms for checking the subtyping and typing relations. We 

begin in Section 2 by introducing Fz. Sections 3, 4, and 5 develop preliminary results 

needed in Section 6, the core of the paper, where the decidability of subtyping is 

proved. Section 7 extends the analysis to the decidability of typing. Section 8 discusses 

some alternative formulations of the calculus. Section 9 compares our work to related 

results of Compagnoni. 

In the technical development, we elide routine proofs; those not shown are straight- 

forward when performed in the order given. 
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2. Definition of Fz 

Girard’s System F w [30] is a typed IL-calculus with higher-order polymorphism. 

Besides the term abstraction (fun(x : T)t) and application (f a) of the simply typed 

L-calculus [17] and the type abstraction (fun(A : K)t) and application (t T) of the 

second-order polymorphic L-calculus [30,40], it includes the possibility of abstraction 

(Fun(A : K)T) and application (T U) within type expressions. To guarantee the well- 

formedness of applications within types, an extra level of kinds is introduced: the kind 

* classifies ordinary types (which are inhabited by terms), while kinds of the form 

Kl+Kz classify type operators: functions mapping types of kind K1 to types of kind 

K2. The basic typing judgement for Fzis r E t E T, read “term t has type T in context 

r,” where r records the type of each free term variable x and the kind of each free 

type variable A. 

To extend F o with subtyping, we introduce an ordering S d T on the elements 

of each kind K. The declaration of each type variable A in r is extended with an 

upper bound, written A< T, which constrains A to range only over subtypes of T in 

the appropriate kind. To allow new constraints of this form to be introduced into 

the context, we extend the universal quantifier, AlI(A:K) U, to a bounded quantifier 

AII(A<T) u.4 

To ensure that the new system can still type all the terms of F w , we assume that 

the subtype relation in every kind K has a maximal element Top(K). The assumption 

A G Top(K) replaces A:K. 

For kinds of the form Kl+K2, the subtype relation is just the pointwise extension 

of subtyping for K2: a function S E K, -+K2 is smaller than a function T E Kl+K2 if 

S U < T U for every U EKI.’ 

At the base kind *, the subtype relation also includes rules for the type constructors 

TI 4T2 and AlZQI G T, ) 7’2. The rule for arrow types embodies the familiar contravari- 

anticovariant inclusion of function spaces: 

TkTI <S1 I- E S2 < T, 

r k S,+S, < T,-+T2 

Intuitively, a function f whose results inhabit S2 whenever its arguments inhabit Si 

may safely be substituted for a function in Tl-+T2, provided that any element of T, 

that might be given as an argument to f can safely be used as an element of Si and 

that f’s result, an element of &, can be used in place of the expected T2. 

The subtyping rule for bounded quantifiers is equally simple: 

r, A < U I- S2 < T, 

r t AII(AQU)S~ < M(Aw)T~ 

4 We could also extend type operators Fun (AX) U to bounded operators Fun (A d T) U, but this refinement 

would significantly complicate the metatheory, since we would then need to introduce a subkinding relation. 

5 Again, richer definitions of operator subtyping are possible: for example, we might allow monotone sub- 

typing, antimonotone subtyping, etc. [lo]. This extension does seem useful in practice (e.g. [32]), but its 

algorithmic implications are unclear. 
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That is, a polymorphic function f E AU(A~U)& can be used in a context that expects 

an element of AZl(A 6 U) Tz, provided that, for each legal argument type T, the value 

of f at T can safely be used as an element of Tz. We discuss some variants of this 

rule in Section 8. 

2.1. Syntax 

The kinds, types, terms, and contexts of Fqare: 

K .._ ..- 

I 
T ..- ..- 

t ..- ..- 

r ..- ..- 

I 

I 

* kind of types 

K+K kind of type operators 

A 

Fun(A:K) T 

TT 

Top(K) 
T+T 

AZI(AQT) T 

type variable 

type operator 

application of a type operator 

maximal type 

function type 

universally quantified type 

X 

fun(x: T)t 

;:n(A< T)t 

tT 

variable 

abstraction 

application 

type abstraction 

type application 

0 

r, x:T 

r, AQT 

empty context 

variable binding 

type variable binding with bound 

The inference rules that follow define sets of derivable statements of the following 

forms: 

t r ok r is a well-formed context 

TFTEK type T has kind K in context r 

r F S < T S is a subtype of T in r 

Tl-tgT term t has type T in r. 

Terms, types, contexts, and statements that differ only in the names of bound variables 

are regarded as identical. 

2.2. Contexts and kinding 

Well-formed contexts are constructed from the empty context by adding well-kinded 

type and term variable declarations. 

t- l ok 

r k T E K A @ dam(r) 

t r,AGT ok 

(C-EMPTY) 

(C-TVAR) 
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r t- T E + x $ dam(r) 

k T,x:T ok 
( C-VAR) 

Since the side conditions guarantee that bindings in well-formed contexts are always 

for distinct variables, we often consider them as finite functions from variables to types; 

for example, the upper bound of A in r is written T(A). We write &m(r) for the 

set of term and type variables bound by r. If r is a prefix of r’, we say that r’ 

is an extension of r. For technical convenience, in the rest of the paper we assume 

that the variables bound by every context (not just well-formed contexts) are pairwise 

distinct. 

The definition of the kinding relation is standard. Type variables have the same kind 

as their upper bounds; abstraction and application provide introduction and elimination 

forms for arrow-kinds; Top(K) has kind K; arrow- and All-types are well-kinded if their 

components are. We maintain the invariant that kinding statements are only derivable 

in well-formed contexts. 

r,AaTop(K,) t- T E K2 

r I- Fun(A:K,)T E K,+K2 

rI-SSK,-+K2 l-kTEKI 

TkS TEKZ 

I- r ok 

r t- Top(K) E K 

rkT,E* rI-T2E* 

rtT,-+T2E* 

l-, AGTI t T2 E * 

l-t AlI(AGT,)T2 E * 

(K-TVAR) 

(K-ARROW-I) 

(K-ARROW-E) 

(K-TOP) 

(K-ARROW) 

(K-ALL) 

(The kinding and context well-foimedness judgements are mutually recursive, but the 

two main judgement forms - subtyping and typing - only depend nonrecursively on 

other judgements.) 

2.3. Conversion 

The presence of abstractions and applications in type expressions leads us to 

consider conversion within types. For technical convenience, we use a slight exten- 

sion of the standard /I-conversion relation: in addition to reductions of the usual 

form (Fun@:K,) T) U -+p [UjA]T we allow reductions of the form Top(Kl-+Kz) 

T ---+T Top(Kz), which relate the maximal elements of different kinds. (We could 

achieve the same effect by extending the rule S-TOP below, but this is 

cleaner.) 
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2.3.1. Definition (PT-reduction). One-step /?T-reduction is the smallest relation on 

types closed under the following rules: 

Top(K,+K*) S-pTTop(Kz)(T) (Fun(A:K)S) TlgT[T/AlS(fi) 
S-+p_T’ T-gTT’ 

ST-j+?‘T ST-+T’ 

S-+/j~S’ T-gTT’ 

(S+T)-p~(s’+T) (SAT)---+~T(S-+T’) 

S-/j+ T-pa T’ 

AZZ(AG) T-BTAZZ(AcS’)T AZZ@<S) T-~TAZZ(AGS) T’ 

S-,jTS’ 

Fun(A:K)S-fl~F#n(A:K)S’ 

The many-step flT-reduction relation -zT is the reflexive and transitive closure 
of one-step reduction; =fiT is its reflexive, transitive, and Symmetric Closure; -tT 
denotes reductions containing at least one step. When T has a normal form (it will nec- 
essarily be unique), we denote it by T!. Reduction to PT-normal form is written -bT. 

2.4. Subtyping 

The Fz subtyping relation r F S < T is a straightforward extension of the subtyping 
relation of F, [13,24]. We start by stipulating that PT-convertible types always lie 
in the same equivalence class in the subtype ordering (S-CONV), and that the subtype 
relation at every kind is reflexive (R-REFL) and transitive (R-TRANS). Type assumptions 
from the context may be used as axioms (S-TVAR). Top(K) is maximal in the ordering 
for kind K (S-TOP). Type operators (S-ABS) and applications (S-APP) are subtyped 
pointwise. Arrow- and All-types have the rules discussed above (S-ARROW and S-ALL). 

In several places in the definition, we add premises to ensure that a proper kinding 
discipline is respected (e.g. S 6 Top(K) only when S E K, etc.). But for readability, 
these are kept to a minimum: we maintain the invariant that whenever the conclusion of 
a subtyping judgement is well-kinded, the types on the right- and left-hand sides of the 
f will have the same kind and all of the subderivations will be similarly well behaved. 

S=RT 

rl-SST 
(S-CONV) 

rts 6 u rt-U<T rl-UEK 

ri-s < T 
( S-TRANS) 

r t-A G r(A) ( S-TVAR) 

rt-SEK 
r t s d Top(K) 

r, AGTop(K) I- S d T 

r t FW(A:K)S G Fun(A:K)T 

(S-TOP) 

(S-ASS) 
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J-tS < T 

l-tS U < T U 

r F T, < SI I- t S, < T2 

r t S,-+S2 < T,+T, 

r,AGU tS2 < T2 

( S-APP) 

(S-ARROW) 

(S-ALL) 

2.5. Typing 

The typing relation r t- t E T is standard [ 13,241, modulo a few extra kinding as- 

sumptions. The rule T-SUBSUMPTION captures the intended interpretation of subtyping 

as “safe substitutability.” The others are straightforward extensions of the arrow- and 

All-introduction and -elimination rules of pure F w . 

rtsa rtTE* rts6T 
rt-SET 

(T-SUBSUMPTION) 

t r ok 

rtx E r(x) 

T,x:T, t t E T2 

r t- fun(x:Tl)t E T1+T2 

l-t-f ETr-+T, rt-aeT, 
rtfaET2 

( T-VAR) 

(T-ARROW-I) 

(T-ARROW-E) 

r, AGT, I- t E T2 

r t- fin(AGT,)t E AZl(A<T,) T2 
(T-ALL-I) 

I- t f E AIl(A6TI) T2 rtSEK rtS<T, 

r t f S E [S/A]T, 
(T-ALL-E) 

Throughout the paper, we use the following naming conventions for metavariables: 

x, Y, z, ... for term variables; s, t, . . . for terms; S, T, . . for types; A, B, . . . for type 

variables, and r, A, . . . for typing contexts. 

3. Properties of reduction 

We now pause to establish some technical properties of the reduction relation and to 

define an auxiliary notion of parallel reduction that will simplify some of the induc- 

tive arguments in later sections. The main result of this section is the Church-Rosser 

property, by a straightforward adaptation of Tait and Martin-Liif’s proof for ordinary 

P-reduction [2]. 

3.1. Definition (Parallel reduction). Single-step parallel reduction is the least relation 

closed under the following rules: 
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Top(K1-+K2) T-PT Top(K2) 
s-,fJ,- s’ T-p,- T’ 

(Fun(A:K) S) T_+,pT [T,,A]S, 

S-g,- S’ T--++BT T’ T-++~T T’ 

S T-go S’ T’ F@A:K) T-ST Fwz(A:K) T’ 

S-,jT S’ T-go T’ S-/JT S’ T-q-r T’ 

S-+T-~T S’+T’ All@<S) T-go All(4~S’) T’ 

T--“/IT T 

Ordinary single-step reduction is a subrelation of single-step parallel reduction, which 

is a subrelation of multi-step ordinary reduction. The reflexive, transitive closures of 

the two relations coincide: 

3.2. Fact. 

1. --/IT c -pT 

2. -;T > -fiT 

3. -+iT = -+iT 

Substitution commutes with parallel and multi-step reduction: 

3.3. Lemma. 

1. Zfs-g~ S’ and T-BT T’ then [T/A]S-pi [T’/A]S’. 

2. If S-;T S’ and T-jT T’ then [T/A]S-+$, [T’/A]S’. 

3. rfS -;T S’ and T +jT T’ then [T/A]S --+& [T’/A]S’. 

In the proof of 3.3, we need the following property of substitution: 

3.4. Fact. If A #A’ and A’ $ FV(S), then [S/A]([T/A’]U) = [[S/A]T/A’]([S/A]U). 

One useful consequence of 3.3(3) is that if an expression with an outermost redex 

has a reduction path in which this redex is reduced at some point, then this reduction 

can be performed first without changing the result: 

3.5. Corollary (Outermost reduction). Zf (Fun(A:K)S)T -;T U, where U # 

(Fun(A:K)S’)T’ with S --+zT S’, and T -+;T T’, then [T/A]S --+iT U. 

3.6. Lemma (Diamond property for -+fiT ). For all types S, S1, and S2 with S-BT 
S1 and S-PT S2, there is a type S, such that S1--++aT Ss and S2-jT S3. 

S, .s2 . . : 
1 :.’ 

z f 
.. BT 

s3 
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Proof. Straightforward extension of the standard argument (cf. [2]). 0 

3.7. Corollary (Church-Rosser for ---+ir). For all types S, S1, and S2 with S --+iT 
S1 and S -+iT SZ, there is a type SJ such that SI --+iT & and & -iT &. 

The proof of strong normalization for -38~ has to be deferred until after we have 

studied the properties of the kinding system, since our proof of normalization requires 

that the types involved by well kinded. 

One more property of -gT will be needed for the induction in the proof of 

Lemma 6.4.8. 

3.8. Lemma ( -ST and --+FT). IfS-++fl~ St and S -iT S2, then there is an & 

with S1 --+iT SJ and S2-p-r S3. 

/\ 

* 
BT 

S, S 2 

‘.. * 

PT.... :’ 
‘4 ,’ 

s3 

Proof. By induction on the length of S -;T S2, using 3.2(l) and Church-Rosser. 

0 

4. Kinding 

Next, we state some basic technical properties of the context well-formedness and 

kinding judgements. 

4.1. Lemma (Generation of contexts). 

1. If k r ok, then: 
(a) r = 0; or 
(b) r = f 1, x:T, with k rl ok and rl E T E + as subderivations; or 

(c) r = rl, A<T, with t rl ok and l-1 t T E K for some K as subderivations. 
2. If r t S E K, then t r ok as a subderivation. 

4.2. Lemma (Generation of types). 

1. Zf TFAEK, then rt-r(A)~K. 
2. If r t Fun(A:Kl)T E K, then, for some K2, we have r, A < Top(K1) t T E K2 

and K = Kl-+K2. 
3. If r t S T E K, then, for some K’, we have r t S E K’-+K and r t T E Kl. 
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4. Zf Z 1 S-tT E K, then K = * and r F S, T E *. 
5. Zf r t- Top(K) E K’, then K = K’. 

6.ZfrtAllC4aS)T~K, thenK=*andr,AGI-TEE*. 

Moreover, the implied derivations are all subderivations of the originals. 

We prove the decidability of the kinding system by showing that it is equivalent to 

a different system whose decidability is obvious. 

4.3. Definition (Algorithmic kinding). The algorithmic kinding relation TtdT E K is 

the least relation closed under the kinding rules, where instead of rule K-TVAR we use 

the following: 

( K-TVAR’ ) 

The algorithmic context well-formedness relation F&Z ok is defined as before, using 

algorithmic kinding. 

4.4. Lemma (Context strengthening for algorithmic kinding). 

1. Zfrl,AG,rJ-.,T EK and A is notfree in r2 or in T, then rl, r&dT EK. 
2. Zf l-_.drl, A&9, r2 ok and A is not free in r2, then Fdr,, r2 ok. 
3. Zf r,, x:S, r2FdT E K, then r,, T2 I-&T E K. 

4. zft-.drl,x:S, r, ok, then l-&r,, r2 ok. 

4.5. Lemma (Decidability of kinding). The relations I- r ok and r t S E K are 

decidable. 

Proof. It is easy to prove by induction that the two kinding systems and the two 

definitions of context well-formedness are equivalent. In each direction, we only have 

to consider the rule for variables, since all other rules coincide. 

Case K-TVAR: Z F r(A) E K By Lemma 4.1(2) t- Zi, AGT, r2 ok as subderivation. 

So by the induction hypothesis, l-&Z,, AGT, r2 ok and Zi, AGT, rZtdT E K. 

Repeated application of Lemma 4.4 yields ZitdT E K. 
Case K-TVAR’: r,kdT E K and Zt,dZi, A d T, r2 ok By the induction hypothesis, 

Zi t T E K and t Zi, AGT, r2 ok, so the result follows by K-TVAR and weakening. 

Now, the algorithm obtained by reading the algorithmic kinding rules from bottom to 

top as Horn clauses always terminates, since in each step the total number of characters 

in the conclusion is greater than the number of characters in any of the premises. Since 

the systems are equivalent, Z F S:K is also decidable. 0 

4.6. Lemma (Uniqueness of kinding). Zf r I- S E K and r t S E K’, then K = K’. 
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This justifies the following notation: 

4.7. Definition. The unique kind of a well-kinded type S in a context r is written 

Kindr(S). 

4.8. Lemma (Transposition and weakening for kinding). Suppose that r’ is a well- 
formed extension of rI, A’GT, AQS, r2. Zf rl, A&S, A’GT, r2 E U E K and A $6 
W(T), then P 1 U E K. 

4.9. Lemma (Context update for kinding). IJ‘ ri, AG, r2 t- T E K and rl F S, S’ E 

K’, then Z’,, AcS’, r2 t- T E K. 

4.10. Lemma (Top reduction). rf r I- Top(K) T1 . . T,, E K’, then Top(K) T1 . . T, 
-+ Top(K’). 

4.11. Lemma (Kinding and substitution). Suppose rl 1 T E K’. 

1. Zf E r,,AQTop(K’), r2 ok, then I- rl, [T/A]T* ok. 
2. Zf r,, AGTop(K’), r2 F S E K, then r,, [T/A]r* t [T/A]S E K. 

Proof. Both parts are proved simultaneously by induction on derivations. 0 

4.12. Lemma (Subject reduction for types and contexts). 

1. ZfrFSEKandS-;TT thenrt-TEE. 
2. Zf r t S E K and r -+,&. r’, then r’ I- S E K. 

4.13. Proposition (Kind invariance under conversion). Zf S =flT T, where r t S E KS 

and r t- T E KT, then KS = KT. 

Proof. By the Church-Rosser property (3.7), uniqueness of kinding (4.6), and 

Lemma 4.12. 0 

5. Strong normalization of types 

We shall often need the fact that /?T-reduction is strongly normalizing for well- 

kinded types. In fact, we prove the strong normalization of a more general reduction 

relation, called PTT-reduction, which will be used to prove the termination of the sub- 

typing and typing algorithms. Besides the usual /I and T reductions, we allow variables 

to be replaced by their upper bounds from the context. r-reduction is reminiscent of 

the common operation in type checker and proof checker implementations of replacing 

a type definition by its expansion (cf. [41]). Discussions with Adriana Compagnoni 

have significantly improved the argument in this section. 

We begin by proving the strong normalization of /3T-reduction, using by a straight- 

forward translation argument. 
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5.1. Definition. Define a family of types TK, one for each kind K, as follows: 

T, = 

TK,-+K~ = 

M(A:*)A 
FUH (A :Kl ) TK* 

Note that l F TK E K for each K. 

5.2. Lemma (Strong /?T-normalization). Suppose r t- S E K. Then there is no injiinite 

j?T-reduction from S. 

Proof. Define a translation function F mapping Fz types to FW types: 

F(Top(K)) = TK 

F(AZZ(AG) T) = Al(A) F(S) + F(T) 

F(Fun(&K)S) = Fun(A:K) F(S) 

F(ST) = F(S) F(T) 

F(S -+ T) = F(S) + F(T). 

On contexts, F replaces each type variable binding AGT in r by the kinding assumption 
A:K, where K is the kind of T in r. It is easy to check that if r F S E K in Fz, 

then F(T) k F(S) E K in FW . 
Now, any PT-reduction in Fz from S can be mirrored by a p-reduction from F(S) 

of the same length in F w. The existence of an infinite /IT-reduction in Fz would thus 
contradict the strong normalization of F w [25,30]. •I 

Next, we define the notion of r-reduction and establish some of its basic properties. 

5.3. Definition. Single-step r-reduction is the least family of relations closed under: 

W) # Top(K) 

A-r WI 
S-r S’ 

S T-rS’ T 

S-j- S’ 

(S-+T)-r (S’-+T) 

S -(r, A 4 Top(K)) s' 

Fun(A:K)S---tr Fun(A:K)S’ 

T-r T’ 

ST-rST’ 

T-r T’ 

(S-+T)-r (S+T’) 

S-j- S' 

AZZ@l<S) T-r AZZ@l<S’) T 

T -(r,A<s) T’ 

AZZ@aS) T-r AZZ@gS) T’ 

Single-step /ITT-reduction, written --+pTr, is the least family of relations closed under 
these rules and the rules (B) and (T) of Definition 2.3.1. The corresponding multi-step 
reductions are defined as usual. Note that in a multi-step r-reduction sequence, the r 
at each stage remains the same; r is only extended “internally,” in the course of a 
single reduction, to keep track of variable bindings in those rules that define reduction 
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under binders. Also note that in rule (Z) we disallow variables to Z-reduce to Top. 

Thus we separate All-bound variables, whose bounds may be different from Top and 

which may thus act as Z-redexes, from Fun-bound variables, whose bounds are always 

Top and which can never be Z-reduced. 

This distinction avoids confusion between BT- and Z-redexes. 

5.4. Lemma (Strong Z-normalization). Zf Z b S E K, then there is no injinite r- 

reduction from S. 

Proof. We show, by induction on the definition of --+,- , that if S-r T in one step, 

then Z k T E K by a shorter derivation. Most cases are straightforward; we list only 

the ones for type variables and for All-types. 

Cuse: S = A and T = T(A). 

By the generation lemma for types (Lemma 4.2), Z t- T(A) E K by a shorter derivation. 

Case: S = AZI(AG1)& and T = AZZ(A < Si)S,. 

By the generation lemma for types (4.2) and contexts (4.1), Z k Sr E K1, so by the 

induction hypothesis Z k Si E K1 by a shorter derivation. Finally Z t- AlI S2 E * 

by K-ALL, by a shorter derivation than the original. 

Case: S = AIZ(AGI)& and T = AII(AG1)Sl 

By the generation lemma for types, Z, A 6 S1 t- & E K2. The induction hypoth- 

esis gives Z, A<$ t- Sl E K2 by a shorter derivation, so by K-ALL we have Z k 

AZI(A G$ ) Si by a shorter derivation than the original. 0 

We shall often use the subject-reduction property silently in what follows, to guar- 

antee that a reduction sequence from a well-kinded term only contains well-kinded 

terms. 

5.5. Lemma (Subject reduction). Zf Z t S E K and S -;Tr S’, then r k S’ E K. 

Proof. By induction on the length of the reduction S --+ir,- S’, with an inner induc- 

tion on the definition of single-step fiTZ-reduction. 0 

5.6. Lemma. 

1. Zf AII(AGTI)T~-FV, then V = AlZ(A<Vl) V2 with T,-*,V, and 

T2 -; A<T J’2. 

2. Zf k’un (A:K) Tl--+;V, then V = Fun(A:K) V2 with T2 ---+; A~Top(K) V2. 

3. Zf T, Tx---+;V, then V = VI V2 with T,--+*,V, and Tz-$V2. 

4. Zf (Tl --+ T2)---+FV, then V = (VI + V2) with Tl-FVl and 

T2-+;Vz. 

Proof. We give the proof in detail for part (1); the rest are similar, but simpler. The 

form of V = All@ < VI) V2 is immediate by the definition of -r . For the rest of 
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part (1) we prove the more refined statement 

if T,-FU, and T2 -* (r,AGT,jU2 and A~~C~~UI)U~-;A~~@~VI)V~, 

then T1 --+F h and T2 --+tr A G T, ) V2, 

by induction on the length of reduction from All @IQ U, ) U2 to All @I Q VI) V2. 

Case: All(A-‘Ul)Uz = All(A~v,) V2. 

Immediate. 

Case: All(AQUl) U2-r AI~(AQU~)U..-~All(A~V~) VI. 

(That is, the sequence consists of a single-step reduction, replacing a single variable 

in U2 by its upper bound to yield U2/, followed by a multi-step reduction.) To apply 

the induction hypothesis, we need to check that U2 --+F A G r, ) U,l, which immediately 

gives TZ -tr A Q r, ) U2’. 
But if the ‘first step replaces an occurrence of A by VI in UZ, i.e. UZ = 

U2L41 -cr, A Q~,) Uz[Ul], then we can build a reduction &[A] -(r, A Q~,) 

U2 VI 1 -Fr A QT, ) U,[ UI] by replacing this occurrence of A with Tl and then us- 

ing the assumption that T, --+FU, (and hence T, -tr AQ r,) UI ) to develop Tl to 

U, in-place. On the other hand, if the first step replaces some other variable, then 

U2 -;r AGT,) Ui is immediate. In both cases, the induction hypothesis then applies, 

directly yielding the desired result. 

Case: All(A<Ul) U2-r AZZ(AQU[) U~--+FAII(A~VI) V2. 

In this case the induction hypothesis applies directly (since TI -;UI -r U{ and we 

have T2 --+tr A G r,) U2 by assumption) to yield the desired result. q 

5.7. Lemma (Weak diamond property for r-reduction). 

T ” .U 

I ; 
v .;. ., w. 

Proof. By induction on the form of T. 

Case: T = A. 

Then V = U = T(A) and we may take W = T(A). 

Case: T = A~~(AGTI)T~. 

We must find W = All @ s WI) W2 such that the required diagram commutes; this 

will follow from the commutativity of a smaller diagram for TI, U,, VI, and WI and 

another diagram for T2, U2, V2, and W2. There are three subcases to consider, depending 

on whether the reductions from T to U and V are both in T,, both in T2, or one in 

,*’ TI and one in T2. (Since the last case is symmetric, we may assume without loss of 

generality that Tl is reduced to produce V and T2 to produce U.) 

Subcase: U = All(A~U~) T2 and V = AZl(A<V,) T2. 
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Begin by applying the induction hypothesis to T1, U1, and VI to yield a common 

reduct WI. We must then show: 

= I., A<T, *: l‘.A<U, 
7 
T2....... ..;...' i2. r,A<v, 

Set W, = T, and we are done. 

Subcase: U = All (A Q TI ) U2 and V = All @ $ TI > V2 

We must find a W2 such that 

T2 
T,A<T, 

= * 4 

r= I‘ = 

t I 

T, -GT, : 

= I’,A<T, 
I 

*: I’,A<T, 

v,. 

The existence of such a W, is given by the induction hypothesis. 

Subcase: U = All@i~T,) U, and V = A~I(AGVI) Tz. 

Set WI = VI. Then we must show: 

T2 
f,A<T, 

= * r/, 

r r 
. I 

VI --$v, I 

* : l’,A<T, 

T2 
I‘,A<V 

.*. .I) ct,. 
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If T2 --+(r, A <r,) U2 by a r-reduction on some occurrence of A in T2, then we have 

T2 = Tz[A] and U2 = Tz[Tr]; set W2 = T2[ VI]. If T2 --+(r, A or,) UZ by a r-reduction 

on some occurrence of a variable other than A in T2, then we can set W2 = U2, since 

T2 -(*r A<“,) 
Other ‘cases: 

U2 follows directly from T2 --+& AQr,j U2 in this case. 

Straightforward. 0 

5.8. Lemma (Church-Rosser for r-reduction). If r k T E K, then 

Proof. By Newman’s Lemma, which states that the weak diamond property and strong 

normalization together imply Church-Rosser (cf. [2]). 0 

5.9. Lemma. (Substitution commutes with r-reduction). If U-F V and 

s-* (r,A6Top(K& then FWlS-W/4T. 

Proof. Since A’s bound is Top(K), it is not a (r, AQTo~(K))-redex, so [U/A]S-F 

[U/A] T. Then [ U/A]T -F[ V/A]T by applying the reduction from U to V at each point 

in [ U/A]T where A appeared in T. q 

At this point, we can start proving properties relating r-reduction and /3T-reduction. 

First, a technical property that handles a key step of the following lemma. 

5.10. Lemma. rf Tl -j,- VI and T2 -F AGT,j V2, then there is some W2 such 

that: 

Proof. By induction on the length of the reduction from T2 to V2. 

Case: T2 = V2. 

Then set W2 = T2 and we are done. 

Case: T2 -+Tr AQT,j J’21 -+(r,A<T,) V2. 
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Apply the induction hypothesis to find a Wi satisfying the desired property. We must 

now show: 

If ‘: -(i-,AQT,) VZ by contracting a redex other than A, then Vi = V,‘[B] and V2 = 

V2/[T(B)]. In reducing from Vi to W2/, this redex may be copied a number of times: 

W,l = W,‘[B][B] . . . [II]. Let WZ be the result of contracting the residuals of this redex 

in Wi, i.e. W2 = W,'[T(B)][T(B)] . . . [T(B)]. Similarly, if Vi = V&4] and V2 = V,‘[T,]; 

again, let W2 be the result of contracting the residuals of this redex in Wi. Reduce 

v2 = I’-,‘[Cl to W2 = W;MlWd . ..[&I by V;[Ti] -zT W;[T,I[Td . ..[T.l -iT 
W:[~11[~11.. . [Ull. 0 

The next lemma establishes a confluence property for I-- and BT-reductions. The 

proof is similar to that of Lemma 5.7. This lemma and Lemma 5.8 jointly handle the 

crucial step in the strong normalization argument that follows. 

5.11. Lemma @T-reduction and r-reduction). 

Proof. By induction on the definition of Tdg~ U. 

Case: T = Top(K1 + K2) Tl -+T Top(K2) = U. 

Any r-reduction from T must reduce only redexes in T,, so V has the form 

Top(K1 + K2) VI. But then V -fT U, and we can take W = U. Note that V -fgT 

W by a nonempty reduction. 

Case: T = (Fun@:K) TI) T2 -p [Tz/A]Tl = U. 

Any r-reduction from T consists of a number of separate reductions in Tl and T2 

by Lemma 5.6(2,3), so V has the form (Fun (A:K) VI) V2, with TI -Fr AcTopcKlj VI 
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and TI-FV~. By Lemma 5.9, [T&I]TI-F[V&I]V~, so we can take W = [VZ/A]VI. 

Note that V -PT W by a nonempty reduction. 

Case: 

T, -pT VI 

T = AlZ(A<T,) T2 --+BT All(AbU,)Tz = U 

By Lemma 5.6(l), V has the form AZZ(AG VI) V2, with TI -+F VI and T2 -F *<r,) 

V2. Apply the induction hypothesis to find a WI with 

By Lemma 5.10, there is some W2 such that: 

So W = All @ G WI ) WZ has the required property. 

Case: 

T2 --+/ST u2 

T = Ail(A<TI) T2 -,jT AII(AQT~) U2 = U 

By Lemma 5.6(l), V has the form AlZ(A<Vl) V2, with 

V2. We must show 
Z -I- VI and T2 -(r, A G T, ) 

T2 BT *lJ 2 

I-* r * 
7 

“I 
BT 

I 
-TV* j 

* T,A<T, *! T,A6T, 
, 

” FT. 
2 * 

which follows directly from the induction hypothesis. 
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Other cases: 
Similarly, using parts (2)-(4) of Lemma 5.6. 0 

With this in hand, we can proceed to the main body of the strong normalization 

argument. Its two main steps are captured by this lemma and the next one. 

5.12. Lemma (BT-postponement). Assume r F T E K. Zf T -PT U-I-X --+Er 

. ..) then there is some Vo such that T-r Vo -yTr . . . . 

For the proof, we need a simple fact: 

5.13. Fact. Zf S -fiT T-r U, then S-r U’ for some U’. (That is, the redex 

that is contracted between T and U is a residual of a redex already present in S.) 

Proof. Since /3T-reduction cannot create a r-redex, the r-redex appearing in T must 

be a residual of a r-redex already appearing in S. 0 

Proof of Lemma 5.12. By Fact 5.13, there is some VO such that: 

T ,’ -“o 

fir 
I 

lJ 

By Lemma 5.11, there is some VI such that 

Since U-r X, we can now use Church-Rosser for r-reduction (Lemma 5.8): 

T I -“” 
BT I BT + I 

II ;f WV, 

r 
I 

r * 
I 

x I: ‘V, 
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We can continue in this way, applying either 5.8 or 5.11 to successive elements of 

the infinite reduction beginning from X to obtain an infinite sequence of multi-step 

/?TT-reductions on the right: 

T r ,v0 

PT 
I 

BT + 
I 

u ; ‘V, 

. . . . . 

But the sequence of reductions on the left must contain infinitely many PT-steps 

(otherwise it would have an infinite r-tail), so Lemma 5.11 also tells us that infinitely 

many of the individual multi-step reductions on the right are nonempty. The reduction 

T-T V, -+zTr VI + . . -zTr is the desired one. 

5.14. Proposition (Strong PTT-normalization). If S is well-kinded in r, then there is 
no injnite /?TT-reduction from S. 

Proof. Assume, for a contradiction, that .3? is an infinite BTT-reduction beginning 

from S. Let 9’0 = 9. Now repeat the following process as long as possible to construct 

a sequence 931, B2, . . . of infinite j?T-reductions, all starting from S: 

If 9:i contains no r-reduction that is immediately preceded by a PT-reduction, then 

stop. Otherwise, form &+I from 9i by using Lemma 5.12 repeatedly to move the 

first such r-reduction before any flT-reduction. 

Note that all of the 9i are infinite and that the first i steps in each 93i are all r- 

reductions. Now, there are two possibilities: 

l The sequence of 93’s eventually terminates, having reached some 9% in which all 

r-reductions precede the first /3T-reduction. But this means that W, contains only 

r-reductions, contradicting Lemma 5.4, or has an infinite tail consisting only of 

PT-reductions, contradicting Lemma 5.2. 

l The sequence of 9?‘s is infinite. But since each Wi begins with at least i r-reductions, 

we can use this to exhibit an infinite r-reduction beginning from S, contradicting 

Lemma 5.4. 0 

6. Subtyping 

In proof-theoretic analyses of calculi with subtyping, the subtyping relation itself 

usually presents the most challenging problems. This is also the case in Fz. 
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6.1. Proof outline 

Although the details of our development will be somewhat more involved, it is 

helpful to start by reviewing the standard argument [3, 12,24,26, etc.] for the de- 

cidability of subtyping in the (decidable “Kernel Fun” fragment of the) second-order 

system F,: 

(1) 

(2) 

(3) 

(4) 

(5) 

Begin with an “original” presentation of the subtyping system that directly ex- 

presses its intended meaning, but which is not directly implementable. 

Propose an alternative presentation of the same relation by a syntax-directed set 

of inference rules, in which the premises of each rule contain only metavariables 

whose values are uniquely determined by the form of the conclusion, and in 

which all the derivations of any given subtyping statement r k S f T must 

end with the same rule. (More precisely: more than one rule may be used to 

derive a given statement, as long as only one of them has premises whose 

applicability cannot be checked directly, without making any recursive calls.) 

This system can be implemented by a proof-search algorithm that will never 

have to guess or backtrack. 

Check that this algorithm is indeed a decision procedure for the syntax-directed 

system by showing that proof search must terminate in finite time when started 

with any statement as its initial goal. 

Show that the syntax-directed system is sound, in the sense that any subtyping 

statement derived by the algorithm is also derivable in the original system. This 

step is typically straightforward. 

Finally, prove that the syntax-directed system is complete: that any statement 

derivable in the original system is also derivable by the algorithm. This step is 

where a deeper understanding is required. 

The syntax-directed system may be viewed as a version of the original from which 

all “problematic” rules have been removed. In the case of F,, there is just one such 

rule: 

rts<u TkU<T 

TkS<T 
( S-TRANS) 

By analogy with proof theory, this rule is sometimes called the cut rule of the sub- 

typing system: the type U appearing in the subderivations is cut out when moving to 

the conclusion. By analogy with the sequent calculus or the simply typed I-calculus 

(cf. [31]), this cut rule can be almost completely eliminated by rewriting derivations. 

But not completely. 

In one situation, transitivity is actually essential. Statements with variables on the 

left-hand side cannot, in general, be proved without using transitivity. For example, 

CsTop(+), B<C, AGB t A < C 

must be proved using two instances of S-TVAR to establish the connections between A 

and B and between B and C, which are then joined by a single instance of transitivity. 

Thus, to eliminate S-TRANS while retaining completeness, it is necessary to refine the 
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treatment of variables, extending each instance of S-TVAR with an “internal” use of 

transitivity: 

rl-_(A)dT 

rtA < T 
( S-TVAR-PLUS-TRANS) 

It is easy to see that replacing S-TVAR with S-TVAR-PLUS-TRANS in the original system 

does not affect its power. Moreover, S-TRANS can now be completely eliminated without 

losing any derivable statements. The resulting subtyping algorithm (i.e. the recursive 

procedure obtained from the syntax-directed system by ordering overlapping rules so 

that the “easy” ones come first) is: 

check(r F S 6 T) = 

if T E Top(*) 

then true 

else if S E T 

then true 

else if S c A 

then check(r F T(A) < T) 

else if S E Sl+& and T E TI-TJ 

then check(r F T1 6 S1) 

and check(r t Sz < T2) 

else if SE AII(AQU)SZ and T = All(A<U)Tz 

then check(r, AGU t Sz < T2) 

else 

false. 

The behavior of this algorithm reveals a great deal about the structure of the F, 

subtyping relation. The first cases deal with the easy rules for Top and reflexivity. The 

third case says that a statement of the form r k A G T, where A is not identical to T 

and T is not Top, can only be true if A’s upper bound is less that T. In other words, 

the region between A and its upper bound is empty: there are no types strictly greater 

than A and strictly less than T(A). 

Since this concept of “the smallest proper supertype of A” will also be crucial for 

our development, it is worth introducing some special notation for it. Write A tr T(A) 

for “the type A promotes to its upper bound T(A) from the context.” We can then 

reformulate the enriched variable subtyping rule S-WAR-PLUS-TRANS as 

A tr r(A) rI-r(A) d T 

TEA < T 
( S-PROMOTE-TVAR) 
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or, more generally, as 

s Tr u rt_lYidr 

TkS<T 
(S-PROMOTE) 

where the partial function Tr is undefined except on variables. The subtyping algorithm 

becomes: 

check(r t S d T) = 

. . . 

else if S Tr U 

then check(r k U 6 T) 

Now, let us generalize these intuitions to the case of full Fz. Here, we encounter 

one new kind of situation in which transitivity plays an essential role. For example, in 

the context 

l- = A < Top(+), F < (Fun(B:*)B), 

the statement r k F A < A is provable as follows (ignoring kinding): 

1- t- F < (FzuI(B:*)B)~-~~*~ 

r F F A < (Fun(B:*)B) AS-App r k (Fun(B:+)B) A < AS-CoNv S_TRANS 

TtFA<A 

The instance of transitivity in this derivation is again essential, but it is not an instance 

of the schema that motivated S-TVAR-PLUS-TRANS. In fact, it is possible to construct 

more involved examples where the instance of S-TVAR is separated from the instance 

of S-TRANS by arbitrarily many applications of S-APP. This suggests the following 

generalization of the promotion relation: 

6.1.1. Definition (Promotion). The promotion of a type A S1 S,, in a well-formed 

context r is r(A) SI . ..S., written A Sl...S, Tr T(A) 4 . ..S.. 

With this relation and S-PROMOTE, both examples above can be derived without 

explicitly using S-TRANS. 

To extend the algorithm check to full Fz, one thing obviously missing is a clause for 

type abstraction matching the pointwise subtyping rule S-Ass. We add one as follows: 

check(r t- S G T) = 

. . . 

else if S s Fun (A:Kl ) SJ and T E Fun (A: Kj ) TJ 

then check(r, A< Top(K,) t- S2 d T2) 
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Surprisingly, we do not need a similar clause for application, 

then check(r t S1 d Tl ) 

because its effect turns out to be covered by the promotion clause. But we do need 

to deal with the possibility of conversion; otherwise, for example, the statement r F 

((Fun @I:*)B)Tl)+T2 < TltT2 will not be derivable. 

Clearly, we need to perform some reduction on the arguments before choosing which 

clause of the algorithm to apply. We can make life easy by simply normalizing the 

arguments before looking at them. 6 

Since the arguments to recursive calls in all of the clauses except promotion will 

remain in normal form if the original arguments are given in normal form, we only 

need to re-normalize in the promotion clause to preserve normality. The final algorithm, 

then, is: 

check(r t S 6 T) = 
check!(r k S! d T!) 

check!(r t S 6 T) = 
if T E Top(Kindr(S)) 

then true 
else if S E T 

then true 

else ij”S tr U 
then check!(r t U! 6 T) 

else ifs E Sl+S;! and T E T,--+T2 
then check!(r k TI < S1) 

and check!( r t S2 6 T2) 
else $27 E AlZ(A<U)& and T z All(A<U)T2 

else if S E Fun (AXI ) SZ and T G Fun (A:Kl ) T2 
then check!(r, AQ Top(K1) 1 S2 G T2) 

else 
false. 

6 In a real implementation it is not desirable to fully normalize type expressions: this wastes time (in the 

vast majority of calls to the subtyping algorithm, the types being compared are identical) and results in 

the unnecessary expansion of type abbreviations, making the compiler’s diagnostic output difficult for the 

programmer to understand. In practice, we reduce types to weak head normal form, exposing only their 

outermost constructors at each step. The completeness of this modification rests on the observation that the 

reflexivity check in the algorithm can be restricted to type variables, applications, and the left-hand sides of 

quantifiers. 
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Our task for the remainder of the section will be to show that this algorithm is sound 

and complete for the rules in Section 2.4. Our first step will be a technical reformulation 

of the original system, which provides a convenient setting for the arguments to follow: 

we remove the general rule of conversion and regain its effect by generalizing each of 

the remaining rules to allow arbitrary reduction in the premises. For example, the rule 

for subtyping arrow types 

becomes: 

It is not hard to show that this reducing system is equivalent to the original. Next, we 

introduce two important properties of certain derivations in the reducing system: 

l A cut-free derivation is one with no instances of the rule of transitivity. 

l A strong derivation is one in which every -iT reduction is actually a reduction 

to normal form. 

Cut-free derivations are close to the form of those discovered by the algorithm check. 
Strength is a more technical property, which reduces the complexity of the case analyses 

required at some crucial points. Using these properties, the main facts that we need 

are : 

1. The rule of transitivity can be eliminated from strong derivations. 

2. The validity of subtyping is preserved by /?T-reduction in cut-free derivations. 

From these, we can show the central theorem: any derivation in the reducing system 

can be transformed to a strong, cut-free derivation of the same statement. Finally, to 

obtain the algorithm, we observe that the rule of application can also be eliminated 

from strong, cut-free derivations. 

6.2. The reducing system 

The main difference between the reducing system and the original subtyping system 

presented in Section 2 is that we remove the rule S-CONV and distribute its effects over 

the remaining rules in the form of extra premises. We also replace the rule S-TVAR by 

the more general rule of promotion, R-PROMOTE. 

6.2.1. Definition (Reducing system). 

s-p T-+U 

rks6T 
(R-REFL) 

(R-TRANS) 
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s-+;,u u Tr U’ rkV<T 

TtS d T 
(R-PROMOTE) 

T -+ Top(K) r k S E K 

TtS < T 

S --& AIZ(Ab&)& T -;T AZ1(AG2) T2 
rt pl,s2 EK 

r k Tl < s1 r, AQTOp(K) t s2 6 TX 
rts < T 

S -+i,- Fun (A:K) S’ T --+iT Fun (A:K) T’ 

r, A 6 Top(K) t s’ d T’ 
rts 6 T 

s -+iT S’ u T-+;, T’ U rtS'< T’ 

rts 6 T 

(R-TOP) 

(R-ARROW) 

(R-ALL) 

(R-ALL) 

(R-Ass) 

( R-APP ) 

6.2.2. Notation. To avoid confusion, we sometimes distinguish derivations in differ- 

ent systems by marking the turnstile symbol: t-0 for the original system, tg for the 

reducing system, t-y for strong derivations in the reducing system, Fq for cut-free 

derivations in the reducing system, and t-WY for strong, cut-free derivations in the 

reducing system. 

Our task for the remainder of Section 6.2 is to establish the equivalence of the re- 

ducing system and the original one. We begin by establishing some technical properties 

of the original. 

6.2.3. Lemma (Kind invariance under promotion). If r t S E K and S Tr S’ then 
r t- S’ E K. 

6.2.4. Lemma (Promotion and Subtyping). Zf S tr S’, then r I--OS d S’. 

6.25 

(1) 

(2) 

Lemma (Well-kinded subderivations). Suppose r t S E KS and r t T E Kr, 
Zf d is a derivation of r toS < T and d’ is a derivation of PI-&$ d T’, with 
d’ a subderivation of d, then S 1 S’, T’ E K for some K. 
Zf d is a derivation of r tgS < T and d’ is a derivation of T’t&? < T’, 
with d’ a subderivation of d, then S t S', T’ E K for some K. 
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The original and reducing systems are equivalent for 
E K, then TtcS d T i# r I-_.xS d T. 

Proof. By induction on derivations. 

For the remainder of Section 6, we work exclusively within the reducing system. 

6.3. Cut elimination 

We begin our analysis of the reducing system with a proof that R-TRANS is inessen- 

tial: any derivation ending with it can be rewritten as a derivation in the cut-free 

subsystem. To control the complexity of the combinatorial analysis, we do not show 

this property for arbitrary uses of transitivity, but only for uses of a restricted form: 

we consider only cut-terms in normal form and ask that the subderivations of the cut 

be strong. The next section will show that these conditions can always be achieved. 

With these restrictions, the proof of cut elimination is a straightforward extension 

of standard proofs for the second-order fragment (cf. [3, 12,241). We begin with one 

technical lemma. 

6.3.1. Lemma. Suppose r t- S E KS and r F A T, T, E Kr. If r FWuS d 

A T1 . . T,,, then this statement can be proved using a sequence of instances of R- 

PROMOTE preceded by a single instance of R-REFL. 

s, + v A T, . . . T,, + V 

SI-1 +Tr srl rtw.wsn d A T, . ..T. 

Proof. By induction on the given subtyping derivation. The R-REFL case is immedi- 

ate; R-PROMOTE makes straightforward use of the induction hypothesis. R-APP uses the 

induction hypothesis to construct a derivation of the required shape for the left-hand 

sides of the application (r t-V.4yS’ d A T{ . . . T,‘_, ); it is then easy to check that the 

right-hand side (T,‘) can be adjoined to all the steps in this derivation. 0 

6.3.2. Proposition (Cut elimination). Suppose r t- S E Ks and r E T E KT and 

r I- U E KU. If r I-‘R.Y.S G U and r F%.y Ii d T, where U is in normal form, then 

r t%,+s d T. 

Proof. By induction on the combined size of the given subderivations. Proceed by a 

case analysis on the last rule in each. 

Case: R-REFL on the left I anything on the right. 
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To prove r Fy,yS 6 T, we can directly use the subderivations of r FUR U 6 T, since 

S + u. 

Case: Anything on the left I R-REFL on the right. 

Similar. 

Case: Anything on the left I R-TOP on the right. 

T -in TOP(K) rhg,yU E K 

By the well-kindedness of subderivations, we obtain r FcgyS 6 T immediately by 

R-TOP. 

Case: R-PROMOTE on the left I anything on the right. 

S -g,r, S’ rkqys 6 u 
rkqys d u 

By induction (using well-kindedness of subderivations) and R-PROMOTE. 

Case: Anything on the left i R-PROMOTE on the right. 

U = A U, , . . U, Tr V r bK.4p V 6 T 

r kY U d T 

By Lemma 6.3.1, we may assume that the derivation of r FWUS d U consists of a 

sequence of instances of R-PROMOTE preceded by an instance of R-REFL: 

S,, -+ U A Ul . . . U,, = U 

SF1 -;T S;_, Tr Sn rtWxuS,, <A U,...U,, 

S + S’ tr Sl rl-.uyS1 < A U, . ..U. 

r&/S < A U, . ..U., 

Replacing the final instance of R-REFL by an additional instance of R-PROMOTE, we 

obtain 

S + S’ Tr SI rbysl G T 

rkqys < T 

as desired. 

This takes care of 29 of the 49 cases. The remaining cases are listed in Table 1. 
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Table 1 

I- trKy U < T 
R-ARROW R-ALL R-ABS R-APP 

R-T& 

R-ARROW 

R-ALL 

R-ABS 

R-APP 

The cases marked J are dealt with individually below. Those marked x can never 

occur, since the two rules in question would place incompatible constraints on the form 

of U. (This can easily be checked by inspecting the rules.) 
Case: R-ALL: 

By the well-kindedness of subderivations, the induction hypothesis applies, giving: 

S -& AIIQIAU,)& T + All@~rU,) T, 

r,A<U, t S2 < T, 

rhwS < T 

Case R-ARROW, R-Ass: 

Similar. 

Case R-APP: 

S + s’ v u=u’v u=u’ v T + T' V 

rtgys d u' rtvyU' < T' 
rtuus G u rtv.yrk u G T 

By the well-kindedness of subderivations, the induction hypothesis applies, giving: 

S +hT S' V T + T' V r I--QyS' 6 T' 

rb.4 6 T 
0 

6.4. Reduction and Subtyping 

The main task of this subsection is to show that, for cut-free derivations, /3T- 
reduction in types does not interfere with the subtyping judgement. The cornerstone of 

the argument is a substitution lemma saying (informally) that if S d T then [V/A]S 6 

[ V/A]T. From this, we can show that the reduction of an outermost redex on either the 

left-hand or the right-hand side of a subtyping statement preserves its derivability. As 

in the proof of Church-Rosser in Section 3, we extend these properties to a proof of 

the preservation of subtyping under arbitrary multi-step reduction by passing through 

an intermediate step where we show it for one-step parallel reduction. 
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In outline, then, the major steps are as follows: 

reduction (6.4.9) 

t 
parallel reduction (6.4.8) 

/ 
out reduction (left) (6.4.7) 

\ 
out reduction (right) (6.4.5) 

\ 1 
substitution (6.4.3) 

We begin with two technical lemmas: 

6.4.1. Lemma (Expansion preserves subtyping). Suppose I’ I- S E Ks and r I- T E 

KT. If rk&’ Q T’ with S ---+iT S’ and T -iT T’, then rtuS < T by a 
derivation containing not more instances of R-Promote than the original one. 

Proof. By inspection of the rules, using the properties of kinding and reduction. 0 

6.4.2. Lemma (Maximality of Top). Suppose r I- Top(K) S1 . . . S,, E Ks and r k T E 

KT. If r tqTop(K) S1 . . .S, d T, then T --+iT ToP(KT). 

Proof. Straightforward induction, using the properties of kinding and reduction. 0 

Now we come to the key result of this subsection: the preservation of subtyping 

under substitution. 

6.4.3. Lemma (Substitution preserves subtyping). Let r = rl, A Q Top(K), Tz and 
r’ = r,, [ V/A]T2. Suppose that rl I- V E K and that r t S E KS and r F T E KT. If 
lY& < T, then T’tq[V/A]S < [V/A]T by a derivation containing not more instances 
of R-PROMOTE than the original one. 

Proof. The cases other than R-PROMOTE are straightforward; we give the argument for 

R-ALL as an example. 7 

Case R-ALL: 

S -&- All(A’s U) S, T ---+& All(A’<U) T2 

I-, A'$UtQS2 < T2 
rtws d T 

7Note that the more general form of this property, in which T(A) is allowed to be any supertype of V, 

would be much more difficult to prove. Here we obtain a straightforward proof by considering only the form 
that will actually be required later: in the critical case - the one for R-Promote - the fact that T(A) = Top(K) 
allows a direct argument using Lemma 6.4.2. 
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By Lemma 3.3(3), we have 

[wm --+/;T AD@‘~[V/A]U) [V/A]& 

[WIT -;i AZZ~‘~[V/A]U) [V/‘4]T2. 

By the well-kinded subderivations lemma and the induction hypothesis, I”, A’< [ V/A] U 

t-%[ V/A]& < [ V/A]T2 by a derivation containing not more instances of R-PROMOTE 

than the derivation of r, A’< Ut&$ < T2. Now R-ALL applies as follows: 

[~IAIS -+ A1Z(A’<[V/A]U) [V/A]S2 WW -;T AlI(A’<[V/A]U) [V/A]Tz 

r’, A’<[V/A]WU[V/A]S2 < [V/A]T2 

r’t,[V/A]S < [V/A]T 

Cuse R-PROMOTE: 

s --+ S’ S’ l‘r u lYWU d T 

lYWS < T 

The definition of promotion gives S’ = A’ U1 . . U,, for some n >, 0, and U = T(A’) UI . 

U,,. Now there are two subcases to consider: 

Suhcase: A’ # A. 

By induction, T’kw[ V/A](T(A’) U1 . U,) f [ V/A]T by a derivation containing not 

more instances of R-PROMOTE than the derivation of r ker(A’) (il. . . U,, < T. Now, 

[WI(W) UI . . . Un) = ([Wl(QA’))) WIW . . W4Un 
=T’(A’) [V/A]U, . ..[V/A]U., 

and by Lemma 3.3(3), [V/A]S --+iT A’ [V/A] iJ* . . . [ V/A]U,,. So, by the definition of 

promotion, we can apply R-PROMOTE to obtain the desired result as follows: 

[V/A]S --+ A’ [V/A]& . ..[V/A]U. Tr, [V/A](T(A’) Ii1 . ..U.,) 

~‘I-@/A](T(A’) UI . . . U,) d [V/A]T 

r’b[V/AlS d [VIAIT 

Subcase: A’ = A. 

Since T(A) = Top(K), we have r I~Top(K) U1 . . U, < T. By the well-kinded 

subderivations lemma (6.2.5), U is well kinded in r. So by Lemma 6.4.2, we have 

T -zT 22p(K~). By Lemma 3.3, also [V/A]T -ir i’?op(K~). By the well-kindedness 

of subderivations, r E S E Kr, so by the fact that substitution preserves kinding 

(Lemma 4.11), rule R-TOP 

[WIT -;T Top(G) r’ t [ V/A]S E KT 

Pk-,[V/A]S < [V/A]T 

gives us the desired result without the use of R-PROMOTE. 0 

The next lemma introduces a technical property needed for the following one: a 

subtype of a Fun-type is either a Fun-type itself or can be promoted to one in a finite 

number of steps. 
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6.44. Lemma (Fun-right). Suppose r k S E Ks and r k T E KT. If r t-q S < 

Fun(A:K)T, then this statement can be derived by a sequence of instances of R- 

PROMOTE preceded by one instance of R-Ass: 

S, -+iT Fun(A:K)SL 

Fun(A:K)T --+;,- Fun(A:K)T’ 

r, AsTop(K)k&?; d T’ 

sn-1 -;T $4 Tr sn r t-US, < Fun(A:K)T 

S -;T S’ Tr SI rt&, G Fun(A:K)T 

r tWSn < Fun(A:K)T 

Moreover, this derivation contains not more instances of R-PROMOTE than the original 
one. 

Proof. by induction on a derivation of r k&T < Fun(A:K)T. By the form of the right- 

hand side and the fact that the derivation is cut free, there are three cases to consider. 

(Note, in passing, that this is one point where we crucially depend on the absence of 

cut: this argument fails on arbitrary reducing derivations.) 

Case R-REFL: 

S-+B*T u Fun(A:K)T -+iT U 

rk& d Fun(A:K)T 

By definition of -iT, the type U must be of the form Fun(A:K)T’, with T -;,- T’. 

So, by R-ABS and R-EFL (and without R-PROMOTE): 

S -i-r Fun(A:K)T’ Fun(A:K)T -iT Fun(A:K)T’ 

r, A < Top(K)twT’ < T’ 
rl+ G Fun(A:K)T 

Case R-Ass: 

Immediate. 

Case R-PROMOTE: 

S -zT S’ Tr U r tyU d Fun(A:K)T 

r I-& G Fun(A:K)T 

By the well-kinded subderivations lemma, the induction hypothesis, and R-PROMOTE. 

0 

6.4.5. Lemma (Outer reduction on the right). Suppose r t S E Ks and r t- (Fun(A:K) 
T) U E KT. Zf r t-&3 < (Fun(A:K)T) U, then r k&3 Q [U/A]T by a derivation con- 
taining not more instances of R-PROMOTE than the original derivation of r t_wS < 
(Fun(A:K)T) U. 
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Proof. By induction on a proof of r FqS < (Fun(A:K)T) U. The only difficult case 

is R-APP, which we give in full below. R-REFL uses the Church-Rosser property. R- 

PROMOTE uses only the induction hypothesis. All the other cases follow a common 

pattern: we show just R-ALL. 

Case R-ALL: 

S -zT AlZ(A’< V)& (Fun(A:K)T) U -& All (A’< V) T, 

1-, A’< VI-& < T2 

rt& < (Fun(A:K)T) U 

By the outermost reduction corollary (3.5), [U/A]T --+iT AZZ(A’<V) Tz. The result 

follows immediately by R-ALL. 

Case R-APP: 

There are two cases to consider, depending on whether the redex (Fun(A:K)T) U is 

itself contracted at some point in the reduction sequence (Fun(A:K)T) U -;T . . . 

Suhcase: 

(Fun(A:K)T)U -+ (Fun(A:K)T’) U’---tBT[U’/A]T’ --+iT T, V 

s -;T WV rt-wW < T, 

r EvS d (Fun(A:K)T) U 

Since [U/A] T -iT [U’/A]T’ --+iT T,V (by Lemma 3.3(3)), the result follows 

immediately from R-APP. 

Subcase: 

s --+ w u’ (Fun(A:K) T) U -;T (Fun(A:K)T’) U’ 

r kq W Q Fun(A:K)T’ 

rkuS < (Fun(A:K)T) U 

Here we cannot directly use the subderivation of r F_u W d Fun(A:K)T’. Intuitively, 

we must “look inside” this derivation to fitid an inner subderivation in which T’ appears 

by itself on the right-hand side, and use this to rebuild a subderivation ending with 

[U/A]T on the right. (More precisely, the inner subderivation will have T” on the 

right, where T’ -I;T T”.) This we accomplish as follows. 

First, we use the Fun-right lemma (6.4.4) to obtain a derivation of r IwW < 

Fun(A:K)T’ in a very rigid form: a sequence of n instances of R-PROMOTE ending with 

an instance of R-Ass: 

W,, -iT Fun(A:K)X 

Fun(A:K)T’ -zT Fun(A:K)T” 

l-, A< Top(K)kq& < T” 

Wn-1 -;TTr wn rtqW,, < Fun(A:K)T’ 

w -;,k- WI r t-VW, 6 Fun(A:K)T’ 

r,Aa~p(~y~pX d ~‘1 
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From the instance of R-ABS at the top, we obtain r kq[U’/A]x d [U’/A]T” by the 

substitution lemma (6.4.3). (To check that the lemma applies, we need the following 

observations: (1) r I- U’ E K by the assumption r k (Fun@:K) T)U E KT, the fact 

that U +iT U’, the generation lemma for types, and subject reduction. (2) X and 

T” are both well-kinded in r, A < Top(K), by the well-kindedness of subderivations.) 

At this point, we have accomplished a substitution operation, but not quite the one 

we need. We must now work backwards to the desired result. 

From r t--u[U’/AJX 6 [U’/A]T” and the fact that [U/A]T -iT [U’/A]T” 
(Lemma 3.3), we use the expansion lemma (6.4.1) to obtain rkq[U’/AF d [U/A]T, 
after remarking that [ U’/AjX and [U/A]T are well-kinded by subject reduction. This 

gives us what we need on the right-hand side; now we turn to fixing the left-hand side. 

W,, U’ is well-kinded and W, U’ -,& (Fun@:K)X) U’-,i[U’/AjX, so by 

the expansion lemma, r tw W,, U’ 6 [U/A]T. We use this as the starting point for a 

new sequence of R-PROMOTE steps where an application to U’ has been added to each 

intermediate term: 

wn_l u’ -$,Tr wn u’ r tuW,, U’ < [U/A]T 

s --+ w U’ -/;+- w, U’ r t-q W, U’ d [U/A]T 

rbS < [WIT 

The conclusion of this derivation is the desired statement. Note that all the transfor- 

mations (using Lemmas 6.4.1, 6.4.3, and 6.4.4) we have not increased the number of 

promotions in the derivation. 0 

We proceed for the left-hand side of < in the same way as we have done for the 

righthand side. 

6.4.6. Lemma (Fun-left). Suppose r t Fun(A:K)S E Ks and r I- T E KT. Zf r tq 
Fun(A:K)S < T, then one of the following cases holds: 

(1) T --+;T Top(G); or 

(2) Fun(A:K)S -i,- Fun(A:K)S’ and T -+iT Fun(A:K)T’, with r, AQ 
Top(K)t&’ < T’ by a derivation containing not more instances of R-PROMOTE 

than the original one. 

Proof. By inspection of the rules. By the form of the left-hand side of the statement 

and the fact that we consider only cut-free derivations, there are only three cases to 

consider: 

Case R-REFL: 

Fun(A:K)S -iT U T--f;+ 

rtqFun(A:K)S G T 
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U must be of the form Fun(A:K)S’ where S -+;T S’ so we can conclude: 

S’ --fiT S’ S’ -+- S’ 

I-, As Top(K)I < S’ 

Case R-TOP, R-Ass: 

By Cases 1 and 2, respectively. q 

6.4.7. Lemma (Outer reduction on the left). Suppose r k (Fun(A:K)S) U E KS and 

r t T E KT. If r kq(Fun(A:K)S) U < T, then r ky[U/A]S < T by a derivation 

containing not more instances of R-PROMOTE than the original derivation. 

Proof. By induction. Again, R-APP is the only difficult case. If the reduction starting 

from (Fun(A:K)S) U reduces the outer redex at some point, then this case proceeds 

as in the analogous case on the right-hand side (6.4.5). Otherwise, we have: 

(Fun(A:K) S) U -+zT (Fun(A:K)S’) U’ T -iT W U’ 

r tyFun(A:K)S’ < W 

rkq(Fun(A:K)S) U < T 

By the well-kindedness of subderivations, both Fun(A:K) S’ and W are well kinded. 

By the Fun-left lemma, there are two cases to consider: 

(1) We are given W --+iT ?‘lop(K+K~). Since r k [U/A]S E KT (by subject reduc- 

tion and uniqueness of kinding) and T -iT W V -+,& To~(K+KT) V+~T 

TOM, we can conclude r t-q[U/A]S d T by R-TOP. 

(2) We are given 

Fun @:K) S’ --‘zT Fun @:K)S” 

W --+;T Fun@:K) Y 

r, A< Top(K)t&” < Y. 

Both S” and Y are well kinded in r, A<Top(K) (by well-kindedness of subderiva- 

tions, subject reduction, and the generation lemma), so r t-v[U’/A]S’ 6 [ U’/A]Y by 

the substitution lemma (6.4.3). 

As in the analogous case on the right, we have now accomplished a substitution 

operation, but not quite the one we need. We must again work backwards to the 

desired result. 

From r Eq[U’/A]S’ < [U’/A]Y and the fact that [ U/A]S --+iT [U’/A]S” (Lemma 

3.3) we can use the expansion lemma to obtain r k+JU/A]S d [ U’/A]Y. (Note that 

[U/A]S is well kinded by subject reduction and [U’/A]Y by subject reduction and 

the generation lemma.) Then we have T --+iT W V -+FT (Fun (4:K) Y) U’----+~T 

[ U’/A]Y, which yields the desired result by the expansion lemma. Note that all the 

transformations (using Lemmas 6.4.1, 6.4.3, and 6.4.6) we have not increased the 

number of promotions in the derivation. 0 
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Using the two outer reduction lemmas, we can do one reduction step at the outside 
of a type while preserving the subtyping judgement. The next step is to generalize this 
to an arbitrary reduction. For this purpose, we choose the relation -flT . 

6.4.8. Proposition (Parallel reduction preserves subtyping). Suppose r F S E Ks and 
~FTEKT. 

(1) If r M? d T with S+~T S’ and r-++pT r’, then T’l-&’ < T by a derivation 
containing not more instances of R-PROMOTE than the original one. 

(2) If r kWS d T with T--ngT T’ and r+BT r’, then T’F& < T’ by a derivation 
containing not more instances of R-PROMOTE than the original one . 

(Parallel reduction of contexts, written T-BT S, is the pointwise extension of par- 

allel reduction of types.) 

Proof. By simultaneous induction on derivations. The only difficult cases are R-APP 
and R-PROMOTE. We show only the interesting arguments for part (1 ), where S-g-r S’; 
part (2) is similar except in the case R-PROMOTE, which is easier. 

Case R-REFL: 

s-;,u T-;,U 

rkqs < T 

By Lemma 3.8 there is a type U’ with u--WpT U’ and S’ -;T U’ as well as 

T -;T U’ by fact 3. The result follows by R-REFL. 
Case R-TOP: 

T -iT Top(K’) r t- S E K’ 

rk%s < T 

By subject reduction and uniqueness of kinding we have K’ = KT. So by subject 
reduction, the well-kindedness of subderivations, and Lemma 4.12, the result follows 
by R-TOP. 

Case R-ARROW: 

S -;T S,-& T --+iT T,-+T2 

rkT1 < Sl r hgs2 d T2 
rkqs < T 

By Lemma 3.8 and the definition of parallel reduction (3.1), there are types Si and Sl 
with Sr -pT S{ and &-++bT Si and: 

S-S’ 
BT 

* BT * BT 

7 7 

q--s, - s;-s; 
BT 

Since the Si and q are well-kinded, the result follows by induction. 
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Case R-ALL: 

S -iT All(&<U) V T -+ All@i~U) W 

r,A<UtwV < W 

rt& < T 

By Lemma 3.8 and the definition of parallel reduction (3. I), there are types U’ and 

V’ with U-pT U’ and V-p V’ and: 

S 

I 
BT 

,S’ 

I 
* BT I * PT I 

All(AGJ)V hAll(A<U’)V’ 
BT 

Since the V and W are well-kinded in r, A<U, the result follows by induction: 

s’ --+iT AN(A<U’) V’ T -iT All(A<U’) W 

r’,A<U’twV’ d W 

r’tws 6 T 

Case R-ALL, R-Ass: 

Similar. 

Case R-PROMOTE: 

S-+iT w w tr u rtwu < T 

rtws < T 

By the definition of the promotion relation, we have W = A S1 . . . S,, lr r(A) S1 . . . S, = 
U. By Lemma 3.8 and the definition of --HbT , there are Si . . . SA with Si -+fiT S,! and: 

S 

I 
BT 

* S’ 

I 
* BT I * DT I 

AS,.. .S,,,ASS;. . .S’ n 

Let U’ = r’(A) Si... S,I,. By well-kindedness of subderivations and subject reduc- 

tion, U and U’ are well kinded. The result follows by induction, the fact that 

T(A) SI . ..A% -p-,- r’(A) s; . . . SA, and R-PROMOTE. 

Case R-APP: 

s--+;,u w T-;,VW rtqu f v 
rtys < T 
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By Lemma 3.8, there is some X such that: 

s-s 
BT 

* BT * PT 

t . 
uw-x 

BT 

By subject reduction, r F U W E KS and r t- V W E KT. By the generation lemma, 

this implies that U and V are well kinded. Continue by cases on the form of U. (The 

interesting one is when U is a type operator.) 

Subcase: U = A or U = U1 U2. 

By the definition of parallel reduction, X must have the form U’ W’ with U--++~T U’ 

and W-p W’. 

By subject reduction, U’ is well kinded. The result then follows by induction and 

R-APP: 

S’ --+ U’ W’ T -iT V W -jT V W’ St-qJ_J’ d v 

Pt& < T 

Subcase: U = Top(K’). 

s -;T Top(K’) W T-;TVW 

r kw Top(K’) < V 

rows d T 

By Lemma 6.4.2, V -iT Top(K’). Since T has kind KT, so does Top(K’) W, and, 

by Lemma 4.10, T -iT Top(K’) w--+a~Top(K~). The result then follows by R-T~~ 

(using subject reduction, and well-kindedness of subderivations, and lemma 4.12). 

T -iT Top(KT) r’ t S' E KT 

revs 6 T 

Subcase: U = Fun(A:K)Ul. 

We have (Fun(A:K)Ul) W-++~TX. By the definition of parallel reduction, X can 

have one of two forms: 

Subsubcase: 

X = (Fun(A:K)U,‘) W’ 

Fun(A:K)U, -/jT Fun(A:K)U; 

W-BT W’ 

The result follows by induction (using subject reduction and generation for the kinding 

hypothesis) and R-APP: 

S’ -;T (Fun(A:K)U,‘) W’ T -;T V W -iT V W’ T’l-vFun(A:K)U[ < V 

PkcRS’ < T 
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Suhsuhcase: 

Then s 

1- t~Fun(A:K)U, < V 

r’ E~Fun(A:K)U; < V 

=+ (by induction) 

=+ (by R-APP) 

r’ k-wFun(A:K)U,’ W’ d V W’ + (by outer reduction on the left (6.4.7)) 

r’ kq[W’/A]U; 6 V W’ 

r’ tc&s’ < T, 

+ (by the expansion lemma (6.4.1)) 

using subject reduction and the generation lemma for the required kinding hypotheses 

in the first step and subject reduction in the third and fourth steps. That the number 

of promotions does not increase in these steps follows from the respective property of 

the mentioned lemmas. 0 

6.4.9. Corollary (Reduction preserves subtyping). Suppose r t S E Ks and r k T E 

Kr. If S -fiT S’ and T -+iT T’, with r E& < T, then r t&’ G T’ by a 

derivation containing not more instances of R-PROMOTE than the original one. 

Proof. If we can do one -bT step, we can do many. So the result follows by the 

observation (3) that the reflexive, transitive closure of parallel reduction coincides with 

ordinary many-step reduction. q 

6.4.10. Corollary (Cut-free derivations can be strengthened). Suppose r t S E Ks 

andrtTEKr. Ifrt&dT, thenrtV:YS<T. 

Proof. By Corollary 6.4.9 we know that also r t&! < T!. The derivation of this 

statment, however, is not necessarily strong since the promotion rule may generate 

* Here we can be more precise about why we choose parallel reduction to carry out this proof. A “com- 

mutation lemma” similar to the Church-Rosser property - the existence of a type S[ for S-+~T S’ and 

s *;T St where S’ hi& Si and St -+p~ 5’; (Lemma 3.8) ~ is crucial for the induction. This imme- 

diately excludes the one-step reduction relation -‘a~. Ordinary many-step reduction, +,&, is another 

obvious choice; but it cannot be used in the case of R-~pp, since here we need to know the form of the 

reduct of the application, which cannot be recovered from -f*T Other, even more deterministic, reduction 
strategies such as normalizing reduction, leftmost-outermost re B ‘. uctton, or complete development might be at- 

tractive, but these all seem to fail in the R-Promote case. There, we have S +gT A S1 S, Tr T(A) S1 S,, 
where T(A) SI can contain redices not present in A SI. For the induction to work in this case, we need to 

be able to ignore these new redices when reducing further from T(A) S1 . S,, which we would not be not 

free to do if we were using a more deterministic reduction strategy. 
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subgoals not in normal form. Those can again be normalized using the same corol- 

lary. The fact that reducing a subtyping statement does not increase the number of 

promotions in the derivation tree guarantees this process of strengthening to terminate. 

q 

6.5. Completeness of strong, cut-free subtyping 

6.5.1. Theorem. Suppose r I- S E Ks and r F T E KT. If r kg,!? < T, then 

rFqYS < T. 

Proof. By induction on derivations. In all the cases except R-TRANS, we argue as 

follows: By the induction hypothesis (using the well-kindedness of subderivations), we 

may assume that all the subtyping premises are proved by cut-free derivations. Since 

the conclusion is not a cut, the whole derivation is cut-free and can be strengthened 

using Corollary 6.4.10. 

Now, suppose the final rule is R-TRANS: 

By induction, we may assume that the derivations of the premises are cut-free. More- 

over, by Corollary 6.4.9, we can put U in normal form: r I-& ,< U! and r I-VU! 6 

T. Corollary 6.4.10 allows these derivations to be strengthened: r ~UUS 6 U! and 

rtyyU! < T. The result now follows from Proposition 6.3.2. 0 

6.6. The algorithm 

We now show that the algorithm we developed informally in Section 6 is indeed a 

decision procedure for the subtype relation. The first thing we must verify is that this 

recursively defined procedure is really an algorithm - that it halts in finite time on all 

well-kinded inputs. 

6.6.1. Proposition (Termination of the algorithm). Suppose r t- S E Ks and r t T E 
Kr. Then check halts when presented with r F S < T as input. 

Proof. We use the fact that the /ITT-reduction defined in Section 5 is strongly nor- 

malizing to define a simple termination ordering for the algorithm. 

First, note that the recursive call in the third clause (the clause for promotion) is 

guaranteed to halt on the next step if U, the promotion of S, reduces to Top(K) 
for some K. Thus, we need only consider the possibility of nontermination in the 

case where the promotion of S is different from Top - i.e. where the variable being 

promoted is a r-redex. 

Let the rank of a well-kinded type V in a context r be the pair (r,s), where r is the 

maximum length of a PTT-reduction sequence starting from V and s is the number 
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of characters in V. Let the rank of a well-kinded subtyping statement r k S d T be 

the pairwise sum of the ranks of S and T. Order ranks lexicographically. Then the 

rank of almost every recursive call of check in its definition is smaller than the rank 

of the input; the only exception is when the third clause promotes the first argument 

to Top(K) in which case the algorithm terminates directly by the previous remark. 

The algorithm check does not include a case corresponding to the pointwise applica- 

tion rule R-APP. But this rule can easily be shown to be inessential in strong, cut-free 

derivations. 

6.6.2. Lemma (Eliminability of R-APP). Suppose r F S E Ks and r I- T E KT. 

If r Fq’.yS d T, then this statement can also be proved by a (strong, cut-free) 

derivation with no instances of R-APP. 

Proof. Straightforward induction on derivations, using Lemma 6.3.1 for the R-APP case. 

In effect, each instance of the application rule is replaced by a sequence of instances 

of the promotion rule. q 

Finally, we verify that the algorithm defines the same relation as the original sub- 

typing rules. 

6.6.3. Theorem. The ulgorithm check is sound and complete for the original subtyp- 

ing relation (on well-kinded types). 

Proof. On well-kinded inputs, the original subtyping relation is equivalent to the re- 

ducing subtyping relation (6.2.6) restricted to strong, cut-free derivations (6.5.1) with 

no uses of R-APP (6.6.2). Now, each of the rules in this restricted system begins by 

normalizing both sides of the conclusion. Nothing changes if we present the rules in a 

form where the conclusion is assumed to be in normal form, adding a single normal- 

ization step at the very end of the derivation and inserting a re-normalizing step at each 

premise that is not guaranteed to be in normal form when the conclusion is; indeed, 

there is just one of these: the last premise of R-PROMOTE. We may now observe that 

proof search for derivations in the reformulated system is an essentially linear process: 

any given subtyping statement can match the conclusion of only one subtyping rule for 

which further search may be required. That is, a given statement may match R-REFL 

and/or R-TOP and/or one of the remaining rules R-PROMOTE, R-ARROW, R-ALL, and R- 

APP. Since the premises of R&FL and R-TOP can be checked directly, the applicability 

of these two rules can be tested first. Using this strategy, no backtracking is required. 

Moreover, all the metavariables appearing in the premises the rules may be calculated 

from the conclusion: no guessing is required. The algorithm check implements this 

strategy. 0 
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7. Typing 

In Section 6, we derived an algorithm for checking the subtyping relation by con- 

trolling the non-syntax-directed rules of transitivity and conversion. In this section, we 

carry out an analogous exercise for the typing relation, eliminating the rule of subsump- 

tion from the system defined in Section 2.5 and accounting for its effects by extending 

some of the other rules. 

Compared to what we had to do for subtyping, this is actually a rather simple task. 

Indeed, the resulting algorithm strongly resembles standard algorithms for typechecking 

F,. The only essential difference comes from the fact that the promotion relation here 

must deal with application in addition to the promotion of type variables. As usual, 

we obtain the algorithm by analyzing the shapes of minimal types. 

First, we check that the typing relation guarantees well-kindedness of derivable state- 

ments: 

7.1. Lemma. Zf r k t E T, then r k T E t. 

The minimal type of an expression is a type smaller or equal to all the other types 

of the expression. For the algorithm, we also need to talk about a term’s minimal types 

of certain specific shapes. 

7.2. Definition (Minimal, arrow-minimal, and All-minimal types). 

(1) A type S is minimal for a term s in a context r if r t s E S and, for all T 
with r t s E T, we have r k S < T. 

(2) A type St-S, is arrow-minimal for s in r if r k s E ST -42 and, for all 

arrow-types T, --+T2 with r t s E T, +T2, we have r E S, -4, < T1 -+Tz. 
(3) A type A11(A6Y1)S2 is All-minimal for s in r if r t- s E All(A6S1)& and, 

for all All-types All(A G T, ) T2 with r k s E All (As T, ) T2, we have r k 

AlI S, < All(A<T1) T2. 

7.3. Definition. Let T be well kinded in r. The promote-normal form of T in r is 

We next show how All-minimal and arrow-minimal types of a term can be calculated 

from its minimal type. 

7.4. Lemma. 

(1) Suppose S and T, -+T2 are well kinded. If r k S < Tl-+T2, then rk S = Sl+S2 

and r E S,-S2 < T,--tTz. 
(2) Suppose S and All(44Tl)T2 are well kinded. If r t S ,< All@~Tl) Tz, then 

rk S = AlI( and r t All(&G,)& G All@<T,)Tz. 
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Proof. 

(1) On well-kinded inputs, the original subtyping relation is equivalent to the reduc- 

ing subtyping relation (6.2.6) restricted to strong, cut-free derivations (6.5.1). 

Proceed by induction on a derivation of r tr6.y S < TI -Tz. 

(2) Similar. •1 

7.5. Corollary. 

(1) If S is minimal for s in r and tk S has the form S,+S,, then Sl+S2 is 

arrow-minimal for s in r. 

(2) If S is minimal for s in r and rk S has 
is All-minimal ji)r s in r. 

theform A~I(AGS~)S~, then AII@GSI)SZ 

The typing algorithm can now be obtained directly from the original typing relation 

by removing T-SUBSUMPTION - in effect, restricting the set of types derivable for a 

well-typed term to one of its minimal types - and generalizing the application and 

type application rules to compensate for this restriction in their premises. We use t,d 

to distinguish the typing algorithm from the original typing relation. 

7.6. Definition (Typechecking algorithm). 

t r ok 

rkdx E r(x) 

r, x:Tl t,de E T2 

rt-,,fun(x:T,)e E Tl--+T* 

+ S = T,-‘Tz 
rtds E s n-&t E T rFT<T] 

rt,ds t E T, 

r, A d T, t-,&e E T2 

Ed fun(AsTl)e E All(A<T/) T2 

(A-VAR) 

(A-ARROW-I) 

(A-ARROW-E) 

(A-ALL-I) 

r; T = All@<T,) T2 
rtdt E T TFSEK rtsST, 

rt-,dt S E [S/AlT2 
(A-ALL-E) 

The termination of this algorithm is straightforward, given the decidability of kinding, 

the termination of the subroutine for checking subtyping, and the strong normalization 

of BTT-reduction, which guarantees that rk T can be calculated in finite time whenever 

T is well kinded. 

7.7. Fact. 

(la) If I- r ok, then T(x) is a minimal type of x in r. 

(lb) If tj r ok, then x has no type in r. 
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(2a) If T2 is a minimal type of e in r, x:Tl, then T, + T2 is a minimal type of 

fun(x: Tl )e in r. 

(2b) 
@a) 

(3b) 

(44 

(4b) 
(5a> 

(5b) 

If e has no type in r, x:Tl, then fim(x:Tr )e has no type in r. 
If S is a minimal type for s in r and tk S = T, --) T2 and T is a minimal 

type for t in r and r k T 6 T,, then T2 is a minimal type for s t in r. 
Ifs or t has no type in r, or tf S is a minimal type for s in r and T is 

a minimal type for t in r but 7; S # Tl -+ T2, or tf 7; S = Tl + TZ but 

r VT < T,, then s t has no type in r. 

If T2 is a minimal type of e in r, A 6 T,, then All (A 6 Tl ) T2 is a minimal 

type of fun(A < Tr )e in r. 
If e has no type in r, A < T,, then fun(A 6 Tt )e has no type in r. 

If S is a minimal type for s in r and rj- S = All @ < Tl ) T2 and r E U d Tl, 

then [U/A]T2 is a minimal type for s U in r. 
Ifs has no type in r or tfS is a minimal type for s in r but rj- S # All@ < 

T,) T2 or tf rk S = All @ <T, ) Tz but r y U < T,, then s U has no type in 

r. 

7.8. Theorem (Soundness and completeness). 
1. ZfT~~~tETthenr~TTEandr~tET. 
2. If r k s E T then r i- T E t and Tkds E S, where S is minimal for s in r. 

Proof. By induction, using the previous facts. 0 

This brings us to our final result: 

7.9. Corollary (Decidability of Fz 
decidable. 

typing). The original typing relation I’ k t E T is 

Proof. To check whether a statement r I- t E T is derivable, first check that T is well 
kinded, then calculate the minimal type S of t in r using the algorithm above and use 
the subtyping algorithm check to verify that r I- S < T. 0 

8. Variants 

The formulation of Fz studied in this paper generalizes the Kernel Fun variant of 
Fg, which uses the slightly restrictive quantifier subtyping rule: 

r,AGU l-S2 < T2 

r k All(AQU)& G Aii(AW)T2 
(KERNEL FUN) 

which we adopted in this paper, and the more general. 
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It would be semantically sensible to refine the right-hand premise of this rule so that 

it only requires S, < T2 when A is constrained to the common part of their domain: 

r E T1 < S1 r,A&T, t S, < Tz 

r k AIZ(AGI)S2 < AII(A<Tl)T2 
(FULL F,) 

This, indeed, is the form in which the rule appears in most presentations of second-order 

bounded quantification. However, the extra flexibility is costly: this rule is responsible 

for the failure of a number of important proof-theoretic properties in standard formula- 

tions of FG [27-29,371, including decidability of subtyping. We do not know whether 

our analysis can be adapted to a formulation of Fz with this rule. 

Another variant of the quantifier subtyping rule, proposed in [ 151, allows the bounds 

to differ but requires that the bodies be in the subtype relation under the trivial as- 

sumption on the bound variable: 

rl- T, Q S, r, AcTop(K) t S, < T, 

r t All(46S,)S2 < A11@sT,)T2 
(F, -TOP) 

(where K is the kind of St and Tt ). Indeed, an early draft of the present paper used 

this rule instead of the equal-bounds variant. All of the results about subtyping hold for 

both systems (with mostly identical proofs). But the algorithm for synthesizing minimal 

types works only for the equal-bounds rule, and not (as we erroneously claimed in the 

early draft) for the top-rule. Indeed, the top-rule actually destroys the minimal typing 

property [ 16]! For example, in the context 

r = Y<Top(*) 

the term 

e = fun(XG Y) fin(x:X) x 

has both of the types 

AZ/(X<Y)X +X 

AIl(XGY)X + Y, 

but these types are incomparable (using the top-rule) and have no common lower 

bound. We are endebted to Ghelli for this example. 

9. Related work 

Results related to ours have also been developed by Compagnoni [ 18, 191. Aside 

from inessential technical differences - e.g. our “reducing” system in Section 6.2 per- 

forms reduction in the premises of the rules, where her analogous “normalizing system” 

assumes that the conclusion is already normalized; she proves Church-Rosser by mark- 

ing redices, while we adapt Tait and Martin-Lijf s method of parallel reduction; etc. - 

the two proofs are broadly similar. The significant points of divergence are as follows; 
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(1) Compagnoni’s results are for F,W, which includes intersection types in addition to 

the machinery of Fz; (2) Compagnoni’s version of the crucial substitution lemma (our 

Lemma 6.4.3) is phrased more cleverly, and its proof requires a less intricate analy- 

sis; (3) Our proof of the termination of the subtyping algorithm is based on showing 

strong normalization for an extended notion of reduction where type variables may be 

replaced by their upper bounds from the context; Compagnoni uses a term rewriting 

technique. 

A bit of history may be of interest. The system F,W that was studied by Com- 

pagnoni - essentially Fz extended with intersection types [14,22,36] - was first de- 

veloped in collaboration with Pierce [20]. Vagaries of geography led our efforts onto 

separate tracks, Compagnoni continuing with the metatheoretic analysis of Ft while 

Pierce and Steffen attacked similar properties of Fz. Draft papers describing results 

for the two systems were announced on the types mailing list in January, 1994. Soon 

after, Ghelli (in another message on types) alerted us that the type systems in both 

papers shared a common flaw: the rule for subtyping between quantified types led to 

a well-behaved subtyping relation but a very ill-behaved typing relation. Compagnoni, 

who had studied only the subtyping relation, was able to modify her development to 

use a better-behaved quantifier rule with little trouble. Making an analogous modifica- 

tion to our development required more work, since our proof of strong normalization 

could not be extended to account for the new quantifier rule. The technique used in the 

present Section 5 was based on a new idea, the formalization of which was assisted 

by discussions with Compagnoni. 
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