
Polarized Higher-Order Subtyping(Extended Abstract)Martin Ste�enInstitut f�ur Informatik und Praktische MathematikChristian-Albrechts{Universit�at zu KielPreu�erstra�e 1{9, D-24105 Kiel, DeutschlandTel: +49 (431) 5604-79Fax: +49 (431) 5661-43Email: ms@informatik.uni-kiel.de9th December 1997AbstractThe calculus of higher-order subtyping, known as F !� , has been used as a prototypicalcore calculus for typed object-oriented languages. The versions considered in the literatureusually support pointwise subtyping of type operators, only, where two applications S Uand T U are in subtype relation, if the type operators S and T are. A natural extensiongoing beyond pointwise subtyping distinguishes between monotone, antimonotone , andinvariant operators. Thus, T U1 is a subtype of T U2, if U1 � U2 and provided T is amonotone operator.The paper extends F !� by polarized application and proves decidability of the sub-typing relation. To take monotonicity information into account, the kinding system doesnot only characterize domain and range of a type operator of kind K1 !K2, but uses,for instance, the kind K1 !+ K2 for monotone type operators from K1 to K2. Thecorresponding set of rules leads to an interdependence of the subtyping and the kindingsystem. This contrasts with pure F !� with point-wise subtyping only, where the kindingrules do not depend on subtyping. To retain decidability of the system, the equal-boundssubtyping rule for All-types is rephrased in the polarized setting as a mutual-subtyperequirement of the upper bounds. To avoid the complexity of this mutual dependence inthe proof of decidability, we reformulate the system, yielding a strati�ed version, wheresubtyping still depends on kinding as the more primitive statements but not vice versa.Keywords: type systems, subtyping, polymorphic �-calculi for object-oriented languages.

1 IntroductionThe study of typed functional calculi, i.e., typed �-calculi,
exible and expressive enough toprovide a theoretical framework for object-oriented languages has received considerable atten-tion in the literature over the past ten years. The object of study in this paper is F !� (called\F-omega-sub"), one prominent representative of �-calculi for object-oriented programming.It combines the !-order polymorphic �-calculus F ! [14] and the polymorphic �-calculus withsubtyping, known as F�. The meta-theoretical properties of F� have been extensively stud-ied in the literature (cf. [6] [13] [11] [3] [20] et. al.). The integration of both subtyping andtype operators, i.e., functions from types to types, leads to F !� [5] [17] [4], a formal systemsu�ciently expressive to model class inheritance with late binding, encapsulation, and sub-type polymorphism in a uniform framework, and thus well-known as one core calculus forclass-based typed object-oriented languages [19] [16].This paper presents an extension of F !� to include information about the monotonicityof type operators allowing a more general form of subtyping, going beyond pointwise sub-typing. We investigate its proof-theory, establishing decidability of \polarized F !� ". Whatmakes the proof-theory principally more challenging than for pure F !� (cf. eg. [18]) is that thegeneralization leads to a mutual dependence of kinding and subtyping not present in pure F !� .Similar variants of F !� with monotonicity information have been proposed in the literature,most notably in Cardelli's widely cited note [5] or in a restricted form in Hofmann andPierce [16], but so far the meta-theory of such calculi has not been tackled. We mention somerelated work, before presenting the main parts of the calculus in Section 2 | the subtypingand the kinding system. We highlight the di�culties to obtain an algorithm for subtypingand sketch the proof of the main result: decidability of subtyping. The complete system andthe proofs can be found in the full version of the paper and in [24].Comparison with related workIn [16], Hofmann and Pierce present a uniform, type-theoretic account of object-orientedconcepts of class-based languages, including encapsulation, subtyping, and message passing.They show that F !� 's object model �ts in their uniform framework in case one restrictsthe object's interfaces to positive signatures, i.e., type operators of kind ? !+ ? to use thenotation of this paper. To be able to characterize such monotone signatures, Hofmann andPierce extend F !� (or rather a fragment of it) with a predicate pos on type operators ofkind ? ! ?, which corresponds to our +-polarity. The system we present here generalizesthe de�nitions in [16]. First of all, pos only handles type variables of the base kind ?, andpolarized operators of kind ? ! ?, which corresponds to a fragment of F 3 with subtyping.Another di�erence is that Hofmann and Pierce do not consider the additional polarities �and �. Similarly, Fisher [12] investigates the variance of type operators, there called rowfunctions. She also restricts herself to operators of kind ? ! ?, so her variance analysis issimpler than our system.F !� is an impredicative type theory, where terms depend on terms and types, and typestake types as parameters (in which case they are called type operators). Systems where typescan depend on terms, are said to have dependent types. Recently, interest in calculi withdependent types extended by subtyping has started. Aspinall and Compagnoni [2] investigate�P�, a �rst-order calculus with dependent types (known as �P or ��) extended by subtyping,1

establishing decidability of the system. Chen [7] studies a di�erent formulation of this system,which he calls ���. The inclusion of dependent types leads to a cyclic dependence of thetyping, the subtyping, and the kinding statements, posing similar proof-theoretic problemsas in the study pursued here. The results have recently been extended to the calculus ofconstructions [8]. None of these calculi includes bounded universal quanti�cation, whichsigni�cantly simpli�es the meta-theory.The formulation of F !� investigated here contains an asymmetry concerning the bindings oftype variables. Whilst the type variable in bounded universal quanti�er types All(A�T1:K1)T2ranges over all subtypes of its upper bound, no such restriction is expressible for the typeoperators. It is relative straightforward to formulate a system including operators with non-trivial upper bound. Indeed, it was in this more general form, that F !� appeared in Cardelli'snote [5]. The kind of a type operator Fun(A�T1:K1)T2 with bounded abstract type parameterin this case has to capture the fact that no longer all types of kind K1 are legitimate argumentsfor the operator, as expressed by the kind K1 ! K2, but only those less or equal type T1, whichcalls for generalizing arrow kinds to Pi-kinds of the form �A�T1:K1:K2. The correspondingelimination rule then reads:� ` S 2 �A�T1:K1:K2 � ` T � T1 2 K1� ` S T 2 [T=A]K2 (K-Pi-E)The second premise renders kinding dependent upon subtyping, leading to a mutual depen-dence of kinding and subtyping as in our system (cf. the rules for application in Section 2),only that the interdependence is due to bounded operator abstraction, not to polarized ap-plication. Compagnoni and Goguen [9] study such a system, proving decidability of F !� withbounded operator abstraction (without subkinding, without polarities, and, to preserve decid-ability, using the equal-bounds subtyping rule for All-types). While on an abstract level theinitial situation | mutual dependence of subtyping and kinding | seems similar, the proofsin [9] and presented here di�er in important respects. The approach pursued in this work,breaking the cycle by rendering kinding independent of subtyping by some sort of varianceanalysis, is out of question for bounded operator abstraction, as the very nature of boundedoperator abstraction requires this dependence in rule K-Pi-E. Instead, in an elegant proofCompagnoni and Goguen handle kinding and subtyping at the same time. They introducea typed operational semantics to obtain cut-elimination, subject reduction, and decidability,where the core of the argument is a strong normalization proof �a la Tait and Martin-L�of. Thetyped operational semantics can be understood as a derivation system combining subtypingstatements, kinding statements, and normal-form reduction. It is a rough analogue to thealgorithmic formulations of subtyping in [10] or [18] or in this paper.Monotonicity information for type variables or type operators is relevant also for typeinference. By reconstructing (or trying to reconstruct) omitted types from the context, typeinference can free the programmer from explicitly feeding a type as parameter to a polymor-phic function, or from annotating the type of the parameter of a function. Recently, in acouple of papers, Pierce and Turner [23] [22] [21] investigate partial, local type-inference fora Kernel-Fun variant of the second order F� including a bottom type as the dual to the morecommon maximal type Top. Considering the case of inferring an omitted type argument ofa polymorphic function, the types to be inferred are represented by type variables and at acertain stage during the inference process, the algorithm has to calculate a substitution ofthese variables, such that the result after the substitution is minimal and where the type2

replacing the variable is drawn from an interval in the subtyping hierarchy. Obviously, thechoice of the replacement is determined by the way the variable it replaces occurs inside thetype; for example, if the type variable occurs monotonely, choosing the minimal substitutionsatisfying the constraint yields a minimal result. Their type inference algorithm can also han-dle type operator constants in case they are monotone, for instance, the List type constructorof kind ? !+ ?. Lacking is support for user-de�nable type-operators as in the higher-orderF !� . A system of polarized higher-order subtyping as presented here should be helpful in thegeneralization.2 Extending F !� with monotonicity informationIn this section we sketch the extension of F !� by subtyping rules for a more general rule ofapplication, taking monotonicity information into account. Besides pointwise subtyping, thesystem allows to derive for example � ` T U1 � T U2, if � ` U1 � U2 and provided T ismonotone. In e�ect, F !� appeared in a form including monotonicity information in Cardelli'snote [5]. The syntax of polarized F !� extends the one for the pure calculus (cf. for example[18]) by annotating arrow kinds with one of four di�erent polarities. Thus a kind K is eithera base kind ? for the proper types, or an arrow kind K1 !?K2 for type operators from K1to K2 with ? as polarity. �+ >>}}} �``A A A�aaB B B B
==||||

The polarities come in four sorts: + and � characterize monotoneand antimonotone operators, � stands for constant ones, and �nally �for absence of information. Under this interpretation, the polarities areordered as given in the diagram on the right. The corresponding re
exiveand transitive relation on polarities is written ? � ?0. In accordance withusual conventions, the smaller the polarity, the better.The types of the calculus | basically the same as from pure F !� | areinductively built from type variables A, type operators Fun(A:K)T , typeapplications T1 T2, maximal types Top(K) of kind K, function types T1 ! T2, and universallyquanti�ed types All(A�T1:K)T2. The terms �nally are formed of term variables x, term ab-straction fun(x:T)t and application t1 t2, and type abstraction fun(A�T :K)t and applicationt T . The type system for polarized F !� contains the following �ve sets of statements:K � K 0 K is a subkind of K 0` � ok � is a well-formed context� ` T 2 K type T has kind K in context �� ` S � T 2 K S is a subtype of T in �� ` t 2 T term t has type T in �The derivability for each class of statements is given inductively by a set of inference rules.The ones for context formation ` � ok are standard, assuring that each variable declaration| either for term variables �; x:T or for type variables �; A�T :K | adds only fresh variablesto the context. Standard is also the typing system for statements � ` t 2 T , and we elideboth here. For subkinding, the order on polarities from above is lifted to the level of kinds:K 01 � K1 K2 � K 02 ? � ?0K1 !?K2 � K 01 !?0K 02 (K-Sub)The two subsystems we present in detail are the ones for kinding and for subtyping.3

Subtyping The di�erence between the F !� and the polarized version of this section ismost visible in the application rules. The pointwise application rule S-App lifts the subtyperelation of two type operators to type applications, stipulating S U and T U in subtyperelation, provided S and T are. To extend the system beyond pointwise subtyping we have tocharacterize the polarity of operators | this will be the the task of the kinding system in thefollowing section | and to include new subtyping rules exploiting the additional knowledgeabout the polarity of the operators. The basic intuition about a monotone type operator T isthat, applied to two arguments in subtype ordering, the application is ordered likewise. Thisis captured by the rule S-App+ below. The premise � ` T + expresses monotonicity of thetype operator T , abbreviating a kinding statement of the form � ` T 2 K1 !+K2 for somekinds K1 and K2. Apart from monotone operators, we need to consider antimonotone ones,and we include a dual rule S-App�.Furthermore, we would like to be able to denote that an operator does not depend upon itsarguments at all, i.e., that it is constant in its arguments; this is formalized by rule S-App�.Note that for a type operator being constant does not mean it throws away its arguments. Inother words, � ` T � does not imply �-equivalence of T U1 and T U2. The reason is that atype variable can be declared as constant operator, but it cannot swallow its arguments.To make the system symmetric, we add a fourth polarized application rule, more generousthan pointwise application, in that it does not insist on its arguments being identical, butrequiring only that each argument is a subtype of the other. Writing � ` U1 ? U2 2 K forsuch pairs of subtyping statements � ` U1 � U2 2 K and � ` U2 � U1 2 K, we can writethis last application rule S-App�.Having type variables act as constant type operators means that not only constant oper-ators di�er from the ones ignoring their arguments, but also that the notion of �-equivalenceof two types S and T and the fact that the two types are in mutual subtype relationship areto be distinguished. This distinction is not present in pure F !� and neither in the \polarized"calculi of Fisher [12] and Hofmann and Pierce [16]. But this fourth rule neither appears inthe higher-order setting of Cardelli [5].The remaining rules resemble the ones for pure F !� . The conversion rule S-Conv andtransitivity S-Trans de�ne � an order relation on types, respecting �>-equivalence.1 Atype variable is smaller than its upper bound in the context where additionally its kindhas to conform to the kinding constraint of the subtyping statement. Each kind containsa maximal type by rule S-Top. As usual, the rule S-Arrow for function types behavescontravariantly on the left-hand side of the arrow, and covariantly on the right. The rulefor type operators compares the bodies of the two operators and use the kinding systemto determine their polarity. Finally the rule for universally quanti�ed types. To retaindecidability of the subtyping system, we stick close to the decidable variant of F !� , whichinsists on equal upper bounds for the All-types. By the same arguments that had us introduceS-App�, we are led to relax the conditions upon the two bounds of universally quanti�edtypes, requiring that they must be mutually smaller than each other.S =�> T � ` S; T 2 K� ` S � T 2 K (S-Conv)1�>-reduction is a minor variant of �-reduction, including Top(K1 !?K2) T //>Top(K2) as reductionstep. 4

� ` S � U 2 K � ` U � T 2 K� ` S � T 2 K (S-Trans)� ` A 2 K� ` A � �(A) 2 K (S-TVar)� ` S 2 K � ` Top(K 0) 2 K� ` S � Top(K 0) 2 K (S-Top)� ` Fun(A:K1)S; Fun(A:K1)T 2 K1 !?K2�; A:K1 ` S � T 2 K2� ` Fun(A:K1)S � Fun(A:K1)T 2 K1 !?K2 (S-Abs)� ` S � T 2 K1 !�K2 � ` U 2 K1� ` S U � T U 2 K2 (S-App)� ` T 2 K1 !�K2 � ` U1; U2 2 K1� ` T U1 � T U2 2 K2 (S-App�)� ` T 2 K1 !+K2 � ` U1 � U2 2 K1� ` T U1 � T U2 2 K2 (S-App+)� ` T 2 K1 !�K2 � ` U2 � U1 2 K1� ` T U1 � T U2 2 K2 (S-App�)� ` T 2 K1 !�K2 � ` U1 ? U2 2 K1� ` T U1 � T U2 2 K2 (S-App�)� ` T1 � S1 2 ? � ` S2 � T2 2 ?� ` S1 ! S2 � T1 ! T2 2 ? (S-Arrow)� ` S1 ? T1 2 K1 �; A�S1:K1 ` S2 � T2 2 ?� ` All(A�S1:K1)S2 � All(A�T1:K1)T2 2 ? (S-All)Kinding Next the kinding rules, mutually dependent with the rules for subtyping of above.As mentioned, arrow kinds come decorated with polarities to express monotonicity informa-tion. For instance, the type operator Fun(A:?)Top(?) ! A will carry the kind ? !+ ? indi-cating that it operates monotonely on its arguments of kind ?. A type operator Fun(A:K)T ismonotone, if for all types U1 and U2 kinded appropriately, U1 � U2 implies [U1=A]T � [U2=A]T(cf. rule K-Arrow-I+ below). With the ordering on kinds generated by K-Sub, we get sub-sumption on the level of kinds. The kind of a type variable A is determined by its declarationkind�A in the context �. The type Top(K) is maximal for the respective kind K. Since,regardless of type S, we think of the application Top(K1 !?K2) S as bigger than all types ofthe appropriate kind K2, the operator Top(K1 !?K2) behaves constantly on its arguments.This also justi�es the abbreviation �1; A:K; �2 for �1; A�Top(K):K; �2, as the upper boundTop(K) carries no further formation. The four rules for arrow-introduction are responsiblefor the dependence of subtyping on kinding: the polarity of a type operator is determined by5

a subtyping derivation, with the appropriate assumption about the formal parameters in thecontext. As in pure F !� , arrow- and All-types �nally carry the unique kind ?.K 0 � K � ` T 2 K 0� ` T 2 K (K-Subsumption)` � ok� ` A 2 kind�A (K-TVar)` � ok� ` Top(?) 2 ? (K-Top?)� ` Top(K2) 2 K 02� ` Top(K1 !?K2) 2 K1 !�K 02 (K-Top)�; A:K1 ` T 2 K2� ` Fun(A:K1)T 2 K1 !�K2 (K-Arrow-I�)�; A:K1 ` T 2 K2�; A2:K1; A1�A2:K1 ` [A1=A]T � [A2=A]T 2 K2� ` Fun(A:K1)T 2 K1 !+K2 (K-Arrow-I+)�; A:K1 ` T 2 K2�; A2:K1; A1�A2:K1 ` [A2=A]T � [A1=A]T 2 K2� ` Fun(A:K1)T 2 K1 !�K2 (K-Arrow-I�)�; A:K1 ` T 2 K2�; A1:K1; A2:K1 ` [A1=A]T � [A2=A]T 2 K2� ` Fun(A:K1)T 2 K1 !�K2 (K-Arrow-I�)� ` S 2 K1 !?K2 � ` T 2 K1� ` S T 2 K2 (K-Arrow-E)� ` T1 2 ? � ` T2 2 ?� ` T1 ! T2 2 ? (K-Arrow)�; A�T1:K1 ` T2 2 ?� ` All(A�T1:K1)T2 2 ? (K-All)2.1 Proof sketchThis section sketches the proof of decidability of polarized subtyping. We start with a dis-cussion of the main di�culties to obtain an algorithm.The principal complication compared to pure F !� is the mutual dependence of subtypingand kinding statements via the rules for application and abstraction on type level. Lacking thesubformula property, the rule for transitivity introduces a non-determinism into the system,not tolerable for an algorithm; this problem is common to all subtyping systems. Speci�cto subtyping systems with a notion of conversion on type level, the second source of non-determinism is the conversion rule. We next hint at how to deal with these three obstacles.6

Strati�cation of the subtyping system Instead of a direct approach, treating subtypingand kinding at the same time, we break the interdependence of both, such that, as in pureF !� , subtyping still depends upon kinding as the more primitive statement, but not vice versa.This amounts to �nding an independent characterization of the polarity of type operators notrelying on subtyping derivations: instead of comparing [A1=A]T � [A2=A]T under appropriatesubtyping assumptions for the type variables A1 and A2 to characterize the polarized kind ofa type operator Fun(A:K1)T , we directly determine its polarity by looking at the positions inwhich its formal parameter A occurs inside the operator's body. This will lead to a new setof statements � ` T ?A, judging the occurrence of variables in types. With these statementsfor variable occurrence we can write the rule for arrow introduction as follows:�; A:K1 ` T ?A �; A:K1 ` T 2 K2� ` Fun(A:K1)T 2 K1 !?K2 (K-Arrow-I?)� � + � �� � � � �+ � + � �� � � + �� � � � �The de�nition of the rules for � ` T ?A is straightforward.With the polarities ordered, we introduce subsumption for thecorresponding polarity judgments. A type variable A occurspositively in A itself; if a variable A does not occur freely atall, its polarity is constant. For arrow-types we have to takeinto account that the subtype relation behaves contravariantlyon the left-hand side of the arrow and covariantly on its right-hand side. Thus the polarity of a variable in an arrow-typeT1 ! T2 cannot be better than either its polarity in T2 or the negation of its polarity on thecontravariant side T1.2 For a type variable occurring with non-trivial polarity, i.e. other than�, inside an All-type, we require it constant in the All-type's upper bound. The occurrenceof a variable inside a type operator is determined by its occurrence inside the operator'sbody. Finally the statements for type applications: the polarity of A in an application S T iscalculated using the operator _ on the right. The relation � ` T ?A is then given inductivelyby the following set of rules:?0 � ? � ` T ?0A� ` T ?A ` � ok� ` A +A A 62 fv(T) ` � ok� ` T �A� ` T1 ?1A � ` T2 ?2A ? = : ?1 _ ?2� ` T1 ! T2 ?A� ` T1 �A �; A0�T1:K ` T2 ? A A0 6= A� ` All(A0�T1:K)T2 ? A�; A0:K ` T ?A A0 6= A� ` Fun(A0:K)T ?A2In the rule for arrow-types, _ denotes the least upper bound in the small lattice of polarities, and negationtoggles + and � and acts as the identity on the other two polarities.7

� ` S ?1A � ` S ?2 � ` T ?3A ? = ?1 _(?2� ?3)� ` S T ?AFisher [12] de�nes a similar set of operations to determine the variance (or polarity) of atype variable in a \row", a restricted form of type operator. The calculation of polarity forapplications is simpler in [12], because only operators of kind ? ! ? (called row functions)are treated. Hence there is no need to distinguish between constant appearance and the fact,that a variable does not occur at all.Directed version of the subtyping system The conversion rule S-Conv allows to con-vert a type to �>-equivalent ones. For an algorithm we cannot tolerate such liberty, that inorder to derive the subtype relationship between two types, we have to check all (i.e. in�nitelymany) �>-equivalent pairs. The usual and obvious approach [1] [10] [2] [8] [18] is to provethat it su�ces to check the subtype relation for the unique normal forms of types, only. Asa �rst step towards a system operating exclusively on normal forms we use a directed versionof the system by distributing the e�ect of the undirected conversion rule over the rest of thesubtype rules. For example, instead of S-Arrow we will use the following rule:S //��>S1 ! S2 T //��>T1 ! T2 � ` T1 � S1 2 ? � ` S2 � T2 2 ?� ` S � T 2 ?To turn this system into an algorithm, we have to prove that the non-deterministic reductionrelation in the premises can be replaced by normalizing reduction.Elimination of transitivity The standard problem to obtain an algorithm for a subtypingsystem is to get rid of the rule of transitivity. It is well-known that subtyping systems likethe one presented here do not possess a transitivity elimination property: in the presence ofa variable rule such as S-TVar it is easy to think of subtyping statements whose derivabilitydepends on the rule of transitivity. To compensate for the e�ect of transitivity in these caseswe use a rule replacing a type variable occurring in head position, here A, in an applicationby its upper bound �(A):S //!�>A S1 : : :Sn � ` A S1 : : :Sn 2 K� ` �(A) S1 : : :Sn � T 2 K� ` S � T 2 K (R-Promote)With this rule added, admissibility of the transitivity rule is provable by an inductive cutelimination argument.2.2 Main resultsWe just mention the key steps to achieve main result: decidability of polarized subtyping.1. Decidability of kinding : after strati�cation, decidability of kinding is relative straight-forward. Due to subkinding, the system does not enjoy a unique kinding property, andthe kinding algorithm proceeds by minimal kinding synthesis.8

2. Subject reduction for subtyping : Preservation of subtyping under substitution and re-duction is needed in the (strati�ed) subtyping system, as step towards the subtypingalgorithm which works on types in normal forms, only.3. Termination of the subtyping algorithm: The proof is a generalization of the one for pureF !� in [18]. The rule that complicates termination is R-Promote: in replacing a typevariable by its upper bound, the subgoal may contain new �>-redices not present in theconclusion of the rule. Termination of the algorithm follows from strong normalizationof a reduction relation combining �>-reduction and replacement of a type variable by itsupper bound in the context. The asymmetric nature of the subtyping rule S-All furthercomplicates the argument compared to pure F !� . Since this rule does not insist on theupper bounds to be identical, but only in mutual subtype relationship, a terminationargument is needed for a relation, where a type variable may be replaced by a type,which is smaller and greater than its upper bound in the context at the same time.4. Mutual subtype relationship implies absence of promotion: The fact that for � ` S ?T 2 K the derivation does not even use the transitivity implicit in R-Promote isneeded for proving the strati�ed version equivalent to the original formulation.5. Cut elimination: by a standard cut-elimination argument using induction on the lengthof derivations.The items 1{5 are proven in the strati�ed version of the system. As a result one arrives atan algorithm, basically the strati�ed formulation of the subtyping system without the rule oftransitivity and with normalizing reduction. Thus decidability of the original, non-strati�edsystem follows from the proof of equivalence between the two presentations, shown by a biginduction over derivations.Proposition 2.1 (Decidability of subtyping) The subtyping relation � ` S � T 2 K forpolarized higher-order subtyping is decidable.References[1] Mart��n Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer Science.Springer, 1996.[2] David Aspinall and Adriana Compagnoni. Subtyping dependent types. In Eleventh AnnualSymposium on Logic in Computer Science (LICS). IEEE, Computer Society Press, July 1996.[3] Val Breazu-Tannen, Thierry Coquand, Carl Gunter, and Andr�e �S�cedrov. Inheritance as implicitcoercion. Information and Computation, 93:172{221, 1991. Also in the collection [15].[4] Kim Bruce and John Mitchell. PER models of subtyping, recursive types and higher-order poly-morphism. In Nineteenth Annual Symposium on Principles of Programming Languages (POPL)(Albuquerque, NM), pages 316{327. ACM, January 1992.[5] Luca Cardelli. Notes about F!<:. Unpublished manuscript, October 1990.[6] Luca Cardelli, Simone Martini, John Mitchell, and Andr�e �S�cedrov. An extension of system F withsubtyping. Information and Computation, 109(1{2):4{56, 1994. A preliminary version appearedin TACS '91 (Sendai, Japan, pp. 750{770, LNCS 526).9

[7] Gang Chen. Dependent type systems with subtyping; type level transitivity elimination. Technicalreport, Laboratoire d'Informatique ENS. and Universit�e de Paris 7, July 1997. To appear in theProceedings of the KIT 97 Summer School and Workshop, Beijing.[8] Gang Chen. Subtyping calculus of constructions (extended abstract). In Proceedings of Mathe-matical Foundations of Computer Science (MFCS '97), 1997. A longer version is available throughhttp://www.dmi.ens.fr/~gang.[9] Adriana Compagnoni and Healfdene Goguen. Typed operational semantics for higher order sub-typing. Technical Report ECS-LFCS-97-361, Department of Computer Science, University ofEdinburgh, 1997. Submitted for publication in Information and Computation.[10] Adriana B. Compagnoni. Higher-Order Subtyping with Intersection Types. PhD thesis, CatholicUniversity, Nijmegen, January 1995.[11] Pierre-Louis Curien and Giorgio Ghelli. Coherence of subsumption: Minimum typing and type-checking in F�. Mathematical Structures in Computer Science, 2:55{91, 1992. A preliminaryversion appeard as LIENS Report Nr. 90-10, 1990. Also in the collection [15].[12] Kathleen Fisher. Type Systems for Object-Oriented Languages. PhD thesis, Stanford University,August 1996.[13] Giorgio Ghelli. Modelling features of object-oriented languages in second order functional lan-guages with subtypes. In J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Founda-tions of Object-Oriented Languages (REX Workshop), volume 489 of Lecture Notes in ComputerScience, pages 311{340. Springer, 1991.[14] Jean-Yves Girard. Interpr�etation fonctionelle et �elimination des coupure dans l'arithmetiqued'ordre sup�erieur. PhD thesis, Universit�e Paris VII, 1972.[15] Carl A. Gunter and John C. Mitchell. Theoretical Aspects of Object-Oriented Programming,Types, Semantics, and Language Design. Foundations of Computing Series. MIT Press, 1994.[16] Martin Hofmann and Benjamin Pierce. A unifying type-theoretic framework for objects. Journalof Functional Programming, 5(4):593{635, October 1995. Previous versions appeared in the Sym-posium on Theoretical Aspects of Computer Science, 1994, (pages 251{262) and, under the title\An Abstract View of Objects and Subtyping (Preliminary Report)," as University of Edinburgh,LFCS technical report ECS-LFCS-92-226, 1992.[17] John C. Mitchell. Toward a typed foundation for method specialization and inheritance. InSeventeenth Annual Symposium on Principles of Programming Languages (POPL) (San Fancisco,CA), pages 109{124. ACM, January 1990. Also in the collection [15].[18] Benjamin Pierce and Martin Ste�en. Higher-order subtyping. Theoretical Computer Science,176(1,2):235{282, 1997. A shorter version appeared in the Proceedings IFIP Working Conferenceon Programming Concepts, Methods and Calculi (p. 511{530), 1994. Also LFCS technical reportECS-LFCS-94-280 and Interner Bericht IMMD7-01/94, Universit�at Erlangen.[19] Benjamin Pierce and David Turner. Simple type-theoretic foundations for object-oriented pro-gramming. Journal of Functional Programming, 4(2):207{247, April 1994. A preliminary versionappeared in Principles of Programming Languages, 1993, and as University of Edinburgh techni-cal report ECS-LFCS-92-225, under the title \Object-Oriented Programming Without RecursiveTypes".[20] Benjamin C. Pierce. Bounded quanti�cation is undecidable. Information and Computation,112(1):131{165, July 1994. Also in Carl A. Gunter and John C. Mitchell, editors, TheoreticalAspects of Object-Oriented Programming: Types, Semantics, and Language Design (MIT Press,1994). A preliminary version appeared in POPL '92.[21] Benjamin C. Pierce. Bounded quanti�cation with bottom. Technical Report CSCI TR #492,Indiana University, November 1997. 10

[22] Benjamin C. Pierce and David N. Turner. Local type argument synthesis with bounded quanti�-cation. Technical Report CSCI TR #495, Indiana University, November 1997.[23] Benjamin C. Pierce and David N. Turner. Local type inference. In Proceedings of POPL '98.ACM, 1998. Also as Indiana University Technical Report CSCI TR #493.[24] Martin Ste�en. Polarized Higher-Order Subtyping. Dissertation, Universit�at Erlangen, 1997. Toappear.

11

