Polarized Higher-Order Subtyping
(Extended Abstract)

Martin Steffen
Institut fiur Informatik und Praktische Mathematik
Christian-Albrechts Universitat zu Kiel
Preuflerstrafie 1 9, D-24105 Kiel, Deutschland
Tel: 449 (431) 5604-79
Fax: +49 (431) 5661-43

FEmail: ms@informatik.uni-kiel.de

9th December 1997

Abstract

The calculus of higher-order subtyping, known as F¢, has been used as a prototypical
core calculus for typed object-oriented languages. The versions considered in the literature
usually support pointwise subtyping of type operators, only, where two applications S U/
and T U are in subtype relation, if the type operators S and T are. A natural extension
going beyond pointwise subtyping distinguishes between monotone, antimonotone | and
invariant operators. Thus, T Uy 1s a subtype of T Us, if Uy < Uy and provided T is a
monotone operator.

The paper extends FZ by polarized application and proves decidability of the sub-
typing relation. To take monotonicity information into account, the kinding system does
not only characterize domain and range of a type operator of kind Ky — K3, but uses,
for instance, the kind K; =1 K, for monotone type operators from K; to K. The
corresponding set of rules leads to an interdependence of the subtyping and the kinding
system. This contrasts with pure F with point-wise subtyping only, where the kinding
rules do not depend on subtyping. To retain decidability of the system, the equal-bounds
subtyping rule for All-types is rephrased in the polarized setting as a mutual-subtype
requirement, of the upper bounds. To avoid the complexity of this mutual dependence in
the proof of decidability, we reformulate the system, yielding a stratified version, where
subtyping still depends on kinding as the more primitive statements but not vice versa.

Keywords: type systems, subtyping, polymorphic A-calculi for object-oriented languages.

1 Introduction

The study of typed functional calculi, i.e., typed A-calculi, flexible and expressive enough to
provide a theoretical framework for object-oriented languages has received considerable atten-
tion in the literature over the past ten years. The object of study in this paper is FZ (called
“F-omega-sub”), one prominent representative of A-calculi for object-oriented programming.
It combines the w-order polymorphic A-calculus F'“ [14] and the polymorphic A-calculus with
subtyping, known as F<. The meta-theoretical properties of F« have been extensively stud-
ied in the literature (cf. [6] [13] [11] [3] [20] et. al.). The integration of both subtyping and
type operators, i.e., functions from types to types, leads to FZ [5] [17] [4], a formal system
sufficiently expressive to model class inheritance with late binding, encapsulation, and sub-
type polymorphism in a uniform framework, and thus well-known as one core calculus for
clags-based typed object-oriented languages [19] [16].

This paper presents an extension of FZ' to include information about the monotonicity
of type operators allowing a more general form of subtyping, going beyond pointwise sub-
typing. We investigate its proof-theory, establishing decidability of “polarized F 7. What
makes the proof-theory principally more challenging than for pure F2(cf. eg. [18]) is that the
generalization leads to a mutual dependence of kinding and subtyping not present in pure F2.

Similar variants of ' with monotonicity information have been proposed in the literature,
most notably in Cardelli’s widely cited note [5] or in a restricted form in Hofmann and
Pierce [16], but so far the meta-theory of such calculi has not been tackled. We mention some
related work, before presenting the main parts of the calculus in Section 2 the subtyping
and the kinding system. We highlight the difficulties to obtain an algorithm for subtyping
and sketch the proof of the main result: decidability of subtyping. The complete system and
the proofs can be found in the full version of the paper and in [24].

Comparison with related work

In [16], Hofmann and Pierce present a uniform, type-theoretic account of object-oriented
concepts of class-based languages, including encapsulation, subtyping, and message passing.
They show that F2’s object model fits in their uniform framework in case one restricts
the object’s interfaces to positive signatures, i.e., type operators of kind x =% % to use the
notation of this paper. To be able to characterize such monotone signatures, Hofmann and
Pierce extend FZ (or rather a fragment of it) with a predicate pos on type operators of
kind * — %, which corresponds to our 4+-polarity. The system we present here generalizes
the definitions in [16]. First of all, pos only handles type variables of the base kind %, and
polarized operators of kind x — %, which corresponds to a fragment of F* with subtyping.
Another difference is that Hofmann and Pierce do not consider the additional polarities +
and o. Similarly, Fisher [12] investigates the variance of type operators, there called row
functions. She also restricts herself to operators of kind * — %, so her variance analysis is
simpler than our system.

F'2 is an impredicative type theory, where terms depend on terms and types, and types
take types as parameters (in which case they are called type operators). Systems where types
can depend on terms, are said to have dependent types. Recently, interest in calculi with
dependent types extended by subtyping has started. Aspinall and Compagnoni [2] investigate
AP<, afirst-order calculus with dependent types (known as AP or All) extended by subtyping,

establishing decidability of the system. Chen [7] studies a different formulation of this system,
which he calls AlT<. The inclusion of dependent types leads to a cyclic dependence of the
typing, the su‘b‘r,ypiingzg7 and the kinding statements, posing similar proof-theoretic problems
as in the study pursued here. The results have recently been extended to the calculus of
constructions [8]. None of these calculi includes bounded universal quantification, which
significantly simplifies the meta-theory.

The formulation of F'2” investigated here contains an asymmetry concerning the bindings of
type variables. Whilst the type variable in bounded universal quantifier types All(A<T;:K)Ty
ranges over all subtypes of its upper bound, no such restriction is expressible for the type
operators. It is relative straightforward to formulate a system including operators with non-
trivial upper bound. Indeed, it was in this more general form, that F'2 appeared in Cardelli’s
note [5]. The kind of a type operator Fun(A<T:K)Ty with bounded abstract type parameter
in this case has to capture the fact that no longer all types of kind K are legitimate arguments
for the operator, as expressed by the kind Ky — K5, but only those less or equal type Ty, which
calls for generalizing arrow kinds to Pi-kinds of the form IMA<T:K{.K5. The corresponding
elimination rule then reads:

r=.s € ”AST]lK}.KYQ r=rmT S T] € [(1
I'F ST e [T/AK,

The second premise renders kinding dependent upon subtyping, leading to a mutual depen-

(K-PI-F)

dence of kinding and subtyping as in our system (cf. the rules for application in Section 2),
only that the interdependence is due to bounded operator abstraction, not to polarized ap-
plication. Compagnoni and Goguen [9] study such a system, proving decidability of F'¥ with
bounded operator abstraction (without subkinding, without polarities, and, to preserve decid-
ability, using the equal-bounds subtyping rule for All-types). While on an abstract level the
initial situation mutual dependence of subtyping and kinding seems similar, the proofs
in [9] and presented here differ in important respects. The approach pursued in this work,
breaking the cycle by rendering kinding independent of subtyping by some sort of variance
analysis, is out of question for bounded operator abstraction, as the very nature of bounded
operator abstraction requires this dependence in rule K-P1-E. Instead, in an elegant proof
Compagnoni and Goguen handle kinding and subtyping at the same time. They introduce
a typed operational semantics to obtain cut-elimination, subject reduction, and decidability,
where the core of the argument is a strong normalization proof a la Tait and Martin-L6f. The
typed operational semantics can be understood as a derivation system combining subtyping
statements, kinding statements, and normal-form reduction. Tt is a rough analogue to the
algorithmic formulations of subtyping in [10] or [18] or in this paper.

Monotonicity information for type variables or type operators is relevant also for type
inference. By reconstructing (or trying to reconstruct) omitted types from the context, type
inference can free the programmer from explicitly feeding a type as parameter to a polymor-
phic function, or from annotating the type of the parameter of a function. Recently, in a
couple of papers, Pierce and Turner [23] [22] [21] investigate partial, local type-inference for
a Kernel-Fun variant of the second order F¢ including a bottom type as the dual to the more
common maximal type Top. Considering the case of inferring an omitted type argument of
a polymorphic function, the types to be inferred are represented by type variables and at a
certain stage during the inference process, the algorithm has to calculate a substitution of
these variables, such that the result after the substitution is minimal and where the type

replacing the variable is drawn from an interval in the subtyping hierarchy. Obviously, the
choice of the replacement is determined by the way the variable it replaces occurs inside the
type; for example, if the type variable occurs monotonely, choosing the minimal substitution
satisfying the constraint yields a minimal result. Their type inference algorithm can also han-
dle type operator constants in case they are monotone, for instance, the List type constructor
of kind « =T %. Lacking is support for user-definable type-operators as in the higher-order
2. A system of polarized higher-order subtyping as presented here should be helpful in the
generalization.

2 Extending FY with monotonicity information

In this section we sketch the extension of F2 by subtyping rules for a more general rule of
application, taking monotonicity information into account. Besides pointwise subtyping, the
system allows to derive for example I' =T Uy < T U, if I' H U; < Uy and provided T is
monotone. In effect, ¢ appeared in a form including monotonicity information in Cardelli’s
note [5]. The syntax of polarized F¥ extends the one for the pure calculus (cf. for example
[18]) by annotating arrow kinds with one of four different polarities. Thus a kind K is either
a base kind * for the proper types, or an arrow kind K; —° K, for type operators from K
to Ko with 7 as polarity.
The polarities come in four sorts: 4+ and — characterize monotone
and antimonotone operators, o stands for constant ones, and finally +
for absence of information. Under this interpretation, the polarities are +
ordered as given in the diagram on the right. The corresponding reflexive AN
and transitive relation on polarities is written ? < ?/. Tn accordance with + —
usual conventions, the smaller the polarity, the better. NS
The types of the calculus basically the same as from pure I’ are
inductively built from type variables A, type operators Fun(A:K)T, type
applications Ty Ty, maximal types Top(K) of kind K, function types Ty — Ty, and universally
quantified types AlI(A<T|:K)Ty. The terms finally are formed of term variables 2, term ab-
straction fun(x:T)t and application ty t, and type abstraction fun(A<T:K)t and application
t T. The type system for polarized FZ’ contains the following five sets of statements:

K <K' K is a subkind of K’

FT ok I' is a well-formed context
'-TekK type T has kind K in context I’
NrES<Tek S is a subtype of Tin I’
NeteT term t has type T in T’

The derivability for each class of statements is given inductively by a set of inference rules.
The ones for context formation = T ok are standard, assuring that each variable declaration
either for term variables I', 2:T or for type variables ', A<T:K adds only fresh variables
to the context. Standard is also the typing system for statements I' = ¢ € T, and we elide
both here. For subkinding, the order on polarities from above is lifted to the level of kinds:

Ky < K, K, < K} 7Y

7 K-Susn
Ki ="Ky < K} =57 K}, ()

The two subsystems we present in detail are the ones for kinding and for subtyping.

Subtyping The difference between the F and the polarized version of this section is
most visible in the application rules. The pointwise application rule S-App lifts the subtype
relation of two type operators to type applications, stipulating S U and T U in subtype
relation, provided S and T are. To extend the system beyond pointwise subtyping we have to
characterize the polarity of operators this will be the the task of the kinding system in the
following section and to include new subtyping rules exploiting the additional knowledge
about the polarity of the operators. The basic intuition about a monotone type operator T is
that, applied to two arguments in subtype ordering, the application is ordered likewise. This
is captured by the rule S-ApPpP+ below. The premise I' =T 4 expresses monotonicity of the
type operator T, abbreviating a kinding statement of the form '+ T € Ky =T K, for some
kinds Ky and Ks. Apart from monotone operators, we need to consider antimonotone ones,
and we include a dual rule S-App—.

Furthermore, we would like to be able to denote that an operator does not depend upon its
arguments at all, i.e., that it is constant in its arguments; this is formalized by rule S-Appo.
Note that for a type operator being constant does not mean it throws away its arguments. In
other words, I' T o does not imply g-equivalence of T U; and T U,. The reason is that a
type variable can be declared as constant operator, but it cannot swallow its arguments.

To make the system symmetric, we add a fourth polarized application rule, more generous
than pointwise application, in that it does not insist on its arguments being identical, but
requiring only that each argument is a subtype of the other. Writing I' - Uy 2 Uy € K for
such pairs of subtyping statements ' Uy < U, € K and I' - Uy < Uy € K, we can write
this last application rule S-App+.

Having type variables act as constant type operators means that not only constant oper-
ators differ from the ones ignoring their arguments, but also that the notion of -equivalence
of two types S and T and the fact that the two types are in mutual subtype relationship are
to be distinguished. This distinction is not present in pure I'2 and neither in the “polarized”
calculi of Fisher [12] and Hofmann and Pierce [16]. But this fourth rule neither appears in
the higher-order setting of Cardelli [5].

The remaining rules resemble the ones for pure 2. The conversion rule S-Conv and
transitivity S-TRANS define < an order relation on types, respecting 3T-equivalence.! A
type variable is smaller than its upper bound in the context where additionally its kind
has to conform to the kinding constraint of the subtyping statement. FEach kind contains
a maximal type by rule S-Top. As usual, the rule S-ARrROW for function types behaves
contravariantly on the left-hand side of the arrow, and covariantly on the right. The rule
for type operators compares the bodies of the two operators and use the kinding system
to determine their polarity. Finally the rule for universally quantified types. To retain
decidability of the subtyping system, we stick close to the decidable variant of FZ, which
insists on equal upper bounds for the All-types. By the same arguments that had us introduce
S-Aprpr+, we are led to relax the conditions upon the two bounds of universally quantified
types, requiring that they must be mutually smaller than each other.

S=srT T FSTeEK

TFSs<TeR (S-Conv)

' BT-reduction is a minor variant of -reduction, including Top(K; =" K2) T =1 Top(K?2) as reduction

step.

r-S<vekK I'FULSTeK

S-TRAN
TFSs<TeR (S-TrANS)
N'e-A4Ace¢ekK STV
- AR
't A<T(A) €K ()
'S ek 't Top(K') € K o T
TFS< Top(K') € K (5-Tor)
I = Fun(A:Ky)S, Fun(A:K\)T € K; ="K,
F, A:K} F S S T € I(Q S A
D-ABS
'+ FPun(A:K\)S < FPun(A:K\)T € Ky ="K, ()
TS <Te K -1k, I'-U e K, -
TFSU<TU € K, (S-Are)
T e Ky =2°K,y ' u,,U, € Ky
- (S-Appo)
T'ETU, <TUy € Ky
PN-7T7e K >TKy r=1t; < U, € K,
- (S-Aprr+)
FETU <TU; € Ky
re=Te¢e Ky = K, v, <U; € Ky
- (S-AprrP—)
FETU <TU; € Ky
'-7Te K1 5K U, 20U, €K
! 2 ! < 2 ! (S-Appr+)
FETU <TU; € Ky
FFT1§S1€* FFSQSTQE* QA
TES 58, <Ti =T, ¢ x (S-ArROW)
r=s =27 €K I, AKS1:K1 B Sy < Ty € %
1T < 1 1 1 1 2 > 2 (S*ALL)

I+ A”(ASSH:K])SQ S A”(AST]ZK})TQ € *

Kinding Next the kinding rules, mutually dependent with the rules for subtyping of above.
As mentioned, arrow kinds come decorated with polarities to express monotonicity informa-
tion. For instance, the type operator Fun(A:x)Top(x) — A will carry the kind « =% % indi-
cating that it operates monotonely on its arguments of kind x. A type operator Fun(A:K)T is
monotone, if for all types Uy and U, kinded appropriately, Uy < U, implies [y /AT < [Uy/A]T
(cf. rule K-ArRROW-14 below). With the ordering on kinds generated by K-SuB, we get sub-
sumption on the level of kinds. The kind of a type variable A is determined by its declaration
kindr A in the context I'. The type Top(K) is maximal for the respective kind K. Since,
regardless of type S, we think of the application Top(K, -7 K3) S as bigger than all types of
the appropriate kind Ky, the operator Top(K; =’ K3) behaves constantly on its arguments.
This also justifies the abbreviation I'y, A:K| 'y for Ty, A<Top(K):K, 'y, as the upper bound
Top(K) carries no further formation. The four rules for arrow-introduction are responsible
for the dependence of subtyping on kinding: the polarity of a type operator is determined by

a subtyping derivation, with the appropriate assumption about the formal parameters in the
context. Asin pure FZ, arrow- and All-types finally carry the unique kind *.

K' < K r-mTeK’

(K-SUBSUMPTION)

r-7TekK
F T ok .
I'F A € kindrA (K-TVAR)
F T ok .
'+ Top(%) € % (K-Topx)
I+ Top(Ks) € K}
i) : (K-Top)

I'H Top(K1 =" Ks) € Ky =° K},

F, A:K} T € I(Q
I'F Fun(A:K)T € Ky =K,

(K-ArrROW-I+)

F, A:K} T € I(Q
F, AQlKY], A]SAQl[(] F [A]/A]T S [AQ/A]T € I(Q
' = Fun(A:K\)T € Ky =51t K,

(K-ArRrROW-1+4)

F, A:K} T € I(Q
F, AQlKY], A]SAQl[(] F [AQ/A]T S [A]/A]T € I(Q
I' = Fun(A:K\)T € Ky =~ K,

(K-ArRrROW-1-)

F, A:K} T € I(Q
F, A]l[(], AQlK} = [A]/A]T S [AQ/A]T € I(Q
'+ Fun(A:K\)T € Ky —=° Ky

(K-ArrROW-I0)

'k S e Ki ="K, 7T e K,y

(K-ArrROW-E)

I'EST e K,
=T € x 'ET, € %
1 2 (K-ArRROW)
I+ T =Ty € %
I, A<Tv:Ky Ty € %
o ’ (K-Arn)

I+ A”(AST]lK})TQ € *

2.1 Proof sketch

This section sketches the proof of decidability of polarized subtyping. We start with a dis-
cussion of the main difficulties to obtain an algorithm.

The principal complication compared to pure ' is the mutual dependence of subtyping
and kinding statements via the rules for application and abstraction on type level. Lacking the
subformula property, the rule for transitivity introduces a non-determinism into the system,
not tolerable for an algorithm; this problem is common to all subtyping systems. Specific
to subtyping systems with a notion of conversion on type level, the second source of non-
determinism is the conversion rule. We next hint at how to deal with these three obstacles.

Stratification of the subtyping system Instead of a direct approach, treating subtyping
and kinding at the same time, we break the interdependence of both, such that, as in pure
I'2, subtyping still depends upon kinding as the more primitive statement, but not vice versa.
This amounts to finding an independent characterization of the polarity of type operators not
relying on subtyping derivations: instead of comparing [A1/A]T < [A3/A]|T under appropriate
subtyping assumptions for the type variables 4y and A5 to characterize the polarized kind of
a type operator Fun(A:Ky)T, we directly determine its polarity by looking at the positions in
which its formal parameter A occurs inside the operator’s body. This will lead to a new set
of statements '+ T 7,4, judging the occurrence of variables in types. With these statements
for variable occurrence we can write the rule for arrow introduction as follows:

P AK, FT?2, T, AK FT e K,
I'E Fun(A:K)T € Ki ="K,

The definition of the rules for I' =T 7 4 is straightforward.
With the polarities ordered, we introduce subsumption for the

(K-ArRrROW-17)

corresponding polarity judgments. A type variable A occurs Xlo + — £
positively in A itself; if a variable A does not occur freely at o|lo o o o
all, its polarity is constant. For arrow-types we have to take +lo + — +
into account that the subtype relation behaves contravariantly — o — 4+ 4+
on the left-hand side of the arrow and covariantly on its right- +lo £ +£ &+

hand side. Thus the polarity of a variable in an arrow-type

Ty — Ty cannot be better than either its polarity in Ty or the negation of its polarity on the
contravariant side 7.2 For a type variable occurring with non-trivial polarity, i.e. other than
+, inside an All-type, we require it constant in the All-type’s upper bound. The occurrence
of a variable inside a type operator is determined by its occurrence inside the operator’s
body. Finally the statements for type applications: the polarity of A4 in an application S T is
calculated using the operator V on the right. The relation I' =T 74 is then given inductively
by the following set of rules:

7?7 <7 DETY, = T ok A ¢ fo(T) T ok
TFT7?, U'E A4y T'F 7oy
T T2, T Ty?7%, ?2 ==y 7?

r "T]-}TQ?A

FFT1 O A F, AISTﬁKY'_TQ?A AI#A
T b AH(A<T:K)Ty 7 4

I AK - T 7, Al £ A
I'F Fun(A:K)T 74

2Tn the rule for arrow-types, V denotes the least upper bound in the small lattice of polarities, and negation
toggles + and — and acts as the identity on the other two polarities.

e sy, IkF §7? I'ET72, 7 =2 (7 x 7
I'F ST?,4

Fisher [12] defines a similar set of operations to determine the variance (or polarity) of a

type variable in a “row”, a restricted form of type operator. The calculation of polarity for
applications is simpler in [12], because only operators of kind x — * (called row functions)
are treated. Hence there is no need to distinguish between constant appearance and the fact,
that a variable does not occur at all.

Directed version of the subtyping system The conversion rule S-Conv allows to con-
vert a type to ST-equivalent ones. For an algorithm we cannot tolerate such liberty, that in
order to derive the subtype relationship between two types, we have to check all (i.e. infinitely
many) ST-equivalent pairs. The usual and obvious approach [1] [10] [2] [8] [18] is to prove
that it suffices to check the subtype relation for the unique normal forms of types, only. As
a first step towards a system operating exclusively on normal forms we use a directed version
of the system by distributing the effect of the undirected conversion rule over the rest of the
subtype rules. For example, instead of S-ArRrROW we will use the following rule:

S »\;TS1—>SQ T >Z-|—T1—>T2 FFT1SS1E* FFSQSTQE*

FrEsS<Tex

To turn this system into an algorithm, we have to prove that the non-deterministic reduction
relation in the premises can be replaced by normalizing reduction.

Elimination of transitivity The standard problem to obtain an algorithm for a subtyping
system is to get rid of the rule of transitivity. It is well-known that subtyping systems like
the one presented here do not possess a transitivity elimination property: in the presence of
a variable rule such as S-TVAR it is easy to think of subtyping statements whose derivability
depends on the rule of transitivity. To compensate for the effect of transitivity in these cases
we use a rule replacing a type variable occurring in head position, here A, in an application
by its upper bound T'(A4):

S >15TA Sy...8, THAS...S, € K
'ET(A) S ...5, <Te€eK
Fr=s<mTek
With this rule added, admissibility of the transitivity rule is provable by an inductive cut

(R-PromoTR)

elimination argument.

2.2 Main results

We just mention the key steps to achieve main result: decidability of polarized subtyping.

1. Decidability of kinding: after stratification, decidability of kinding is relative straight-
forward. Due to subkinding, the system does not enjoy a unique kinding property, and
the kinding algorithm proceeds by minimal kinding synthesis.

2

The

. Subject reduction for subtyping: Preservation of subtyping under substitution and re-

duction is needed in the (stratified) subtyping system, as step towards the subtyping
algorithm which works on types in normal forms, only.

Termination of the subtyping algorithm: The proofis a generalization of the one for pure
FZ in [18]. The rule that complicates termination is R-PROMOTE: in replacing a type
variable by its upper bound, the subgoal may contain new 3T-redices not present in the
conclusion of the rule. Termination of the algorithm follows from strong normalization
of a reduction relation combining 8T -reduction and replacement of a type variable by its
upper bound in the context. The asymmetric nature of the subtyping rule S-Avr further
complicates the argument compared to pure FZ. Since this rule does not insist on the
upper bounds to be identical, but only in mutual subtype relationship, a termination
argument is needed for a relation, where a type variable may be replaced by a type,
which is smaller and greater than its upper bound in the context at the same time.

Mutual subtype relationship implies absence of promotion: The fact that for ' - 5§ 2
T € K the derivation does not even use the transitivity implicit in R-PROMOTE is
needed for proving the stratified version equivalent to the original formulation.

Cut elimination: by a standard cut-elimination argument using induction on the length
of derivations.

items 1 5 are proven in the stratified version of the system. As a result one arrives at

an algorithm, basically the stratified formulation of the subtyping system without the rule of

transitivity and with normalizing reduction. Thus decidability of the original, non-stratified

system follows from the proof of equivalence between the two presentations, shown by a big

induction over derivations.

Proposition 2.1 (Decidability of subtyping) The subtyping relation TS < T € K for
polarized higher-order subtyping is decidable.

References

[1]

Martin Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer, 1996.

David Aspinall and Adriana Compagnoni. Subtyping dependent types. In Fleventh Annual
Symposium on Logic in Computer Science (LICS). TEEE, Computer Society Press, July 1996.

Val Breazu-Tannen, Thierry Coquand, Carl Gunter, and André Scedrov. Tnheritance as implicit
coercion. Information and Computation, 93:172 221, 1991. Also in the collection [15].

Kim Bruce and John Mitchell. PER models of subtyping, recursive types and higher-order poly-
morphism. Tn Nineteenth Annual Symposium on Principles of Programming Languages (POPI)

(Albuguerque, NM), pages 316 327. ACM, January 1992.
Luca Cardelli. Notes about FZ.. Unpublished manuscript, October 1990.

Tuca Cardelli, Simone Martini, John Mitchell, and André Séedrov. An extension of system F with
subtyping. Information and Computation, 109(1 2):4 56, 1994. A preliminary version appeared
in TACS ’91 (Sendai, Japan, pp. 750 770, LNCS 526).

[7]

[17]

[18]

[19]

[20]

Gang Chen. Dependent type systems with subtyping; type level transitivity elimination. Technical
report, Laboratoire d’Informatique ENS. and Université de Paris 7, July 1997. To appear in the
Proceedings of the KIT 97 Summer School and Workshop, Beijing.

Gang Chen. Subtyping calculus of constructions (extended abstract). Tn Proceedings of Mathe-
matical Foundations of Computer Science (MFCS ’97), 1997. A longer version is available through
http://www.dmi.ens.fr/ gang.

Adriana Compagnoni and Healfdene Goguen. Typed operational semantics for higher order sub-
typing. Technical Report ECS-T.FCS-97-361, Department of Computer Science, University of
Edinburgh, 1997. Submitted for publication in Information and Computation.

Adriana B. Compagnoni. Higher-Order Subtyping with Intersection Types. PhD thesis, Catholic
University, Nijmegen, January 1995.

Pierre-Louis Curien and (iorgio Ghelli. Coherence of subsumption: Minimum typing and type-
checking in F<. Mathematical Structures in Computer Science, 2:55 91, 1992. A preliminary
version appeard as LTENS Report Nr. 90-10, 1990. Also in the collection [15].

Kathleen Fisher. Type Systems for Object-Oriented Languages. PhD thesis, Stanford University,
August 1996.

Giorgio Ghelli. Modelling features of object-oriented languages in second order functional lan-
guages with subtypes. In J. W. de Bakker, W.-P. de Roever, and (. Rozenberg, editors, Founda-
tions of Object-Oriented Languages (REX Workshop), volume 489 of Lecture Notes in Computer
Science, pages 311 340. Springer, 1991.

Jean-Yves Girard. [Interprétation fonctionelle et élimination des coupure dans ['arithmetique
d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

Carl A. Gunter and John C. Mitchell. Theoretical Aspects of Object-Oriented Programming,
Types, Semantics, and Language Design. Foundations of Computing Series. MTT Press, 1994.

Martin Hofmann and Benjamin Pierce. A unifying type-theoretic framework for objects. Journal
of Functional Programming, 5(4):593 635, October 1995. Previous versions appeared in the Sym-
posium on Theoretical Aspects of Computer Science, 1994, (pages 251 262) and, under the title
“An Abstract View of Objects and Subtyping (Preliminary Report),”
LFCS technical report ECS-L.FCS-92-226, 1992.

as University of Edinburgh,

John C. Mitchell. Toward a typed foundation for method specialization and inheritance. In
Seventeenth Annual Symposium on Principles of Programming Languages (POPL) (San Fancisco,

CA), pages 109 124. ACM, January 1990. Also in the collection [15].

Benjamin Pierce and Martin Steffen. Higher-order subtyping. Theoretical Computer Science,
176(1,2):235 282, 1997. A shorter version appeared in the Proceedings TFTP Working Conference
on Programming Concepts, Methods and Calculi (p. 511 530), 1994. Also LFCS technical report
ECS-T.FCS-94-280 and Tnterner Bericht TMMD7-01/94, Universitat Erlangen.

Benjamin Pierce and David Turner. Simple type-theoretic foundations for object-oriented pro-
gramming. Journal of Functional Programming, 4(2):207 247, April 1994. A preliminary version
appeared in Principles of Programming Languages, 1993, and as University of Edinburgh techni-
cal report ECS-LFCS-92-225, under the title “Object-Oriented Programming Without Recursive
Types”.

Benjamin C. Pierce. Bounded quantification is undecidable. TInformation and Computation,
112(1):131 165, July 1994. Also in Carl A. Gunter and John C. Mitchell, editors, Theoretical
Aspects of Object-Oriented Programming: Types, Semantics, and Language Design (MTT Press,
1994). A preliminary version appeared in POPT, ’92.

Benjamin C. Pierce. Bounded quantification with bottom. Technical Report CSCT TR, #492,
Indiana University, November 1997.

10

[22] Benjamin C. Pierce and David N. Turner. Local type argument synthesis with bounded guantifi-
cation. Technical Report CSCT TR, #495, Indiana University, November 1997.

[23] Benjamin C. Pierce and David N. Turner. Tocal type inference. In Proceedings of POPI ’98.
ACM, 1998. Also as Indiana University Technical Report CSCI TR, #493.

[24] Martin Steffen. Polarized Higher-Order Subtyping. Dissertation, Universitat Erlangen, 1997. To
appear.

11

