Typing Confluence*

Uwe Nestmann'!
INRIA Rocquencourt, France

Martin Steffen®
Christian-Albrechts-Universitit Kiel, Germany

March 14, 1997

Abstract

We investigate confluence properties for concurrent systems of message-passing pro-
cesses, because such properties have proved to be useful for a variety of applications,
ranging from reasoning about concurrent objects to mobile and high-speed telecommu-
nication protocols. Roughly, confluence means that for every two computations starting
from a common system state, it is possible to continue the computations, so to reach a
common state again. In order to prove confluence for a given system, we are required
to demonstrate that for all states reachable by computation from the starting state, the
‘lowing together’ of possible computations is possible.

In this paper, we aim at proving confluence properties for concurrent systems without
having to generate all reachable states. Instead, we use a type system that supports a
static analysis of possible sources of non-confluence. In message-passing systems, con-
fluence is invalidated whenever two processes compete for communication with another
process. We may statically check the occurrence of such situations by reducing them to
the concurrent access on a shared communication port. For the technical development,
we focus on the setting of a polarized m-calculus, where we formalize the notion of port-
uniqueness by means of overlapping-free context-redex decompositions. We then present
a type system for port-uniqueness that, taking advantage of a subject reduction property,
yields a sufficient criterion for guaranteeing confluence.

*This work was started while both authors were staying at the Universitdt Erlangen-Niirnberg, Germany.
The main results and proofs have appeared previously in the first authors PhD thesis [Nes96].

tCorresponding author: INRIA Rocquencourt, Projet PARA, Domaine de Voluceau, Rocquencourt, B.P.
105, F-78153 Le Chesnay Cedex (France). Email: Uve.Nestmann@INRIA.fr

iSupported by an ERCIM fellowship and a grant of the DAAD-program HSPII-AUFE.

$Supported by the DFG, Sonderforschungsbereich 182, project C2.



1 Introduction with historical background

Notions of confluence have been explored in various forms with emphasis on the widely-
investigated field of term rewriting systems for the modeling of sequential computation. With
respect to the modeling of concurrent system behavior by means of labeled transition systems,
much less work has been done as regards confluence. This section deals to a large extent with
the exposition of the latter, with emphasis on computations of mobile processes, in order to
clearly position the goal and the contribution of the current paper.

1.1 Sequential computation: Term rewriting systems

In the context of term rewriting systems like the A-calculus, the investigation of confluence

properties has a long tradition. There, confluence requires that possibly diverging paths of

computation may always be brought together again. In the following, we use arrows — to

denote single computation steps and = to denote sequences of steps. Diagrams as below,
read as follows: ‘For all straight arrows, there are some dotted arrows (such that ... )’

o) A term @ is called (locally) confluent if any two derivatives @

and @) that are reachable by different rewriting steps, can be

/ \ rewritten to the same term Q' again by possibly employing many

0, /Q2 more rewriting steps. Confluence is often explained by using com-

: : pletion diagrams of the depicted form where the upper half—the

EN span—represents two diverging rewrite steps leading from @ to Q¢

Q' and @2, and the lower half—the completion—represents the ad-

ditional rewriting steps that enable us to finally reach the same

term Q. The main contribution of confluence is that it implies that the so-called normal

forms—terms that exhibit no more reductions—are unique, if they exist. For systems that

model the (sequential) computation of values, like in functional programming, this fact is

useful, since it often allows an implementation to choose any of the possible execution paths.

1.2 Concurrent computation: Labeled transition systems

The semantics of concurrent systems is often modeled by means of labeled transition systems
(LTS), where the transitions are carrying labels p for denoting their visible effect, and the
label 7 indicates an invisible (internal) action. We will often use the standard relations:

_ Iz .
def 7 * i def | — fpFT A_def @
T . . —_— = = — =
—uid ifpu=r1

LTS are, in general, assigned via a structural operational semantics to the syntactic descrip-
tions of process behavior as terms that are generated from a process algebra; we call derivative
of term P a state that is reachable from P be a sequence of transitions. Terms model possibly
infinite reactive systems, so there is not always a primary interest in reducing a process term to
some state, where computation stops. Nevertheless, the knowledge about certain confluence
properties of process systems may be of help in particular for verification purposes.

Due to the use of labeled transition systems, we have to deal with labeled confluence
diagrams like the ones shown in Figures 1 and 2, which we sketch briefly below. Note that,
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Figure 1: Confluence & la [Mil89]

since processes are rather equivalence classes (denoted in the figures by the equivalence re-
lations < and &) of terms than terms themselves, the completion of confluence diagrams is
often required only up to those equivalences.

Determinacy

In essence, determinacy means that any future system state is completely defined (up to some
notion of equivalence, like weak bisimulation &) by the computation trace that leads to it.
According to Tofts [Tof91], determinacy in concurrent programming is like side-effect-freedom
in functional programming.

Milner tried to find a definition of determinacy that is preserved by his favorite equivalence
relation, weak bisimulation, and that is furthermore preserved by CCS operators [Mil89]. By
that, systems would satisfy ‘good’ properties for predicting their behavior by construction.
The definition, from which Milner started, reads as: a system P is determinate if all deriva-
tives Q that are reachable after a given trace, are wekly bisimilar. However, this definition
specifies a property that is not preserved under parallel composition, if the parallel compo-
nents would have shared access to channel names (as e.g. in a~ |a™ denoting a sender on a
and a receiver on ¢ in parallel, which has two =--derivatives that are not bisimilar).

Milner strengthened the definition to confluence: a system P is weakly confluent if each
of its derivatives Q) satisfies the A- and {-diagram in Figure 1 (the shape of the spans is just
convenient for proof purposes), such that the resulting property implies determinacy and is at
least preserved under confluent composition. The latter is defined by requiring that channel
names in parallel components are either disjoint (so no communication can occur on those
names between the components), or the scope of shared channel names has to be immediately
closed after putting the parallel composition together (so no intervening communication of a
third party is possible).

Inertness

In [GS96], Groote and Sellink argue that the main use of confluence properties is the fact
that it implies 7-inertness. A process P is 7-inert (or 7-stable in Tofts [Tof91]), if it satisfies:

IfP 5 Q, then P~ Q.

It has also been shown by Milner that his notions of confluence imply 7-inertness. Note the
similarity to sequential computation, where reduction does not change the value of a term;
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Figure 2: Confluence & la [GS96]

here, (internal) reduction does not change a term’s behavior. This knowledge can be very
useful for process verification since it allows to sometimes drastically reduce the state space
by performing as many internal reductions as possible without changing the equivalence class
of the process under investigation (see some examples in [GS96]).

With this motivation, the authors presented and investigated a couple of semantic notions
of confluence, different from Milner’s, in the context of arbitrary labeled transition systems
with a distinguished label 7 for internal actions; here, we only sketch two of them. No
term language like CCS is assumed to denote the states of the transition system. According
to [GS96], a transition system is weak <-confluent, if each of its states @) satisfies the diagram
on the left in Figure 2, where the span is always given as a pair of different (strong) transitions,
at least one of which is internal. On the other hand, strong confluence was defined by means
of the diagram on the right in Figure 2, where the confluent closure of the diagram is here
required after just one step and up to identity.

The main result of [GS96] is a characterization for 7-inert transition systems in terms of
confluence, e.g. weak <-confluence coincides with 7-inertness under the condition of well-foun-
dedness with respect to 7-steps. We do not recapitulate that particular result, but we simply
state that the above-mentioned notion of strong confluence at least implies 7-inertness, even
in non-7-well-founded transition systems.

Permutation

Sometimes, it is advantageous to know, whether two actions of some process that are enabled
at the same time interfere, or not. If they do not interfere, then the two actions can be
performed in either order. That information may be used to define an equivalence notion on
computations that are represented by traces. Thus, equivalence classes of computations that
are constructed as the quotient with respect to all possible permutations of actions can be
regarded as abstract computations in the terminology of non-interleaving semantics [Mon93].

Two different transitions P ——s P, and P LI P, of some process are called concurrently
enabled. In simple value-passing process systems, two concurrently enabled transitions are
usually concurrent (or: independent), if they do not compete for a shared communication
partner. Imagine a~.Py | b~.P, in constrast to a™.P; | a™.P,, when put in parallel with a™*. P,
where the dot denotes sequential composition of an action with a process: in the first pair,
the sender on a will not be disturbed, while the second pair will behave nondeterministically
due to their competition for the receiver on a without possibly ever reaching a common state
again. For languages like CCS [Mil89], in the absence of choice operators, this is the only
source of non-confluence [BC88, Pri96).



The approach of proved transitions P i> P’ as introduced in [BC88], represents a more
explicit formulation of this idea. There, the whole inference proof for an action is coded within
its label @ representing a proof term that provides maximal information about the transition.
For any two concurrently enabled 6;-labeled proved transitions, their

concurrency can be checked by analyzing the structure of the proof o, P 62
terms 6;, which we do not report here. Any pair of concurrent / \
transitions gives rise to the rather strong confluence diagram for P P,
some term P’, which is referred to as diamond. The notation 61 /6, B e
indicates that the proof term for deriving 6, after 6> has occurred 92/01."""'--.1 "'""'”.01/92
may be different from deriving 0 as the first action. (In CCS, P’ is p!

uniquely determined, and if P does not contain a choice operator,
then 0;/6; = 0;.) This definition of confluence takes a somewhat local point of view (cf local
confluence systems) in that it addresses particular instances of concurrent transition pairs.

1.3 Mobile computation: Name-passing processes

In contrast to CCS, which can be considered as a merely signal-passing process calculus,
value-passing process calculi allow for the exchange of data in interactions. If data items
are channel names, then the calculi are usually called name-passing process calculi. The
prototypical such calculus is the m-calculus [MPW92]. Note that, via name-passing, processes
can dynamically change their interaction structure. We use the terms name and channel as
synonyms because of their use as both data and carrier.

We use restriction (vz) P to restrict the scope of a name z to process P, composition
Py | P, to denote the parallel composition of P; and Py, output y~(z).P to denote the emission
of name z along channel y before behaving as P, input y*(z).P to denote the reception of
a name along channel y and binding it to = in process P, and guarded replication !w.P to
denote many copies of process w.P in parallel, where n.P denotes either an output or an
input. In y~(2) and y™ (z), y is called subject, while z and z are called object.

The theory of name-passing calculi is, in general, more complicated compared to other
value-passing caluli, since the scope of channel names may be extended by passing bound
names as data to other processes that were previously outside the name’s scope. Milner’s
notions of confluence have been generalized and adapted to name-passing calculi by Liu and
Walker [LW95]. Below, we discuss two issues strongly related to the confluence of name-
passing systems that were the basis for our own investigation.

Uniqueness

In order to characterize ‘friendly’ name-passing system with ‘good’ properties, Milner for-
mulated syntactic naming invariants in process communities that were based on the idea of
unique access to channels [Mil93]. In particular, he defined the notions of (unique) bearing
and handling of names. We rephrase them as follows:

e P bears x, if x occurs free in P as positive subject
e P can handle x, if z occurs free in P as negative subject

(of an unguarded prefix). Consider a system of components P; and R;, constructed by
S=wz)(P| - |Pn|'Ri|-|'Rn).
Then, S is friendly, if fn(S) = 0 and no P; or R; contains a composition or replication.

5



A name z is uniquely borne in a friendly S, if:

1. At most one component bears zx.
2. If Rj = m;.Q)j, then Q); does not bear x.
3. If S contains the input prefix y(z).Q, then @ does not bear z.

A name z is uniquely handled in a friendly S, if:

4. At most one component can handle z.
5. No R; can handle z.
6. If S contains the output prefix y~(z).Q, then @ does not contain z free.

Although the above is an interesting starting point for thinking about invariants in process
communities—note that both uniqueness properties, bearing and handling, are preserved
under reduction—the characterization are applicable only for process systems of a restricted
shape. For example, condition 6 forbids a process after passing a port to use its complement
later on. Furthermore, condition 3 excludes that the bearing of a name can be acquired.
Nevertheless, the characterization was sufficient for improving the reasoning about sharing,
determinacy, and confluence in object-oriented concurrent systems [PW95], and also about
resource management in a telecommunication protocol for high-speed networks [Ora94].

Types

Instead of syntactically constrained operators for the construction of process systems, it is also
possible to use standard operators and afterwards statically check, whether the constructed
system is of a certain type. Type systems for process languages have been recently introduced
and investigated to some extent, with emphasis on name-passing process calculi. The standard
aim has usually been to prevent run-time errors that can result from using channels in an
unintended or incorrect way. This line of work has been carried out for channels with

e recursive sorts [Mil93] that control the type/number of transmittable values,
e polarities [PS96] that control how a channel may be used (cf Section 7),
e modes [KPT96] that control how often a channel may be used.

Especially the last category of typing systems is of interest for studying confluence issues since
it has been shown that linear channels [KPT96], i.e. channels that can be used at most once
throughout their lifetime, give rise to ‘partial’ confluence properties: a possible communication
on a linear channel can never interfere with any other currently possible communication, so
the two can be performed in either order. However, these results have only been investigated
for internal reductions. No hint is given as to accomplish labeled transitions, and the relation
to Milner’s notion of ‘unique handles’ and ‘unique nearing’ or notions of (labeled) confluence
has only been explained quite informally.

Finally, it is worth mentioning the join-calculus [FG96] as the syntactic predecessor of
[Ama97, Kob97, San96b] that incorporate the idea of unique (and sometimes persistent)
receivers, which substantiallu facilitates distributed implementation, as a central language
design principle. Also, with unique persistent receivers, simple partial confluence properties
for reductions hold, since an always available (uniformly receptive [San96b]) receiver is ready
to communicate with any pending message in either order.



2 Goal and overview of this paper

Instead of verifying confluence properties of processes by reasoning about all their (possibly
infinite) derivatives, our primary goal is a typing approach, which allows the static checking
of confluence properties without generating all derivatives. Our approach may be seen as a
complement to previous typing approaches, where confluence properties have appeared as a
side result of well-typedness.

We introduce polarized name-passing (§3) and a formalization of unique access in terms of
process decomposition (§4). We provide a typing system, which satisfies a labeled subject re-
duction property, for guaranteeing unique access to channel names in polarized name-passing
processes (§5). Labeled subject reduction is the key in the proof that labeled diamond conflu-
ence holds for arbitrary derivatives of well-typed processes (§6). We compare our approach
to others based on the notion of (sub)typing on names and on typed observations (§7), before
we end with some concluding remarks (§8).

3 Technical Preliminaries

In CCS, as in most process calculi with channel-based communication, each use of a name in
subject position of an action is marked syntactically with some polarity in order to indicate
in which direction the channel is used. In name-passing calculi like the w-calculus, names
may also occur in object position; there, they names do not come a priori with a particular
syntactic polarity. Usually, this is intended and does not cause any harm. For example, in

Yy (w) [y (z).a(2)

it is not visible for the sender on y which port of w is going to be needed on the other side,
maybe even both. The receiver on y just inputs (some capabilities of) a name that it formally
calls z, and in the example at least uses the output port of z to send the capabilities for z to
some other process.

However, if we want to control the unique access to ports, we are required to explicitly
keep track of their mobility within process systems caused by name-passing. In that case, we
had better use a polarized setting, where the polarity of object names is sufficiently explicit.

3.1 Polarized name-passing

This section introduces a monadic polarized m-calculus, similar to the one in [Ode95], but
with synchronous output and without matching. Polarized name-passing is made explicit
by syntactically decorating all objects of actions, including the non-binding occurrences in
outputs, with syntactic polarity tags 4+ for input and — for output.! Within this approach,
each time a name z is generated, its two unidirectional halves z* and 2~ are generated. Note
that there is no neutral polarity + and no notion of channel type as known from the m-calculus
with subtyping [PS96]; the relation to the latter is explained in more detail in Section 7. So, in
this purely syntactically polarized w-calculus, it is no longer possible to transmit both halves of
a name within one single communication. It was argued in [Ode95] that this is not a serious
defect of the calculus since it can always be achieved by two subsequent communications;

'We use a different syntax, compared to [Ode95], which also allows to avoid the distinction of the three
syntactic categories of names, variables and constants, in favor of names and ports.



moreover, in a polyadic calculus, one could pass both polarities at once and read them from
different positions in an input variable tuple.

Definition 1 (Names, ports, and processes). In addition to the standard calculus with
two kinds of basic entities, i.e. ‘names’ and ‘processes’, we explicitly introduce ‘ports’ as a
third kind of entity that is derived from names.

Let z,... ,z range over some infinite set of names N. Let the set of ports N* be defined
as ‘polarized names’: names that carry one of the polarities — and +. Polarities are com-
plementary, as expressed by the involution operation on ports with x— =zt and =+ := z~.

When using ports in process expressions, we let x range as a metavariable over {+,—}.
Let P denote the set of processes generated by the grammar:

P =10 | (wo)P | yT(@a).P | y (zP | P|P | ly"(a").P

Let F denote the subset of finite, i.e. replication-free polarized processes. Let fn(P) and bn(P)
be defined in the ususal way indicating of P its the free and bound occurrences of names. It is
straightforward to generalize the usual definition of free names in processes of P to free ports
of processes in P by taking into account that output object occurrences indicate that the sender
is (or: was), in principle, capable to access this port:

def

)
(@).P) = {yt}u(fp(P)\ (e, 27}
foy (z*).P) € {y.z*}Ufp(P)
(PiP) € fp(Py) U fp(P2)
) fo(P) \ {a*,27}
fp(1P) < fp(P)

defines the set of free ports of processes in P.

def

Note that in the input case of the definition of fp(y™* (z*).P), we have to remove both z-ports
because the binding addresses the name x, thus both polarities.

Labeled transition semantics

The operational semantics for processes with polarized name-passing is given as the smallest
labeled transition relation generated by the rules in Table 1, where labels p are of the form

T oyt | oy | oy ()

for denoting internal transitions, inputs, outputs, and bound outputs. Substitution P{?*/,} de-
notes P with all free occurrences of z replaced by z, silently assuming that bound names have
been a-converted, if necessary, in order to avoid name-clashes. This definition is according
with standard descriptions for late instantiation [San96a], except for the case of communica-
tion, as in rules COM and CLOSE, where the object names z and z are required to be tagged
with the same polarity x. Rule ALPHA makes explicit, where a-conversions are necessary in
the derivation of transitions.

Since we are using a synchronous w-calculus (without matching), we use a standard defi-
nition of bisimulation.? Here, we introduce the weak variant of ground bisimulation [San96a].

*The main contribution of [0de95] was the definition and application of a non-standard equivalence, called
polarized bisimulation. Due to a smaller class of observers, based on a restricted notion of matching, it is a
coarser notion than asynchronous bisimulation [HY95].



Definition 2. A binary relation R on processes P is called weak bisimulation, if

o (P,Q) € R and P 5 P' with bn(p) & f(P|Q) implies
that there is Q == Q' such that (P',Q') € R,

and vice versa. Two processes P,Q are called weakly bisimilar, if there is a weak bisimula-
tion R with (P,Q) € R. Let = denote the largest weak bisimulation.

It is well-known that ground bisimulations are, in general, not preserved under name-substi-
tutions. However, we use bisimulation for only one example in this paper, where a particular
bisimulation relation is preserved. Hence, we omit further technical material on bisimulations
in name-passing process calculi; it can be found elsewhere (cf [Pri96, San96a]).

Acr: P 5P
REP: 'mP 5 P | !7.P
p y(2%) p! .
OPEN: — ify # 2
Yy~ (vz*) p
(vz)P ——— P
y(z*) yt(=*)
P —— P P, —— P,
COM; : _
P | P — PP}
p ¥, b p, Y@ b
CLOSE;: ! il 2 2 if z & fn(P)
PP — (vz2) (P P{})
P 5P
PAR;: L if bn(p) N f(Py) = 0
P, | P, — Pll ‘ Py
m
P — P
RES: ifx & n(p
(vz) P 5 (vz) P! (k)
m
P — P
ALPHA: ————  if P =, Q
Q — P
*: and the evident symmetric rules for parallel composition

Table 1: Operational semantics for P



3.2 Process structure

Certain laws on process terms, like the ones denoted by the symbol = in Table 2, have been
recognized as having merely structural content [MS92, HY95]; they are valid with respect to all
different kinds of behavioral congruences, equivalences and preorders, including bisimulation.
The upper set of laws in Table 2 allow us to rearrange the components of a term such that a
syntactically distributed T-redex, i.e. a 7-redex with sender and receiver not being syntactic
neighbors within some parallel composition, may always be brought together—by structural
transformation—to form a local T-redex. The lower set of laws in Table 2, i.e. the elimination
of scope restrictions, and garbage collection of inaccessible guards are also often considered
as structural laws, but are not needed for the purposes of this paper.

Eliminating name-clashes

In order to syntactically avoid name-clashes, we may require names that are introduced by
restriction subterms, also the bound names of input prefix subterms are pairwise distinct
among each other and with all other names occurring in the process.

Definition 3 (a-freeness). A process P is called a-free, if all of its subterms of the form
(vz) Q and y*(2*).Q use pairwise distinct names z and, furthermore, fn(P) N bn(P) = {).

The operational semantics includes the rule ALPHA dealing with the necessary a-conversion of
names that occur bound in transition labels and might cause capture when using the derivative
in some parallel context. The following fact records some cases, where a-conversion may be

avoided. We write P L>¢ P’ if the derivation does not involve rule ALPHA.
Fact 4. Let P € P.
e There is an a-free process P with P =a p.
e If P is a-free and P LW P', then P' is a-free.
o If P X5 P!, then there is P with P =, P L>¢ P
Accordingly, we may disregard the use of ALPHA-rules in the derivation of transitions since

there is always some a-congruent process term that allows to derive the transition without an
application of ALPHA. Instead of always silently assuming that suitable a-conversions have

[ Qa-conversion P = Q if P=4,0Q

associativity P|(QR) = (P|IQ)|R
commutativity PlQ = Q|P
restriction (vy)(vz) P = (vz)(vy) P
scope extrusion (vy) P1Q = (vy)(P|Q) if y¢& Mm(Q)
scope elimination vz)Q = Q if x¢ Q)
garbage collection (vy)y (z*).P = 0

(vy)y*(z*).P = 0

Table 2: Structural laws
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been performed, as often done in the literature, we indicate explicitly whether we make use
of it. However, we assume that transitions of a-free processes are derived without ALPHA.

Process contexts

We introduce the notion of context as a means of structurally decomposing process terms
into subterms and surrounding terms, where the positions of the former in the latter are
often called holes. We do not admit every operator of the process language to be applied to
the inner subterm, but only restriction and parallel composition. Unary process contexts are
processes with ezactly one hole, written [-], where a process may be plugged in.

Definition 5 (Process contexts). Let P € P. Unary process contexts are generated by:
Cll == [] | PIC[] | CLIP | (va)C[]
Let C[-,+], C[-,+,], and C[-,+,+,-] be typical contexts with exactly 2, 3, or 4, holes.

Note that the paths from the root of a context to some hole only traverse restriction and
composition. Multiple-hole contexts have also been used in [Pri96] to denote the positions
of redexes inside process terms. Here, we implicitly assume that the holes are distinguished
according to their position as parameter. We could also use metavariables that each occur
ecactly once in the defined context expression. A more formal definition is omitted in favor
of simplicity in the presentation.

Whereas bound names in processes are not essential and can be arbitrarily renamed as
long as capture is avoided, the situation is different with contexts: hole-binding restrictions
shall not be renamed since otherwise the insertion of a process that contains free names
matching the restrictions for the hole might result in completely different processes.

Definition 6 (Free and hole-binding names). Let C[-] € C") be a unary context. Then
the functions fn(C[-]) and hn(C[-]), as defined by

f([]) = 0 () € 0
f(CIIP) = f(CL)UM(P)  hn(CHIP) = hn(C[)
f(PICI]) € f(P)Ufn(C[)  hn(P|C[) € hn(C[)
f((va) C1) < f(CE)\{a}  hn((wa)C[)) = hn(C[) U {a}

denote of a context C|-] its free and hole-binding names, respectively.

As abbreviation, we also write fn(C') and hn(C) for fn(C[:]) and hn(C]:]). As a generalization
to multi-hole contexts, let hn;(C) denote the hole-binding names of C' concerning its i-th hole,
silently assuming that we apply the function only for contexts with enough holes.

Decomposition

We may precisely reconstruct aspects of the structure of a process from its transitions: each
inference tree induces a decomposition of the process into the redex that generates the tran-
sition, and its context. By writing “there is P = C' [@]” we always implicitly mean that there
is some context C]-] with appropriate arity and processes Q such that P = C [Q] We call a
context-redex construction a decomposition.

11



Since, in our language P, only guards and replicated guards may give rise to transitions,
it suffices to consider contexts that are constructed from restriction and parallel composition.
For simplicity, we only present the decomposition for transitions of finite processes, i.e. P € F.
However, restriction in the context of bound name-passing is no longer a static operator. Let
us therefore assume that P is a-free in order to deal with derivatives in the case of labels that
carry bound names. Let C]-] be the context of a decomposition of some a-free process with
z € hn(C). Then, C7]-] denotes the context after erasing the restriction operator (note that,
due to a-freeness, there is exactly one) for name z; we omit the straightforward inductive
definition. Let Fy denote the subset of a-free finite processes.

Fact 7 (Decomposition of redexes). Let P € Fy.

+(z
If P & P', then there is P = Cly*(2).Q] with P' = C[Q)].
).

_ Q) with P' = C[Q).

If P y—<z>> P’ then there is P = Cly~(2).Q]

If P M) P', then there is P = Cly~(2).Q] with P' = C7[Q)].
If P =5 P!, then there is P = Cly (2).Q1,y™ (2).Q1]

with P' = C[Q1, Q2{*/x}], if = & hm (C),

and P' = (vz) C7[Q1, Q2{*/x}], otherwise.

Note that y € hn(C) in the case of bound output. In the case of a communication (case 4.)
that is derived by CLOSE (z € hni(C)), the construction with the restriction in outermost
position guarantees that both continuations of the local sender- and receiver-redexes lie within
its scope. For example, if a communication along the channel y can be derived by

Q:=y (2).Q and  C[]:= Q1| (v2)([]]Q2)),

i.e. with z € hn(C), then it does not matter whether the matching receiver is sitting inside Q¢
(with the 7-step derived by CLOSE) or Q2 (with the 7-step derived by COM), since by moving
the restriction on z outermost we get the derivation

P:=ClQl = (v2)(C7[Q]) — (v2)(Q1(Q]Qy))

which captures both cases adequately, where the continuation of the receiver is either Q'
(where a scope-extrusion for z is necessary) or @ (where the scope of z may remain as it is).
If we wanted to generalize the decomposition to infinite processes P € Py, we would have
to include additional clauses like the following as a replacement of the above case 1.
yr(z) .
1. If P ——— P’, then either
(a) there is P = C[y*(z).Q] and P' = C[Q)], or
(b) there is P = C[ly™ (z).Q] and P' = C[Q | 'y (z).Q].

e v o=

For the communication case, we would get three subcases, determined by either none, one,
or both of the redexes being replicated. So, the generalization to infinite processes is not
substantially different from the finite case, but would unnecessarily complicate the notation.
Within the approach of proved transitions (cf Introduction), it is quite simple to precisely
denote the subterm of P from which the transition is generated by reading the proof term 6
as the path from the root node of the process tree (according to its algebraic structure)
to the (local) redex(es). For our purposes, it will suffice to know about the existence of
decompositions, so we may work with the less verbose standard labeled transitions pu.
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4 No sharing: From port-uniqueness to confluence

In this section, we provide a technique to check diamond confluence for spans of concurrently
enabled transitions, based on the induced decomposition into process contexts and redexes:
If no redexes are shared, then the transitions are concurrent and, hence, can be performed
in either order. The formalization of the notion of concurrent transitions in terms of process
decomposition motivates why it is useful to characterize the absence of sharing by means of
unique access to ports.

Confluence is a semantic property since it is stating the possibility of actions for all
possible derivatives of a process, according to the transitions as generated from its operational
semantics. With [Mil89], the essence of confluence relies on the following intuition: At any
time in the evolution of some process, no occurrence of an action precludes a concurrently
enabled action. So, mainly, confluence addresses the question whether two ‘concurrently
enabled’ transitions are ‘concurrent’ or whether they interfere.

Shared ports Milner’s confluence-preserving operators represent a constructive attempt
to ensure that concurrently enabled transitions can never interfere. Confluent composition
P |; Q := (vz)( P|Q) prevents pre-emption by governing its components’ ports at the interface
to their respective environment: it forbids

1. the shared use of the same port (expressed in fp(P) N fp(Q) = ), and

2. the unrestricted use of complementary ports (expressed in fp(P) N fp(Q) C {z}).

The first condition can be interpreted as requiring the invariant of ‘port-uniqueness’: At any
time in the evolution of some process, each of its ports may be accessed by at most one enabled
action. This invariant only guarantees to exclude mutual pre-emption of internal actions of
a process; it does not take the processes’ environment into account. The latter is fulfilled by
the second condition on confluent composition; it imposes the additional structural constraint
that complementary access to ports must be restricted, i.e. not visible to the outside, so it
prevents from mutual pre-emption among visible and internal actions.

Shared redexes The idea is to use decompositions of processes into redex(es) and (multiple-
hole) context as an intermediate vehicle between the characterization of port-uniqueness
and the proof of confluence properties for spans of concurrently enable transitions. So, the
roadmap for this section is the following: (1) characterize the possible decompositions of a
process according to each of its possible pairs of concurrently enabled transitions; (2) iden-
tify the cases, where no redexes of the involved transitions are shared; (3) prove that in
those cases diamond confluence holds. The formalization of port-uniqueness on top of process
decompositions is deferred to the next section (cf Lemmas 18 and 21).

Depending on the kind of transitions—visible or internal—and by interpreting the dis-
tributed redex of internal transitions as a pair of local redexes, the necessary contexts have 2,
3, or 4 holes. Two different visible transitions cannot share a common redex; if at least one
internal transition is involved, then sharing might occur. Furthermore, for visible transitions,
we always know that its channel name is not captured by any hole-binding restriction. In the
(polarized) m-calculus, a subtlety arises in the cases of scope extrusion, resulting in bound
outputs via OPEN and 7-steps via CLOSE. In both cases, the derivative involves, according
to Fact 7, that the context is manipulated to take the extrusion into account, whereas in the
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latter the context has to be closed again for both parties of the communication. As in Fact 7,
we only denote the 7-derivatives up to structural transformation (=).

Fact 8 (Decomposition of spans). Let P € Fy.

1. If P for puy # T # pa, then there is

(a) P = C[ﬂ'l.Ql,ﬂ'Q.QQ]
with chan(u;) = chan(m;) & hn;(C) for i € {1,2},
P = Ci[Ql ,m2.Q2], if 1 =y (2) and z € hny(C)
P, = C[Q1,m3.Qq], otherwise, and
Py = C7[r1.Q1,Qo], if 1y = y~(2) and z € hny(C)
Py, = C[m1.Q1,Q2], otherwise.

2. If P for u # T, then there is either of:
N
I Py

(a) P=Clr.Q1,y (2).Q2,y"(z).Q3]
for some z,y,z € N with chan(u) = chan(w) & hny(C),
P, = C"[Q1,y (2).Qa,yT (2).Q3], if 7 = y1~(b) and b € hny(C),
P = C[Ql ay_<z>'Q2ay+ (ZE)Q3]7 otherwise, and
P2 = C[F-Ql 7Q27Q3{Z/x}]7 ’LfZ € th(C)ﬁ
Py, = (v2) C7[1.Q1,Q2,Q3{%*/x}], otherwise.

(b)) P=Cly (2).Q1,y"(2).Q]
for some z,y,z € N with chan(u) =y & hni (C) U hny(C),
Py = C[Ql ,y+($)-Q2], and
Py = ClQ1,Q2{%/x}], if 2 € hna(C),
Py = (v2) O7[Q1 Q2 (o}, otherwise.

(c) P=Cly=(2).Q1,y" (2).Q2]
for some z,y,z € N with chan(u) =y & hni(C) U hny(C),
P, =Cly=(2).Q1,Q2], and
Py = ClQ1,Q2{%/x}], if 2 & hna(C),
Py = (v2) O7[Q1 Q2 (o}, otherwise.

If P , then there is either of:
Py # Py

(a) P =Cla™(24).Q1,0" (24).Qa,b™ (2).Q3,b" (23).Qu]
for some a,b, x;,2z; € N,
P = C[Q1,Q2{%/u, } b~ (2).Q3,bT (x).Qu], if za & hn1(C)
Py = (v2,) C%[Q1,Qo{% /i, } , b (2).Q3, b7 (24).Q4], otherwise, and
P2 = C[a’_<za>'Q1 7a+($a)'Q2 7Q3aQ4{Zb/fEb}]7 /Lf Zp g hnl(C)
Py = (vzp) C%[a™ (24).Q1,0" (74).Q2, Q3 ,Qa{*/x, }], otherwise.

3.
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(b) P=Cla(21).Q1,a™ (22).Q2,a™ (x).Q3]
for some a,x,z; € N,
Py =C[Q1,a (22).Q2,Q3{*'/z }], if 21 & hm (C),
P = (v21) C*1[Q1,a7 (22).Q2,Q3{* /s }], otherwise, and
Py = Cla™(21).Q1,Q2,Q3{*'/x }], if 22 & hna(C)
Py = (v22) C%la=(21).Q1,Q2,Q3{*'/:}], otherwise.
(c) P =Cla*(@).Qr.a* (2) Q.- (2).Qs]
for some a,x;,z € N.
Py = ClQi{*), } 0™ (22).Q2,Q3], if z & hnz(C)
P, = (v2) C7[Q1{%/s,} ,aT (22).Q2,Q3], otherwise, and
P2 = C[a+(x1).Q1 7Q2{Z/x2}7Q3]’ ’LfZ g hn3(C)
Py, = (v2) C7la™ (21).Q1,Q2{%/s, },Q3], otherwise.

Note that in case l.a p1 = puo and chan(uy) = chan(us) is possible. Similarly, in case 2.a
chan(p) = a and in case 3.a a = b are possible. The cases 2.b, 3.b, and 3.c, respectively, rep-
resent overlapping redexes, i.e. sharing; the a-cases indicate ‘concurrency’ of the transitions.

Definition 9 (Overlap and concurrency). Let P € Fy. Any span decomposition of P
matching one of the a-cases of Fact 8 is called overlapping-free. Two transitions are concur-
rent, if their span induces an overlapping-free decomposition.

Concurrent transitions, as defined above, are precisely characterized by the fact that they
do not share (local) redexes, which could be either send- or receive-guards. (Remember that
the cases for replicated guards only increase the number of cases without requiring different
analysis.) Therefore, concurrent transitions should be executable in either order, which we
state as property of closing ‘diamonds’. Sometimes, it is necessary to adjust the second of
two subsequent labeled transitions; as in the Introduction, we record this fact by the notation
pa/p for the case where g is performed after the concurrently enabled pq.

Definition 10 ({-Confluence). Let P € Fy. If P 2 p

P
and P -2 P, are concurrently enabled transitions with o 12
Py # P, and the diagram to the right can be closed for some .
process P' (up to structural congruence =), then the transition P ) ) Py
pair is called {$-confluent. A process P is called {-confluent,
if for all of its derivatives Q all of QQ’s concurrently enabled p2/pr "y e
pairs of transitions are <{-confluent. Pl =P,

In the (polarized) m-calculus, if two concurrently enabled bound outputs carry the same
object, then, when performing both one after another, the second output will be performed
as a free output (object precedence in [Pri96]). Therefore, let y1 (vz) /ya (vz) = y1 (2),
and py / po = p1, otherwise. This is the only case for a-free processes, where two concurrently
enabled actions may influence each others occurrence without disabling each other.

Lemma 11 (Diamond). Let P € Fy. If P s Py oand P 25 Py are concurrent transi-
tions, then they are {-confluent.

Proof. By subsequently performing the transitions (which is possible since they are concur-
rent) and passing them through the context C[-] by applying PAR and RES along the (static)
operators of C[-], according to the case analysis along the decomposition lemma 8. U
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5 Typing port-uniqueness

We introduce a static typing system for process terms that guarantees unique access of the
process to its ports. As main result, we prove subject reduction and precise decompositions
with respect to port-uniqueness, which allow us to derive a strong diamond lemma that is
valid for all concurrently enabled transitions of all derivatives of well-typed processes.

Our type system allows us to derive judgements of the form A - P where A is a typing
context and P € IP is a processq, Typing contexts are simply represented as set of ports.

Definition 12 (Typing contexts). A typing context A is a set of ports; we use the usual
set operations €,C,U,N, \, and @, O, as operations on contexts.

Regarding contezxts as functions A : N — 20t} from names to sets of polarities, we also
use the notation A(y) for denoting the polarities which are associated with name y in context
A, eg Alz) ={-} & (z= € ANzt & A). Furthermore, let dom(A) denote the set of
names that occur polarized in A, i.e. dom(A) = {x € N | A(z) # 0}.

The intuition of typing judgements A P is twofold: (1) process P is currently allowed to
access only the ports in A, and (2) it accesses these ports uniquely. Subject reduction then
provides a mechanism to inherit that property onto P’s derivatives.

The inference system for judgements is given by the rules in Table 3. U-NIL behaves well
in all contexts since it does not access any port at all. U-PAR is in direct analogy to confluent

p
U-NIL: ———— if A C N*
AFO
Ay H P Ay F P
U-PAR: ! ! 2 2 if AyN Ay =10
A d Ay F PP,
A * = P
U-OUT: oz ify” € Aand z2* € A
A F y (z6).P
A * = P
U-INP: O ify©™ € A and © & dom(A)
A+ oyt (z*).P
{z*} - P
U-REP:
{y"} F tyT(@").P
A Ty Y P
U-RES: ERUASYA if y & dom(A)
A+ (vy) P
AF P , _
U-ALPHA: ——— if P=4 P
AF P

Table 3: Typing rules: Port-uniqueness in F

16



composition: components in a parallel composition have to use disjoint sets of ports. In both
U-INP and U-OUT the channel y has to be allowed by A with the required polarity, U-INP
indicates that the continuation of an input prefix has acquired an additional capability, and
U-OUT remembers that the continuation of an output prefix has lost some capability—this
is necessary in name-passing settings, since it ensures that the sender’s continuation of some
port will no longer be allowed to use that port itself. Sending a port has to be forgetful for the
sender. U-REP is the most complicated rule: because replication is like parallel composition,
processes may only have one free name—the one on which they listen—and must forget
it after having used it in order to maintain the invariant of port-uniqueness; this initial
name can of course be used for receiving further names for interacting wiht its environment.
U-RES introduces two complementary halves of a name upon restriction, while checking that
the generated name is fresh. U-ALPHA allows to rename bound names in order to adjust
processes to match the side-condition of rules U-RES and U-INP. Note that the rules U-OUT
and U-INP are strictly more generous than the conditions on unique handling and bearing of
a name [Mil93] with respect to the two conditions that we mentioned in the Introduction.

Lemma 13 (Basic properties of typing). Let A+ P. Then:

fn(P) C dom(A).

If z* € N*\ A, then A @ x* + P.

If 2* € A with x* & fp(P), then A © x* - P.
If r € N, then A\ {z", 2z} - (vz) P.

If P M) or P M), then y~ € A.
+ (g
If P M, then y* € A.

IfP=DP, then A+ P.

I N

Proof. Straightforward by induction. O

Note that Ay @ Ay - Py|Py with AjNAy = () does not imply that also dom(A;)Ndom(As) = (.
This is necessary, if we do not want to forbid any communication between parallel components.

It is important to state precisely, whether a substitution o preserves a typing judgement

A F P, i.e. whether A - P implies Ao - Po. Let name-substitutions o be extended to

x*)o = xo"' an o = o | T € . Problematic substitutions are those whic
* def u d A def * * A Probl . bsti . h hich

destroy the uniqueness information about ports, i.e. those which collapse formerly different
ports. So, in order to be compatible with a typing judgement using A, we require that a
substitution ¢ be injective with respect to that A.

Definition 14 (Compatible substitutions). A substitution o is called A-injective (or: A-
compatible), if zo = yo implies either x =y, or x #y and A(z) N A(y) = 0.

In order to prove that o is A-injective, check for all z # y with zo = yo that A(z)NA(y) = 0.
For example, if A = {y~,y*}, then every substitution o is A-injective. If A = {y ",z }, then
both {¥/;} and {¥/,} are not A-injective.

Lemma 15. If AF P and o is A-injective, then Ao - Po.
Proof. By checking that each of the typing rules is either directly preserved by A-injective

substitutions, or can be adjusted by means of U-ALPHA to rename some bound names. U
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5.1 Context transitions

A context transition A — A, as defined by the rules in Table 4 reminiscent of the side-
conditions of the rules U-INP and U-OUT, specifies of a process constrained by the context A
that it is allowed to engage in the action u, and that its continuation process will be con-
strained by A’. This intuition should be immediately clear for the first three rules. But, also
for C-BOUT, it is straightforward since bound output means that two halves of the newly cre-
ated name are generated, and exactly one of them is given away, i.e. the continuation context
A" = A @ z* is in fact the result of (A @ {z1,27}) © 2*.

Lemma 16. Let A -5 A’

1. (a)

AN =W
A @ 2>

If =y (2%), theny~ € A and A’

(b)
(c)
(d)
2. (a)
(b)
(c)

If u =y (vz*), theny~ € A and A’
If u=y*(z*), then yt € A and A = A @ z*.

If w =7, then A' = A.

If 25 € N*\ A, then A ®z* -5 A @ z*.

If x* € A with © & n(u), then A & z* ENNE=Y
If 2 & n(p), then A\ {z+, 27} 25 A\ {zF, 2 ).

The first set of propositions in this lemma describe the backwards-generation of side-conditions
from the existence of a context transition. The second set records weakening and two versions
of strengthening for context transitions. All propositions follow directly from the definition.

We show that typability A F P is preserved under transition P Ny However, the
context for well-typedness changes under visible transitions from A to some A’. Similar to
the side conditions in the definition of bisimulation in the context of name-passing, we assume
that bound names in a label are ‘sound’ with respect to the context A that constrains the
actions of process P via typability. This is necessary for the proof, but is not critical for the
proposition itself since we can always rename bound names in transitions in order to match
the required side conditions.

C-TAU: ————
A — A
yt e A x & dom(A)
C-INP: vt () R
A Adx
y €A 2 eA
C-OUT.‘ y—<z*>
A —"S Aoz
CBOUT: y~ €A z & dom(A)
AT A

Table 4: Context transitions
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Lemma 17 (Subject reduction). Let P € P and A C N*.
IfAFP 25 P owith bn(p) N dom(A) = 0, then A L5y A" P! for some A C N*.

Proof. By induction on the inference of P £, P and exploiting the last derivation step of
A P in each case. O

In the polarized w-calculus, it is crucial to require that not only the binding object occurrences
of inputs, but also the non-binding object occurrences of outputs are tagged. Otherwise, the
type system would have to ‘guess’ for the derivation of prefixes which of the polarities is
received and sent, respectively. Then, we would no longer be able to prove subject reduction.
For example, P = y (2).z (w) |y*(z).z (w), is typable in some A, if the type system was
allowed to guess the polarities for z in the left component and for = in the right component
independently from each other. However, subject reduction would not hold since P P =
2z~ (w) | 2~ (w) is possible, whereas there is no A’ such that A’ = P’ is derivable. Consequently,
we need to reject such processes P.

We show that typability A F P provides precise structural information about P. Here,
and in the remainder of the paper, we assume that P € [y is a-free, which enables us to
decompose processes due to existing transitions without involving the issue of a-conversion.
Lemma 18 (Port-unique decomposition I). Let A+ P.

I y () +

LIfP ———— Pland yT € A,

then there is P = Cly~ (2*).Q | with P' = C[ Q]
and y & i(C) U hn(C) and z ¢ hn(C).

2. If P M>P’ and y* & A,

then there is P = C[y~(2*).Q ] with P' = C?[ Q]
and y & fn(C) U hn(C) and z & fn(C), but z € hn(C),

3. If P M>P' and y~ € A,
then there is P = C[y*(2*).Q | with P' = C[ Q|
and y & (C) U hn(C) and = & fn(C) U hn(C).
4. IfP = P,
then there is P = C[y (2*).Q1,y™ (z%).Q2 | for some y € N with
P' = (v2) C7] Q1,Q2{%} ], if z € hny (C),
P =C[Q1,Q2{%/x} ], otherwise, and
either y € hn1 (C) N hna(C), or y & n(C) U hni (C) U hny(C).
5. IfP P,
then either P = C| (vy) (y (2*).Q1 |y T (2*).Q2) ],
or P=Cly (2%).Q1|y"(z*).Qa2 ] withy & f(C) U hn(C).

where C[-] and C[-,-] are process contexts.

Proof. By induction on the inference of the transition starting from P and exploiting the
derivation of A - P. O

Note that subject names y do not occur free in C|[]; this expresses uniqueness. However, the
object part of labels also exhibits interesting properties in each case. In particular, note that
in the case of free output the object may still occur free in C[:], the reason being that an
action may always carry at most one (polarized) half of a name. In the case where the object
is bound, it must not occur free in C]-] in order to avoid capture.

19



5.2 Closing up

Now, we interpret the information of the context A that y occurs with both polarities such
that, after restricting P on y, the resulting (vy) P will exhibit certain behavioral properties.
Closing typed processes in their context is completely analogous to the my-calculus.

Definition 19 (Closure). Let A be an arbitrary context. Then, the set of names that occur
in A with both polarities, defined as

At Y {reN|{z",zt} C A},

is called the closure of A. If A+ P then

AP) ¥ wat)p
is called the A-closure of P; if A* =0, then P is called A-closed.
Let A IF P denote A+ P where P is A-closed.

We show that labeled transition preserves the closure of both contexts and processes.

Lemma 20 (Closed subject reduction). Let P € P and A C N*.

1. If A is closed and A N A', then A’ is closed.
2. FAIF P L5 P! and bn(p) N dom(A) = 0, then A 5 Al I+ P/,

Proof. By inspection of the defining rules for context transitions: Closedness can only be
invalidated by either adding to a port, which is already contained in the context, its comple-
ment, or by adding two complementary ports. The latter is completely excluded by restricting
communications to one-port-at-a time. The former cannot happen since increase of context
by C-INP and C-BOUT always assumes that the name of the new port is fresh. O

Here, it is essential that double-polarity communication is forbidden; its permission would
invalidate the preservation of closedness. If a process P := yT (z%).(27(2) | zT (w) ) would be
allowed to receive both polarities of z in one communication. Then P would be typable in
our system with A = {y™, z*}, and P would be A-closed. However, by allowing

+(pE +(xE
P oy et ) = P owith A L

Ao {zT,z7} = A’
P’ would be typable in A’, but P’ would not be A’-closed. Note that the problem is not
present, if we use two subsequent communications to receive the needed ports, since we would
have to use two different input variables to do that, which would then also be distinguished
in A’. For further discussion, see Section 7.

Closed judgements A IF P exhibit more information about the internal structure of pro-
cess P than the corresponding ‘open’ judgements A - P.

Lemma 21 (Port-unique decomposition II). Let A I P.
y~(z*) /
. ypp 2 p
then there is P = Cly~(2*).Q | with P' = C[ Q]
and y & fn(C) U hn(C) and z & hn(C).
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2 P L, pr
then there is P = C[y~ (2*).Q | with P' = C7[ Q]
and y & i(C)U hn(C) and z & n(C), but z € hn(C),
g 1rp L9, pr
then there is P = C|y™(2*).Q | with P' = C[ Q]
and y & fn(C) U hn(C) and x & fn(C) U hn(C).
4. IfP I P,
then there is P = C[y~(2*).Q1,y™ (2%).Q2 | for some y € N with
P' = (v2) C7] Q1,Qao{*k} ], if z € hny (C),
P =C[Q1,Q2{%/z} ], otherwise, and y € hni(C) N hny(C).
5. If P = P', then P = C[ (vy) (y~(2*).Q1 |y* (2%).Q2) |
and P' = C[ (vy) (Q1|Q2{*}}) |-

where C[-] and C[-,-] are process contexts.

Proof. By application of Lemma 18, followed by the exclusion of possible cases due to the
closure information of the judgement. O

6 Behavioral properties of well-typed processes

We collect the behavioral properties that hold for closed typable processes. We are especially
interested in the notion of confluence and whether they are guaranteed by typability.

Theorem 22 (7-inertness). If Al P — P', then P ~ P’

Proof. Because of Lemma 21, we have a decomposition P = C[ Q] for some process context
C[-] and @ = (vy) (y~(2*).Q1 |y (2*).Q2) with P' = C[Q'] for Q" = (vy) (Q1|Q2{*/}).
Observe that, due to the structure of (), the transition

Q =y (y (z).Q1ly"(2").Q2) — (wy) (Qu]Qo{*}) = Q'
is the only one that @) exhibits. Immediately, we know that QQ ~ @’. Since bisimulation is

preserved by restriction and parallel composition, we also have P = C[Q] =~ C[Q'] = P', and
since this analysis is stable under name-substitution, we conclude the proof. U

We show that typability of a process witnesses the absence of transitions that are ‘con-
currently enabled’, but not ‘concurrent’. Then, we know that redexes are never shared and
all concurrently enabled actions can be performed in either order.

Proposition 23 (Concurrency). Let A I+ P. If P 2 poand P -5 Py are concur-
rently enabled transitions, then they are concurrent.

Proof. According to Definition 9, We check that only a-cases for the decomposition of the
span (cf Fact 8) are allowed by A I+ P. O
Theorem 24 ({-Confluence). Let Al- P. Then P is {-confluent.

Proof. By Proposition 23, the diamond property (Lemma 11), and labeled subject reduction

Lemma 20) for closed processes. O
( D

In [Nes96], we have also studied typing systems for a merely signal-passing setting like choice-
free CCS (typing rules are much simpler, since no names are passed around) and proved that
both Milner’s weak confluence and Groote-Sellink’s strong confluence hold.

21



7 Related typing approaches

The polarized w-calculus [Ode95] may be seen as a simplified syntactic reformulation, of the
subtyped m-calculus [PS96], which is based on typing and subtyping of channels. Conse-
quently, no type system is provided for preventing run-time errors, i.e. for guaranteeing that
the side-condition in the COM /CLOSE-rules is always met for typable processes. For the pur-
pose of [Ode95], and also for ours, the untyped version with the additional side-condition
sufficed. Similarly, our typing system for port-uniqueness in the polarized w-calculus corre-
sponds to some extension of the subtyping system. For the presentation in this paper, we
preferred to use the polarized calculus since it provides a rather simple and minimal solution.

Subtyping In the w-calculus [PS96] with subtyping, the main idea is that directionality
modes (i.e. polarities) define channel types T. Moreover, the bidirectional mode b (corre-
sponds to +) is a natural subtype for both unidirectionality modes r and w (corresponds to +
and —): a bidirectional channel may be safely used in any context that would expect any of
the its unidirectional counterparts.

The technical development based on this idea is using a (polyadic) calculus with recursively
defined type-levels by associating with each level some polarity (one of +, —, or £). The
outermost polarity (denoted by Z(T)) indicates the direction in which the channel itself may
be used within the scope of its binding; the inner polarities specify the polarities of the
channels’ possible objects. All binding occurrences of names are typed; the typed binding
of z in y* (2:[[T]*]7).P describes that P would be enabled to send some name z of type [T]*
along z, i.e. along the name that P might have received from y; a receiver of z may use
this name for both sending and receiving names of type T. The typing system in [PS96]
records all introduced name-bindings of a process within typing assumptions I' and checks
that each channel access according to the structure of the process term is permitted, and that
parallel compositions can be controlled by correctly combining type-bindings. The following
simplified rule specifies run-time errors. Let I'; be functions from names to names.

) @) I(Tu(y) ) < -
Fll_Ply—)Pll F2|_P2y—>P21 if = /\I(FQ(?J))S—i_
Iy + T3k Py | Py — error A Ti(z) <X

If any of the three side-conditions is violated, we may infer a run-time error. The first two
clauses refer to the correct current access to the channel y: each party must be allowed to
perform its local access. The third clause refers to correct future accesses of the receiver Pj to
its received channel z: the sender must be able (w.r.t. its typing context) to supply at least
the capabilities for z that P, requires in order to be enabled to use x correctly.

Towards port-uniqueness In the standard m-calculus, P = y~(2).27 (w) |y (z).z~ (w)
with P — P’ := 27 (w) |2z~ (w) is a critical example: P would be typable, according to
the system presented in this paper, when the type system ‘guesses’ that the left component
emits 2T (such that its continuation is allowed to use 2z~ as required) and the right component
receives =~ such that the composition becomes typable, while P’ is not typable, thus subject
reduction is invalidated. Using explicit polarities, we prevented the left component from
cheating (passing on the wrong polarity to the right component by tagging the output z
as 27 in order to be typable itself); the resulting polarized term would no longer exhibit the
reduction to P’ since the side-condition on matching object tags would not be fulfilled.
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The subtyping calculus guarantees correct use of polarities according to the above side-
conditions for deriving communications. There, the critical example would be rephrased
P =y (2).2" (w)|y" (z:X).z~ (w), and with T' = {w:W,3:Y, 2:Z} - P, we would know that

e Y < [Z]” for the output on y, and Z < [W]~ for the output on z, and
e Y < [X]T for the input from y, and X < [W]~ for the output on ,

where the two conditions for Y provide a rather useful connection of the types Z and X: by
Lemma 2.4.8 in [PS96], we know that Z < X.

An extension of the type system towards uniqueness (on top of that for checking correct use
of polarity) would be similar to our system, i.e. from the typing context of output continuations
we remove the capabilities that are sent, and parallel composition has to be strengthened
appropriately. Equivalent to explicit polarities, the above Z < X then helps in recognizing
the critical example as ill-typed since the output-capability for z would have to be removed
by the first output in the left component such that its continuation will no longer be typable.

Closing up vs. typed observations In a typed calculus, it is more natural to adapt
the notion of observation to the idea of typing. Consequently, visible transitions shall only
be regarded as observable if the outside is a ‘legal’ environment, i.e. allowing a well-typed
composition of the observing context and the observed process [PS96, KPT96, PS97, San96b,
Ama97]. As a consequence, typed observations give rise to coarser equivalences that have
also proven to be useful in various cases.

With respect to unique use of ports, a channel is then only observable if not both of its
ends may be used by the observed process itself, such that the complement could in principle
be provided by the observing context. We have forbidden double-polarity output since subject
reduction for closed judgements was invalidated. Closing up was necessary for constraining
the visible transitions in the spans of confluence diagrams. So, if we adopt a typed observation
principle for confluence instead of ‘closing up’, we may admit double-polarity outputs.

Linear(ized) types In contrast to channels with linear types, which can be used at most
once throughoput their lifetime, our notion of unique access corresponds to channels with
linearized types, as suggested in [KPT96, THK94, KNY95], which can be reused after each
(unique) usage. In [KPT96], an encoding of linearized types by means of linear types, mixed
with an encoding of synchronous into asynchronous output, was proposed: subsequent access
to some unique channel would be translated into the use of subsequently created fresh linear
channels. However, linearized types and the corresponding encoding have not yet been studied
in more detail, in particular, not with respect to confluence issues.

In the very recent approaches of [San96b, Ama97], only the receiving end of a channel is
required to be accessed uniquely, much as with the notion of unique bearing due to [Mil93] and
with ‘definitions’ in the join-calculus [FG96]. In our system, both ends are controlled, but the
subsequent behaviors are not restrained. Similar ideas can be found with a ‘linear’ variant
of receptiveness in [San96b] and with mutex channels in [Kob97]: the former additionally
requires that receptors always have the same behavior; the latter additionally requires that
messages are always present, while requiring nothing for receptors.
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8 Conclusion

We have shown how to set up a type system in the polarized w-calculus that statically guaran-
tees unique access to ports throughout a processes’ lifetime. We have also discussed in detail,
how to adopt the idea of controlling port-uniqueness in the setting of a calculus with sub-
typing. The generalization of our setting to polyadic messages is straightforward. The only
complication is the distinction between free and bound objects in polyadic outputs, where free
outputs decrease the typing context, while bound outputs (as in the monadic case) increase it.

We have derived strong diamond confluence properties for well-typed processes and also
gave a very simple proof of 7T-inertness for well-typed processes. Also, it is straightforward
to deal with partial confluence in the sense that the diamond property holds only for spans,
where at least one transition is generated for communication on a unique port (and under the
side-condition that the other transition is not complementing the former).

Of course, we cannot recognize all confluent process systems by means of a static typing
system since all interesting notions of confluence, and also port-uniqueness and other name
disciplines, for concurrent systems of message-passing processes are undeciable. However, a
combination of type systems for unique/linearized channels with others for

e linear channels with at most one sender and one receiver,
e functional channels with one persistent receiver and multiple senders, and
e mutex channels with one persistent message and mutiple receivers,

might be ‘sufficiently complete’ by covering enough cases for practical purposes.

In order to get even closer to completeness, it is likely to be advantageous to include causal
information within type systems. For example, let P = (vb) (a™(2).b™(y) | b"(z).a™ (w)).
Although P is not typable since a~ occurs on both sides of the composition, P is port-unique
(and confluent) since the occurrence of ¢~ in the left component has precedence (in the
terminology of [Pri96]) over the occurrence of ¢~ in the right component. Thus, at any time,
only one of them will be enabled. We believe that an adaptation of the recently developed
more graphical notions of types as in [Yos96, Kob97] could be exploited for an enhancement
our type system, since they take causal information into account.

Acknowledgments

We would like to thank Cédric Fournet for reading a draft of this paper, Benjamin Pierce and
Davide Sangiorgi for discussions on the topic in an early stage of the work.

References

[Ama97] R. M. Amadio. An Asynchronous Model of Locality, Failure, and Process Mobility. Rapport
interne, LIM, Marseille, 1997.

[BC88] G. Boudol and I. Castellani. A Non-Interleaving Semantics for CCS Based on Proved Tran-
sitions. Fundamenta Informaticae, X1:433-452, 1988.

[DP92] P. Degano and C. Priami. Proved Trees. In Kuich [Kui92], pages 629-640.

[FG96] C. Fournet and G. Gonthier. The Reflexive Chemical Abstract Machine and the Join-
Calculus. In POPL’96, pages 372-385, 1996.

24



[GS96]
[HY95]
[KNY95]
[Kob97]
[KPT96]
[Kui92]
[LW95]

[Mil89)]
[Mil93]

[Mon93]

J. F. Groote and M. P. A. Sellink. Confluence for Process Verification. Theoretical Computer
Science, 170(1-2):47-82, 1996.

K. Honda and N. Yoshida. On Reduction-Based Process Semantics. Theoretical Computer
Science, 152(2):437-486, 1995.

N. Kobayashi, M. Nakade, and A. Yonezawa. Static Analysis of Communication for Asyn-
chronous Concurrent Programming Languages. In SAS’95, LNCS 983, pages 225-242. 1995.

N. Kobayashi. A Partially Deadlock-Free Typed Process Calculus. To appear in LICS’97.
Computer Society Press, 1997.

N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the Pi-Calculus. In POPL’96,
pages 358-371, 1996.

W. Kuich, editor. Nineteenth Colloquium on Automata, Languages and Programming
(ICALP), LNCS 623. Springer, 1992.

X. Liu and D. Walker. Confluence of Processes and Systems of Objects. In TAPSOFT 95,
LNCS 915, pages 217-231. Springer, 1995.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

R. Milner. The Polyadic 7-Calculus: A Tutorial. In Proceedings of Logic and Algebra of
Specification, International NATO Summer School (Marktoberdorf, 1991). Springer, 1993.

U. Montanari. True Concurrency: Theory and Practice. In Mathematics of Program Con-
struction, pages 14-17. Springer, 1993. Abstract of Invited Lecture. LNCS 669.

[MPW92] R.Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, Part I/II. Information

[MS92]
[Nes96]

[Ode95]
[Ora94]

[Prig6]
[PS96]
[PS97]
[PW95]

[San96a]
[San96b]

[THK94]
[Tof91]

[Yos96]

and Computation, 100:1-77, 1992.
R. Milner and D. Sangiorgi. Barbed Bisimulation. In Kuich [Kui92], pages 685-695.

U. Nestmann. On Determinacy and Nondeterminacy in Concurrent Programming. PhD
thesis, Technische Fakultét, Universitdt Erlangen, 1996. Arbeitsbericht 29(14) des IMMD.

M. Odersky. Polarized Name Passing. In FST&TCS’95, LNCS 1026. Springer, 1995.

F. Orava. On the Formal Analysis of Telecommunication Protocols. PhD thesis, Department
of Computer Science, Uppsala University, Sweden, 1994.

C. Priami. Enhanced Operational Semantics for Concurrency. PhD thesis, Dipartimento di
Informatica, Universita di Pisa-Genova-Udine, 1996. Available as PhD number TD-08/96.

B. C. Pierce and D. Sangiorgi. Typing and Subtyping for Mobile Processes. Mathematical
Structures in Computer Science, 6(5):409-454, 1996.

B. C. Pierce and D. Sangiorgi. Behavioral Equivalence in the Polymorphic Pi-Calculus. In
POPL’97, pages 241-255, 1997.

A. Philippou and D. Walker. On Sharing and Determinacy in Concurrent Systems. In
CONCUR’95 (Philadelphia), LNCS 962, pages 456-470. Springer, 1995.

D. Sangiorgi. A Theory of Bisimulation for the w-calculus. Acta Informatica, 33:69-97, 1996.

D. Sangiorgi. The Name Discipline of Uniform Receptiveness. Technical report, INRIA,
Sophia-Antipolis, 1996. Submitted for publication.

K. Takeuchi, K. Honda, and M. Kubo. An Interaction-Based Language and its Typing
Sustem. In PARLE’94, LNCS 817, pages 398-413. Springer, 1994.

C. Tofts. Proof Methods and Pragmatics for Parallel Programming. PhD thesis, LFCS,
University of Edinburgh, 1991. Available as ECS-LFCS-91-140.

N. Yoshida. Graph Types for Monadic Mobile Processes. In FST&TCS’96, LNCS 1180, pages
371-386. Springer, 1996.

25



