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1 Introduction with historical backgroundNotions of conuence have been explored in various forms with emphasis on the widely-investigated �eld of term rewriting systems for the modeling of sequential computation. Withrespect to the modeling of concurrent system behavior by means of labeled transition systems,much less work has been done as regards conuence. This section deals to a large extent withthe exposition of the latter, with emphasis on computations of mobile processes, in order toclearly position the goal and the contribution of the current paper.1.1 Sequential computation: Term rewriting systemsIn the context of term rewriting systems like the �-calculus, the investigation of conuenceproperties has a long tradition. There, conuence requires that possibly diverging paths ofcomputation may always be brought together again. In the following, we use arrows �! todenote single computation steps and =) to denote sequences of steps. Diagrams as below,read as follows: `For all straight arrows, there are some dotted arrows (such that : : : )'Q
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A term Q is called (locally) conuent if any two derivatives Q1and Q2 that are reachable by di�erent rewriting steps, can berewritten to the same term Q0 again by possibly employing manymore rewriting steps. Conuence is often explained by using com-pletion diagrams of the depicted form where the upper half|thespan|represents two diverging rewrite steps leading from Q to Q1and Q2, and the lower half|the completion|represents the ad-ditional rewriting steps that enable us to �nally reach the sameterm Q0. The main contribution of conuence is that it implies that the so-called normalforms|terms that exhibit no more reductions|are unique, if they exist. For systems thatmodel the (sequential) computation of values, like in functional programming, this fact isuseful, since it often allows an implementation to choose any of the possible execution paths.1.2 Concurrent computation: Labeled transition systemsThe semantics of concurrent systems is often modeled by means of labeled transition systems(LTS), where the transitions are carrying labels � for denoting their visible e�ect, and thelabel � indicates an invisible (internal) action. We will often use the standard relations:=) def= ���!� b���! def= ( ���! if � 6= ����! [ id if � = � b�==) def= =) b���! =)LTS are, in general, assigned via a structural operational semantics to the syntactic descrip-tions of process behavior as terms that are generated from a process algebra; we call derivativeof term P a state that is reachable from P be a sequence of transitions. Terms model possiblyin�nite reactive systems, so there is not always a primary interest in reducing a process term tosome state, where computation stops. Nevertheless, the knowledge about certain conuenceproperties of process systems may be of help in particular for veri�cation purposes.Due to the use of labeled transition systems, we have to deal with labeled conuencediagrams like the ones shown in Figures 1 and 2, which we sketch briey below. Note that,2
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(}) Q2c�1v~Q01 � Q02weak determinacy weak conuenceFigure 1: Conuence �a la [Mil89]since processes are rather equivalence classes (denoted in the �gures by the equivalence re-lations � and �) of terms than terms themselves, the completion of conuence diagrams isoften required only up to those equivalences.DeterminacyIn essence, determinacy means that any future system state is completely de�ned (up to somenotion of equivalence, like weak bisimulation �) by the computation trace that leads to it.According to Tofts [Tof91], determinacy in concurrent programming is like side-e�ect-freedomin functional programming.Milner tried to �nd a de�nition of determinacy that is preserved by his favorite equivalencerelation, weak bisimulation, and that is furthermore preserved by CCS operators [Mil89]. Bythat, systems would satisfy `good' properties for predicting their behavior by construction.The de�nition, from which Milner started, reads as: a system P is determinate if all deriva-tives Q that are reachable after a given trace, are wekly bisimilar. However, this de�nitionspeci�es a property that is not preserved under parallel composition, if the parallel compo-nents would have shared access to channel names (as e.g. in a�ja+ denoting a sender on aand a receiver on a in parallel, which has two =)-derivatives that are not bisimilar).Milner strengthened the de�nition to conuence: a system P is weakly conuent if eachof its derivatives Q satis�es the M- and }-diagram in Figure 1 (the shape of the spans is justconvenient for proof purposes), such that the resulting property implies determinacy and is atleast preserved under conuent composition. The latter is de�ned by requiring that channelnames in parallel components are either disjoint (so no communication can occur on thosenames between the components), or the scope of shared channel names has to be immediatelyclosed after putting the parallel composition together (so no intervening communication of athird party is possible).InertnessIn [GS96], Groote and Sellink argue that the main use of conuence properties is the factthat it implies � -inertness. A process P is � -inert (or � -stable in Tofts [Tof91]), if it satis�es:If P ���! Q, then P � Q.It has also been shown by Milner that his notions of conuence imply � -inertness. Note thesimilarity to sequential computation, where reduction does not change the value of a term;3
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zzQ01 = Q02weak �-conuence strong conuenceFigure 2: Conuence �a la [GS96]here, (internal) reduction does not change a term's behavior. This knowledge can be veryuseful for process veri�cation since it allows to sometimes drastically reduce the state spaceby performing as many internal reductions as possible without changing the equivalence classof the process under investigation (see some examples in [GS96]).With this motivation, the authors presented and investigated a couple of semantic notionsof conuence, di�erent from Milner's, in the context of arbitrary labeled transition systemswith a distinguished label � for internal actions; here, we only sketch two of them. Noterm language like CCS is assumed to denote the states of the transition system. Accordingto [GS96], a transition system is weak �-conuent, if each of its states Q satis�es the diagramon the left in Figure 2, where the span is always given as a pair of di�erent (strong) transitions,at least one of which is internal. On the other hand, strong conuence was de�ned by meansof the diagram on the right in Figure 2, where the conuent closure of the diagram is hererequired after just one step and up to identity.The main result of [GS96] is a characterization for � -inert transition systems in terms ofconuence, e.g. weak �-conuence coincides with � -inertness under the condition of well-foun-dedness with respect to � -steps. We do not recapitulate that particular result, but we simplystate that the above-mentioned notion of strong conuence at least implies � -inertness, evenin non-� -well-founded transition systems.PermutationSometimes, it is advantageous to know, whether two actions of some process that are enabledat the same time interfere, or not. If they do not interfere, then the two actions can beperformed in either order. That information may be used to de�ne an equivalence notion oncomputations that are represented by traces. Thus, equivalence classes of computations thatare constructed as the quotient with respect to all possible permutations of actions can beregarded as abstract computations in the terminology of non-interleaving semantics [Mon93].Two di�erent transitions P �1���! P1 and P �2���! P2 of some process are called concurrentlyenabled. In simple value-passing process systems, two concurrently enabled transitions areusually concurrent (or: independent), if they do not compete for a shared communicationpartner. Imagine a�:P1 j b�:P2 in constrast to a�:P1 j a�:P2, when put in parallel with a+:P3,where the dot denotes sequential composition of an action with a process: in the �rst pair,the sender on a will not be disturbed, while the second pair will behave nondeterministicallydue to their competition for the receiver on a without possibly ever reaching a common stateagain. For languages like CCS [Mil89], in the absence of choice operators, this is the onlysource of non-conuence [BC88, Pri96]. 4



The approach of proved transitions P ���! P 0, as introduced in [BC88], represents a moreexplicit formulation of this idea. There, the whole inference proof for an action is coded withinits label � representing a proof term that provides maximal information about the transition.For any two concurrently enabled �i-labeled proved transitions, theirconcurrency can be checked by analyzing the structure of the proofterms �i, which we do not report here. Any pair of concurrenttransitions gives rise to the rather strong conuence diagram forsome term P 0, which is referred to as diamond. The notation �1=�2indicates that the proof term for deriving �1 after �2 has occurredmay be di�erent from deriving �1 as the �rst action. (In CCS, P 0 isuniquely determined, and if P does not contain a choice operator,
P�1

~~} }
} }
} }
} } �2

  
BB

BB
BB

BBP1�2=�1   

P2�1=�2~~P 0then �i=�j = �i.) This de�nition of conuence takes a somewhat local point of view (cf localconuence systems) in that it addresses particular instances of concurrent transition pairs.1.3 Mobile computation: Name-passing processesIn contrast to CCS, which can be considered as a merely signal-passing process calculus,value-passing process calculi allow for the exchange of data in interactions. If data itemsare channel names, then the calculi are usually called name-passing process calculi. Theprototypical such calculus is the �-calculus [MPW92]. Note that, via name-passing, processescan dynamically change their interaction structure. We use the terms name and channel assynonyms because of their use as both data and carrier.We use restriction (�x)P to restrict the scope of a name x to process P , compositionP1jP2 to denote the parallel composition of P1 and P2, output y�hzi:P to denote the emissionof name z along channel y before behaving as P , input y+(x):P to denote the reception ofa name along channel y and binding it to x in process P , and guarded replication !�:P todenote many copies of process �:P in parallel, where �:P denotes either an output or aninput. In y�hzi and y+(x), y is called subject, while x and z are called object.The theory of name-passing calculi is, in general, more complicated compared to othervalue-passing caluli, since the scope of channel names may be extended by passing boundnames as data to other processes that were previously outside the name's scope. Milner'snotions of conuence have been generalized and adapted to name-passing calculi by Liu andWalker [LW95]. Below, we discuss two issues strongly related to the conuence of name-passing systems that were the basis for our own investigation.UniquenessIn order to characterize `friendly' name-passing system with `good' properties, Milner for-mulated syntactic naming invariants in process communities that were based on the idea ofunique access to channels [Mil93]. In particular, he de�ned the notions of (unique) bearingand handling of names. We rephrase them as follows:� P bears x, if x occurs free in P as positive subject� P can handle x, if x occurs free in P as negative subject(of an unguarded pre�x). Consider a system of components Pi and Rj , constructed byS � (�~x) ( P1 j � � � jPm j !R1 j � � � j !Rn ):Then, S is friendly, if fn(S) = ; and no Pi or Rj contains a composition or replication.5



A name x is uniquely borne in a friendly S, if:1. At most one component bears x.2. If Rj = �j:Qj , then Qj does not bear x.3. If S contains the input pre�x y+(x):Q, then Q does not bear x.A name x is uniquely handled in a friendly S, if:4. At most one component can handle x.5. No Rj can handle x.6. If S contains the output pre�x y�hzi:Q, then Q does not contain z free.Although the above is an interesting starting point for thinking about invariants in processcommunities|note that both uniqueness properties, bearing and handling, are preservedunder reduction|the characterization are applicable only for process systems of a restrictedshape. For example, condition 6 forbids a process after passing a port to use its complementlater on. Furthermore, condition 3 excludes that the bearing of a name can be acquired.Nevertheless, the characterization was su�cient for improving the reasoning about sharing,determinacy, and conuence in object-oriented concurrent systems [PW95], and also aboutresource management in a telecommunication protocol for high-speed networks [Ora94].TypesInstead of syntactically constrained operators for the construction of process systems, it is alsopossible to use standard operators and afterwards statically check, whether the constructedsystem is of a certain type. Type systems for process languages have been recently introducedand investigated to some extent, with emphasis on name-passing process calculi. The standardaim has usually been to prevent run-time errors that can result from using channels in anunintended or incorrect way. This line of work has been carried out for channels with� recursive sorts [Mil93] that control the type/number of transmittable values,� polarities [PS96] that control how a channel may be used (cf Section 7),� modes [KPT96] that control how often a channel may be used.Especially the last category of typing systems is of interest for studying conuence issues sinceit has been shown that linear channels [KPT96], i.e. channels that can be used at most oncethroughout their lifetime, give rise to `partial' conuence properties: a possible communicationon a linear channel can never interfere with any other currently possible communication, sothe two can be performed in either order. However, these results have only been investigatedfor internal reductions. No hint is given as to accomplish labeled transitions, and the relationto Milner's notion of `unique handles' and `unique nearing' or notions of (labeled) conuencehas only been explained quite informally.Finally, it is worth mentioning the join-calculus [FG96] as the syntactic predecessor of[Ama97, Kob97, San96b] that incorporate the idea of unique (and sometimes persistent)receivers, which substantiallu facilitates distributed implementation, as a central languagedesign principle. Also, with unique persistent receivers, simple partial conuence propertiesfor reductions hold, since an always available (uniformly receptive [San96b]) receiver is readyto communicate with any pending message in either order.6



2 Goal and overview of this paperInstead of verifying conuence properties of processes by reasoning about all their (possiblyin�nite) derivatives, our primary goal is a typing approach, which allows the static checkingof conuence properties without generating all derivatives. Our approach may be seen as acomplement to previous typing approaches, where conuence properties have appeared as aside result of well-typedness.We introduce polarized name-passing (x3) and a formalization of unique access in terms ofprocess decomposition (x4). We provide a typing system, which satis�es a labeled subject re-duction property, for guaranteeing unique access to channel names in polarized name-passingprocesses (x5). Labeled subject reduction is the key in the proof that labeled diamond conu-ence holds for arbitrary derivatives of well-typed processes (x6). We compare our approachto others based on the notion of (sub)typing on names and on typed observations (x7), beforewe end with some concluding remarks (x8).3 Technical PreliminariesIn CCS, as in most process calculi with channel-based communication, each use of a name insubject position of an action is marked syntactically with some polarity in order to indicatein which direction the channel is used. In name-passing calculi like the �-calculus, namesmay also occur in object position; there, they names do not come a priori with a particularsyntactic polarity. Usually, this is intended and does not cause any harm. For example, iny�hwi j y+(x):x�hziit is not visible for the sender on y which port of w is going to be needed on the other side,maybe even both. The receiver on y just inputs (some capabilities of) a name that it formallycalls x, and in the example at least uses the output port of x to send the capabilities for z tosome other process.However, if we want to control the unique access to ports, we are required to explicitlykeep track of their mobility within process systems caused by name-passing. In that case, wehad better use a polarized setting, where the polarity of object names is su�ciently explicit.3.1 Polarized name-passingThis section introduces a monadic polarized �-calculus, similar to the one in [Ode95], butwith synchronous output and without matching. Polarized name-passing is made explicitby syntactically decorating all objects of actions, including the non-binding occurrences inoutputs, with syntactic polarity tags + for input and � for output.1 Within this approach,each time a name x is generated, its two unidirectional halves x+ and x� are generated. Notethat there is no neutral polarity � and no notion of channel type as known from the �-calculuswith subtyping [PS96]; the relation to the latter is explained in more detail in Section 7. So, inthis purely syntactically polarized �-calculus, it is no longer possible to transmit both halves ofa name within one single communication. It was argued in [Ode95] that this is not a seriousdefect of the calculus since it can always be achieved by two subsequent communications;1We use a di�erent syntax, compared to [Ode95], which also allows to avoid the distinction of the threesyntactic categories of names, variables and constants, in favor of names and ports.7



moreover, in a polyadic calculus, one could pass both polarities at once and read them fromdi�erent positions in an input variable tuple.De�nition 1 (Names, ports, and processes). In addition to the standard calculus withtwo kinds of basic entities, i.e. `names' and `processes', we explicitly introduce `ports' as athird kind of entity that is derived from names.Let x; : : : ; z range over some in�nite set of names N. Let the set of ports N? be de�nedas `polarized names': names that carry one of the polarities � and +. Polarities are com-plementary, as expressed by the involution operation on ports with x� := x+ and x+ := x�.When using ports in process expressions, we let ? range as a metavariable over f+;�g.Let P denote the set of processes generated by the grammar:P ::= 0 �� (�x)P �� y+(x?):P �� y�hz?i:P �� P j P �� ! y+(x?):PLet F denote the subset of �nite, i.e. replication-free polarized processes. Let fn(P ) and bn(P )be de�ned in the ususal way indicating of P its the free and bound occurrences of names. It isstraightforward to generalize the usual de�nition of free names in processes of P to free portsof processes in P by taking into account that output object occurrences indicate that the senderis (or: was), in principle, capable to access this port:fp(0) def= ;fp(y+(x?):P ) def= fy+g [ (fp(P )nfx+; x�g)fp(y�hz?i:P ) def= fy�; z?g [ fp(P )fp(P1jP2) def= fp(P1) [ fp(P2)fp((�x)P ) def= fp(P ) n fx+; x�gfp(!P ) def= fp(P )de�nes the set of free ports of processes in P.Note that in the input case of the de�nition of fp(y+(x?):P ), we have to remove both x-portsbecause the binding addresses the name x, thus both polarities.Labeled transition semanticsThe operational semantics for processes with polarized name-passing is given as the smallestlabeled transition relation generated by the rules in Table 1, where labels � are of the form� �� y+(x?) �� y�hz?i �� y�(�z?)for denoting internal transitions, inputs, outputs, and bound outputs. Substitution Pfz=xg de-notes P with all free occurrences of x replaced by z, silently assuming that bound names havebeen �-converted, if necessary, in order to avoid name-clashes. This de�nition is accordingwith standard descriptions for late instantiation [San96a], except for the case of communica-tion, as in rules COM and CLOSE , where the object names z and x are required to be taggedwith the same polarity ?. Rule ALPHA makes explicit, where �-conversions are necessary inthe derivation of transitions.Since we are using a synchronous �-calculus (without matching), we use a standard de�-nition of bisimulation.2 Here, we introduce the weak variant of ground bisimulation [San96a].2The main contribution of [Ode95] was the de�nition and application of a non-standard equivalence, calledpolarized bisimulation. Due to a smaller class of observers, based on a restricted notion of matching, it is acoarser notion than asynchronous bisimulation [HY95].8



De�nition 2. A binary relation R on processes P is called weak bisimulation, if� (P;Q) 2 R and P ���! P 0 with bn(�) 62 fn(P jQ) impliesthat there is Q �==) Q0 such that (P 0; Q0) 2 R,and vice versa. Two processes P;Q are called weakly bisimilar, if there is a weak bisimula-tion R with (P;Q) 2 R. Let � denote the largest weak bisimulation.It is well-known that ground bisimulations are, in general, not preserved under name-substi-tutions. However, we use bisimulation for only one example in this paper, where a particularbisimulation relation is preserved. Hence, we omit further technical material on bisimulationsin name-passing process calculi; it can be found elsewhere (cf [Pri96, San96a]).�
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ACT: �:P ���! PREP: !�:P ���! P j !�:POPEN: P y�hz?i������! P 0(�z)P y�(�z?)�������! P 0 if y 6= zCOM�1: P1 y�hz?i������! P 01 P2 y+(x?)������! P 02P1 j P2 ���! P 01 j P 02fz=xgCLOSE�1: P1 y�(�z?)�������! P 01 P2 y+(x?)������! P 02P1 j P2 ���! (�z) ( P 01 j P 02fz=xg ) if z 62 fn(P2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PAR�1: P1 ���! P 01P1 j P2 ���! P 01 j P2 if bn(�) \ fn(P2) = ;RES: P ���! P 0(�x)P ���! (�x)P 0 if x 62 n(�)ALPHA: P ���! P 0Q ���! P 0 if P =� Q�: and the evident symmetric rules for parallel compositionTable 1: Operational semantics for P9



3.2 Process structureCertain laws on process terms, like the ones denoted by the symbol � in Table 2, have beenrecognized as having merely structural content [MS92, HY95]; they are valid with respect to alldi�erent kinds of behavioral congruences, equivalences and preorders, including bisimulation.The upper set of laws in Table 2 allow us to rearrange the components of a term such that asyntactically distributed � -redex, i.e. a � -redex with sender and receiver not being syntacticneighbors within some parallel composition, may always be brought together|by structuraltransformation|to form a local � -redex. The lower set of laws in Table 2, i.e. the eliminationof scope restrictions, and garbage collection of inaccessible guards are also often consideredas structural laws, but are not needed for the purposes of this paper.Eliminating name-clashesIn order to syntactically avoid name-clashes, we may require names that are introduced byrestriction subterms, also the bound names of input pre�x subterms are pairwise distinctamong each other and with all other names occurring in the process.De�nition 3 (�-freeness). A process P is called �-free, if all of its subterms of the form(�x)Q and y+(x?):Q use pairwise distinct names x and, furthermore, fn(P ) \ bn(P ) = ;.The operational semantics includes the rule ALPHA dealing with the necessary �-conversion ofnames that occur bound in transition labels and might cause capture when using the derivativein some parallel context. The following fact records some cases, where �-conversion may beavoided. We write P ���!6� P 0 if the derivation does not involve rule ALPHA.Fact 4. Let P 2 P.� There is an �-free process bP with P =� bP .� If P is �-free and P ���!6� P 0, then P 0 is �-free.� If P ���! P 0, then there is bP with P =� bP ���!6� P 0.Accordingly, we may disregard the use of ALPHA-rules in the derivation of transitions sincethere is always some �-congruent process term that allows to derive the transition without anapplication of ALPHA. Instead of always silently assuming that suitable �-conversions have�
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�-conversion P � Q if P =� Qassociativity P j (QjR) � (P jQ) j Rcommutativity P j Q � Q j Prestriction (�y) (�x)P � (�x) (�y)Pscope extrusion (�y)P j Q � (�y) (P jQ) if y 62 fn(Q). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .scope elimination (�x)Q � Q if x 62 fn(Q)garbage collection (�y) y�hz?i:P � 0(�y) y+(x?):P � 0Table 2: Structural laws10



been performed, as often done in the literature, we indicate explicitly whether we make useof it. However, we assume that transitions of �-free processes are derived without ALPHA.Process contextsWe introduce the notion of context as a means of structurally decomposing process termsinto subterms and surrounding terms, where the positions of the former in the latter areoften called holes. We do not admit every operator of the process language to be applied tothe inner subterm, but only restriction and parallel composition. Unary process contexts areprocesses with exactly one hole, written [�], where a process may be plugged in.De�nition 5 (Process contexts). Let P 2 P. Unary process contexts are generated by:C[�] ::= [�] �� P jC[�] �� C[�] jP �� (�a)C[�]Let C[�; �], C[�; �; �], and C[�; �; �; �] be typical contexts with exactly 2, 3, or 4, holes.Note that the paths from the root of a context to some hole only traverse restriction andcomposition. Multiple-hole contexts have also been used in [Pri96] to denote the positionsof redexes inside process terms. Here, we implicitly assume that the holes are distinguishedaccording to their position as parameter. We could also use metavariables that each occurecactly once in the de�ned context expression. A more formal de�nition is omitted in favorof simplicity in the presentation.Whereas bound names in processes are not essential and can be arbitrarily renamed aslong as capture is avoided, the situation is di�erent with contexts: hole-binding restrictionsshall not be renamed since otherwise the insertion of a process that contains free namesmatching the restrictions for the hole might result in completely di�erent processes.De�nition 6 (Free and hole-binding names). Let C[�] 2 C (1) be a unary context. Thenthe functions fn(C[�]) and hn(C[�]), as de�ned byfn([�]) def= ;fn(C[�]jP ) def= fn(C[�]) [ fn(P )fn(P jC[�]) def= fn(P ) [ fn(C[�])fn((�a)C[�]) def= fn(C[�]) n fag hn([�]) def= ;hn(C[�]jP ) def= hn(C[�])hn(P jC[�]) def= hn(C[�])hn((�a)C[�]) def= hn(C[�]) [ fagdenote of a context C[�] its free and hole-binding names, respectively.As abbreviation, we also write fn(C) and hn(C) for fn(C[�]) and hn(C[�]). As a generalizationto multi-hole contexts, let hni(C) denote the hole-binding names of C concerning its i-th hole,silently assuming that we apply the function only for contexts with enough holes.DecompositionWe may precisely reconstruct aspects of the structure of a process from its transitions: eachinference tree induces a decomposition of the process into the redex that generates the tran-sition, and its context. By writing \there is P = C[ eQ]" we always implicitly mean that thereis some context C[�] with appropriate arity and processes eQ such that P = C[ eQ]. We call acontext-redex construction a decomposition. 11



Since, in our language P, only guards and replicated guards may give rise to transitions,it su�ces to consider contexts that are constructed from restriction and parallel composition.For simplicity, we only present the decomposition for transitions of �nite processes, i.e. P 2 F.However, restriction in the context of bound name-passing is no longer a static operator. Letus therefore assume that P is �-free in order to deal with derivatives in the case of labels thatcarry bound names. Let C[�] be the context of a decomposition of some �-free process withz 2 hn(C). Then, C 6z[�] denotes the context after erasing the restriction operator (note that,due to �-freeness, there is exactly one) for name z; we omit the straightforward inductivede�nition. Let F 6� denote the subset of �-free �nite processes.Fact 7 (Decomposition of redexes). Let P 2 F 6� .1. If P y+(x)�����! P 0, then there is P = C[y+(x):Q] with P 0 = C[Q].2. If P y�hzi�����! P 0, then there is P = C[y�hzi:Q] with P 0 = C[Q].3. If P y�(�z)������! P 0, then there is P = C[y�hzi:Q] with P 0 = C 6z[Q].4. If P ���! P 0, then there is P = C[y�hzi:Q1; y+(x):Q2]with P 0 = C[Q1; Q2fz=xg], if z 62 hn1(C),and P 0 � (�z)C 6z[Q1; Q2fz=xg], otherwise.Note that y 2 hn(C) in the case of bound output. In the case of a communication (case 4.)that is derived by CLOSE (z 2 hn1(C)), the construction with the restriction in outermostposition guarantees that both continuations of the local sender- and receiver-redexes lie withinits scope. For example, if a communication along the channel y can be derived byQ := y�hzi:Q0 and C[�] := Q1 j (�z) ( [�] jQ2 ));i.e. with z 2 hn(C), then it does not matter whether the matching receiver is sitting inside Q1(with the � -step derived by CLOSE) or Q2 (with the � -step derived by COM ), since by movingthe restriction on z outermost we get the derivationP := C[Q] � (�z) ( C 6z[Q] ) ���! (�z) ( Q01 j (Q0 jQ02) )which captures both cases adequately, where the continuation of the receiver is either Q01(where a scope-extrusion for z is necessary) or Q02 (where the scope of z may remain as it is).If we wanted to generalize the decomposition to in�nite processes P 2 P6�, we would haveto include additional clauses like the following as a replacement of the above case 1.1. If P y+(x)�����! P 0, then either(a) there is P = C[y+(x):Q] and P 0 = C[Q], or(b) there is P = C[!y+(x):Q] and P 0 = C[Q j !y+(x):Q].For the communication case, we would get three subcases, determined by either none, one,or both of the redexes being replicated. So, the generalization to in�nite processes is notsubstantially di�erent from the �nite case, but would unnecessarily complicate the notation.Within the approach of proved transitions (cf Introduction), it is quite simple to preciselydenote the subterm of P from which the transition is generated by reading the proof term �as the path from the root node of the process tree (according to its algebraic structure)to the (local) redex(es). For our purposes, it will su�ce to know about the existence ofdecompositions, so we may work with the less verbose standard labeled transitions �.12



4 No sharing: From port-uniqueness to conuenceIn this section, we provide a technique to check diamond conuence for spans of concurrentlyenabled transitions, based on the induced decomposition into process contexts and redexes:If no redexes are shared, then the transitions are concurrent and, hence, can be performedin either order. The formalization of the notion of concurrent transitions in terms of processdecomposition motivates why it is useful to characterize the absence of sharing by means ofunique access to ports.Conuence is a semantic property since it is stating the possibility of actions for allpossible derivatives of a process, according to the transitions as generated from its operationalsemantics. With [Mil89], the essence of conuence relies on the following intuition: At anytime in the evolution of some process, no occurrence of an action precludes a concurrentlyenabled action. So, mainly, conuence addresses the question whether two `concurrentlyenabled' transitions are `concurrent' or whether they interfere.Shared ports Milner's conuence-preserving operators represent a constructive attemptto ensure that concurrently enabled transitions can never interfere. Conuent compositionP j~xQ := (�~x)(P jQ ) prevents pre-emption by governing its components' ports at the interfaceto their respective environment: it forbids1. the shared use of the same port (expressed in fp(P ) \ fp(Q) = ;), and2. the unrestricted use of complementary ports (expressed in fp(P ) \ fp(Q) � f~xg).The �rst condition can be interpreted as requiring the invariant of `port-uniqueness': At anytime in the evolution of some process, each of its ports may be accessed by at most one enabledaction. This invariant only guarantees to exclude mutual pre-emption of internal actions ofa process; it does not take the processes' environment into account. The latter is ful�lled bythe second condition on conuent composition; it imposes the additional structural constraintthat complementary access to ports must be restricted, i.e. not visible to the outside, so itprevents from mutual pre-emption among visible and internal actions.Shared redexes The idea is to use decompositions of processes into redex(es) and (multiple-hole) context as an intermediate vehicle between the characterization of port-uniquenessand the proof of conuence properties for spans of concurrently enable transitions. So, theroadmap for this section is the following: (1) characterize the possible decompositions of aprocess according to each of its possible pairs of concurrently enabled transitions; (2) iden-tify the cases, where no redexes of the involved transitions are shared; (3) prove that inthose cases diamond conuence holds. The formalization of port-uniqueness on top of processdecompositions is deferred to the next section (cf Lemmas 18 and 21).Depending on the kind of transitions|visible or internal|and by interpreting the dis-tributed redex of internal transitions as a pair of local redexes, the necessary contexts have 2,3, or 4 holes. Two di�erent visible transitions cannot share a common redex; if at least oneinternal transition is involved, then sharing might occur. Furthermore, for visible transitions,we always know that its channel name is not captured by any hole-binding restriction. In the(polarized) �-calculus, a subtlety arises in the cases of scope extrusion, resulting in boundoutputs via OPEN and � -steps via CLOSE . In both cases, the derivative involves, accordingto Fact 7, that the context is manipulated to take the extrusion into account, whereas in the13



latter the context has to be closed again for both parties of the communication. As in Fact 7,we only denote the � -derivatives up to structural transformation (�).Fact 8 (Decomposition of spans). Let P 2 F 6� .1. If P�1
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@@P1 P2 for � 6= � , then there is either of:(a) P = C[�:Q1 ;y�hzi:Q2 ;y+(x):Q3]for some x; y; z 2 N with chan(�) = chan(�) 62 hn1(C),P1 = C 6z1 [Q1 ;y�hzi:Q2 ;y+(x):Q3], if � = y1�hbi and b 2 hn1(C),P1 = C[Q1 ; y�hzi:Q2 ; y+(x):Q3], otherwise, andP2 = C[�:Q1 ;Q2 ;Q3fz=xg], if z 62 hn2(C),P2 � (�z)C 6z[�:Q1 ;Q2 ;Q3fz=xg], otherwise.(b) P = C[y�hzi:Q1 ;y+(x):Q2]for some x; y; z 2 N with chan(�) = y 62 hn1(C) [ hn2(C),P1 = C[Q1 ; y+(x):Q2], andP2 = C[Q1 ;Q2fz=xg], if z 62 hn2(C),P2 � (�z)C 6z[Q1 ;Q2fz=xg], otherwise.(c) P = C[y�hzi:Q1 ;y+(x):Q2]for some x; y; z 2 N with chan(�) = y 62 hn1(C) [ hn2(C),P1 = C[y�hzi:Q1 ;Q2], andP2 = C[Q1 ;Q2fz=xg], if z 62 hn2(C),P2 � (�z)C 6z[Q1 ;Q2fz=xg], otherwise.3. If P�
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@@P1 6= P2 ; then there is either of:(a) P = C[a�hzai:Q1 ;a+(xa):Q2 ; b�hzbi:Q3 ; b+(xb):Q4]for some a; b; xi; zi 2 N,P1 = C[Q1 ;Q2fza=xag ; b�hzbi:Q3 ; b+(xb):Q4], if za 62 hn1(C)P1 � (�za)C 6za [Q1 ;Q2fza=xag ; b�hzbi:Q3 ; b+(xb):Q4], otherwise, andP2 = C[a�hzai:Q1 ; a+(xa):Q2 ;Q3 ;Q4fzb=xbg], if zb 62 hn1(C)P2 � (�zb)C 6zb [a�hzai:Q1 ;a+(xa):Q2 ;Q3 ;Q4fzb=xbg], otherwise.14



(b) P = C[a�hz1i:Q1 ; a�hz2i:Q2 ;a+(x):Q3]for some a; x; zi 2 N,P1 = C[Q1 ; a�hz2i:Q2 ;Q3fz1=xg], if z1 62 hn1(C),P1 � (�z1)C 6z1 [Q1 ; a�hz2i:Q2 ;Q3fz1=xg], otherwise, andP2 = C[a�hz1i:Q1 ;Q2 ;Q3fz1=xg], if z2 62 hn2(C)P2 � (�z2)C 6z2 [a�hz1i:Q1 ;Q2 ;Q3fz1=xg], otherwise.(c) P = C[a+(x1):Q1 ;a+(x2):Q2 ; a�hzi:Q3]for some a; xi; z 2 N.P1 = C[Q1fz=x1g ;a+(x2):Q2 ;Q3], if z 62 hn3(C)P1 � (�z)C 6z[Q1fz=x1g ; a+(x2):Q2 ;Q3], otherwise, andP2 = C[a+(x1):Q1 ;Q2fz=x2g ;Q3], if z 62 hn3(C)P2 � (�z)C 6z[a+(x1):Q1 ;Q2fz=x2g ;Q3], otherwise.Note that in case 1.a �1 = �2 and chan(�1) = chan(�2) is possible. Similarly, in case 2.achan(�) = a and in case 3.a a = b are possible. The cases 2.b, 3.b, and 3.c, respectively, rep-resent overlapping redexes, i.e. sharing; the a-cases indicate `concurrency' of the transitions.De�nition 9 (Overlap and concurrency). Let P 2 F 6� . Any span decomposition of Pmatching one of the a-cases of Fact 8 is called overlapping-free. Two transitions are concur-rent, if their span induces an overlapping-free decomposition.Concurrent transitions, as de�ned above, are precisely characterized by the fact that theydo not share (local) redexes, which could be either send- or receive-guards. (Remember thatthe cases for replicated guards only increase the number of cases without requiring di�erentanalysis.) Therefore, concurrent transitions should be executable in either order, which westate as property of closing `diamonds'. Sometimes, it is necessary to adjust the second oftwo subsequent labeled transitions; as in the Introduction, we record this fact by the notation�2=�1 for the case where �2 is performed after the concurrently enabled �1.De�nition 10 (}-Conuence). Let P 2 F 6� . If P �1���! P1and P �2���! P2 are concurrently enabled transitions withP1 6= P2, and the diagram to the right can be closed for someprocess P 0 (up to structural congruence �), then the transitionpair is called }-conuent. A process P is called }-conuent,if for all of its derivatives Q all of Q's concurrently enabledpairs of transitions are }-conuent.
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P2�1=�2{{P 01 � P 02In the (polarized) �-calculus, if two concurrently enabled bound outputs carry the sameobject, then, when performing both one after another, the second output will be performedas a free output (object precedence in [Pri96]). Therefore, let y1�h�zi = y2�h�zi := y1�hzi,and �1 =�2 := �1, otherwise. This is the only case for �-free processes, where two concurrentlyenabled actions may inuence each others occurrence without disabling each other.Lemma 11 (Diamond). Let P 2 F 6� . If P �1���! P1 and P �2���! P2 are concurrent transi-tions, then they are }-conuent.Proof. By subsequently performing the transitions (which is possible since they are concur-rent) and passing them through the context C[�] by applying PAR and RES along the (static)operators of C[�], according to the case analysis along the decomposition lemma 8.15



5 Typing port-uniquenessWe introduce a static typing system for process terms that guarantees unique access of theprocess to its ports. As main result, we prove subject reduction and precise decompositionswith respect to port-uniqueness, which allow us to derive a strong diamond lemma that isvalid for all concurrently enabled transitions of all derivatives of well-typed processes.Our type system allows us to derive judgements of the form � ` P where � is a typingcontext and P 2 P is a processq, Typing contexts are simply represented as set of ports.De�nition 12 (Typing contexts). A typing context � is a set of ports; we use the usualset operations 2;�;[;\, n, and �;	, as operations on contexts.Regarding contexts as functions � : N! 2f+;�g from names to sets of polarities, we alsouse the notation �(y) for denoting the polarities which are associated with name y in context�, e.g. �(x) = f�g :, (x� 2 � ^ x+ 62 �). Furthermore, let dom(�) denote the set ofnames that occur polarized in �, i.e. dom(�) := fx 2 N j �(x) 6= ;g.The intuition of typing judgements � ` P is twofold: (1) process P is currently allowed toaccess only the ports in �, and (2) it accesses these ports uniquely. Subject reduction thenprovides a mechanism to inherit that property onto P 's derivatives.The inference system for judgements is given by the rules in Table 3. U-NIL behaves wellin all contexts since it does not access any port at all. U-PAR is in direct analogy to conuent�
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U-NIL: � ` 0 if � � N?U-PAR: �1 ` P1 �2 ` P2�1 ��2 ` P1jP2 if �1 \�2 = ;U-OUT: �	 z? ` P� ` y�hz?i:P if y� 2 � and z? 2 �U-INP: �� x? ` P� ` y+(x?):P if y+ 2 � and x 62 dom(�)U-REP: fx?g ` Pfy+g ` ! y+(x?):PU-RES: �� fy+; y�g ` P� ` (�y)P if y 62 dom(�)U-ALPHA: � ` bP� ` P if P =� bPTable 3: Typing rules: Port-uniqueness in F16



composition: components in a parallel composition have to use disjoint sets of ports. In bothU-INP and U-OUT the channel y has to be allowed by � with the required polarity, U-INPindicates that the continuation of an input pre�x has acquired an additional capability, andU-OUT remembers that the continuation of an output pre�x has lost some capability|thisis necessary in name-passing settings, since it ensures that the sender's continuation of someport will no longer be allowed to use that port itself. Sending a port has to be forgetful for thesender. U-REP is the most complicated rule: because replication is like parallel composition,processes may only have one free name|the one on which they listen|and must forgetit after having used it in order to maintain the invariant of port-uniqueness; this initialname can of course be used for receiving further names for interacting wiht its environment.U-RES introduces two complementary halves of a name upon restriction, while checking thatthe generated name is fresh. U-ALPHA allows to rename bound names in order to adjustprocesses to match the side-condition of rules U-RES and U-INP . Note that the rules U-OUTand U-INP are strictly more generous than the conditions on unique handling and bearing ofa name [Mil93] with respect to the two conditions that we mentioned in the Introduction.Lemma 13 (Basic properties of typing). Let � ` P . Then:1. fn(P ) � dom(�).2. If x? 2 N? n�, then �� x? ` P .3. If x? 2 � with x? 62 fp(P ), then �	 x? ` P .4. If x 2 N, then � n fx+; x�g ` (�x)P .5. If P y�hz?i������! or P y�(�z?)�������!, then y� 2 �.6. If P y+(x?)������!, then y+ 2 �.7. If P � bP , then � ` bP .Proof. Straightforward by induction.Note that �1 ��2 ` P1jP2 with �1\�2 = ; does not imply that also dom(�1)\dom(�2) = ;.This is necessary, if we do not want to forbid any communication between parallel components.It is important to state precisely, whether a substitution � preserves a typing judgement� ` P , i.e. whether � ` P implies �� ` P�. Let name-substitutions � be extended to(x?)� def= x�u and �� def= f (x?)� j x? 2 � g. Problematic substitutions are those whichdestroy the uniqueness information about ports, i.e. those which collapse formerly di�erentports. So, in order to be compatible with a typing judgement using �, we require that asubstitution � be injective with respect to that �.De�nition 14 (Compatible substitutions). A substitution � is called �-injective (or: �-compatible), if x� = y� implies either x = y, or x 6= y and �(x) \�(y) = ;.In order to prove that � is �-injective, check for all x 6= y with x� = y� that �(x)\�(y) = ;.For example, if � = fy�; y+g, then every substitution � is �-injective. If � = fy�; x�g, thenboth fy=xg and fx=yg are not �-injective.Lemma 15. If � ` P and � is �-injective, then �� ` P�.Proof. By checking that each of the typing rules is either directly preserved by �-injectivesubstitutions, or can be adjusted by means of U-ALPHA to rename some bound names.17



5.1 Context transitionsA context transition � ���! �0, as de�ned by the rules in Table 4 reminiscent of the side-conditions of the rules U-INP and U-OUT , speci�es of a process constrained by the context �that it is allowed to engage in the action �, and that its continuation process will be con-strained by �0. This intuition should be immediately clear for the �rst three rules. But, alsofor C-BOUT , it is straightforward since bound output means that two halves of the newly cre-ated name are generated, and exactly one of them is given away, i.e. the continuation context�0 = �� z? is in fact the result of (�� fz+; z�g)	 z?.Lemma 16. Let � ���! �0.1. (a) If � = y�hz?i, then y� 2 � and �0 = �	 z?.(b) If � = y�(�z?), then y� 2 � and �0 = �� z?.(c) If � = y+(x?), then y+ 2 � and �0 = �� x?.(d) If � = � , then �0 = �.2. (a) If x? 2 N? n�, then �� x? ���! �0 � x?.(b) If x? 2 � with x 62 n(�), then �	 x? ���! �0 	 x?.(c) If z 62 n(�), then � n fz+; z�g ���! �0 n fz+; z�g.The �rst set of propositions in this lemma describe the backwards-generation of side-conditionsfrom the existence of a context transition. The second set records weakening and two versionsof strengthening for context transitions. All propositions follow directly from the de�nition.We show that typability � ` P is preserved under transition P ���! P 0. However, thecontext for well-typedness changes under visible transitions from � to some �0. Similar tothe side conditions in the de�nition of bisimulation in the context of name-passing, we assumethat bound names in a label are `sound' with respect to the context � that constrains theactions of process P via typability. This is necessary for the proof, but is not critical for theproposition itself since we can always rename bound names in transitions in order to matchthe required side conditions.�
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C-TAU: � ���! �C-INP: y+ 2 � x 62 dom(�)� y+(x?)������! �� x?C-OUT: y� 2 � z? 2 �� y�hz?i������! �	 z?C-BOUT: y� 2 � z 62 dom(�)� y�(�z?)�������! �� z?Table 4: Context transitions18



Lemma 17 (Subject reduction). Let P 2 P and � � N?.If � ` P ���! P 0 with bn(�) \ dom(�) = ;, then � ���! �0 ` P 0 for some �0 � N?.Proof. By induction on the inference of P ���! P 0 and exploiting the last derivation step of� ` P in each case.In the polarized �-calculus, it is crucial to require that not only the binding object occurrencesof inputs, but also the non-binding object occurrences of outputs are tagged. Otherwise, thetype system would have to `guess' for the derivation of pre�xes which of the polarities isreceived and sent, respectively. Then, we would no longer be able to prove subject reduction.For example, P = y�hzi:z�hwi j y+(x):x�hwi, is typable in some �, if the type system wasallowed to guess the polarities for z in the left component and for x in the right componentindependently from each other. However, subject reduction would not hold since P ���! P 0 :=z�hwi j z�hwi is possible, whereas there is no �0 such that �0 ` P 0 is derivable. Consequently,we need to reject such processes P .We show that typability � ` P provides precise structural information about P . Here,and in the remainder of the paper, we assume that P 2 F 6� is �-free, which enables us todecompose processes due to existing transitions without involving the issue of �-conversion.Lemma 18 (Port-unique decomposition I). Let � ` P .1. If P y�hz?i������! P 0 and y+ 62 �,then there is P = C[ y�hz?i:Q ] with P 0 = C[ Q ]and y 62 fn(C) [ hn(C) and z 62 hn(C).2. If P y�(�z?)�������! P 0 and y+ 62 �,then there is P = C[ y�hz?i:Q ] with P 0 = C 6z[ Q ]and y 62 fn(C) [ hn(C) and z 62 fn(C), but z 2 hn(C),3. If P y+(x?)������! P 0 and y� 62 �,then there is P = C[ y+(x?):Q ] with P 0 = C[ Q ]and y 62 fn(C) [ hn(C) and x 62 fn(C) [ hn(C).4. If P ���! P 0,then there is P = C[ y�hz?i:Q1 ;y+(x?):Q2 ] for some y 2 N withP 0 � (�z)C 6z[ Q1 ;Q2fz=xg ], if z 2 hn1(C),P 0 = C[ Q1 ;Q2fz=xg ], otherwise, andeither y 2 hn1(C) \ hn2(C), or y 62 fn(C) [ hn1(C) [ hn2(C).5. If P ���! P 0,then either P � C[ (�y) ( y�hz?i:Q1 j y+(x?):Q2 ) ],or P � C[ y�hz?i:Q1 j y+(x?):Q2 ] with y 62 fn(C) [ hn(C).where C[�] and C[ � ; � ] are process contexts.Proof. By induction on the inference of the transition starting from P and exploiting thederivation of � ` P .Note that subject names y do not occur free in C[�]; this expresses uniqueness. However, theobject part of labels also exhibits interesting properties in each case. In particular, note thatin the case of free output the object may still occur free in C[�], the reason being that anaction may always carry at most one (polarized) half of a name. In the case where the objectis bound, it must not occur free in C[�] in order to avoid capture.19



5.2 Closing upNow, we interpret the information of the context � that y occurs with both polarities suchthat, after restricting P on y, the resulting (�y)P will exhibit certain behavioral properties.Closing typed processes in their context is completely analogous to the �0-calculus.De�nition 19 (Closure). Let � be an arbitrary context. Then, the set of names that occurin � with both polarities, de�ned as�� def= fx 2N j fx�; x+g � � g;is called the closure of �. If � ` P then�(P ) def= (���)Pis called the �-closure of P ; if �� = ;, then P is called �-closed.Let �  P denote � ` P where P is �-closed.We show that labeled transition preserves the closure of both contexts and processes.Lemma 20 (Closed subject reduction). Let P 2 P and � � N?.1. If � is closed and � ���! �0, then �0 is closed.2. If �  P ���! P 0 and bn(�) \ dom(�) = ;, then � ���! �0  P 0.Proof. By inspection of the de�ning rules for context transitions: Closedness can only beinvalidated by either adding to a port, which is already contained in the context, its comple-ment, or by adding two complementary ports. The latter is completely excluded by restrictingcommunications to one-port-at-a time. The former cannot happen since increase of contextby C-INP and C-BOUT always assumes that the name of the new port is fresh.Here, it is essential that double-polarity communication is forbidden; its permission wouldinvalidate the preservation of closedness. If a process P := y+(x�):(x�hzi jx+(w) ) would beallowed to receive both polarities of x in one communication. Then P would be typable inour system with � = fy+; z?g, and P would be �-closed. However, by allowingP y+(x�)������! x�hz?i jx+(w?) =: P 0 with � y+(x�)������! �� fx+; x�g =: �0P 0 would be typable in �0, but P 0 would not be �0-closed. Note that the problem is notpresent, if we use two subsequent communications to receive the needed ports, since we wouldhave to use two di�erent input variables to do that, which would then also be distinguishedin �0. For further discussion, see Section 7.Closed judgements �  P exhibit more information about the internal structure of pro-cess P than the corresponding `open' judgements � ` P .Lemma 21 (Port-unique decomposition II). Let �  P .1. If P y�hz?i������! P 0,then there is P = C[ y�hz?i:Q ] with P 0 = C[ Q ]and y 62 fn(C) [ hn(C) and z 62 hn(C). 20



2. If P y�(�z?)�������! P 0,then there is P = C[ y�hz?i:Q ] with P 0 = C 6z[ Q ]and y 62 fn(C) [ hn(C) and z 62 fn(C), but z 2 hn(C),3. If P y+(x?)������! P 0,then there is P = C[ y+(x?):Q ] with P 0 = C[ Q ]and y 62 fn(C) [ hn(C) and x 62 fn(C) [ hn(C).4. If P ���! P 0,then there is P = C[ y�hz?i:Q1 ;y+(x?):Q2 ] for some y 2 N withP 0 � (�z)C 6z[ Q1 ;Q2fz=xg ], if z 2 hn1(C),P 0 = C[ Q1 ;Q2fz=xg ], otherwise, and y 2 hn1(C) \ hn2(C).5. If P ���! P 0, then P � C[ (�y) ( y�hz?i:Q1 j y+(x?):Q2 ) ]and P 0 � C[ (�y) (Q1 jQ2fz=xg ) ].where C[�] and C[ � ; � ] are process contexts.Proof. By application of Lemma 18, followed by the exclusion of possible cases due to theclosure information of the judgement.6 Behavioral properties of well-typed processesWe collect the behavioral properties that hold for closed typable processes. We are especiallyinterested in the notion of conuence and whether they are guaranteed by typability.Theorem 22 (�-inertness). If �  P ���! P 0, then P � P 0.Proof. Because of Lemma 21, we have a decomposition P � C[Q ] for some process contextC[�] and Q = (�y) ( y�hz?i:Q1 j y+(x?):Q2 ) with P 0 � C[Q0] for Q0 = (�y) (Q1 jQ2fz=xg ).Observe that, due to the structure of Q, the transitionQ = (�y) ( y�hz?i:Q1 j y+(x?):Q2 ) ���! (�y) (Q1 jQ2fz=xg ) = Q0is the only one that Q exhibits. Immediately, we know that Q � Q0. Since bisimulation ispreserved by restriction and parallel composition, we also have P � C[Q] � C[Q0] � P 0, andsince this analysis is stable under name-substitution, we conclude the proof.We show that typability of a process witnesses the absence of transitions that are `con-currently enabled', but not `concurrent'. Then, we know that redexes are never shared andall concurrently enabled actions can be performed in either order.Proposition 23 (Concurrency). Let �  P . If P �1���! P1 and P �2���! P2 are concur-rently enabled transitions, then they are concurrent.Proof. According to De�nition 9, We check that only a-cases for the decomposition of thespan (cf Fact 8) are allowed by �  P .Theorem 24 (}-Conuence). Let �  P . Then P is }-conuent.Proof. By Proposition 23, the diamond property (Lemma 11), and labeled subject reduction(Lemma 20) for closed processes.In [Nes96], we have also studied typing systems for a merely signal-passing setting like choice-free CCS (typing rules are much simpler, since no names are passed around) and proved thatboth Milner's weak conuence and Groote-Sellink's strong conuence hold.21



7 Related typing approachesThe polarized �-calculus [Ode95] may be seen as a simpli�ed syntactic reformulation, of thesubtyped �-calculus [PS96], which is based on typing and subtyping of channels. Conse-quently, no type system is provided for preventing run-time errors, i.e. for guaranteeing thatthe side-condition in the COM/CLOSE-rules is always met for typable processes. For the pur-pose of [Ode95], and also for ours, the untyped version with the additional side-conditionsu�ced. Similarly, our typing system for port-uniqueness in the polarized �-calculus corre-sponds to some extension of the subtyping system. For the presentation in this paper, wepreferred to use the polarized calculus since it provides a rather simple and minimal solution.Subtyping In the �-calculus [PS96] with subtyping, the main idea is that directionalitymodes (i.e. polarities) de�ne channel types T. Moreover, the bidirectional mode b (corre-sponds to �) is a natural subtype for both unidirectionality modes r and w (corresponds to +and �): a bidirectional channel may be safely used in any context that would expect any ofthe its unidirectional counterparts.The technical development based on this idea is using a (polyadic) calculus with recursivelyde�ned type-levels by associating with each level some polarity (one of +, �, or �). Theoutermost polarity (denoted by I(T)) indicates the direction in which the channel itself maybe used within the scope of its binding; the inner polarities specify the polarities of thechannels' possible objects. All binding occurrences of names are typed; the typed bindingof x in y+(x:[[T]�]�):P describes that P would be enabled to send some name z of type [T]�along x, i.e. along the name that P might have received from y; a receiver of z may usethis name for both sending and receiving names of type T. The typing system in [PS96]records all introduced name-bindings of a process within typing assumptions � and checksthat each channel access according to the structure of the process term is permitted, and thatparallel compositions can be controlled by correctly combining type-bindings. The followingsimpli�ed rule speci�es run-time errors. Let �i be functions from names to names.�1 ` P1 y�hzi�����! P 01 �2 ` P2 y+(x:X)�������! P 02�1 + �2 ` P1 j P2 ���! error if :0@ I( �1(y) ) � �^ I( �2(y) ) � +^ �1(z) � X1AIf any of the three side-conditions is violated, we may infer a run-time error. The �rst twoclauses refer to the correct current access to the channel y: each party must be allowed toperform its local access. The third clause refers to correct future accesses of the receiver P 02 toits received channel x: the sender must be able (w.r.t. its typing context) to supply at leastthe capabilities for z that P2 requires in order to be enabled to use x correctly.Towards port-uniqueness In the standard �-calculus, P = y�hzi:z�hwi j y+(x):x�hwiwith P �! P 0 := z�hwi j z�hwi is a critical example: P would be typable, according tothe system presented in this paper, when the type system `guesses' that the left componentemits z+ (such that its continuation is allowed to use z� as required) and the right componentreceives x� such that the composition becomes typable, while P 0 is not typable, thus subjectreduction is invalidated. Using explicit polarities, we prevented the left component fromcheating (passing on the wrong polarity to the right component by tagging the output zas z+ in order to be typable itself); the resulting polarized term would no longer exhibit thereduction to P 0 since the side-condition on matching object tags would not be ful�lled.22



The subtyping calculus guarantees correct use of polarities according to the above side-conditions for deriving communications. There, the critical example would be rephrasedP = y�hzi:z�hwi j y+(x:X):x�hwi, and with � = fw:W; y:Y; z:Zg ` P , we would know that� Y � [Z]� for the output on y, and Z � [W]� for the output on z, and� Y � [X]+ for the input from y, and X � [W]� for the output on x,where the two conditions for Y provide a rather useful connection of the types Z and X: byLemma 2.4.8 in [PS96], we know that Z � X.An extension of the type system towards uniqueness (on top of that for checking correct useof polarity) would be similar to our system, i.e. from the typing context of output continuationswe remove the capabilities that are sent, and parallel composition has to be strengthenedappropriately. Equivalent to explicit polarities, the above Z � X then helps in recognizingthe critical example as ill-typed since the output-capability for z would have to be removedby the �rst output in the left component such that its continuation will no longer be typable.Closing up vs. typed observations In a typed calculus, it is more natural to adaptthe notion of observation to the idea of typing. Consequently, visible transitions shall onlybe regarded as observable if the outside is a `legal' environment, i.e. allowing a well-typedcomposition of the observing context and the observed process [PS96, KPT96, PS97, San96b,Ama97]. As a consequence, typed observations give rise to coarser equivalences that havealso proven to be useful in various cases.With respect to unique use of ports, a channel is then only observable if not both of itsends may be used by the observed process itself, such that the complement could in principlebe provided by the observing context. We have forbidden double-polarity output since subjectreduction for closed judgements was invalidated. Closing up was necessary for constrainingthe visible transitions in the spans of conuence diagrams. So, if we adopt a typed observationprinciple for conuence instead of `closing up', we may admit double-polarity outputs.Linear(ized) types In contrast to channels with linear types, which can be used at mostonce throughoput their lifetime, our notion of unique access corresponds to channels withlinearized types, as suggested in [KPT96, THK94, KNY95], which can be reused after each(unique) usage. In [KPT96], an encoding of linearized types by means of linear types, mixedwith an encoding of synchronous into asynchronous output, was proposed: subsequent accessto some unique channel would be translated into the use of subsequently created fresh linearchannels. However, linearized types and the corresponding encoding have not yet been studiedin more detail, in particular, not with respect to conuence issues.In the very recent approaches of [San96b, Ama97], only the receiving end of a channel isrequired to be accessed uniquely, much as with the notion of unique bearing due to [Mil93] andwith `de�nitions' in the join-calculus [FG96]. In our system, both ends are controlled, but thesubsequent behaviors are not restrained. Similar ideas can be found with a `linear' variantof receptiveness in [San96b] and with mutex channels in [Kob97]: the former additionallyrequires that receptors always have the same behavior; the latter additionally requires thatmessages are always present, while requiring nothing for receptors.
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8 ConclusionWe have shown how to set up a type system in the polarized �-calculus that statically guaran-tees unique access to ports throughout a processes' lifetime. We have also discussed in detail,how to adopt the idea of controlling port-uniqueness in the setting of a calculus with sub-typing. The generalization of our setting to polyadic messages is straightforward. The onlycomplication is the distinction between free and bound objects in polyadic outputs, where freeoutputs decrease the typing context, while bound outputs (as in the monadic case) increase it.We have derived strong diamond conuence properties for well-typed processes and alsogave a very simple proof of � -inertness for well-typed processes. Also, it is straightforwardto deal with partial conuence in the sense that the diamond property holds only for spans,where at least one transition is generated for communication on a unique port (and under theside-condition that the other transition is not complementing the former).Of course, we cannot recognize all conuent process systems by means of a static typingsystem since all interesting notions of conuence, and also port-uniqueness and other namedisciplines, for concurrent systems of message-passing processes are undeciable. However, acombination of type systems for unique/linearized channels with others for� linear channels with at most one sender and one receiver,� functional channels with one persistent receiver and multiple senders, and� mutex channels with one persistent message and mutiple receivers,might be `su�ciently complete' by covering enough cases for practical purposes.In order to get even closer to completeness, it is likely to be advantageous to include causalinformation within type systems. For example, let P = (�b) (a�hzi:b�hyi j b+(x):a�hwi).Although P is not typable since a� occurs on both sides of the composition, P is port-unique(and conuent) since the occurrence of a� in the left component has precedence (in theterminology of [Pri96]) over the occurrence of a� in the right component. Thus, at any time,only one of them will be enabled. We believe that an adaptation of the recently developedmore graphical notions of types as in [Yos96, Kob97] could be exploited for an enhancementour type system, since they take causal information into account.AcknowledgmentsWe would like to thank C�edric Fournet for reading a draft of this paper, Benjamin Pierce andDavide Sangiorgi for discussions on the topic in an early stage of the work.References[Ama97] R. M. Amadio. An Asynchronous Model of Locality, Failure, and Process Mobility. Rapportinterne, LIM, Marseille, 1997.[BC88] G. Boudol and I. Castellani. A Non-Interleaving Semantics for CCS Based on Proved Tran-sitions. Fundamenta Informaticae, XI:433{452, 1988.[DP92] P. Degano and C. Priami. Proved Trees. In Kuich [Kui92], pages 629{640.[FG96] C. Fournet and G. Gonthier. The Reexive Chemical Abstract Machine and the Join-Calculus. In POPL'96, pages 372{385, 1996.24
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