
Inheritance of ProofsMartin HofmannArbeitsgruppe Logik und mathem. Grundl. der Informatik, Fachbereich Mathematik, Technische Hochschule Darmstadt,Schlo�gartenstra�e 7, D-64289 Darmstadt, GermanyWolfgang NaraschewskiInstitut f�ur Informatik, Technische Universit�at M�unchen, Arcisstra�e 21, D-80290 M�unchen, GermanyMartin Ste�enInstitut f�ur Informatik, Christian-Albrechts-Universit�at Kiel, Preusserstra�e 1-9, D-24105 Kiel, GermanyTerry StroupLehrstuhl f�ur Informatik VII, Friedrich-Alexander-Universit�at Erlangen-N�urnberg, Martensstra�e 3, D-91058 Erlangen,GermanyThe Curry-Howard isomorphism, a fundamental propertyshared by many type theories, establishes a direct corre-spondence between programs and proofs. This suggeststhat the same structuring principles that ease programmingbe used to simplify proving as well. To exploit object-oriented structuring mechanisms for veri�cation, we ex-tend the object-model of Pierce and Turner, based on thehigher-order typed �-calculus F !� , with a logical compo-nent.By enriching the (functional) signature of objects witha speci�cation, the methods and their correctness proofsare packed together in the objects. The uniform treat-ment of methods and proofs gives rise in a natural wayto object-oriented proving principles | including inheri-tance of proofs, late binding of proofs, and encapsulationof proofs | as analogues to object-oriented programmingprinciples. We have used Lego, a type-theoretic proofchecker, to explore the feasibility of this approach. Inparticular, we have veri�ed a small hierarchy of classes.c
 1997 John Wiley & Sons1. IntroductionMany programming languages have been developedto ease modular and structured design of programs.The popularity of powerful structuring techniques, in-cluding object-oriented ones, is a convincing argumentthat those mechanisms support the programming task.Depending on the programming style, they cater todivide-and-conquer strategies for breaking down largeprograms into abstract data types, modules, objects,or similar. Since the resulting components ideally mir-ror the decomposition of the problem into conceptually.c
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self-contained units, it is natural to organize veri�cationalong the structure of the programs.In this paper we apply this idea to object-orientationby showing that speci�cation and veri�cation can beorganized along the class hierarchy of object-orientedprograms and in particular that inheritance applies toproofs as well.We achieve this goal by embedding Pierce andTurner's object model [47] into the Extended Calculusof Constructions (ECC) [33] | a type theory in whichprograms and proofs, as well as types and speci�cationscoexist and can be interleaved. A particular feature oftype theories like ECC is that logical propositions aretreated as (particular) types having their proofs as ele-ments; the so-called Curry-Howard isomorphism.This means that in principle structuring mechanismsthat apply to programs and types scale up to proofsand speci�cations. Although the Curry-Howard iso-morphism serves as a guideline for generalizing theprogramming mechanisms to proofs, several nontrivialnovel problems arise in the context of veri�cation, e.g.the treatment of self proofs in Section 3.Beyond the uniform treatment of programs andproofs, a further advantage of type theory is that imple-mentations are available which equip type theory with afront-end for the interactive goal-directed developmentof proofs and programs. We have used the Lego im-plementation of ECC to carry out the proofs of all thenecessary meta-properties and for the veri�cation of asimple class hierarchy.THEORY AND PRACTICE OF OBJECT SYSTEMS, Vol. ???(Number ??), 1 19 ??? CCC ???



Our work is closely related to [23] and can be seenas a further development and elaboration of ideas ex-pressed there. In particular, our approach builds uponthe equational axiomatization of coercion and updateand on the idea of \inheriting proofs" explained by wayof example there. Apart from providing a formal type-theoretic underpinning for object-oriented veri�cation,including a Lego formalization, the present paper ex-tends [23] by providing a more general framework forthe speci�cation and veri�cation of late-binding meth-ods, which avoids including implementation details inspeci�cations as was done in loc. cit.; see Section 3 fordetails. Moreover, we explain how �-reduction on proofterms can be used to eliminate the consistency assump-tions on speci�cations which were needed in [23]. Fi-nally, the treatment of generic proof methods is new.The remainder of the paper is organized as follows:after a brief review of Lego, we present in Section 2 anencoding of object-oriented programs in Lego based onF !� , and enriched by veri�cation. The straightforwardextension, though, fails to capture all subtleties involvedin the veri�cation of late binding methods. Hence inSection 3 we modify the encoding to overcome the limi-tations of the �rst attempt. In the concluding Section 4we discuss related and further work.2. Veri�cation of object-oriented programswith Lego2.1. The Lego proof assistantThe Lego proof assistant [35] is an interactive,type-theoretic proof checker. It implements the Ex-tended Calculus of Constructions (ECC) and a family ofweaker, related type theories. The system comprises astrongly typed functional programming language as wellas a higher-order intuitionistic logic. The ECC uses apredicative hierarchy of universes for programming andan impredicative universe for logical propositions. Inthis work, the higher universes are not used and in-stead we employ the impredicative universe ? both forpropositions and datatypes. Since we don't make useof the hierarchy of universes, our development could berealized in the Calculus of Constructions with inductivetypes as implemented in the Coq system [13], too.We wish to stress that the use of a single universe forboth propositions and types is | although pragmati-cally advantageous | not crucial for our approach. Itwould work equally well if we would employ two im-predicative universes Set and ? like in the Coq system.It seems plausible that the program extraction mecha-nism of Coq which strips o� all terms of kind ? froma type-theoretic development could then be extended

to object-oriented programs. The drawback of havingtwo separated universes is that we would have to du-plicate various de�nitions and rules and also that theLego implementation does not provide Set and ?.Lego o�ers inductive de�nitions of data types to-gether with induction principles. By means of its re-�nement mechanism, based on �rst-order uni�cation, itsupports interactive, goal-directed proof developmentin a natural-deduction style. Working with Lego is sup-ported by local and global de�nitions, typical ambigu-ity, and implicit arguments, which allow the user toomit automatically synthesizable function arguments.Lego also o�ers arbitrary user-de�ned reduction rules,the soundness of which has to be veri�ed externally, ofcourse. We will make use of this feature in the de�nitionof existential types with dependent elimination rule.A detailed introduction to Lego can be found in themanual [35] or in the web resources [32].For the purpose of understanding this paper it shouldbe enough to know that Lego supports an extension ofF! by higher-order logic with explicit proof objects.That is to say, if A is a type of F!, we can form in Legothe type A! ? of types depending on A, in particularof predicates over A; if P : A ! ? and a : A thenP (a) is a type; the type of proofs of P (a). Elementsof such proof types can be constructed interactively ina goal-directed fashion. Types and predicates can bepacked together using �-types; for example �x :A:P (x)has as elements pairs hx; pi where x : A and p : P (x).If z : �x :A:P (x) then z:1 :A and z:2 : P (z:1). Toease readability, we use dependent records as syntacticsugar for (nested) �-types. In the above example wecould write [c1 : A; c2 : P (c1)] for the dependent recordtype. The corresponding inhabitants are of the form[c1 = a; c2 = p] where a : A and p : P (a), i.e. p is aproof of P (a).At the moment, the Lego type theory does not pro-vide subtyping; we simulate a subtyping judgementA � B by a certain type whose members are triplesconsisting of a coercion from A to B, an update func-tion and a proof that these two functions satisfy certainequations. See Section 2.3.1 for details.Conventions All de�nitions and proofs of this paperhave been machine-checked by Lego.1 To ease humanreading, though, we do not employ Lego-syntax; insteadwe write terms in a more conventional notation, using� for abstraction and 8 for Lego's dependent �-type.For the impredicative universe Prop of logical proposi-tions we write ? and dependent records are noted asindicated above. We fall back upon de�nitions pro-vided by the Lego-library [26] whenever appropriate.If not immediately obvious, these de�nitions will be in-formally explained in the text so that no knowledge ofthe Lego library is required. We further use the key-word let for local de�nitions, denote unary applications(f a) some place by a:f and write ( ; ) for the non-2 THEORY AND PRACTICE OF OBJECT SYSTEMS|???



dependent pairing function with surjective pairing fromthe library lib prop/lib prod.l. We denote Leibnizequality from lib eq.l by =L, allowing ourselves in-�x notation. The inductive natural numbers of theLego-library lib prop/lib nat/lib nat.l are writtenas nat and we assume tacitly the usual operators to beavailable and standard properties to hold.Lego supports implicit syntax to simplify de�nitions,synthesizing omitted arguments on its own. As in Lego,we replace a declaration x :A in a 8-type or in a �-abstraction by x j A indicating that x is an implicitargument.In most de�nitions, we do not give the whole ex-pression as a �-term, but put some leading abstractionsinto the text. Free variables in types are meant to beuniversally quanti�ed. Finally, we elide conjunctionsbetween displayed equations. Apart from these conven-tions, though, all de�nitions are complete and can bedirectly translated into Lego.2.2. The F !� object modelIn recent years, a number of typed �-calculi havebeen investigated as foundation of typed object-orientedlanguages. The line of research started with CardelliandWegner's proposal [10] for the typed object-orientedtoy language Fun based on F�, an extension of thesecond order polymorphic �-calculus [18, 49] by sub-types. Cardelli and Wegner proposed to model objectsas records of their methods. The language Fun hasspawned quite a number of di�erent calculi of varyingcomplexity. An overview can be found in [17], a collec-tion of relevant papers in [20].For our purpose of integrating an object calculus intoa logical framework, one particular formal system, thesystem F !� [45] is a suitable basis, since it avoids thecomplexity of calculi with recursive types [5, 38].F !� , the extension of F� by type operators of arbi-trary order, has been proposed by Pierce and Turner[46, 47, 24] as a core calculus for object-oriented lan-guages in the style of Smalltalk [19]. In the following,we informally recapitulate the representation of object-oriented programming concepts in this framework. Amore detailed account of representing object-orientedprograms in F !� can be found in [45, 47].According to [47] an object is a collection of oper-ations, working on an internal state. Both state andoperations are encapsulated or hidden inside the ob-ject, and access is controlled by the interface. In theobject model we use, encapsulation is represented byexistential quanti�cation; encapsulation by existentialquanti�cation was �rst proposed by [39], though for ab-stract data types rather than objects.We call the type of the internal state the represen-tation type of the object. The type of the operations,

abstracted over the representation type, is called theobject's signature Sig : ? ! ?. See the de�nition ofSigPoint in the example on Page 5 for an example ofsuch a signature. Usually, for Rep : ? the type Sig Repis a record of functions with argument of type Rep. Thetype of objects with signature Sig : ?! ? is de�ned asObject(Sig) = 9Rep :? : [state :Rep; ops : Sig Rep]Using the introduction rule for existential types we canconstruct an element of type Object(Sig) from some rep-resentation type Rep , a state state : Rep and an imple-mentation ops : Sig Rep of the operations. Existentialelimination on the other hand allows one (under a co-variance condition on the form of Sig explained in detailin [24]) to de�ne a generic method of type Sig Objectwhich when applied to an object applies its internalmethods to its state and returns the packaged result.In class-based languages, a class serves as a blueprintfor objects and can be used in two ways: First, to cre-ate new objects sharing the representation and imple-mentation common to the class: the classes instances.Second, to de�ne new subclasses incrementally by in-heritance, where (parts of) the de�nitions of the oldsuperclass may be used. By inheritance, some meth-ods may be re-implemented and overridden or, by en-riching the signature, new methods may be added tounchanged, inherited ones.An important intricacy are the so-called self-methods. This concept, popular since Smalltalk, per-mits methods to be de�ned in terms of other methodsof the same class. What makes it di�cult to model isthat self does not refer statically to the methods im-plemented by the class. If a method refers via self toanother method and gets inherited by a subclass, thenself no longer refers to the operations of the superclass,from which it was inherited, but dynamically to theones of the new class; in case one of the methods isre-implemented, all others referring to it via self aremodi�ed as well. This is known as dynamic binding ofmethods or late binding.The last ingredient we mention is subtyping. Subtyp-ing constitutes an order relation on types, where S � Tmeans that an element of type S can be regarded as anelement of T and thus safely be used when an inhabi-tant of T is expected. This is known as substitutabilityor subsumption. Subtyping must not be confused withinheritance: Inheritance is the construction of a newsubclass, whereas subtyping is concerned with the useof objects | or terms in general. Although inheritanceand subtyping are di�erent, there is a connection be-tween them in this model: the type of any instance ofa subclass is a subtype of the type of any instance ofthe superclass. Subclasses and superclasses themselves,however, are not related by subtyping.THEORY AND PRACTICE OF OBJECT SYSTEMS|??? 3



2.3. Encoding of object-oriented programsThe system F !� is su�ciently expressive to modelobject-oriented programs but, lacking dependent types,neither to specify their behavior nor to reason aboutthem internally. We transfer the F !� object-model toLego and extend it in such a way that the types of theobjects will not only include the functional types of theoperations, but also a speci�cation of their behavior.The objects then contain correctness proofs in additionto the implementation of the operations.Apart from subtyping, transferring F !� 's object-oriented programming model to Lego is trivial, sincein the �-cube [4] the !-order �-calculus F ! [18] is asubcalculus of the Extended Calculus of Constructions(more precisely of the pure Calculus of Constructions).Subtyping, though an integral part of F !� , is neitherpresent in the Extended Calculus of Constructions norin Lego, so we have to �nd an adequate representation.2.3.1. Subtyping A type S being a subtype of T ,written S � T , means that it is safe to use terms ofthe smaller type in all cases where a term of the big-ger type is expected. This is expressed by subsumption.Conventionally, the subtype relation can be capturedby so-called coercion functions, where the statementS � T is represented as a function f :S ! T . If weview the type S as a more re�ned version of T , the co-ercion function extracts the T -part of elements of S. Asshown in [23], this simple representation is not enoughto model update together with subtype polymorphismin a functional setting. To account for updating, S � Tis represented as a pair of functions, say get and put ,with get :S ! T and put :S ! T ! S. The functionget plays the role of the coercion function, extractingthe T -part of elements of S, and put takes as �rst argu-ment a value of type S and overwrites its T -part withthe second argument, without altering the rest. For arestricted set of types the functions, get and put can begenerated automatically. A model where subtyping isinterpreted in this way has been developed for a certainrestriction of F� in [23]. The interpretation of get andput as extraction and update functions is captured bythe three equations of the following de�nition.De�nition. [Laws for get and put [23]] Assume im-plicitly two types S and T and assume further two func-tions get :S ! T and put :S ! T ! S. The laws forget and put are de�ned as the following equations:get (put s t) =L t (1)put s (get s) =L s (2)put (put s t1) t2 =L put s t2 (3)The Lego-representation GetPutLaws of these equa-tions abstracted over S, T , get , and put has type8S j? : 8T j? : (S ! T ) ! (S ! T ! S) ! ?. We use

it to de�ne the subtype relation, where Lego's j-syntaxfor implicit arguments allows us to omit mentioning the�rst two arguments of GetPutLaws :De�nition. [Subtype relation] Assume the types S :?and T :?. The subtype relation is then de�ned as:S � T def= [ get :S ! T;put :S ! T ! S;gpOK :GetPutLaws get put ]The elements gp of a type S � T are triples, consistingof two functions get and put , and a proof gpOK thatthey satisfy the required laws. Re
exivity and transi-tivity of the subtype relation are easily established.Lemma 1. The subtyping relation is a pre-order in thesense that there are terms re
� :8S :? : S � S andtrans� :8S; T; U j ? : (S � T )! (T � U )! (S � U ):Proof. For re
exivity, de�ne the two functions as theidentity and the second projection. The GetPutLawsare immediate by re
exivity of Leibniz's equality.For transitivity, let gpS�T be a proof for S � T andgpT�U for T � U . De�ne the extraction function fromS to U as the composition of gpS�T:get with gpT�U:get .The update function is composed as�s : S: �u :U:gpS�T:put s (gpT�U:put (gpS�T:get s) u):Proving the respective laws is straightforward.We do not address coherence of this notion of sub-typing here, so | strictly speaking | we model F !�derivations not judgements. In principle, Curien andGhelli's coherence proof for F� with explicit coercions[14] should be applicable to the present situation.2.3.2. Objects Intuitively, the inclusion of speci�-cations in the interface of objects is straightforward.In addition to the functional signature Sig : ? ! ?,the interface needs a component Spec which speci�esproperties of the object in terms of its operations andthus has type 8Rep :? : (Sig Rep) ! ? . Recall that? is the kind of datatypes and propositions. Givena representation type Rep, the body of an object hastype [state :Rep; ops :Sig Rep; prfs : Spec Rep ops ] andconsists of a state, the operations, and a proof thatthey satisfy the speci�cation.But how to achieve encapsulation? In the informalexplanation in Section 2.2, we used F !� 's existentialquanti�er to hide the internal state and the operations.Using the standard impredicative encoding9 = �P :?! ? : 8C :? : (8R : ? : (P R)! C)! Cof the weak sum, then, as explained in [47] and [24], wecan de�ne a generic method meths of type Sig Object .However, although every object embodies a proof thatits methods satisfy the speci�cation Spec we cannot ob-tain an externalized version of the proofs, i.e. prove4 THEORY AND PRACTICE OF OBJECT SYSTEMS|???



Spec Object meths . The reason is that the (de�nable)elimination function associated with the impredicativeencoding is too weak as can be seen from its type8C : ? : (8R :? : (P R)! C)! (9R :? : P R)! C;where P : ? ! ? is an arbitrary type operator. (Weuse the more familiar notation 9R : ? : P R insteadof 9(�R : ? : P R).) Roughly speaking, this elimi-nation rule allows us to de�ne a function of type(9R :? : P R) ! C provided we specify it on canoni-cal elements. It does not allow us to prove anythingabout elements of type 9R : ? : P R, i.e. to de�ne a de-pendent function of type 8o : (9R : ? : P R) : C o whereC : (9R : ? : P R)! ?.The solution we propose is to axiomatically assumean existential quanti�er together with the usual intro-duction rule and a dependent elimination rule whichovercomes the shortcoming of the impredicative encod-ing. Of course, the soundness of such an extension hasto be validated externally as we will do below.De�nition. [Existential quanti�cation] The forma-tion, the introduction, and the elimination rule for thetype constructor 9 are declared as follows:9 : (?! ?)! ?pack : 8P : ?! ? : 8R : ? : (P R)! 9R : ? : P Ropen : 8P : ?! ? : 8C : (9R : ? : P R)! ? :(8R : ? : 8x :P R: (C (pack P R x)))!8o : (9R : ? : P R): C oAssume predicates P :? ! ? and C : (9R : ? : P R)! ?and a function f : 8R :? : 8x :P R: C (pack P R x).Assume further R :? and x :P R. The reduction rule isthen de�ned as:open P C f (pack P R x)) f R xThis existential quanti�er can be soundly interpretedin the PER/!-set model of the ECC [33] as follows. IfF is a function mapping partial equivalence relationson N (PERs) to PERs. De�ne 9(F ) as the symmet-ric, transitive closure of the union of the F (R) as Rranges over the set of PERs. This is the least upperbound of the F (R) in the complete lattice of the PERsordered by set-theoretic inclusion. The pack-constructcan then be modelled as an inclusion map, i.e. we haveF (R) � 9(F ) for each R. To interpret open we as-sume a family of PERs indexed over the quotient of9(F ) or equivalently a PER C(n) for each n in the do-main of 9(F ) and satisfying C(n) = C(n0) whenevern and n0 are related by 9(F ). The premise to opencorresponds in the PER model to an algorithm e suchthat for each PER R, whenever n and n0 are relatedin F (R) then e(n) and e(n0) are de�ned and related inC(n)(= C(n0)). Now, if n and n0 are related in 9(R) itfollows by induction on the length of a path relating nand n0 that e(n) and e(n0) are both de�ned and relatedin C(n). So e itself yields the interpretation of open .

Now we can de�ne the type of objects, using thedeclared existential quanti�er.De�nition. [Type of objects] Assuming a signatureSig of type ? ! ? and a speci�cation Spec of type8Rep :? : (Sig Rep) ! ?, the type of objects is givenas: Object def= 9Rep :? :[state :Rep; ops :Sig Rep; prfs : Spec Rep ops]With the existential quanti�er as top-level constructor,objects are built by the existential introduction rule. Toease the presentation, we de�ne a term for construct-ing objects with the help of the existential introductionoperator pack .De�nition. [Object introduction] Assuming implicitlya representation type Rep, a signature Sig, and a speci-�cation Spec, the function ObjectIntro for object intro-duction is de�ned as:ObjectIntro def=�mystate :Rep :�myops : Sig Rep :�myprfs :Spec Rep myops :pack (�Rep :? : [ state :Rep ;ops :Sig Rep;prfs :Spec Rep ops ])Rep[ state = mystate;ops = myops ;prfs = myprfs ]: Rep ! 8myops : Sig Rep : (Spec Rep myops)!Object Sig SpecLet's illustrate these de�nitions of objects with the stan-dard example of points. For the sake of discussion, ourpoints have one coordinate in nat admitting examina-tion by getX , overwriting by setX , and augmentationby inc1 . A natural choice, though not the only possibleone, for the internal representation type is the type ofnatural numbers itself.Example 1. [Points] The signature SigPoint of pointsis the product of the types of the operations getX , setX ,and inc1 , abstracted over the representation type Rep:SigPoint def= �Rep :? : [ getX :Rep ! nat ;setX :Rep ! nat ! Rep;inc1 :Rep ! Rep ]For the speci�cation of points, assume a representationtype Rep and operations ops conforming to the signatureof type SigPoint Rep. To simplify the presentation, thespeci�cation SpecPoint consists of only two equations:SpecPoint def=ops :getX (ops :setX r n) =L nops :getX (ops :inc1 r) =L (ops :getX r) + 1THEORY AND PRACTICE OF OBJECT SYSTEMS|??? 5



The type of points Point is de�ned using the type con-structor Object.Point def= Object SigPoint SpecPointLet us de�ne a concrete object MyPoint :Point with rep-resentation type nat and initial value 3 by the objectintroduction rule ObjectIntro. The operations are im-plemented as:opsPoint def= [ getX = �n : nat : n;setX = �n : nat : �m : nat : m;inc1 = �n :nat : n+ 1 ]: SigPoint nat :The pair prfsPoint : SpecPoint nat opsPoint of correct-ness proofs for the two equations is immediate by re-
exivity of Leibniz's equality. Putting it all together byobject introduction yields a concrete point of type Point :MyPoint def= ObjectIntro 3 opsPoint prfsPoint2.3.3. Generic methods So far, we have means toencapsulate the state of objects by existential quanti�-cation. As mentioned before, we also need a mechanismto gain disciplined access to the objects, using the op-erations and the proofs mentioned in the interface. Thegeneric methods are functions that open the objects anduse the internal operations to perform the requestedmanipulations. If the operations ops of an object havetype Sig Rep for some Rep : ?, the type of the genericfunctional methods meths is Sig (Object Sig Spec). Thegeneric version of proofs of Spec Rep ops then hastype Spec (Object Sig Spec)meths . In the point exam-ple, the generic methods methsPoint have the typeSigPoint Point = [ getX :Point ! nat ; setX :Point !nat ! Point ; inc1 :Point ! Point ] and the genericversion of the �rst equation of the speci�cation is forinstance methsPoint :getX (methsPoint :setX p n) =L n.As can be seen from their types, the generic methodsare to be de�ned generically for all objects, i.e. inde-pendently of any internal implementation.The generic methods discussed above invoke the in-ternal operations and proofs of objects with a spe-ci�c interface. Subtyping should facilitate the use ofgeneric methods for more re�ned objects, e.g. the ap-plication of the points' methods to colored points, pro-viding additional operations and proofs dealing withthe color. It is not enough, however, to be able to ap-ply the generic methods to more re�ned objects, as thestate-modifying methods have to return objects of thesubtype, too. For example, the type of the methodoverwriting the x-coordinate of points should be 8P �Point : P ! nat ! P . It is well known [45] that onlytrivial functions inhabit this type. The solution pro-posed for F !� is to use the subtype polymorphismnot on

the type of objects, but on their signature, resulting in8 Sig � SigPoint : (Object Sig) ! nat ! (Object Sig)as the type for the setX method. In Section 2.3.1 wehave encoded the subtype relation as pairs of extractionand update functions. Since for the above subtype rela-tion on the signatures, the update part is not needed, werepresent the relation simply by an extraction function.Example 2. [Generic methods for points] Assumeimplicitly a signature Sig :? ! ? and a speci�cationSpec :8Rep : ? : (Sig Rep) ! ? together with a coercionco sig of type 8Rep j ? : (Sig Rep) ! (SigPoint Rep).The generic method Point 0setX is de�ned as follows:Point 0setX def=� o :Object Sig Spec :� n :nat :open (�Rep :? : [ state :Rep;ops :Sig Rep;prfs :Spec Rep ops ])(� :Object Sig Spec : Object Sig Spec)(�Rep :? :� stateopsprfs : [ state :Rep;ops : Sig Rep;prfs : Spec Rep ops ]:ObjectIntro[state = (co sig stateopsprfs:ops): setXstateopsprfs:state n;ops = stateopsprfs:ops;prfs = stateopsprfs:prfs ] )o: (Object Sig Spec)! nat ! (Object Sig Spec)The methods Point 0getX : (Object Sig Spec) ! nat andPoint 0inc1 : (Object Sig Spec) ! (Object Sig Spec) canbe de�ned analogously.In a similar way, the generic proof methods for pointsare obtained by opening the point and accessing thecorresponding internal proof. In contrast to the modelof Pierce and Turner we have to deal with the proof-partas well, which implies that in addition to the signaturecoercion co sig : 8Rep j? : (Sig Rep) ! (SigPoint Rep)we require a speci�cation coercionco spec : 8Rep j ? : 8 ops j Sig Rep :(Spec Rep ops)!(SpecPoint Rep (co sig ops)) :With these extraction functions we can de�ne genericproof methods for the equations of the speci�cation ofpoints.Example 3. [Generic proof methods for points] As-sume implicitly a signature Sig, a speci�cation Spec,and coercion functions co sig and co spec. The genericproof method for the �rst equation Point 0prf1 is de�ned6 THEORY AND PRACTICE OF OBJECT SYSTEMS|???



as follows:Point 0prf1 def=� o :Object Sig Spec :� n :nat :open (�Rep :? : [ state :Rep;ops :Sig Rep;prfs :Spec Rep ops ])(�o :Object Sig Spec : Point 0getX co sig(Point 0setX co sig o n) =L n)(�Rep :? :� stateopsprfs : [ state :Rep;ops : Sig Rep;prfs : Spec Rep ops ]:let mystate = stateopsprfs:statemyprfs = co spec (stateopsprfs:prfs)in myprfs:1 mystate n)o: 8o :Object Sig Spec : 8n : nat :Point 0getX co sig (Point 0setX co sig o n) =L nIn the same way, the generic proof method Point 0prf2of the second equation has type 8o :Object Sig Spec :8n :nat : Point 0getX co sig (Point 0inc1 co sig r) =L(Point 0getX co sig r)+1 and can be de�ned analogously.We have illustrated the generic methods on the spe-ci�c example of points. For a restricted set of signaturesit is possible to de�ne the generic methods uniformly[24], namely for signatures of the form �Rep :? : Rep !(T Rep), where T is covariant in its argument Rep.The restriction to covariant signatures excludes thede�nition of binary generic methods such as Point !Point ! bool since they would need to compare thestate of two points of arbitrary representation types;but these are hidden by the existential quanti�er. Thisphenomenon has been discussed already in the contextof abstract data types in [39] and [36]. (Cf. [6] for a de-tailed discussion of problems related with binary meth-ods in typed object-oriented programming languages.)In this example we were able to de�ne the genericfunctional methods, as the signature is basically ofthe above form. Instead of SigPoint , we could haveused �Rep : ? : Rep ! [getX :nat ; setX :nat ! Rep;inc1 :Rep ] as well; for presentational purposes, we havechosen the form of signature on Page 5.Similarly, a generic proof method with typeSpec (Object Sig Spec)meths can only be de�ned if thespeci�cation has the form of universally quanti�edclauses each of which contains the type Rep in covariantposition only. For example, if SpecPoint would containa third clause8r :Rep :8r0 :Rep : (ops :getX r =L ops :getX r0)! (r =L r0)then a generic proof method would state that two pointobjects with equal x-coordinate are equal. Note that

the type of r0 constitutes a contravariant occurrenceof type Rep. Even if this property is locally satis�edby concrete representations it is unsound in its generalform (think of points with a color attribute which isblue in one representation and red in another one). Webelieve that the required covariance condition on Speccan be formalised in such a way that a uniform de�ni-tion of generic proof methods can be given along thelines of [24].For the moment we circumvent this problem by giv-ing an explicit de�nition of generic (proof) methods ineach case.2.3.4. Objects without logical components In theprevious sections we have emphasized the bene�t ofpacking programs and proofs together in the objects. Inthe context of formal veri�cation the given argumentsare justi�ed, but they don't apply if the objects are tobe executed. For this purpose the proofs are ballast;worse still they are big. As programs and proofs forma pair, we can jettison the proofs simply by projectingout the programs. To take care of encapsulation, weopen the objects �rst, then extract the programs, and�nally repack the objects without the proofs. The typeof the resulting trim objects coincides with the one in[47].De�nition. [Type of objects without logical compo-nent] Assuming a signature Sig : ?! ? the type of ob-jects without proof component is given as:Object e� def= 9Rep :? : [state :Rep; ops : Sig Rep]De�ning the function forget prfs of type 8 Sig : ? ! ? :8 Spec : (8Rep : ? : (Sig Rep) ! ?): (Object Sig Spec) !(Object e� Sig) which forgets the proof-part of objects,is analogous to de�ning generic methods.De�nition. [Objects without logical component] As-suming implicitly a representation type Rep, a signatureSig, and a speci�cation Spec, the term for forgetting theproof component is de�ned as:forget prfs def=� o :Object Sig Spec :open (�Rep :? : [ state :Rep;ops :Sig Rep;prfs :Spec Rep ops ])(� :Object Sig Spec : Object e� Sig)(�Rep :? :� stateopsprfs : [ state :Rep;ops : Sig Rep ;prfs : Spec Rep ops ]:pack (�Rep :? : [state :Rep; ops : Sig Rep])Rep[ state = stateopsprfs:stateops = stateopsprfs:ops ])o: (Object Sig Spec)! (Object e� Sig)THEORY AND PRACTICE OF OBJECT SYSTEMS|??? 7



Alternatively, we can view "inheritance of proofs"merely as a methodology for structuring informal proofson paper.2.3.5. Classes As mentioned in Section 2.2, a classdetermines the implementation of its instances. Sincewe have extended the interface of objects with a speci-�cation, a class has to provide not only the code of theoperations, but a proof of its correctness as well.We cannot yet implement the class for a �xed rep-resentation type, say ClassR, since the mechanism ofinheritance may extend and change the representationtype. So the signature and the speci�cation both haveto refer to a representation type Rep, as yet indeter-minate. Of course we cannot expect to program non-trivial operations and proofs for an arbitrary represen-tation type Rep. Constraining the possible represen-tation types to subtypes of the �xed ClassR gives thenecessary connection between the two types in termsof the extraction and update function: the laws ofget and put on Page 4 guarantee that the operationswill behave correctly on the ClassR part of its sub-type Rep without compromising the rest. The repre-sentation type Rep remains provisional as long as wecreate subclasses by inheritance. It will be �xed, i.e.identi�ed with the representation type of the corre-sponding class, only when an instance of the class isgenerated. Hence we could write the type of a classwith �xed representation type ClassR, signature Sig ,and speci�cation Spec as 8Rep : ? : (Rep � ClassR) ![ops : Sig Rep ; prfs :Spec Rep ops ].So far, though, we have not said a word aboutself-methods and self-proofs. The possibility of self-reference to operations and proofs in classes is the keyto the 
exibility of inheritance. In this functional set-ting, self-reference is simply achieved by assuming selfas a variable of type [ops :Sig Rep; prfs : Spec Rep ops ],i.e. the implementation is abstracted over this variable,giving classes the following type.De�nition. [Type of classes] Assume a representationtype ClassR :?, a signature Sig : ?! ?, and a speci�ca-tion Spec : 8Rep :? : (Sig Rep)! ?. The type of classesis given as:Class def=8Rep :? : (Rep � ClassR)![ops : Sig Rep; prfs :Spec Rep ops ]![ops :Sig Rep; prfs : Spec Rep ops] (self )A �xed point operator will be used to resolve the func-tional abstraction on self at instantiation time; this willbe discussed in the following section. Again we illus-trate the de�nition by our running example.Example 4. [Class of points] The type PointClass ofclasses of points with representation type nat, signature

SigPoint, and speci�cation SpecPoint (cf. the exampleon Page 5) is built using the type constructor Class:PointClass def= Class nat SigPoint SpecPointWe de�ne a concrete class MyPointClass of typePointClass as pair of the operations and of their cor-rectness proofs. The abstraction over self enables ref-erence to the self-methods and self-proofs.MyPointClass def=�Rep :? : � gp :Rep � nat :� self : [ops : SigPoint Rep; prfs : SpecPoint Rep ops ]:[ops = opsPointClass; prfs = prfsPointClass]The operations of the class are implemented as the fol-lowing triple:opsPointClass =[ getX = �r :Rep : gp:get r;setX = �r :Rep : �n :nat : gp:put r n;inc1 = �r :Rep : self:ops :setX r(self:ops:getX r) + 1 ]Although the example may suggest that the two func-tions get and put for the subtype relation were tailoredto encode the two methods getX and setX the contraryis true. As shown in [23] the functions get and put arecanonical in the sense that they make the basic manip-ulations of a state available: reading and updating it.Finally, we have to prove the correctness of the oper-ations just de�ned, i.e. give an element prfsPointClassof type SpecPoint Rep opsPointClass. The �rst equationof the speci�cationopsPointClass :getX (opsPointClass :setX r n) =L nonly contains operations not depending on self . Usingtheir implementation it reduces to:gp:get (gp:put r n) =L nThe equation coincides with the �rst law for get and put,accessible by gp:gpOK:1 .The speci�cation's second equation postulates the cor-rect behaviour of the increment operation, which is de-�ned in terms of self :opsPointClass:getX (opsPointClass :inc1 r) =L(opsPointClass :getX r) + 1which �-reduces togp:get (self:ops:setX r (self:ops:getX r) + 1) =L(gp:get r) + 1This equation, though, is not provable in the present sit-uation. The reason is that there is no way to relate theimplementation of the methods | in the above equa-tion the function get as implementation of the getXmethod | with the operations referred to by self . Inthe current encoding of classes, a richer speci�cation8 THEORY AND PRACTICE OF OBJECT SYSTEMS|???



would not help, since the necessary connection cannoteven be speci�ed. This does not imply that proofs aboutself methods are impossible at this stage. It is possibleto prove equations involving only self methods, but not,as in the above equation, those involving both self andother methods. Section 3 will discuss this problem andpropose solutions.2.3.6. Instantiation The instantiation operatornew is a function that generates a new object whenapplied to a class and an initial value. As explainedin the previous section, a class does not provide an im-plementation of objects for a �xed representation typeClassR, but for any representation type Rep � ClassR.At instantiation, the representation type becomes �xed,i.e. identi�ed with ClassR. In addition, classes are ab-stracted over the variable self . This dependency has tobe resolved, ensuring that self now refers to the classbeing instantiated.In [46], this dependency was resolved using a �xedpoint operator. Although it is in principle possibleto extend Lego by general recursion, see e.g. [48, 2],we have opted for the simpler alternative of using thebounded �xpoints from [23]. This means that we re-place an instance �xf where f : A ! A by the n-fold iteration fn(basis) of f on a start value basis : A.This expression yields the unique �xpoint of f pro-vided fn is a constant function. Again following [23]we think that it is a reasonable restriction that depen-dencies of methods on self be resolved after a �xed,input-independent number of recursive unfoldings. Fora more thorough discussion of bounded �xpoints we re-fer to op. cit. In Lego the n-fold iteration of a functionis encoded using the iteration operator nat iter of type8A jType : A ! (A ! A) ! nat ! A as de�ned in theLego-library.De�nition. [Instantiation] Assuming implicitly a rep-resentation type ClassR, a signature Sig, and a speci-�cation Spec, the instantiation operator new is de�nedas:new def=� class :Class ClassR Sig Spec :� state :ClassR :� basis : [ops :Sig ClassR; prfs : Spec ClassR ops ]�n :nat :let opsprfs =nat iter basis(class ClassR (re
� ClassR))nin (ObjectIntro state opsprfs:ops opsprfs:prfs): (Class ClassR Sig Spec)! ClassR ![ops :Sig ClassR; prfs :Spec ClassR ops ]! nat !Object Sig SpecThis instantiation operator neither guarantees that af-ter the given number of function iterations the self-

methods and self-proofs are resolved, nor that they areresolvable at all. To ensure this, the de�nition can eas-ily be modi�ed so that the programmer has to provethat nat iter basis (class ClassR (re
� ClassR)) n isindeed a �xed point of class ClassR (re
� ClassR).In Section 3 we give a more re�ned de�nition of in-stantiation which requires the programmer to providea proof that the iteration is indeed a �xed point of theclass. Also notice that instantiation takes a correct im-plementation, namely basis as an argument. In otherwords, we have to provide an implementation plus acorrectness proof in the �rst place.In a strongly normalising system like Lego the ruleof strengthening is admissible. This means that if aterm | be it a program or a proof | does not liter-ally contain a variable (or an assumption) then it canby type-checked without this variable (or assumption).This allows us to use the following semi-algorithm tocompute an appropriate iteration index n and to dis-charge the consistency assumption basis.� Given class ClassR (re
� ClassR) successivelycompute the �-normal forms of classi basis wherebasis :[ops :Sig ClassR; prfs :Spec ClassR ops] is afresh variable.� Stop when an index n is found such that the �normal form of classn basis does not contain basisliterally.Now, selfresolved def= classn basis is a �xed pointof class and moreover, by strengthening, constitutesa provably correct implementation of the speci�cationSpec not depending on consistency of the latter. Thissemi-algorithm will always terminate if the functionclass does not contain circular dependencies on self ei-ther in the code or in the proofs. We believe that thissituation can in many cases also be recognized by astatic analysis of the structure of possible calls to self.Example 5. [Instance of points] A concrete objectMyPointInstance with x-coordinate 3 is instantiatedfrom the class PointClass by means of the instantia-tion operator new. Only two iterations are needed toresolve the self-methods; thereafter the variable self hasdisappeared. We can therefore apply the instantiationoperator to a variable basis and nevertheless obtain (bystrengthening) a closed and correct implementation:basis : [ops :SigPoint nat ; prfs :SpecPoint nat ops ]MyPointInstance def= new MyPointClass 3 basis 2We want to stress that this line of reasoning hingeson the fact that we have explicit proof objects and �-reduction on these. Without �-reduction the variablebasis could never literally disappear.2.3.7. Inheritance Inheritance allows to de�ne newclasses by means of already de�ned ones. As in the ob-ject model of F !� , inheritance is represented by a func-tion inherit which generates the subclass when appliedTHEORY AND PRACTICE OF OBJECT SYSTEMS|??? 9



to a superclass and to a function build . The argumentbuild serves as an instruction how to construct the sub-class from the implementation of the superclass.Like any class, the subclass has to be implementedfor an arbitrary subtype Rep of its representation typeSubR. To use the implementation of the superclass inthe subclass, we have to ensure that the operationsof the superclass work on Rep as well. A proof ofSubR � SuperR together with transitivity of the sub-type relation su�ces.Late binding requires that the variable self in theinherited operations and proofs be bound to the self -parameter of the present class. This is achieved bytransforming the self -parameter using appropriate co-ercion functions between the signatures and the speci-�cations.De�nition. [Inheritance] Assume implicitly a repre-sentation type SuperR : ?, a signature SuperSig :?! ?,and a speci�cation SuperSpec of the superclass, whichitself has type 8Rep :? : (SuperSig Rep) ! ?. In ad-dition, assume for the subclass a representation typeSubR, a signature SubSig , and a speci�cation SubSpeccorrespondingly. Finally, assume a proof gpSubR�SuperRof type SubR � SuperR and two coercion functionsco sig : 8Rep j? : (SubSig Rep) ! (SuperSig Rep)and co spec of type 8Rep j? : 8 ops jSubSig Rep :(SubSpec Rep ops) ! (SuperSpec Rep (co sig ops)).The inheritance operator is then de�ned as follows:inherit def=� SuperClass :Class SuperR SuperSig SuperSpec :� build : 8Rep :? : (Rep � SubR)![ops :SuperSig Rep;prfs :SuperSpec Rep ops ]! (super )[ops :SubSig Rep;prfs :SubSpec Rep ops ]! (self )[ops :SubSig Rep; prfs :SubSpec Rep ops ]:( �Rep :? : � gpRep�SubR :Rep � SubR :� self : [ops : SubSig Rep; prfs : SubSpec Rep ops ]:build Rep gpRep�SubR(SuperClass Rep(trans� gpRep�SubRgpSubR�SuperR)[ ops = co sig self :ops;prfs = co spec self :prfs ])self ): (Class SuperR SuperSig SuperSpec)!(8Rep :? : (Rep � SubR)![ops : SuperSig Rep; prfs :SuperSpec Rep ops]![ops : SubSig Rep; prfs : SubSpec Rep ops ]![ops : SubSig Rep; prfs : SubSpec Rep ops ])!(Class SubR SubSig SubSpec)Continuing the example, we use inheritance to constructa class of colored points. Thus assume a type Color : ?together with elements blue; red ; : : : . In addition to the

operations getX , setX and inc1 of points, the class ofcolored points contains the operations inc2 and getC ,where the operation inc2 increments the coordinate bytwo and getC extracts the color.Example 6. [Colored points] The signature of col-ored points SigCPoint extends the signature of pointsSigPoint by the types of the operations inc2 and getC ,abstracted over a representation type Rep:SigCPoint def= �Rep : ? : [ opspoint :SigPoint Rep;inc2 :Rep ! Rep;getC :Rep ! Color ]To simplify the further exposition, we pretend that theoperations form a 
at quintuple. We also use namessuch as getX , setX etc. for the appropriate record se-lectors, when the meaning is clear from the context.For the speci�cation SpecCPoint, assume an arbi-trary representation type Rep and operations ops of typeSigCPoint Rep. The speci�cation SpecCPoint extendsthe speci�cation SpecPoint by three equations.SpecCPoint def=(SpecPoint Rep ops :opspoint) �( ops :getX (ops :inc2 r) =L (ops :getX r) + 2ops :getC (ops :inc2 r) =L blueops :getC (ops :setX r n) =L blue )As in the case of the operations, we assume that theproofs form a 
at quintuple. We refer to the componentsof prfs which has type SpecCPoint Rep ops by prfs:1through prfs:5 .Now, we de�ne a class MyCPointClass with repre-sentation type (nat �Color) by means of the inheri-tance operator inherit.MyCPointClass def=inherit (nat �Color) SigCPoint SpecCPointgp co sig co specMyPointClass( �Rep : ? :� gpRep�(nat �Color) :Rep � (nat �Color) :� super : [ ops : SigPoint Rep;prfs : SpecPoint Rep ops ]:� self : [ ops : SigCPoint Rep ;prfs : SpecCPoint Rep ops ]:[ ops = opsCPointClass;prfs = prfsCPointClass ]) :Class (nat �Color) SigCPoint SpecCPointThe term gp : (nat �Color) � nat is a dependent tripleconsisting of functions get = �nc : (nat �Color) : nc:1and put = �nc : (nat �Color) : �n : nat : (n; nc:2 ) to-gether with the straightforward veri�cation of the re-quired laws. The proof uses the �-rule for pairs wichis provided by their inductive de�nition from the Lego-library. The coercion co sig : 8Rep j? : SigCPoint Rep! SigPoint Rep for the signature and co spec of type10 THEORY AND PRACTICE OF OBJECT SYSTEMS|???



8Rep j? : 8 ops j (SigCPoint Rep): (SpecCPoint Rep ops)! (SpecPoint Rep (co sig ops)) for the speci�cationpart respectively simply forget the new operations andthe new proofs.To implement the operations opsCPointClass, we in-herit getX and inc1 from the superclass of points. Toillustrate late binding, the operation setX of the coloredpoint class arti�cially sets the color to blue. The op-eration inc2 uses the operation inc1 of the point-classtwice and getC simply extracts the color. In the def-inition of the operations, the variables self and superprovide access to the methods of the colored point classand the point class respectively.opsCPointClass =[ getX = �r :Rep : super :ops :getX r;setX = �r :Rep : �n :nat :gpRep�(nat �Color):put r (n ; blue);inc1 = �r :Rep : super :ops :inc1 r;inc2 = �r :Rep : super :ops:inc1(super :ops:inc1 r);getC = �r :Rep : (gpRep�(nat �Color):get r):2 ) ]Finally, we have to prove the correctness of these �veoperations, i.e. give an element prfsCPointClass of typeSpecCPoint Rep opsCPointClass.We have to postpone the discussion of the �rst andthe fourth equation since at this stage it is not possibleto prove propositions relating the variable super withget and put . The problem is similar to the one for selfencountered in the encoding of classes (cf. the exampleon Page 8) and will be addressed in the next section.The second equation of the quintuple SpecCPoint onPage 10 reduces to super :ops:getX (super :ops:inc1 r) =L(super :ops:getX r)+1, which coincides with the type ofsuper :prfs:2 . Therefore, we can use the inherited proofsuper :prfs:2 to show the correctness of the current equa-tion. This equation demonstrates that it is possible toinherit correctness proofs to verify inherited operations.Note that the situation of the previous equation is notas simple as the proof might suggest. The operationinc1 in the subclass refers, as in the superclass, via selfto the setX operation, which we have changed in thesubclass. Due to late binding, this also a�ects the im-plementation of inc1 . Nevertheless, the inheritance ofthe proof works, since we have not altered the behaviourof setX on the point part.This way of reasoning is not restricted to situationswhere the inherited proof is reused without modi�cation.New equations of a subclass can also be proven by proofinheritance, as can be seen in the third equation.Expanding the de�nitions of the operations getX andinc2 in opsCPointClass, the third equation becomessuper :ops :getX (super :ops :inc1 (super :ops:inc1 r)) =L(super :ops:getX r) + 2 and can be shown by employingthe inherited proof super :prfs:2 twice.

The last equation can be established easily with thelaws for get and put, even though the point part of setXis inherited and in the equation super is mixed with getand put. This is feasible because the de�nition of thepoint part is irrelevant for the proof.3. Proofs over self-methodsIn this section we improve the encoding of classes, in-stantiation, and inheritance, to overcome the di�cultieswith proofs over methods with late binding. The def-initions of objects, generic methods, and generic proofmethods remain unchanged.3.1. ClassesAs seen in the previous section, we can cope withequations about non late binding methods. We havealso mentioned in the example on Page 8 that someequations with self methods are provable, namely if thespeci�cation of the self methods su�ces to establish theproperties to be shown. In many cases, especially whenself methods appear together with non-self methods, weare stuck. The reason is that, by late binding, the selfmethods may refer to operations of subclasses whereasthe non-self methods refer to the special implementationof the present class. For instance, in the example onPage 8 we cannot expect to prove the second equation inthe speci�cation of points, relating the implementationsof getX and inc1 :gp:get (self:ops:setX r (self:ops :getX r) + 1)=L (gp:get r) + 1 (1)since we do not know how the setX method in sub-classes will behave together with the current implemen-tation gp:get of the getX method. The only thing weknow about the self-operations is that they satisfy thespeci�cation; the veri�cation cannot rely on any detailsof the implementation.In [23] the problem was overcome by including im-plementation details into the speci�cation.2 In our ex-ample, one would then add the equation ops :getX =Lgp:get to the speci�cation of points. This would givethe desired connection between self and the presentimplementation: self:ops:getX =L gp:get. However,such a speci�cation of internal details is problematicsince it �xes the implementation also for the subclasses,which will have to satisfy the extended speci�cation,too. Even worse: including implementation details intothe objects' interfaces misses the point of encapsulation,whose purpose is to abstract away from details.The previous analysis shows that without restrictionon the implementation of the subclasses Equation (1) issimply not true in the class PointClass. Nevertheless,after solving the self-operations of the point class by aTHEORY AND PRACTICE OF OBJECT SYSTEMS|??? 11



�xed point, the equation does become provable. Theoperations self:ops:getX and self:ops:setX then get re-placed by their implementation, yielding:gp:get| {z }getX (gp:put| {z }setX r (gp:get| {z }getX r) + 1) =L (gp:get| {z }getX r) + 1This equation follows from the �rst equation in the spec-i�cation of points. This observation applies not only tothe class of points itself, but to all of its subclasses:upon instantiation, the self gets replaced by the im-plementation provided by the respective subclass. Thesecond equation then takes the form:impl :getX (impl :setX r (impl :getX r) + 1) =L(impl :getX r) + 1 (1sc)where impl :getX and impl :setX are the concrete imple-mentation of the methods getX and setX , thus satisfy-ing at least the speci�cation of points. Again we canuse the �rst equation of SpecPoint for the proof.These calculations suggest that the problem with theveri�cation of late binding methods (here inc1 ) is not agenuine one, but rather caused by a limitation of our ap-proach. Simply requiring that a class maps correct im-plementations to correct implementations (as was donein De�nition 2.3.5 on Page 8) is not enough to establishall reasonable and expected properties.To overcome this problem, we will consider gener-alized speci�cations which contain two copies of ev-ery method: one ranging over the actual implemen-tation and the other one over the self parameter.More formally, we consider Spec0 : 8Rep : (Sig Rep) !(Sig Rep) ! ?. It is the task of the programmer orveri�er to decide which copy of a method is appro-priate for the generalized speci�cation. We will showbelow that the �xed point of the program part of aclass satis�es the intended diagonalized speci�cationSpec def= � ops : (Sig Rep): Spec 0 ops ops . In the sequelwe will use primes to refer to a generalized speci�cationand use their name without prime for the diagonalizedspeci�cation.In the speci�cation of points, the separation of ab-stract and actual implemented operations is done asfollows:Example 7. [Generalized speci�cation of points] As-suming a representation type Rep, concrete opera-tions ops, and abstract operations selfops of typeSigPoint Rep, the generalized speci�cation of pointsis given asSpecPoint 0 def=ops :getX (ops :setX r n) =L nselfops:getX (ops :inc1 r) =L (selfops:getX r) + 1Notice that SpecPoint =L SpecPoint 0 ops ops.A class will now provide for all Rep � ClassR

� a self-dependent implementation code : (Sig Rep)!(Sig Rep) of the operations, and� a proof that Spec0 selfops selfops0 entails the cor-rectness of Spec0(code selfops) selfops.More formally:De�nition. [Type of classes] Assume a representa-tion type ClassR :?, a signature Sig :? ! ?, and ageneralized speci�cation Spec0 : 8Rep :? : (Sig Rep) !(Sig Rep) ! ?. Let the term Spec stand for the spec-i�cation �Rep :? : � ops : (Sig Rep): Spec0 Rep ops ops,which represents the ungeneralized version of Spec 0.The type of classes is then given as:Class def= 8Rep :? : (Rep � ClassR)![ code : (Sig Rep)! Sig Rep :prfs : 8 selfops ; selfops0 : Sig Rep :(Spec0Rep selfops selfops 0)!Spec0Rep (code selfops) selfops ]Notice that we have now separated the program partand the speci�cation part of a class into two compo-nents. We could have done so in the case of the simpleclasses as well, but found the mixing of the two using�-types more perspicuous.The rest of the section is concerned with adaptinginstantiation and inheritance. Before starting with in-stantiation, we complete the class of points with thenew de�nition.Example 8. [Class of points] The type of points andtheir signature remain unchanged. As shown, the orig-inal speci�cation SpecPoint is slightly generalized toSpecPoint 0.The type of point classes with representation typenat, signature SigPoint, and generalized speci�cationSpecPoint 0, is constructed by means of the type con-structor Class:PointClass def= Class nat SigPoint SpecPoint 0The concrete class MyPointClass is again a pair of op-erations and correctness proofs:MyPointClass def=�Rep :? : � gp :Rep � nat :[code = codePointClass; prfs = prfsPointClass]:PointClass :As programs and proofs are now separated, the selfreference to the operations and the proofs is no longerachieved by the single variable self , but by two distinctvariables: selfops and selfprfs. The implementation ofthe operations can be used without change:codePointClass =� selfops : SigPoint Rep :[ getX = �r :Rep : gp:get r;setX = �r :Rep : �n : nat : gp:put r n;inc1 = �r :Rep : selfops :setX r(selfops :getX r) + 1 ]12 THEORY AND PRACTICE OF OBJECT SYSTEMS|???



Finally, we have to prove their correctness, i.e. as-suming selfops and selfops 0 of type SigPoint Rep andselfprfs of type SpecPoint Rep selfops selfops 0, providea correctness proof prfsPointClass of the speci�cationSpecPoint 0Rep (codePointClass selfops) selfops. Theproof of its �rst equation is identical to the one in theold de�nition of this class. The second equation, theone we had to modify, now �-reduces toselfops :getX (selfops:setX r (selfops:getX r) + 1) =L(selfops:getX r) + 1The self-proof selfprfs:1 :8r :Rep : 8n :nat : selfops :getX(selfops:setX r n) =L n establishes its correctness.3.2. InstantiationNext we adapt the instantiation function to deal withthe modi�ed de�nition of classes. Compared with thede�nition of new in Section 2 the major di�erence arisesfrom the way the self-dependencies are resolved. InSection 2 the self-dependent operations and proofs ofclasses are of the following form:[ops :Sig Rep; prfs : Spec Rep ops ]![ops : Sig Rep ; prfs :Spec Rep ops ]In the setting of Section 2, the �xed point reached by it-erating a class yielded both the desired �nal implemen-tation and its correctness proof. In the present situationwe will iterate the function code : (Sig Rep) ! Sig Repto obtain the �nal implementation and afterwards con-struct its correctness proof using the proof componentof the class. More formally, we proceed as follows.Suppose that we are given a class of typeClass ClassR Sig Spec 0. Applying it to ClassR andto (re
� ClassR) and projecting out the components

yields two functions:code : (Sig Rep)! Sig Repprfs : 8 selfops; selfops0 : Sig Rep :(Spec0 Rep selfops selfops 0)!Spec 0Rep (code selfops) selfops ]As before, we assume that our speci�cation is con-sistent. That is, we assume opsbasis :Sig ClassRand prfsbasis : Spec0ClassR opsbasis opsbasis. If, asassumed, there are no circular self-dependenciesin the de�nition of code then there exists anatural number n such that | starting withopsbasis | after n iterations a �xed-point of theself-dependent operations code has been reachedi.e. (code (coden opsbasis)) = (coden opsbasis). Un-like in the setting of Section 2 we now have toexplicitly require a proof coderesolved that the �x-point has been reached after n iterations. Then the(n+ 1)-th iteration of the self-dependent proofs (start-ing with prfsbasis :Spec 0 Rep opsbasis opsbasis) has typeSpec 0Rep (coden+1 opsbasis) (coden opsbasis) which co-incides with Spec0 Rep (coden opsbasis) (coden opsbasis).Hence the �xed-point of the operations satis�es thespeci�cation Spec 0. If the iteration index n is such thatafter �-reduction both the n-fold iteration of code andthe (n+ 1)-fold iteration of prfs do not contain the as-sumptions opsbasis and prfsbasis, respectively, then, asin Section 2, these are no longer needed.Again, the task of �nding such an index n could becarried out by a semi-algorithmwhich performs a bruteforce search or alternatively by a static analysis of thepossible calls to self .De�nition. [Instantiation] Assume implicitly a rep-resentation type ClassR, a signature Sig, and a gener-alized speci�cation Spec 0. Let the term Spec stand forthe corresponding ungeneralized speci�cation �Rep :? :� ops : (Sig Rep): Spec 0Rep ops ops : The instantiationoperator is thus de�ned as:new def= � class :Class ClassR Sig Spec0 :� state :ClassR :� opsbasis :Sig ClassR :� prfsbasis :Spec 0ClassR opsbasis opsbasis :� n : nat :let codeprfs = class ClassR (re
�ClassR)operations = nat iter opsbasis codeprfs:code nin � coderesolved : codeprfs:code operations =L operations :let proofs = new aux opsbasis prfsbasis n coderesolvedin (ObjectIntro state operations proofs):Object Sig SpecFIG. 1. InstantiationTHEORY AND PRACTICE OF OBJECT SYSTEMS|??? 13



The function new aux performs the abovementionediteration of codeprfs:prfs, yielding an element of typeSpec0ClassR operations operations .Example 9. [Instance of points] The instantiation forpoints remains basically unchanged. Again, only twoiterations are needed to resolve the self-dependencies.Having reached the �xed point of code, the proofcoderesolved is trivial by re
exivity of Leibniz's equality.3.3. InheritanceThe last de�nition to align is the one for inheritance.The basic mechanisms remain unchanged, but the en-coding now has to deal separately with the operationsand the proofs. We also solve the problem of mixinginherited operations with newly implemented ones, en-countered in the example on Page 10. The problemresembles the one that led to the rede�nition of classes:there is no connection between the variable superops ,denoting the operations of the superclass, and the newlyimplemented operations. The solution, though, is sim-pler than the one for self , since superops stands for analready existing implementation. In the function build ,we simply have to make available the fact that superopsreally stands for the operations of the superclass.De�nition. [Inheritance] Assume implicitly a repre-sentation type SuperR, a signature SuperSig, and a

generalized speci�cation SuperSpec0 of type 8Rep :? :(SuperSig Rep) ! (SuperSig Rep) ! ?. Assume a rep-resentation type SubR, a signature SubSig, and a gen-eralized speci�cation SubSpec 0 for the subclass. Let theterms SuperSpec and SubSpec denote the ungeneralizedspeci�cations as in the de�nition of classes with gener-alized speci�cations on Page 12. Finally assume a proofgpSubR�SuperR : SubR � SuperR and coercions co sigof type 8Rep j? : (SubSig Rep) ! (SuperSig Rep) andco spec of type8Rep j ? : 8 selfops; selfops0 j (SubSig Rep):(SubSpec 0Rep selfops selfops 0)!(SuperSpec 0Rep (co sig selfops) (co sig selfops0)for the operations and proofs respectively. The inheri-tance operator inherit is de�ned in Figure 2.The reader should not be discouraged by the sheer sizeof this term. As can be seen from Example 10, theprogrammer does not have to bother about the concretede�nition of inherit in a concrete application.As far as the readability of the programs is con-cerned, you have to remember that our programminglanguage is rigorously encoded within a theorem prover.To make the language practically more useful, syntacticsugar and a number of special tactics are inevitable. See[44] for suggestions, how to make the encoding look likea generalized object-oriented programming language.inherit def= � SuperClass :Class SuperR SuperSig SuperSpec0 :� build : 8Rep :? : 8 gpRep�SubR :Rep � SubR :let gpRep�SuperR = trans� gpRep�SubR gpSubR�SuperRsuper = SuperClass Rep gpRep�SuperRin [ code : (SuperSig Rep)! (SubSig Rep)! SubSig Rep;prfs : 8 selfops; selfops0 : SubSig Rep :let superops =L super :code (co sig selfops))in (SuperSpec0Rep superops (co sig selfops))!(SubSpec 0Rep selfops selfops 0)!SubSpec 0 Rep (code superops selfops) selfops ]( �Rep : ? : � gpRep�SubR :Rep � SubR :let gpRep�SuperR = trans� gpRep�SubR gpSubR�SuperRsuper = SuperClass Rep gpRep�SuperRcodeprfs = build Rep gpRep�SubRin [ code = � selfops :SubSig Rep : codeprfs:code (super :code (co sig selfops)) selfops;prfs = � selfops ; selfops0 :SubSig Rep :� selfprfs :SubSpec 0Rep selfops selfops 0 :codeprfs :prfs selfops selfops 0(super :prfs (co sig selfops) (co sig selfops 0)(co spec selfprfs))selfprfs ]) :Class SubR SubSig SubSpec 0 FIG. 2. Inheritance14 THEORY AND PRACTICE OF OBJECT SYSTEMS|???



Continuing with the running example of coloredpoints, the de�nitions of CPoint , SigCPoint , andSpecPoint from Section 1 go unchanged, we only needa generalized speci�cation SpecCPoint 0.Example 10. [Colored points] For the generalizedspeci�cation SpecCPoint 0, assume an arbitrary repre-sentation type Rep, concrete operations ops, and ab-stract operations selfops of type SigCPoint Rep.SpecCPoint 0 def=( SpecPoint 0 Rep ops :opspoint selfops:opspoint ) �( selfops:getX (ops :inc2 r) =L (selfops:getX r) + 2selfops:getC (ops :inc2 r) =L blueops :getC (ops :setX r n) =L blue )Now we can de�ne a class MyCPointClass with rep-resentation type (nat �Color) by means of the in-heritance operator inherit. For the de�nition ofgp : (nat �Color) � nat we refer to the example onPage 10. The two terms co sig and co spec denote thenatural coercion functions from colored points to points.MyCPointClass def=inherit (nat �Color) SigCPoint SpecCPoint 0gp co sig co specPointClass( �Rep : ? :� gpRep�(nat �Color) :Rep � (nat �Color) :[ code = codeCPointClass;prfs = prfsCPointClass ] ):Class (nat �Color) SigCPoint SpecCPoint 0The implementation of the operations is given by thequintuple opsCPointClass.codeCPointClass =� superops : SigPoint Rep :� selfops : SigCPoint Rep :[ getX = �r :Rep : superops:getX r;setX = �r :Rep : �n :nat :gpRep�(nat�Color):put r (n; blue);inc1 = �r :Rep : superops:inc1 r;inc2 = �r :Rep : superops:inc1 (selfops:inc1 r);getC = �r :Rep : (gpRep�(nat �Color):get r):2 ]With the modi�ed encoding, all equations of the col-ored point class become provable. Assuming opera-tions selfops; selfops0 :SigCPoint Rep of the subclass,the proofs superprfs of the superclass and the self proofsof colored points selfprfs, we have to give a correctnessproof for the speci�cation relatively to the operationsjust de�ned. In the following, we abbreviate the opera-tions of colored points as Cops.Since the setX operation has been reimplemented forcolored points, the inherited proof of the �rst equationof the point class is of no use for proving the respectiveequation Cops :getX (Cops :setX r n) =L Cops :getX r of

the colored points. This equation �-reduces to:(gpRep�(nat�Color):get(gpRep�(nat �Color):put r (n ; blue))):1 =L nThis is immediate by the laws for get and put.The new encoding with the generalized speci�cationsstill admits inheriting proofs for equations containingonly inherited methods. So the proof for the secondequation can instantly be obtained by superprfs :2, asin the example on Page 10.The third equation can be proved by applyingsuperprfs :1 twice. This example demonstrates that sev-eral references to the proofs of the superclass might beneeded to establish one single equation in the subclass.The fourth equation selfops :getC (Cops :inc2 r) =Lblue expands intoselfops :getC(selfops :setX (selfops:inc1 r)((selfops:getX (selfops:inc1 r)) + 1))=L blueSpecialising the proof selfprfs :5 to r = selfops:inc1 rand n = (selfops :getX (selfops:inc1 r)) + 1 shows thatthe left hand side equals blue.The last equation Cops:getC (Cops :setX r n) =Lblue �nally, containing only new methods or reimple-mented ones, can be proven directly using the imple-mentation of the colored point class.3.4. A more 
exible de�nition of classesWe have also experimented with the followingweaker, i.e. easier to implement, de�nition of classes:Class 0 def= 8Rep : ? : (Rep � ClassR)![ code : (Sig Rep)! Sig Rep :prfs : 8 selfops : Sig Rep :(Spec 0Rep selfops selfops)!Spec 0Rep (code selfops) selfops ]As before, let operations stand for the �xpointof code obtained by an appropriate number of it-erations. Now, in order to obtain an elementof Spec 0ClassR operations operations by iterating prfswe need to start with variable prfsbasis of typeSpec 0ClassR operations operations , so it seems as ifnothing has been gained. If, however, it so happens thatthe assumed variable drops out after a certain numberof iterations then, again, we have shown the correctnessof operations without assumptions.So, in this case, �-reduction on proofs is really re-quired for the soundness of the formalism.Our experience is that the de�nition Class0 is more
exible in case references to both self and super aremade in the de�nition of one and the same method.For example, if we implement inc2 in the example ofcolored points asTHEORY AND PRACTICE OF OBJECT SYSTEMS|??? 15



inc2 = superops:inc1 (selfops :inc1 r);then in the formerly presented formalism a veri�ca-tion is possible only if we would include certain imple-mentation details into the speci�cation, whereas in the"alternative" one it goes through immediately withoutchanges.We �nd this essential use of �-reduction on proofs in-teresting and worth exploring but need more experienceto gauge its possible merits and drawbacks.4. ConclusionBuilding upon the object-model of [47] and [23], thispaper has presented a way to integrate formal veri�ca-tion into an object-oriented programming language. Byaugmenting the interface of objects by a speci�cation ofits behavior, we have demonstrated that object-orientedstructuring techniques can be employed in organizingthe proofs as well. Our experience so far has been thatthese object-oriented structuring techniques allow for
exible reuse of proofs. However, we have to concedethat more substantial examples are required to justifythis. A �rst step in this direction is the case studyconcerned with Smalltalk-style collections contained in[43].In this case study we noticed that abstract classes,i.e. classes not meant to be instantiated into objects,are a natural mechanism to reduce the veri�cation ef-fort. In our setting, abstract classes are classes thatcontain methods or proofs referring to themselves viathe variable self and which we call abstract methods orabstract proofs. Note that abstract classes do not de-note a new concept, but refer to a special usage of thealready encountered mechanism of self-reference.To understand how abstract classes allow 
exiblereuse of methods, consider a class Root as root of thehierarchy of collection classes, which provides meth-ods common to all collections. Let us just focus onfour operations, common to all collections: length , add ,empty , and fold , with the usual meaning. In theclass Root , the three methods fold , add , and emptyare abstract i.e. fold = self:fold, add = self:add ,empty = self:empty, and the fourth method length isde�ned straightforwardly in terms of fold . No matterwhich implementation of fold we will eventually choosein a subclass, the corresponding length will always bede�ned.An analogous mechanism | abstract proofs | sup-ports 
exible reuse of proofs. Consider the followinginduction principle:(P empty)! (8a; c:(P c)! (P (add a c)))! 8c:(P c)

In the root class Root we cannot provide a proof ofsuch an induction principle yet, since empty and add aremerely abstract. Instead of proving this rule directly,we introduce an abstract proof de�ned as induction =self:induction . Using this not yet proven induction prin-ciple we can prove properties about the class Root whichcan be inherited by concrete subclasses. The mech-anism of proof inheritance takes care that the proofsrelying on it are adapted automatically in subclasses,depending on the speci�c implementation of the repre-sentation type, on the chosen operations, and on theircorrectness proofs (including the deferred proof of theinduction principle for the concrete representations ofnon-abstract subclasses).Comparison with other workIn Lego much work has been done in formalizingmathematical theories and also in the �eld of programspeci�cation and veri�cation [34] [7] [50] [22] [50] [53], tomention several. Whilst there is an increasing body ofwork about the semantic foundations of object-orientedprogramming, notably in the area of typed functionalcalculi (see [20]), there are still only a few investigationsabout the veri�cation of speci�cally object-oriented pro-grams.Leavens and Weihl in a series of papers [27, 28, 29,31, 30] investigate modular speci�cation and veri�cationof object-oriented programs featuring subtype polymor-phism and late-binding. Modular veri�cation in theirsetting means: adding a new type to a program mustnot call for recoding, respeci�cation, or reveri�cation ofold modules. In the presence of subtyping, the aim isto use the proofs for objects of the supertype also forobjects of all subtypes without change. The problemwith late binding methods for veri�cation is that onthe one hand one wishes a \static" veri�cation of prop-erties for objects of a given class, but on the other handinheritance and late-binding of methods can lead to adi�erent semantics in subsequent subclasses. The solu-tion presented is to separate the implementation fromits abstract representation, to assign a static type tothe objects as upper bound (its nominal type), and usethe abstract speci�cation to reason about objects of allof its subtypes. Thus objects of a smaller type mustnot only accept messages meant for objects of a largertype without \message not understood" run-time error,but in addition they have to exhibit the same behavior,as given in the interface speci�cation. Since structuralsubtyping | employed e.g. in F !� 's (sub-)type system| is too weak to account for compliance with speci-�cations, the notion of subtyping needs a re�nement;this stronger notion of behavior-preserving subtypingis known as behavioral subtyping [1]. To obtain a con-venient mathematical model of the abstractly speci�edobjects, they restrict their attention to objects with im-16 THEORY AND PRACTICE OF OBJECT SYSTEMS|???



mutable state which can be modelled as abstract datatypes. LOAL can handle multiple dispatch of meth-ods, similar to the mechanisms in CLOS. Hoare stylespeci�cation is used to specify the behavior of the ob-jects via so-called traits in the Larch interface speci�ca-tion language as pre- and post-condition of the object'smethods. An extension to types with mutable state andaliasing, in an algebraic framework, is presented in [15].Sticking to an algebraic framework, though, in the pres-ence of a mutable state seems to complicate the modelconsiderably.In contrast to the work of Leavens and Weihl, Utting[51] [52] handles objects with mutable state, but at theexpense of data re�nement, i.e. in the re�nement pro-cess, inheritance may not change the internal represen-tation of objects. A methodological di�erence is that hefavors program development by a series of transforma-tions. To this end an extension of re�nement calculusof [3] [41] [40], being itself an extension of Dijkstra'sguarded command language [16], is presented, a widespectrum language, where executable code and speci�-cations can be freely mixed.Mairson [37] presents di�erent object-oriented mech-anisms encoded in the calculus of constructions. Theemphasis there is not on program veri�cation and itsmethodology, but on the analysis of languages of typed(record) calculi itself. Following the program extrac-tion methodology, a couple of typed record and objectcalculi, notably Cardelli and Mitchell's record calculus[9], are represented equationally in the internal higher-order logic of the calculus of constructions. So, for ex-ample, extracting the computational content from theencoding of subtyping gives rise to the usual coercionfunctions. The encodings provide a logical justi�cationfor record calculi and object-oriented features like F-bounded polymorphism [8] or subtyping, and allow toinvestigate metamathematical properties such as sound-ness, consistency, and coherence of di�erent encodedidioms. In contrast to our work, neither encapsulation,nor inheritance, nor late-binding are treated. Like inthis paper, �nite unwindings are employed to resolvethe �xed points in the object encodings. To representrecord types for objects, Hickey [21] introduces a newtype constructor, which he calls "very dependent func-tion type", which is "almost" a recursive type but heimposes well-foundedness conditions to avoid circular-ity. The approach is formalized in the NuPRL proofdevelopment system [12].Further WorkApart from the need for developing more extensivecase studies, several directions for further work suggestthemselves. Our approach is based on an encoding ofone speci�c, albeit powerful and well-studied, objectmodel. It would be worthwhile to the extend or change

the encoding to comprise other object-oriented featuresor idioms, such as multiple inheritance, which can bemodelled in an extension of F !� with intersection types[11]. One could add syntactic sugar or fancier notions ofspeci�cation, e.g. splitting the speci�cation into a vis-ible, external part, and an internal, hidden one, or toinclude matching [5] as a weaker relation than subtyp-ing which seems to have advantages in inheriting binarymethods.A pragmatic path might be, to spare the user fromperfoming every minute step of the required proofs.This could include the automatic generation of the getand put functions proposed in [23] for positive signa-tures, or the automatic calculation of the number of�xpoint unwindings. To perform larger case studies,a high-level syntax is inevitable that withholds Lego{speci�c notations and commands.Besides verifying properties of actual programs, thetransfer into Lego could also be used to prove generalproperties about the encoding itself, such as propertiesof the inheritance or instantiation operator.A deeper question concerns the equality of objects.An intensional equality such as Leibniz's equality is in-adequate for the comparison of objects, since it woulddistinguish between objects of di�erent implementa-tions, which contradicts the idea of encapsulation. Aspointed out in Section 2.3.3, it is also problematic toplace the test of equality on objects as an equalitymethod inside the objects. In the chosen model, genericmethods cannot be de�ned for signatures containing bi-nary generic methods like a method comparing two ob-jects whose internal representation is hidden by weakexistential quanti�cation. We believe that the correctequality for objects would be given by observationalequivalence with respect to method invocations as ad-vocated e.g. by Jacobs [25].AcknowledgmentsThanks to Luis Dominguez, Michael Mendler, andUwe Nestmann for giving useful suggestions on earlierversions which helped to improve the paper. We aregrateful to the members of the Lego-club at the LFCSwhose comments in
uenced the entire work. In partic-ular we want to thank Rod Burstall, James McKinna,and Thomas Schreiber for their discussions. Finally wethank the two anonymous referees for their helpful re-marks.This research was supported by the Spezi�kation undVeri�kation verteilter Systeme project, funded by theDeutsche Forschungsgemeinschaft, Sonderforschungs-bereich 182, and by the Britsh Council and theDeutscher Akademischer Austauschdienst within theARC-programme \Ko-Entwicklung objektorientierterProgramme in Lego".THEORY AND PRACTICE OF OBJECT SYSTEMS|??? 17
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