Inheritance of Proofs

Martin Hofmann

Arbeitsgruppe L ogik und mathem. Grund!. der Informatik, Fachbereich Mathematik, Technische Hochschule Darmstadt,

SchloBgartenstraBe 7, D-64289 Darmstadt, Germany

Wolfgang Naraschewski

Institut fur Informatik, Technische Universitat Munchen, ArcisstraBe 21, D-80290 Minchen, Germany

Martin Steffen

Institut fur Informatik, Christian-Albrechts-Universitat Kiel, Preusserstrale 1-9, D-24105 Kiel, Germany

Terry Stroup

Lehrstuhl fir Informatik VI, Friedrich-Alexander-Universitat Frlangen-Niirnberg, MartensstraBe 3, D-91058 Frlangen,

Germany

The Curry-Howard isomorphism, a fundamental property
shared by many type theories, establishes a direct corre-
spondence between programs and proofs. This suggests
that the same structuring principles that ease programming
be used to simplify proving as well. To exploit object-
oriented structuring mechanisms for verification, we ex-
tend the object-model of Pierce and Turner, based on the
higher-order typed A-calculus F«, with a logical compo-
nent. N

By enriching the (functional) signature of objects with
a specification, the methods and their correctness proofs
are packed together in the objects. The uniform treat-
ment of methods and proofs gives rise in a natural way
to object-oriented proving principles — including inheri-
tance of proofs, late binding of proofs, and encapsulation
of proofs — as analogues to object-oriented programming
principles. We have used Lego, a type-theoretic proof
checker, to explore the feasibility of this approach. In
particular, we have verified a small hierarchy of classes.
© 1997 John Wiley & Sons

1. Introduction

Many programming languages have been developed
to ease modular and structured design of programs.
The popularity of powerful structuring techniques, in-
cluding object-oriented ones, is a convincing argument
that those mechanisms support the programming task.
Depending on the programming style, they cater to
divide-and-conquer strategies for breaking down large
programs into abstract data types, modules, objects,
or similar. Since the resulting components ideally mir-
ror the decomposition of the problem into conceptually

© 777 John Wiley & Sons, Inc.

self-contained units, 1t i1s natural to organize verification
along the structure of the programs.

In this paper we apply this idea to object-orientation
by showing that specification and verification can be
organized along the class hierarchy of object-oriented
programs and in particular that inheritance applies to
proofs as well.

We achieve this goal by embedding Pierce and
Turner’s object model [47] into the Extended Calculus
of Constructions (ECC) [33]

programs and proofs, as well as types and specifications

a type theory in which

coexist and can be interleaved. A particular feature of
type theories like ECC is that logical propositions are
treated as (particular) types having their proofs as ele-
ments; the so-called Curry-Howard isomorphism.

This means that in principle structuring mechanisms
that apply to programs and types scale up to proofs
Although the Curry-Howard iso-
morphism serves as a guideline for generalizing the

and specifications.

programming mechanisms to proofs, several nontrivial
novel problems arise in the context of verification, e.g.
the treatment of self proofs in Section 3.

Beyond the uniform treatment of programs and
proofs, a further advantage of type theory is that imple-
mentations are available which equip type theory with a
front-end for the interactive goal-directed development
of proofs and programs. We have used the Lego im-
plementation of ECC to carry out the proofs of all the
necessary meta-properties and for the verification of a
simple class hierarchy.

THEORY AND PRACTICE OF OBJECT SYSTEMS, Vol. ???(Number ??), 1—19 ??? CCcCc 777

Our work is closely related to [23] and can be seen
as a further development and elaboration of ideas ex-
pressed there. In particular, our approach builds upon
the equational axiomatization of coercion and update
and on the idea of “inheriting proofs” explained by way
of example there. Apart from providing a formal type-
theoretic underpinning for object-oriented verification,
including a Tego formalization, the present paper ex-
tends [23] by providing a more general framework for
the specification and verification of late-binding meth-
ods, which avoids including implementation details in
specifications as was done in loc. cit.; see Section 3 for
details. Moreover, we explain how g-reduction on proof
terms can be used to eliminate the consistency assump-
tions on specifications which were needed in [23]. Fi-
nally, the treatment of generic proof methods is new.

The remainder of the paper 1s organized as follows:
after a brief review of Lego, we present in Section 2 an
encoding of object-oriented programs in Lego based on
F¢, and enriched by verification. The straightforward
extension, though, fails to capture all subtleties involved
in the verification of late binding methods. Hence in
Section 3 we modify the encoding to overcome the limi-
tations of the first attempt. In the concluding Section 4
we discuss related and further work.

2. Verification of object-oriented programs
with Lego

2.1. The lego proof assistant

The Tego proof assistant [35] is an interactive,
type-theoretic proof checker. Tt implements the Ex-
tended Calculus of Constructions (ECC) and a family of
weaker, related type theories. The system comprises a
strongly typed functional programming language as well
as a higher-order intuitionistic logic. The ECC uses a
predicative hierarchy of universes for programming and
an impredicative universe for logical propositions. In
this work, the higher universes are not used and in-
stead we employ the impredicative universe x both for
propositions and datatypes. Since we don’t make use
of the hierarchy of universes, our development could be
realized in the Calculus of Constructions with inductive
types as implemented in the Coq system [13], too.

We wish to stress that the use of a single universe for
both propositions and types is although pragmati-
cally advantageous not. crucial for our approach. Tt
would work equally well if we would employ two im-
predicative universes Set and * like in the Coq system.
Tt seems plausible that the program extraction mecha-
nism of Coq which strips off all terms of kind * from
a type-theoretic development could then be extended

2 THEORY AND PRACTICE OF OBJECT SYSTEMS 7?77

to object-oriented programs. The drawback of having
two separated universes is that we would have to du-
plicate various definitions and rules and also that the
Lego implementation does not provide Set and *.

Lego offers inductive definitions of data types to-
gether with induction principles. By means of its re-
finement mechanism, based on first-order unification, it
supports interactive, goal-directed proof development
in a natural-deduction style. Working with Lego 1s sup-
ported by local and global definitions, typical ambigu-
ity, and implicit arguments, which allow the user to
omit automatically synthesizable function arguments.
Lego also offers arbitrary user-defined reduction rules,
the soundness of which has to be verified externally, of
course. We will make use of this feature in the definition
of existential types with dependent, elimination rule.

A detailed introduction to Lego can be found in the
manual [35] or in the web resources [32].

For the purpose of understanding this paper it should
be enough to know that Lego supports an extension of
F“ by higher-order logic with explicit proof objects.
That is to say, if A 18 a type of F*, we can form in Lego
the type A — % of types depending on A, in particular
of predicates over A; if P : A — % and a : A then
P(a) is a type; the type of proofs of P(a). FElements
of such proof types can be constructed interactively in
a goal-directed fashion. Types and predicates can be
packed together using X-types; for example Xz : A.P(z)
has as elements pairs (x,p) where 2 : A and p : P(x).
If z : T2z:A.P(x) then z.1: A and 2.2 : P(z.1). To
ease readability, we use dependent records as syntactic
sugar for (nested) X-types. Tn the above example we
could write [e1 : A, eg @ P(eq)] for the dependent, record
type. The corresponding inhabitants are of the form
[c1 = a,co = p] where a :
proof of P(a).

At the moment, the Lego type theory does not pro-

Aand p: P(a), ie. pisa

vide subtyping; we simulate a subtyping judgement
A < B by a certain type whose members are triples
consisting of a coercion from A to B, an update func-
tion and a proof that these two functions satisfy certain
equations. See Section 2.3.1 for details.

Conventions All definitions and proofs of this paper

' To ease human

have been machine-checked by TLego.
reading, though, we do not employ Lego-syntax; instead
we write terms in a more conventional notation, using
A for abstraction and V for Lego’s dependent Tl-type.
For the impredicative universe Prop of logical proposi-
tions we write x and dependent records are noted as
indicated above. We fall back upon definitions pro-
vided by the Tego-library [26] whenever appropriate.
If not immediately obvious, these definitions will be in-
formally explained in the text so that no knowledge of
the Lego library 1s required. We further use the key-
word let for local definitions, denote unary applications

(f a) some place by a.f and write (_,_) for the non-

dependent pairing function with surjective pairing from
the library 1ib_prop/lib prod.1l. We denote Leibniz
equality from lib_eq.l by =y, allowing ourselves in-
fix notation. The inductive natural numbers of the
Lego-library 1ib_prop/libmat/libnat.1 are written
as nat and we assume tacitly the usual operators to be
available and standard properties to hold.

Lego supports implicit syntax to simplify definitions,
synthesizing omitted arguments on its own. Asin Lego,
we replace a declaration xz: A in a V-type or in a A
abstraction by = | A indicating that z is an implicit
argument.

In most definitions, we do not give the whole ex-
pression as a A-term, but put some leading abstractions
into the text. Free variables in types are meant to be
universally quantified. Finally, we elide conjunctions
between displayed equations. Apart from these conven-
tions, though, all definitions are complete and can be
directly translated into Lego.

22 The FS‘" object model

In recent years, a number of typed A-calculi have
been investigated as foundation of typed object-oriented
languages. The line of research started with Cardelli
and Wegner’s proposal [10] for the typed object-oriented
toy language Fun based on F«, an extension of the
second order polymorphic A-calculus [18, 49] by sub-
types. Cardelli and Wegner proposed to model objects
as records of their methods. The language Fun has
spawned quite a number of different calculi of varying
complexity. An overview can be found in [17], a collec-
tion of relevant papers in [20].

For our purpose of integrating an object calculus into
a logical framework, one particular formal system, the
system F¢ [45] is a suitable basis, since it avoids the
complexity of calculi with recursive types [5, 38].

FZ, the extension of F¢ by type operators of arbi-
trary order, has been proposed by Pierce and Turner
[46, 47, 24] as a core calculus for object-oriented lan-
guages in the style of Smalltalk [19]. Tn the following,
we informally recapitulate the representation of object-
oriented programming concepts in this framework. A
more detailed account of representing object-oriented
programs in F¢ can be found in [45, 47].

According to [47] an object is a collection of oper-
Both state and
operations are encapsulated or hidden inside the ob-

ations, working on an internal state.

ject, and access is controlled by the interface. Tn the
object. model we use, encapsulation is represented by
existential quantification; encapsulation by existential
quantification was first, proposed by [39], though for ab-
stract data types rather than objects.

We call the type of the internal state the represen-
tation type of the object. The type of the operations,

abstracted over the representation type, is called the
:x — x. See the definition of
SigPoint in the example on Page 5 for an example of

object’s signature Sig

such a signature. Usually, for Rep : x the type Sig Rep
1s a record of functions with argument of type Rep. The
type of objects with signature Sig:* — % is defined as

Object(Sig) = 3 Rep % . [stale : Rep, ops : Sig Rep]

Using the introduction rule for existential types we can
construct an element of type Object(Sig) from some rep-
resentation type Rep, a state state : Rep and an imple-
mentation ops : Sig Rep of the operations. Existential
elimination on the other hand allows one (under a co-
variance condition on the form of Sig explained in detail
in [24]) to define a generic method of type Sig Object
which when applied to an object applies its internal
methods to its state and returns the packaged result.

In class-based languages, a class serves as a blueprint
for objects and can be used n two ways: First, to cre-
ate new objects sharing the representation and imple-
mentation common to the class: the classes instances.
Second, to define new subclasses incrementally by in-
heritance, where (parts of) the definitions of the old
superclass may be used. By inheritance, some meth-
ods may be re-implemented and overridden or, by en-
riching the signature, new methods may be added to
unchanged, inherited ones.

An important intricacy are the so-called self-
methods. This concept, popular since Smalltalk, per-
mits methods to be defined in terms of other methods
of the same class. What makes it difficult to model is
that self does not refer statically to the methods im-
plemented by the class. Tf a method refers via self to
another method and gets inherited by a subclass, then
self no longer refers to the operations of the superclass,
from which it was inherited, but dynamically to the
ones of the new class; in case one of the methods is
re-implemented, all others referring to it via self are
modified as well. This is known as dynamic binding of
methods or late binding.

The last ingredient, we mention is subtyping. Subtyp-
ing constitutes an order relation on types, where S < T
means that an element of type S can be regarded as an
element, of 7" and thus safely be used when an inhabi-
tant of T is expected. This is known as substitutability
or subsumption. Subtyping must not be confused with
inheritance: Inheritance is the construction of a new
subclass, whereas subtyping is concerned with the use
of objects or terms in general. Although inheritance
and subtyping are different, there is a connection be-
tween them in this model: the type of any instance of
a subclass is a subtype of the type of any instance of
the superclass. Subclasses and superclasses themselves,
however, are not related by subtyping.

THEORY AND PRACTICE OF OBJECT SYSTEMS 7?7 3

2.3. Encoding of object-oriented programs

The system FZ' is sufficiently expressive to model
object-oriented programs but, lacking dependent types,
neither to specify their behavior nor to reason about
them internally. We transfer the F¢ object-model to
Lego and extend it in such a way that the types of the
objects will not only include the functional types of the
operations, but also a specification of their behavior.
The objects then contain correctness proofs in addition
to the implementation of the operations.

Apart from subtyping, transferring F£’s object-
oriented programming model to Lego is trivial, since
in the A-cube [4] the w-order A-calculus F'* [18] is a
subcalculus of the Extended Calculus of Constructions
(more precisely of the pure Calculus of Constructions).
Subtyping, though an integral part of FY, is neither
present, in the Extended Calculus of Constructions nor
in Lego, so we have to find an adequate representation.

2.3.1.
written S < T, means that it is safe to use terms of

Subtyping A type S being a subtype of T,
the smaller type in all cases where a term of the big-
ger type is expected. This is expressed by subsumption.
Conventionally, the subtype relation can be captured
by so-called coercion functions, where the statement
S < T s represented as a function f:5 — T. If we
view the type S as a more refined version of T'| the co-
ercion function extracts the T-part of elements of 5. As
shown in [23], this simple representation is not enough
to model update together with subtype polymorphism
in a functional setting. To account for updating, S < T
is represented as a pair of functions, say gef and put,
with get: S — T and put:S — T — 5. The function
get plays the role of the coercion function, extracting
the T-part of elements of S, and put takes as first argu-
ment a value of type S and overwrites its T-part with
the second argument, without altering the rest. For a
restricted set of types the functions, get and put can be
generated automatically. A model where subtyping is
interpreted in this way has been developed for a certain
restriction of Fe in [23]. The interpretation of get and
put as extraction and update functions is captured by
the three equations of the following definition.

Definition. [Laws for get and put [23]] Assume im-
plicitly two types S and T and assume further two func-
tions get: S — T and put:S — T — S. The laws for
get and put are defined as the following equations:

get (put st) =y, 1 (1)
put s (get s) =y, s (2)
put (put s 1) 4o =y, pul sty (3)

The Tego-representation GetPutlaws of these equa-
tions abstracted over S, T, get, and put has type
VS |x. VT |x. (S = T) = (S =T —=8) =+ Weuse

4 THEORY AND PRACTICE OF OBJECT SYSTEMS 7?77

it to define the subtype relation, where T.ego’s |-syntax
for implicit arguments allows us to omit mentioning the
first two arguments of GetPutlLaws:

Definition. [Subtype relation] Assume the types S :x
and T :x. The subtype relation s then defined as:

S<T Lef [get:S — T,
put: S =T — S|
gpOK : GetPutlLaws get put |

The elements gp of a type S < T are triples, consisting
of two functions get and put, and a proof gpOK that
they satisfy the required laws. Reflexivity and transi-
tivity of the subtype relation are easily established.

Lemma 1. The subtyping relation is a pre-order in the
sense that there are terms reflo :¥S:%x. S < S and
trans< NS, T U |x. (S<T) = (T<U) = (S<U).
Proof. For reflexivity, define the two functions as the
identity and the second projection. The GetPutlaws
are immediate by reflexivity of Leibniz’s equality.

For transitivity, let gps<p be a proof for § < T and
gpr<u for T < U. Define the extraction function from
S to U as the composition of gps<r.get with gpr<ir.get.
The update function is composed as -

As: S Au:U.
gps<7-put s (gpr<ir.put (gps<r.get s) u).

Proving the respective laws is straightforward. -

We do not address coherence of this notion of sub-
typing here, so strictly speaking we model F¥
derivations not judgements. In principle, Curien and
Ghelli’s coherence proof for Fe with explicit coercions
[14] should be applicable to the present situation.

2.3.2. Objects
cations in the interface of objects 1s straightforward.

Intuitively, the inclusion of specifi-

In addition to the functional signature Sig:x — *,
the interface needs a component Spec which specifies
properties of the object in terms of 1ts operations and
thus has type V Rep:x. (Sig Rep) — % . Recall that
* 18 the kind of datatypes and propositions. Given
a representation type Rep, the body of an object has
type [state: Rep, ops:Sig Rep, prfs: Spec Rep ops] and
consists of a state, the operations, and a proof that
they satisfy the specification.

But how to achieve encapsulation? In the informal
explanation in Section 2.2, we used FZ’s existential
quantifier to hide the internal state and the operations.
Using the standard impredicative encoding

F=AP:x =2 x.VC:x. (VR:%. (PR) = C) = C

of the weak sum, then, as explained in [47] and [24], we
can define a generic method meths of type Sig Object.
However, although every object embodies a proof that
1ts methods satisfy the specification Spec we cannot ob-
tain an externalized version of the proofs, i.e. prove

Spec Object meths. The reason is that the (definable)
elimination function associated with the impredicative
encoding is too weak as can be seen from its type

VO: %x. (VR:x. (PR)—~C) = (3R:x. PR) — C,

where P:% — % is an arbitrary type operator. (We
use the more familiar notation dR:x. P R instead
of 3(AR:%. PR).) Roughly speaking, this elimi-
nation rule allows us to define a function of type
(3R:x. PR) — (provided we specify it on canoni-
cal elements. Tt does not allow us to prove anything
about elements of type AR:%. P R, i.e. to define a de-
pendent function of type Yo : (3R:%. P R). C o where
C:(3R:x. PR) — *.

The solution we propose is to axiomatically assume
an existential quantifier together with the usual intro-
duction rule and a dependent elimination rule which
overcomes the shortcoming of the impredicative encod-
ing. Of course, the soundness of such an extension has
to be validated externally as we will do below.

Definition. [FEristential quantification] The forma-
tion, the introduction, and the elimination rule for the
type constructor 3 are declared as follows:

3 ko k) 2%
pack : VP:x = x.VR:x. (PR) —-3R:x. PR

open @ YP:k = %.YC: (3R:%. PR) — *.
(VR:%.Vo:PR.(C (pack PR x))) —
Yo :(3R:x.PR).C o

Assume predicates P:x — x and C: (3R:x. PR) — %
and a function f:VR:x. VYo:PR. C (pack P R z).
Assume further R:x and x: P R. The reduction rule is
then defined as:

open PC' f (pack PRx)= [R«

This existential quantifier can be soundly interpreted
in the PER/w-set. model of the ECC [33] as follows. Tf
I is a function mapping partial equivalence relations
on N (PERs) to PERs. Define 3(F) as the symmet-
ric, transitive closure of the union of the F(R) as R
ranges over the set of PERs. This is the least upper
bound of the F(R) in the complete lattice of the PERs
ordered by set-theoretic inclusion. The pack-construct
can then be modelled as an inclusion map, 1.e. we have
F(R) C 3(F) for each R. To interpret open we as-
sume a family of PERs indexed over the quotient of
A(F) or equivalently a PER ('(n) for each n in the do-
main of 3(F) and satisfying C'(n) = C(n') whenever
n and n' are related by 3(F). The premise to open
corresponds in the PER model to an algorithm e such
that for each PER R, whenever n and n’ are related
in F(R) then e(n) and e(n’) are defined and related in
C(n)(= C(n')). Now, if n and n’ are related in 3(R) it
follows by induction on the length of a path relating n
and n' that e(n) and e(n’) are both defined and related
in C'(n). So e itself yields the interpretation of open.

Now we can define the type of objects, using the
declared existential quantifier.

Definition. [Type of objects] Assuming a signature
Sig of type x — * and a specification Spec of type
YV Rep :%. (Sig Rep) — %, the type of objects is given
as:

Object ef J Rep 1%

[state : Rep, ops : Sig Rep, prfs : Spec Rep ops]

With the existential quantifier as top-level constructor,
objects are built by the existential introduction rule. To
ease the presentation, we define a term for construct-
ing objects with the help of the existential introduction
operator pack.

Definition. [Object introduction] Assuming implicitly
a representation type Rep, a signature Sig, and a speci-

fication Spec, the function ObjectIntro for object intro-

duction s defined as:

Objectintro def
A mystate : Rep .
A myops : Sig Rep .
A myprfs : Spec Rep myops .
pack (X Rep :x. [state: Rep,
ops = Sig Rep,
prfs: Spec Rep ops])
Rep
[state = mystate,
ops — myops,
prfs = myprfs |
: Rep — Y myops : Sig Rep . (Spec Rep myops) —
Object Sig Spec

Let’s illustrate these definitions of objects with the stan-
dard example of points. For the sake of discussion, our
points have one coordinate in nat admitting examina-
tion by getX, overwriting by sefX, and augmentation
by incT. A natural choice, though not the only possible
one, for the internal representation type is the type of
natural numbers itself.

Erxample 1. [Points] The signature SigPoint of points
18 the product of the types of the operations getX , setX

and incl, abstracted over the representation type Rep:

SigPoint DY Rep :%. [getX : Rep — nat,
setX : Rep — nal — Rep,
incl : Rep — Rep]

For the specification of points, assume a representation
type Rep and operations ops conforming to the signature
of type SigPoint Rep. To simplify the presentation, the
specification SpecPoint consists of only two equations:

SpecPoint def
ops.getX (ops.setX rn) = n
ops.getX (ops.incl r) =y, (ops.getX r) + 1

THEORY AND PRACTICE OF OBJECT SYSTEMS 7?7 §

The type of points Point 1s defined using the type con-
structor Object.

Point ' Object SigPoint SpecPoint

Let us define a concrete object MyPoint : Point with rep-
resentation type nat and initial value 3 by the object
wmtroduction rule ObjectIntro. The operations are im-

plemented as:

opsPoint def [getX = An:nat. n,
setX = An:nat . dm:nat . m,
incl = An:nat.n+1]
SigPoint nat .

The pair prfsPoint : SpecPoint nat opsPoint of correct-
ness proofs for the two equations 1s immediate by re-
ferivity of Leibniz’s equality. Puiting it all together by
object introduction yields a concrete point of type Point :

MyPoint def ObjectIntro 3 opsPoint prfsPoimnt

2.3.3. Generic methods So far, we have means to
encapsulate the state of objects by existential quantifi-
cation. As mentioned before, we also need a mechanism
to gain disciplined access to the objects, using the op-
erations and the proofs mentioned in the interface. The
generic methods are functions that open the objects and
use the internal operations to perform the requested
manipulations. If the operations ops of an object have
type Sig Rep for some Rep :*, the type of the generic
functional methods meths is Sig (Object Sig Spec). The
generic version of proofs of Spec Rep ops then has
type Spec (Object Sig Spec) meths. Tn the point exam-
ple, the generic methods methsPoint have the type
SigPoint Point = [getX : Point — nat, setX : Point —
nat — Point, incl : Point — Point | and the generic
version of the first equation of the specification is for
instance methsPoint.getX (methsPoint.setX pn) =y, n.
As can be seen from their types, the generic methods
are to be defined generically for all objects, i.e. inde-
pendently of any internal implementation.

The generic methods discussed above invoke the in-
ternal operations and proofs of objects with a spe-
cific interface. Subtyping should facilitate the use of
generic methods for more refined objects, e.g. the ap-
plication of the points” methods to colored points, pro-
viding additional operations and proofs dealing with
the color. Tt is not enough, however, to be able to ap-
ply the generic methods to more refined objects, as the
state-modifying methods have to return objects of the
subtype, too. For example, the type of the method
overwriting the x-coordinate of points should be YP <
Point . P — nat — P. Tt is well known [45] that only
trivial functions inhabit this type. The solution pro-

posed for F'2 is to use the subtype polymorphism not on

6 THEORY AND PRACTICE OF OBJECT SYSTEMS 7?7

the type of objects, but on their signature, resulting in
Y Sig < SigPoint . (Object Sig) — nat — (Object Sig)
as the type for the setX method. Tn Section 2.3.1 we
have encoded the subtype relation as pairs of extraction
and update functions. Since for the above subtype rela-
tion on the signatures, the update part is not needed, we
represent, the relation simply by an extraction function.

[Generic methods for points] Assume
wmplicitly a signature Sig:x — * and a specification
Spec :¥ Rep :x. (Sig Rep) — x together with a coercion
co_sig of type ¥ Rep |x. (Sig Rep) — (SigPoint Rep).
The generic method Point'setX is defined as follows:

Erample 2.

Point’set X def

A o: Object Sig Spec .
A n:nat.
open (X Rep % . [state : Rep,
ops = Sig Rep,
prfs: Spec Rep ops])
(A_: Object Sig Spec . Object Sig Spec)
(A Rep :%.
A stateopsprfs : [state: Rep,
ops : Sig Rep,
prfs: Spec Rep ops |.
Objectintro
[state = (co_sig stateopsprfs.ops). setX
stateopsprfs.state n,
stateopsprfs.ops,

ops
prfs = stateopsprfs.prfs])
0
: (Object Sig Spec) — nat — (Object Sig Spec)

The methods Point'getX : (Object Sig Spec) — nat and
Point'inc1 : (Object Sig Spec) — (Object Sig Spec) can
be defined analogously.

In a similar way, the generic proof methods for points
are obtained by opening the point and accessing the
corresponding internal proof. Tn contrast to the model
of Pierce and Turner we have to deal with the proof-part
as well, which implies that in addition to the signature
coercion co_sig:¥ Rep |*. (Sig Rep) — (SigPoint Rep)
we require a specification coercion

Sig Rep .
(Spec Rep ops) —
(SpecPoint Rep (co_sig ops)) .

co_spec: ¥ Rep | %. ¥ ops

With these extraction functions we can define generic
proof methods for the equations of the specification of
points.

[Generic proof methods for points] As-
sume implicitly a signature Sig, a specification Spec,

Erample 3.

and coercion functions co_sig and co_spec. The generic
proof method for the first equation Point'prf, is defined

as follows:

Point'prf, def
A o: Object Sig Spec .
A n:nat.
open (X Rep % . [state : Rep,
ops = Sig Rep,
prfs: Spec Rep ops])
(Mo : Object Sig Spec . Point'getX co_sig
(Point'setX co_sig o n) =y, n)
(A Rep :%.
A stateopsprfs : [state : Rep,
ops : Sig Rep,
prfs: Spec Rep ops |.
let mystate = stateopsprfs.state
myprfs = co_spec (stateopsprfs.prfs)
in myprfs.1 mystate n)
0
: Yo: Object Sig Spec . ¥n : nat .
Point'getX co_sig (Point'setX co_sigon) =1, n

In the same way, the generic proof method Point'prfs
of the second equation has type Yo: Object Sig Spec .
Vn :nat . Point'getX co_sig (Point'incl co_sig r) =,
(Point'getX co_sigr)+1 and can be defined analogously.

We have illustrated the generic methods on the spe-
cific example of points. For a restricted set of signatures
it 1s possible to define the generic methods uniformly
[24], namely for signatures of the form A Rep :x. Rep —
(T Rep), where T is covariant in its argument Rep.

The restriction to covariant signatures excludes the
definition of binary generic methods such as Point —
Point — bool since they would need to compare the
state of two points of arbitrary representation types;
but these are hidden by the existential quantifier. This
phenomenon has been discussed already in the context
of abstract data types in [39] and [36]. (Cf. [6] for a de-
tailed discussion of problems related with binary meth-
ods in typed object-oriented programming languages.)

In this example we were able to define the generic
functional methods, as the signature is basically of
the above form. TInstead of SigPoint, we could have
used A Rep:%. Rep — [getX :nat,setX :nat — Rep,
incl : Rep | as well; for presentational purposes, we have
chosen the form of signature on Page 5.

Similarly, a

generic proof method with

type
Spec (Object Sig Spec) meths can only be defined if the
specification has the form of universally quantified
clauses each of which contains the type Rep in covariant
position only. For example, if SpecPoint would contain

a third clause

Vr: Rep .
Vr': Rep . (ops.getX r =y, ops.getX v') — (r =1, ')

then a generic proof method would state that two point
objects with equal x-coordinate are equal. Note that

the type of ¥’ constitutes a contravariant occurrence
of type Rep. FEven if this property is locally satisfied
by concrete representations it is unsound in its general
form (think of points with a color attribute which is
blue in one representation and red in another one). We
believe that the required covariance condition on Spec
can be formalised in such a way that a uniform defini-
tion of generic proof methods can be given along the
lines of [24].

For the moment we circumvent this problem by giv-
ing an explicit definition of generic (proof) methods in
each case.

2.3.4. In the
previous sections we have emphasized the benefit of
packing programs and proofs together in the objects. Tn

Objects without logical components

the context of formal verification the given arguments
are justified, but they don’t apply if the objects are to
be executed. For this purpose the proofs are ballast;
worse still they are big. As programs and proofs form
a pair, we can jettison the proofs simply by projecting
out the programs. To take care of encapsulation, we
open the objects first, then extract the programs, and
finally repack the objects without the proofs. The type
of the resulting trim objects coincides with the one in

[47].

Definition. [Type of objects without logical compo-
nent] Assuming a signature Sig:* — * the type of ob-

jects without proof component 1s given as:

Object _eff «f 3 Rep :x . [state: Rep, ops : Sig Rep]

Defining the function forget_prfs of type V Sig: % — *.
Y Spec: (¥ Rep : x. (Sig Rep) — %). (Object Sig Spec) —
(Object _eff Sig) which forgets the proof-part of objects,
1s analogous to defining generic methods.

Definition. [Objects without logical component] As-
suming implicitly a representation type Rep, a signature
Sig, and a specification Spec, the term for forgetting the
proof component is defined as:

forget_prfs =
A o: Object Sig Spec .
open (X Rep % . [state : Rep,
ops = Sig Rep,
prfs: Spec Rep ops])
(A_: Object Sig Spec . Object_eff Sig)
(A Rep :%.
A stateopsprfs : | state : Rep,
ops : Sig Rep,
prfs: Spec Rep ops |.
pack (X Rep :x. [state: Rep, ops : Sig Rep])
Rep
[state = stateopsprfs.state
ops = stateopsprfs.ops])
0

: (Object Sig Spec) — (Object _eff Sig)

THEORY AND PRACTICE OF OBJECT SYSTEMS 7?7 7

Alternatively, we can view “inheritance of proofs”
merely as a methodology for structuring informal proofs
on paper.

2.3.5.
determines the implementation of its instances. Since

Classes As mentioned in Section 2.2, a class
we have extended the interface of objects with a speci-
fication, a class has to provide not only the code of the
operations, but a proof of its correctness as well.

We cannot yet implement the class for a fixed rep-
resentation type, say ClassR, since the mechanism of
wmheritance may extend and change the representation
type. So the signature and the specification both have
to refer to a representation type Rep, as yet indeter-
minate. Of course we cannot expect to program non-
trivial operations and proofs for an arbitrary represen-
tation type Rep. Constraining the possible represen-
tation types to subtypes of the fixed ClassR gives the
necessary connection between the two types in terms
of the extraction and update function: the laws of
get and put on Page 4 guarantee that the operations
will behave correctly on the ClassR part of its sub-
type Rep without compromising the rest. The repre-
sentation type Rep remains provisional as long as we
Tt will be fixed, 1.e.
identified with the representation type of the corre-

create subclasses by inheritance.

sponding class, only when an instance of the class is
generated. Hence we could write the type of a class
with fixed representation type ClassR, signature Sig,
and specification Spec as ¥V Rep :x. (Rep < ClassR) —
[ops : Sig Rep, prfs: Spec Rep ops].

So far, though, we have not said a word about
The possibility of self-
reference to operations and proofs in classes is the key

self-methods and self-proofs.

to the flexibility of inheritance. Tn this functional set-
ting, self-reference is simply achieved by assuming self
as a variable of type [ops : Sig Rep, prfs: Spec Rep ops],
i.e. the implementation is abstracted over this variable,
giving classes the following type.

Definition. [Type of classes] Assume a representation
type ClassR : %, a signature Sig :x — %, and a specifica-
tion Spec:V Rep :x. (Sig Rep) — . The type of classes
18 given as:

def
Class =

YV Rep :%. (Rep < ClassR) —
[ops : Sig Rep, prfs: Spec Rep ops] —
[ops : Sig Rep, prfs : Spec Rep ops]

(self)

A fixed point operator will be used to resolve the func-
tional abstraction on self at instantiation time; this will
be discussed in the following section. Again we illus-

trate the definition by our running example.

Erample 4. [Class of points] The type PointClass of

classes of points with representation type nat, signature

8 THEORY AND PRACTICE OF OBJECT SYSTEMS 7?7

SigPoint, and specification SpecPoint (cf. the example
on Page 5) is buill using the type constructor Class:

PointClass < Class nat SigPownt SpecPoint

We define a concrete class MyPomntClass of type
PointClass as pair of the operations and of their cor-
rectness proofs. The abstraction over self enables ref-

erence to the self-methods and self-proofs.

MyPointClass def

A Rep:%.Agp:Rep < nat .
A self : [ops : SigPoint Rep, prfs : SpecPoint Rep ops].
[ops = opsPointClass, prfs = prfsPointClass]

The operations of the class are implemented as the fol-
lowing triple:

opsPointClass =
[getX = Ar:Rep. gp.get r,
setX = Ar:Rep.An:nat. gp.put rn,
mel = Ar:Rep. self.ops.setX r
(self.ops.getX r)+1]

Although the erxample may suggest that the two func-
tions get and put for the subtype relation were tailored
to encode the two methods getX and setX the conirary
is true. As shown in [23] the functions get and put are
canonical in the sense that they make the basic manip-
ulations of a state avarlable: reading and updating it.

Finally, we have to prove the correctness of the oper-
ations just defined, i.e. qive an element prfsPointClass
of type SpecPoint Rep opsPointClass. The first equation
of the specification

opsPointClass.getX (opsPointClass.setX rn) = n

only contains operations not depending on self. Using
their tmplementation it reduces to:

gp-get (gp.put r n) =r n

The equation coincides unth the first law for get and put,
accessible by gp.gpOK. 1.

The specification’s second equation postulates the cor-
rect behaviour of the increment operation, which is de-

fined in terms of self :

opsPointClass.getX (opsPointClass.incl r) =,
(opsPointClass.getX r) + 1

which [-reduces to

gp-gel (self.ops.setX r (self.ops.getX r)+ 1) =y,
(gp-get 1) +1

This equation, though, 1s not provable in the present sit-
uation. The reason is that there is no way to relate the
implementation of the methods i the above equa-
tion the function get as implementation of the get X
method

the current encoding of classes, a richer specification

with the operations referred to by self . In

would not help, since the necessary connection cannot
even be specified. This does not imply that proofs about
self methods are impossible at this stage. Tt 1s possible
to prove equations involving only self methods, but not,
as in the above equation, those involving both self and
other methods. Section 3 will discuss this problem and
propose solutions.

2.3.6. Instantiation The instantiation operator
new 18 a function that generates a new object when
applied to a class and an initial value. As explained
in the previous section, a class does not provide an im-
plementation of objects for a fixed representation type
ClassR, but for any representation type Rep < ClassR.
At instantiation, the representation type becomes fixed,
i.e. identified with ClassR. Tn addition, classes are ab-
stracted over the variable self. This dependency has to
be resolved, ensuring that self now refers to the class
being instantiated.

In [46], this dependency was resolved using a fixed
point operator. Although it 1s in principle possible
to extend Tego by general recursion, see e.g. [48, 2],
we have opted for the simpler alternative of using the
bounded fixpoints from [23]. This means that we re-
place an instance firf where f : A — A by the n-
fold iteration f”(basis) of f on a start value basis : A.
This expression yields the unique fixpoint of f pro-
vided f™ is a constant function. Again following [23]
we think that it is a reasonable restriction that depen-
dencies of methods on self be resolved after a fixed,
input-independent number of recursive unfoldings. For
a more thorough discussion of bounded fixpoints we re-
fer to op. cit. In Lego the n-fold iteration of a function
s encoded using the iteration operator naf_iter of type
VA| Type. A — (A = A) = nat — A as defined in the
Lego-library.

Definition. [Instantiation] Assuming implicitly a rep-
resentation type ClassR, a signature Sig, and a speci-
fication Spec, the instantiation operator new 1s defined
as:

new <
Aelass : Class ClassR Sig Spec .
A state : ClassR .
A basis : [ops : Sig ClassR, prfs : Spec ClassR ops]
An:nat .
let opsprfs =
nat_iter basis
(class ClassR (refl. ClassR))
n
in (ObjectIntro state opsprfs.ops opsprfs.prfs)
: (Class ClassR Sig Spec) — ClassR —
[ops : Sig ClassR, prfs: Spec ClassR ops] — nat —
Object Sig Spec

This instantiation operator neither guarantees that af-
ter the given number of function iterations the self-

methods and self-proofs are resolved, nor that they are
resolvable at all. To ensure this, the definition can eas-
ily be modified so that the programmer has to prove
that nat_iter basis (class ClassR (refl. ClassR)) n is
indeed a fixed point of class ClassR (refl. ClassR).
In Section 3 we give a more refined definition of in-
stantiation which requires the programmer to provide
a proof that the iteration is indeed a fixed point of the
class. Also notice that instantiation takes a correct im-
plementation, namely basis as an argument. In other
words, we have to provide an implementation plus a
correctness proof in the first place.

In a strongly normalising system like Lego the rule
of strengthening is admissible. This means that if a
term be it a program or a proof does not liter-
ally contain a variable (or an assumption) then it can
by type-checked without this variable (or assumption).
This allows us to use the following semi-algorithm to
compute an appropriate iteration index n and to dis-
charge the consistency assumption basis.

e Given class ClassR (refl. ClassR) successively
compute the S-normal forms of class® basis where
basis:[ops: Sig ClassR, prfs: Spec ClassR ops] is a
fresh variable.

e Stop when an index n is found such that the 8
normal form of class™ basis does not contain basis

literally.

Now, selfresolved © lass™ basis is a fixed point,
of class and moreover, by strengthening, constitutes
a provably correct implementation of the specification
Spec not depending on consistency of the latter. This
semi-algorithm will always terminate if the function
class does not contain circular dependencies on self ei-
ther in the code or in the proofs. We believe that this
situation can in many cases also be recognized by a

static analysis of the structure of possible calls to self.

Erample 5. [Instance of points] A concrete object

MyPointinstance with x-coordinate 3 is instantiated

from the class PointClass by means of the instantia-

tion operator new. Only two iterations are needed to
resolve the self-methods; thereafter the variable self has
disappeared. We can therefore apply the instantiation
operator to a variable basis and nevertheless obtain (by

strengthening) a closed and correct implementation:

basis : [ops : SigPoint nat, prfs : SpecPoint nat ops)
MyPointInstance e ew MyPomntClass 3 basis 2

We want to stress that this line of reasoning hinges
on the fact that we have explicit proof objects and -
reduction on these. Without g-reduction the variable
basis could never literally disappear.

Inheritance allows to define new

2.3.7. Inheritance

classes by means of already defined ones. As in the ob-

ject model of F¢, inheritance is represented by a func-

tion inherit which generates the subclass when applied

THEORY AND PRACTICE OF OBJECT SYSTEMS 7?7 9

to a superclass and to a function build. The argument
build serves as an instruction how to construct the sub-
class from the implementation of the superclass.

Like any class, the subclass has to be implemented
for an arbitrary subtype Rep of its representation type
SubR. To use the implementation of the superclass in
the subclass, we have to ensure that the operations
of the superclass work on Rep as well. A proof of
SubR < SuperR together with transitivity of the sub-
type relation suffices.

Late binding requires that the variable self in the
inherited operations and proofs be bound to the self-
This is achieved by
transforming the self-parameter using appropriate co-

parameter of the present class.

ercion functions between the signatures and the speci-
fications.

Definition. [Inheritance] Assume implicitly a repre-
sentation type SuperR :x, a signature SuperSig :+ — %,
and a specification SuperSpec of the superclass, which
itself has type ¥ Rep :x. (SuperSig Rep) — . In ad-
dition, assume for the subclass a representation type
SubR, a signature SubSig, and a specification SubSpec
correspondingly. Finally, assume a proof gp supr< superr
of type SubR < SuperR and two coercion functions
YV Rep |*. (SubSig Rep) — (SuperSig Rep)
of type Y Rep|*. VY ops|SubSig Rep.
(SubSpec Rep ops) — (SuperSpec Rep (co_sig ops)).
The inheritance operator s then defined as follows:

co_siq -
and co_spec

inherit <
A SuperClass : Class SuperR SuperSig SuperSpec .
Abuild : ¥ Rep :x. (Rep < SubR) —
[ops : SuperSig Rep,
prfs : SuperSpec Rep ops] —
[ops : SubSig Rep, i
prfs : SubSpec Rep ops] — (self)
[ops : SubSig Rep, prfs: SubSpec Rep ops].
(ARep:x. Agppey<supr - ep < SubR .
A self - [ops : SubSig Rep, prfs: SubSpec Rep ops].
build Rep gp pep< suvr
(SuperClass Rep
(trans< gp pep<subr
gpS’ubRSS’uperﬁ’,)
[ops = co_sig self.ops,

prfs = co_spec self .prfs])

(super)

self)
: (Class SuperR SuperSig SuperSpec) —

(V Rep :%. (Rep < SubR) —
[ops : SuperSig Rep, prfs: SuperSpec Rep ops] —
[ops : SubSig Rep, prfs: SubSpec Rep ops] —
[ops : SubSig Rep, prfs : SubSpec Rep ops]) —
(Class SubR SubSig SubSpec)

Continuing the example, we use inheritance to construct
a class of colored points. Thus assume a type Color : %
together with elements blue, red, Tn addition to the

10 THEORY AND PRACTICE OF OBJECT SYSTEMS 777

operations get X, setX and inel of points, the class of
colored points contains the operations inc2 and getC,
where the operation inc2 increments the coordinate by
two and getC' extracts the color.

Erample 6. [Colored points] The signature of col-
ored points SigCPoint extends the signature of points
SigPoint by the types of the operations inc2 and getC',

abstracted over a representation type Rep:

SigCPoint U Rep :%. [opspoint : SigPoint Rep,
me?2 : Rep — Rep,
getC : Rep — Color]

To simplify the further exposition, we pretend that the
operations form a flat quintuple. We also use names
such as getX, setX etc. for the appropriate record se-
lectors, when the meaning is clear from the contert.
For the specification SpecCPoint, assume an arbi-
trary representation type Rep and operations ops of type
SigCPownt Rep. The specification SpecCPoint extends

the specification SpecPoint by three equations.

SpecCPoint def
(SpecPoint Rep ops.opspoint) x
(ops.getX r) 42
ops.getC (ops.inc2 r) =y blue
ops.getC (ops.setX rn) = blue)

(ops.getX (ops.inc2 r) =,

As in the case of the operations, we assume that the
proofs form a flat quintuple. We refer to the components
of prfs which has type SpecCPoint Rep ops by prfs.1
through prfs.5.

Now, we define a class MyCPointClass with repre-
sentation type (nat x Color) by means of the inheri-
tance operator inherit.

MyCPointClass def

inherit (nat x Color) SigCPoint Spec CPoint
gp co_sig co_spec
MyPomntClass
(ARep:x.
A ngepS(nat x Color) ZRFfp S (nm‘ X COIOT) .
A super : [ops : SigPoint Rep,
prfs: SpecPoint Rep ops].
A self : [ops : SigCPoint Rep,
prfs : SpecCPoint Rep ops |.
[ops = opsCPointClass,
prfs = prfsCPointClass |
}: Class (nat x Color) SigCPoint SpecCPoint

The term gp : (nat x Color) < nat is a dependent triple
consisting of functions get = Anc:(nat x Color) . ne.1
and put = Anc:(nat x Color). An:nat. (n,nc.2) to-
gether wnth the straightforward verification of the re-
quired laws. The proof uses the n-rule for pairs wich
18 provided by their inductive definition from the ILego-
library. The coercion co_sig:¥ Rep |x. SigCPoint Rep

— SigPoint Rep for the signature and co_spec of type

Y Rep | *. ¥ ops | (SigCPoint Rep). (SpecCPoint Rep ops)
— (SpecPoint Rep (co_sig ops)) for the specification
part respectively simply forget the new operations and

the new proofs.

To implement the operations opsCPointClass, we in-
herit getX and incl from the superclass of points. To
lustrate late binding, the operation setX of the colored
The op-
eration inc2 uses the operation incl of the point-class

In the def-

mition of the operations, the variables self and super

point class artificially sets the color to blue.
twice and getC simply extracts the color.

provide access to the methods of the colored point class
and the point class respectively.

opsCPointClass =
[getX = Ar:Rep. super.ops.getX r,
setX = Ar:Rep.An:nat.

9P Rep< (nat x Color)'p“t r (77,7 bl“e)v

mel = Ar:Rep. super.ops.incl r,

me2 = Ar:Rep. super.ops.incl

(super.ops.incl 1),
quC = Ar: RPP - (ngepS(nat X Color)'get 7“)2)]

Finally, we have to prove the correciness of these five
operations, 1.e. give an element prfsCPointClass of type
SpecCPoint Rep opsCPointClass.

We have to postpone the discussion of the first and
the fourth equation since at this stage 1t is not possible
to prove propositions relating the variable super with
get and put. The problem 1s satmilar to the one for self
encountered in the encoding of classes (cf. the example
on Page 8) and will be addressed in the next section.

The second equation of the quintuple SpecCPoint on

Page 10 reduces to super.ops.getX (super.ops.incl r) =,

(super.ops.getX r)+1, which coincides with the type of
super.prfs.2. Therefore, we can use the inherited proof
super.prfs.2 to show the correctness of the current equa-
tion. This equation demonstrates that it is possible to
inherit correctness proofs to verify inherited operations.
Note that the situation of the previous equation is not
as simple as the proof might suggest. The operation
el an the subclass refers, as in the superclass, via self
to the setX operation, which we have changed in the
subclass. Due to late binding, this also affects the im-
plementation of incl. Newvertheless, the inheritance of
the proof works, since we have not altered the behaviour
of setX on the point part.

This way of reasoning is not restricted to situations
where the inherited proof 1s reused without modification.
New equations of a subclass can also be proven by proof
inheritance, as can be seen in the third equation.

FErpanding the definitions of the operations getX and
me2 an opsCPointClass, the third equation becomes
super.ops.getX (super.ops.incl (super.ops.incl r)) =p,
(super.ops.getX r) 4+ 2 and can be shown by employing
the inherited proof super.prfs.2 twice.

The last equation can be established easily with the
laws for get and put, even though the point part of setX
18 inherited and in the equation super is mired with get
and put. This 1s feasible because the definition of the
point part 15 1rrelevant for the proof.

3. Proofs over self-methods

In this section we improve the encoding of classes, in-
stantiation, and inheritance, to overcome the difficulties
with proofs over methods with late binding. The def-
nitions of objects, generic methods, and generic proof
methods remain unchanged.

3.1. (lasses

As seen in the previous section, we can cope with
equations about non late binding methods. We have
also mentioned in the example on Page 8 that some
equations with self methods are provable, namely if the
specification of the self methods suffices to establish the
properties to be shown. In many cases, especially when
self methods appear together with non-self methods, we
are stuck. The reason is that, by late binding, the self
methods may refer to operations of subclasses whereas
the non-self methods refer to the special implementation
of the present class. For instance, in the example on
Page 8 we cannot expect to prove the second equation in
the specification of points, relating the implementations
of getX and inei:

gp.gel (self.ops.setX r (self.ops.getX r) + 1)
=1 (gp.get v) +1

(1)

since we do not know how the setX method in sub-
classes will behave together with the current implemen-
tation gp.get of the getX method. The only thing we
know about the self-operations is that they satisfy the
specification; the verification cannot rely on any details
of the implementation.

Tn [23] the problem was overcome by including im-
plementation details into the specification.? Tn our ex-
ample, one would then add the equation ops.getX =y,
gp.get to the specification of points. This would give
the desired connection between self and the present
implementation: self.ops.getX =y gp.get. However,
such a specification of internal details is problematic
since it fires the implementation also for the subclasses,
which will have to satisfy the extended specification,
too. Even worse: including implementation details into
the objects” interfaces misses the point of encapsulation,
whose purpose is to abstract away from details.

The previous analysis shows that without restriction
on the implementation of the subclasses Equation (1) is
simply not true in the class PomntClass. Nevertheless,
after solving the self-operations of the point class by a

THEORY AND PRACTICE OF OBJECT SYSTEMS 7?77 11

fixed point, the equation does become provable. The
operations self.ops.getX and self.ops.setX then get re-
placed by their implementation, yielding:

gp.get (gp.put r (gp.get r) +1) =1, (gp.get r) +1
S~ N — S—_—— S—_——

getX setX getX getX

This equation follows from the first equation in the spec-
ification of points. This observation applies not only to
the class of points itself, but to all of its subclasses:
upon instantiation, the self gets replaced by the im-
plementation provided by the respective subclass. The
second equation then takes the form:

impl.get X (impl.setX r (impl.getX r) + 1) =,
(impl.getX r) 4 1

(Tse)

where tmpl.get X and tmpl.set X are the concrete imple-
mentation of the methods getX and sef X, thus satisfy-
ing at least the specification of points. Again we can
use the first equation of SpecPoint for the proof.

These calculations suggest that the problem with the
verification of late binding methods (here inc1) is not a
genuine one, but rather caused by a limitation of our ap-
proach. Simply requiring that a class maps correct im-
plementations to correct implementations (as was done
in Definition 2.3.5 on Page 8) is not, enough to establish
all reasonable and expected properties.

To overcome this problem, we will consider gener-
alized specifications which contain two copies of ev-
ery method: one ranging over the actual implemen-
tation and the other one over the self parameter.
More formally, we consider Spec’:¥ Rep . (Sig Rep) —
(Sig Rep) — . Tt is the task of the programmer or
verifier to decide which copy of a method is appro-
priate for the generalized specification. We will show
below that the fixed point of the program part of a
class satisfies the intended diagonalized specification
Spec DY ops : (Sig Rep). Spec’ ops ops. Tn the sequel
we will use primes to refer to a generalized specification
and use their name without prime for the diagonalized
specification.

In the specification of points, the separation of ab-
stract and actual implemented operations 1s done as
follows:

Erample 7. [Generalized specification of points] As-
suming a representation type Rep,

tions ops, and abstract operations selfops of type

concrele opera-
SigPoint Rep, the generalized specification of points
s given as

SpecPoint’ def

ops.getX (ops.setX rn) =y n
selfops.getX (ops.incl r) = (selfops.getX r) 4 1

Notice that SpecPoint =5, SpecPoint’ ops ops.
A class will now provide for all Rep < ClassR

12 THEORY AND PRACTICE OF OBJECT SYSTEMS 777

¢ aself-dependent implementation code: (Sig Rep) —
(Sig Rep) of the operations, and

e a proof that Spec’ selfops selfops’ entails the cor-
rectness of Spec’(code selfops) selfops.

More formally:

Definition. [Type of classes] Assume a representa-
tion type ClassR :%, a signature Sig:x — *, and a
generalized specification Spec’ 1N Rep :x. (Sig Rep) —
(Sig Rep) — *. Let the term Spec stand for the spec-
ification X\ Rep :%. X ops:(Sig Rep). Spec’ Rep ops ops,
which represents the ungeneralized wversion of Spec’.
The type of classes 1s then given as:

Class < YV Rep :%. (Rep < ClassR) —
[code : (Sig Rep) — Sig Rep .
prfs: VY selfops, selfops’ : Sig Rep .
(Spec’ Rep selfops selfops’) —
Spec” Rep (code selfops) selfops |

Notice that we have now separated the program part
and the specification part of a class into two compo-
nents. We could have done so in the case of the simple
classes as well, but found the mixing of the two using
Y-types more perspicuous.

The rest of the section is concerned with adapting
instantiation and inheritance. Before starting with in-
stantiation, we complete the class of points with the
new definition.

Erample 8. [Class of points] The type of points and
their signature remain unchanged. As shown, the orig-
wmal specification SpecPoint is slightly generalized to
SpecPoint’.

The type of point classes with representation type
nat, signature SigPoint, and generalized specification
SpecPoint’, is constructed by means of the type con-

structor Class:
PointClass < Class nat SigPoint SpecPoint’

The conerete class MyPointClass is again a pair of op-
erations and correciness proofs:

MyPointClass def

ARep:x.Agp:Rep < nat.
[code = codePointClass, prfs = prfsPointClass]
: PointClass .

As programs and proofs are now separated, the self
reference to the operations and the proofs is no longer
achieved by the single variable self, but by two distinct
variables: selfops and selfprfs. The implementation of
the operations can be used without change:

codePointClass =
A selfops : SigPoint Rep .
[getX = Ar:Rep. gp.get r,
setX = Ar:Rep.An:nat. gp.put rn,
mel = Ar:Rep. selfops.setX r
(selfops.getX r)+ 1]

Finally, we have to prove their correctness, i1.e. as-
suming selfops and selfops’ of type SigPoint Rep and
selforfs of type SpecPoint Rep selfops selfops’, provide
a correctness proof prfsPointClass of the specification
SpecPoint’ Rep (codePointClass selfops) selfops. The
proof of its first equation is identical to the one in the
old definition of this class.
one we had to modify, now [B-reduces to

The second equation, the

selfops.get X (selfops.set X v (selfops.getX vy + 1) =,
(selfops.getX r) + 1

The self-proof selfprfs.1 :¥r: Rep . Vn : nat . selfops.getX
(selfops.setX r n) =1 n establishes its correciness.

3.2, Instantiation

Next we adapt the instantiation function to deal with
the modified definition of classes. Compared with the
definition of new in Section 2 the major difference arises
from the way the self-dependencies are resolved. Tn
Section 2 the self-dependent operations and proofs of
classes are of the following form:

[ops : Sig Rep, prfs: Spec Rep ops] —
[ops : Sig Rep, prfs: Spec Rep ops]

In the setting of Section 2, the fixed point reached by it-
erating a class yielded both the desired final implemen-
tation and its correctness proof. Tn the present situation
we will iterate the function code : (Sig Rep) — Sig Rep
to obtain the final implementation and afterwards con-
struct 1ts correctness proof using the proof component
of the class. More formally, we proceed as follows.
Suppose that we are class of type

Class ClassR Sig Spec’.
to (refle ClassR) and projecting out the components

given a
Applying it to ClassR and

def

new —
A state : ClassR .

X opsbasis : Sig ClassR .

yields two functions:

code : (Sig Rep) — Sig Rep
prfs . ¥ selfops, selfops’ : Sig Rep .
(Spec’ Rep selfops selfops’) —
Spec’ Rep (code selfops) selfops |

As before, we assume that our specification is con-
sistent. That is, we assume opsbasis: Sig ClassR

and prfsbasis : Spec’ ClassR opsbasis opsbasis. Tf, as

assumed, there are no circular self-dependencies
in the definition of code then there exists a
natural number n such that starting with
opsbasis after n iterations a fixed-point of the

self-dependent. operations code has been reached
i.e. (code (code™ opsbasis)) = (code™ opsbasis). Un-
like in the setting of Section 2 we now have to
explicitly require a proof coderesolved that the fix-
point has been reached after n iterations. Then the
(n + 1)-th iteration of the self-dependent. proofs (start-
ing with prfsbasis : Spec’ Rep opsbasis opsbasis) has type
Spec’ Rep (code™t! opsbasis) (code™ opsbasis) which co-
incides with Spec’ Rep (code” opsbasis) (code™ opsbasis).
Hence the fixed-point of the operations satisfies the
specification Spec’. Tf the iteration index n is such that
after G-reduction both the n-fold iteration of code and
the (n + 1)-fold iteration of prfs do not contain the as-
sumptions opsbasts and prfsbasis, respectively, then, as
in Section 2, these are no longer needed.

Again, the task of finding such an index n could be
carried out by a semi-algorithm which performs a brute
force search or alternatively by a static analysis of the

possible calls to self.

Definition. [Instantiation] Assume implicitly a rep-
resentation type ClassR, a signature Sig, and a gener-
alized specification Spec’. Let the term Spec stand for
the corresponding ungeneralized specification A Rep :x .
Xops: (Sig Rep). Spec’ Rep ops ops . The instantiation
operator s thus defined as:

X class : Class ClassR Sig Spec’ .

A prfsbasis : Spec’ ClassR opsbasis opsbasis .

An:nat.

let codeprfs = class ClassR (refl . ClassR)
operations — nat_iter opsbasis codeprfs.code n
m A coderesolved : codeprfs.code operations —j, operations .

let proofs = new _aux opsbasis prfsbasis n coderesolved

in (ObjectIntro state operations proofs)

: Object Sig Spec

FIG. 1.

Instantiation

THEORY AND PRACTICE OF OBJECT SYSTEMS 7?77 13

The function new_aur performs the abovementioned
iteration of codeprfs.prfs, yielding an element of type
Spec’ ClassR operations operations.

Erxample 9. [Instance of points] The instantiation for
points remains basically unchanged. Again, only two
iterations are needed to resolve the self-dependencies.
Having reached the fired point of code, the proof

coderesolved 1s trivial by reflerivity of Leibniz’s equality.

3.3. Inheritance

The last definition to align is the one for inheritance.
The basic mechanisms remain unchanged, but the en-
coding now has to deal separately with the operations
and the proofs. We also solve the problem of mixing
inherited operations with newly implemented ones, en-
countered in the example on Page 10. The problem
resembles the one that led to the redefinition of classes:
there is no connection between the variable superops,
denoting the operations of the superclass, and the newly
implemented operations. The solution, though, is sim-
pler than the one for self, since superops stands for an
already existing implementation. In the function build,
we simply have to make available the fact that superops
really stands for the operations of the superclass.

Definition. [Inheritance] Assume implicitly a repre-
sentation type SuperR, a signature SuperSig, and a

generalized specification SuperSpec’ of type ¥ Rep .
(SuperSig Rep) — (SuperSig Rep) — *. Assume a rep-
resentation type SubR, a signature SubSig, and a gen-
eralized specification SubSpec’ for the subclass. Let the
terms SuperSpec and SubSpec denote the ungeneralized
specifications as in the definition of classes with gener-
alized specifications on Page 12. Finally assume a proof
9P subR < Superr - SUbR < SuperR and coercions co_sig
of type ¥ Rep | . (SubSig Rep) — (SuperSig Rep) and
co_spec of type

Y Rep | * . V selfops, selfops’ | (SubSig Rep).
(SubSpec’ Rep selfops selfops’) —
(SuperSpec’ Rep (co_sig selfops) (co_sig selfops’)

for the operations and proofs respectively. The inheri-

tance operator inherit is defined in Figure 2.

The reader should not be discouraged by the sheer size
As can be seen from Example 10, the
programmer does not have to bother about the concrete

of this term.

definition of inherit in a concrete application.

As far as the readability of the programs is con-
cerned, you have to remember that our programming
language is rigorously encoded within a theorem prover.
To make the language practically more useful, syntactic
sugar and a number of special tactics are inevitable. See
[44] for suggestions, how to make the encoding look like
a generalized object-oriented programming language.

inherit <\ SuperClass - Class SuperR SuperSig SuperSpec’ .
Abuild : Y Rep % .V gppop< supr : lep < SubR.
let ap Rep< SuperR — tmnsg ap Rep< SubR gpS’ubRSS’upm‘R
super = SuperClass Rep gp gep< superr

in [code : (SuperSig Rep) — (SubSig Rep) — SubSig Rep,
prfs: ¥ selfops, selfops’ : SubSig Rep .
let superops =y, super.code (co_sig selfops))

in (SuperSpec’ Rep superops (co_sig selfops)) —
(SubSpec’ Rep selfops selfops’) —
SubSpec” Rep (code superops selfops) selfops]

(ARep:x. Agprey<supr - flep < SubR .

let ap Rep< SuperR — tmnsg ap Rep< SubR gpS‘ubRS SuperR
super = SuperClass Rep gp pep< superr
codeprfs = build Rep gp pey < suvn

in [code = Xselfops: SubSig Rep . codeprfs.code (super.code (co_sig selfops)) selfops,
prfs = X selfops, selfops’ - SubSig Rep .
X selfprfs : SubSpec’ Rep selfops selfops’ .

codeprfs.prfs selfops selfops’

(super.prfs (co_sig selfops) (co_sig selfops’)(co_spec selfprfs))

selfprfs |
) : Class SubR SubSig SubSpec’

FIG. 2.

14 THEORY AND PRACTICE OF OBJECT SYSTEMS 777

Inheritance

Continuing with the running example of colored
the definitions of CPoint, SigCPownt, and
SpecPoint from Section 1 go unchanged, we only need

points,

a generalized specification SpecCPoint’.

[Colored points] For the generalized
specification SpecCPoint’ | assume an arbitrary repre-

Erample 10).

sentation type Rep, concrete operations ops, and ab-

stract operations selfops of type SigCPoint Rep.
SpecCPoint’ def

(SpecPoint’ Rep ops.opspoint selfops.opspoint) x

(selfops.getX (ops.inc2 r) =y, (selfops.getX r) + 2
selfops.getC (ops.inc2 r) =y, blue

ops.getC (ops.setX rn) = blue)

Now we can define a class MyCPointClass with rep-
resentation type (nat x Color) by means of the in-
heritance operator inherit. For the definition of
gp: (nat x Color) < nal we refer to the example on
Page 10. The two terms co_siqg and co_spec denote the
natural coercion functions from colored points to poinits.

MyCPomntClass def
inherit (nat x Color) SigCPoint Spec CPoint’
gp co_sig co_spec
PointClass
(X Rep :*.
A ngepS(nat x Color) ZRFfp S (nm‘ X COIOT) .
[code = codeCPointClass,
prfs = prfsCPointClass])
: Class (nat x Color) SigCPoint SpecCPoint’

The 1mplementation of the operations 1s given by the
quintuple opsCPointClass.

codeCPointClass =
A superops : SigPoint Rep .
A selfops : SigCPoint Rep .
[getX = Ar:Rep. superops.getX 7,
setX = Ar:Rep.An:nat.

ngepS(nat X Color)‘p”t r (77,7 bl“e)7

mel Ar: Rep . superops.incl r,

inc2 = Ar:Rep. superops.incl (selfops.incl r),
quC Ar: RPP . (ngepS(nat X Color)'get 7“)2]

With the modified encoding, all equations of the col-
ored point class become provable.
tions selfops, selfops’ : SigCPoint Rep of the subclass,
the proofs superprfs of the superclass and the self proofs

Assuming opera-

of colored points selfprfs, we have to qive a correctness
proof for the specification relatively to the operations
qust defined. In the following, we abbreviate the opera-
tions of colored points as Cops.

Since the set X operation has been reimplemented for
colored points, the inherited proof of the first equation
of the point class is of no use for proving the respective
equation Cops.getX (Cops.setX rn) =;, Cops.getX r of

the colored points. This equation [-reduces to:

(qp Rep<(nat x Color) .get
(ngepS(nat X Color)'p“t r (77,7 bl“?)))] =rLn

This is immediate by the laws for get and put.

The new encoding wnth the generalized specifications
still admats inheriting proofs for equations containing
only inherited methods. So the proof for the second
equation can instantly be obtained by superprfs .2, as
mn the example on Page 10.

The third equation can be proved by applying
superprfs .1 twice. This example demonsirates that sev-
eral references to the proofs of the superclass might be
needed to establish one single equation in the subclass.

The fourth equation selfops.getC (Cops.inc2r) =y,
blue erpands into

selfops.getC
(selfops.setX (selfops.incl r)
((selfops.getX (selfops.incl r)) + 1))
=7, blue

Specialising the proof selfprfs.h to r = selfops.incl r
and n = (selfops.getX (selfops.incl r)) 4+ 1 shows that
the left hand side equals blue.

The last equation Cops.getC(Cops.setX rn) =,
blue finally, containing only new methods or reimple-
menied ones, can be proven directly using the imple-
mentation of the colored point class.

3.4. A more flexible definition of classes

We have also experimented with the following
weaker, 1.e. easier to implement, definition of classes:

Class' < YV Rep 1. (Rep < ClassR) —
[code : (Sig Rep) — Sig Rep .
prfs: ¥V selfops: Sig Rep .
(Spec’ Rep selfops selfops) —
Spec” Rep (code selfops) selfops |

As before, let operations stand for the fixpoint
of code obtained by an appropriate number of it-
erations. Now, 1in order to obtain an element
of Spec’ ClassR operations operations by iterating prfs
we need to start with variable prfsbasis of type
Spec’ ClassR operations operations, so it seems as if
nothing has been gained. Tf, however, it so happens that
the assumed variable drops out after a certain number
of iterations then, again, we have shown the correctness
of operations without assumptions.

So, in this case, F-reduction on proofs is really re-
quired for the soundness of the formalism.

Our experience is that the definition Class’ is more
flexible in case references to both self and super are
made in the definition of one and the same method.
For example, if we implement inc2 in the example of

colored points as

THEORY AND PRACTICE OF OBJECT SYSTEMS 7?77 15

inc2 = superops.incl (selfops.incl r),

then in the formerly presented formalism a verifica-
tion 1s possible only if we would include certain imple-
mentation details into the specification, whereas in the
?alternative” one it goes through immediately without
changes.

We find this essential use of g-reduction on proofs in-
teresting and worth exploring but need more experience
to gauge its possible merits and drawbacks.

4. Conclusion

Building upon the object-model of [47] and [23], this
paper has presented a way to integrate formal verifica-
tion into an object-oriented programming language. By
augmenting the interface of objects by a specification of
its behavior, we have demonstrated that object-oriented
structuring techniques can be employed in organizing
the proofs as well. Our experience so far has been that
these object-oriented structuring techniques allow for
flexible reuse of proofs. However, we have to concede
that more substantial examples are required to justify
this.
concerned with Smalltalk-style collections contained in
[43].

In this case study we noticed that abstract classes,

A first step in this direction is the case study

i.e. classes not meant to be instantiated into objects,
are a natural mechanism to reduce the verification ef-
fort.
contain methods or proofs referring to themselves via
the variable self and which we call abstract methods or

In our setting, abstract classes are classes that

abstract proofs. Note that abstract classes do not de-
note a new concept, but refer to a special usage of the
already encountered mechanism of self-reference.

To understand how abstract classes allow flexible
reuse of methods, consider a class Root as root of the
hierarchy of collection classes, which provides meth-
ods common to all collections. Tet us just focus on
four operations, common to all collections: length, add,
empty, and fold, with the usual meaning. TIn the
class Root, the three methods fold, add, and empty
fold = self.fold, add = self.add,

empty = self.empty, and the fourth method length is

are abstract 1.e.

defined straightforwardly in terms of fold. No matter
which implementation of fold we will eventually choose
in a subclass, the corresponding length will always be
defined.

An analogous mechanism
ports flexible reuse of proofs.

abstract proofs sup-
Consider the following
induction principle:

(P empty) = (Va,c.(P ¢) = (P (add ac))) = Ve (P e)

16 THEORY AND PRACTICE OF OBJECT SYSTEMS 777

In the root class Root we cannot provide a proof of
such an induction principle yet, since empty and add are
merely abstract. Instead of proving this rule directly,
we introduce an abstract proof defined as induction —
self.induction. Using this not yet proven induction prin-
ciple we can prove properties about the class Root which
The mech-
anism of proof inheritance takes care that the proofs

can be inherited by concrete subclasses.

relying on it are adapted automatically in subclasses,
depending on the specific implementation of the repre-
sentation type, on the chosen operations, and on their
correctness proofs (including the deferred proof of the
induction principle for the concrete representations of
non-abstract subclasses).

Comparison with other work

In Lego much work has been done in formalizing
mathematical theories and also in the field of program
specification and verification [34] [7] [50] [22] [50] [53], to
mention several. Whilst there is an increasing body of
work about the semantic foundations of object-oriented
programming, notably in the area of typed functional
calculi (see [20]), there are still only a few investigations
about the verification of specifically object-oriented pro-
grams.

Teavens and Weihl in a series of papers [27, 28, 29,
31, 30] investigate modular specification and verification
of object-oriented programs featuring subtype polymor-
phism and late-binding. Modular verification in their
setting means: adding a new type to a program must
not call for recoding, respecification, or reverification of
old modules. Tn the presence of subtyping, the aim is
to use the proofs for objects of the supertype also for
objects of all subtypes without change. The problem
with late binding methods for verification is that on
the one hand one wishes a “static” verification of prop-
erties for objects of a given class, but on the other hand
inheritance and late-binding of methods can lead to a
different semantics in subsequent subclasses. The solu-
tion presented is to separate the implementation from
its abstract representation, to assign a static type to
the objects as upper bound (its nominal type), and use
the abstract specification to reason about objects of all
of its subtypes. Thus objects of a smaller type must
not only accept messages meant for objects of a larger
type without “message not understood” run-time error,
but in addition they have to exhibit the same behavior,
as given in the interface specification. Since structural
subtyping employed e.g. in F'2’s (sub-)type system

is too weak to account for compliance with speci-
fications, the notion of subtyping needs a refinement;
this stronger notion of behavior-preserving subtyping
is known as behavioral subtyping [1]. To obtain a con-
venient mathematical model of the abstractly specified
objects, they restrict their attention to objects with im-

mutable state which can be modelled as abstract data
types. LOAT can handle multiple dispatch of meth-
ods, similar to the mechanisms in CLOS. Hoare style
specification is used to specify the behavior of the ob-
jects via so-called traits in the Larch interface specifica-
tion language as pre- and post-condition of the object’s
methods. An extension to types with mutable state and
aliasing, in an algebraic framework, is presented in [15].
Sticking to an algebraic framework, though, in the pres-
ence of a mutable state seems to complicate the model
considerably.

In contrast to the work of Leavens and Weihl, Utting
[51] [52] handles objects with mutable state, but at the
expense of data refinement, i.e. in the refinement pro-
cess, inheritance may not change the internal represen-
tation of objects. A methodological difference is that he
favors program development by a series of transforma-
tions. To this end an extension of refinement calculus
of [3] [41] [40], being itself an extension of Dijkstra’s
guarded command language [16], is presented, a wide
spectrum language, where executable code and specifi-
cations can be freely mixed.

Mairson [37] presents different. object-oriented mech-
anisms encoded in the calculus of constructions. The
emphasis there is not on program verification and its
methodology, but on the analysis of languages of typed
(record) calculi itself. Following the program extrac-
tion methodology, a couple of typed record and object
calculi, notably Cardelli and Mitchell’s record calculus
[9], are represented equationally in the internal higher-
order logic of the calculus of constructions. So, for ex-
ample, extracting the computational content from the
encoding of subtyping gives rise to the usual coercion
functions. The encodings provide a logical justification
for record calculi and object-oriented features like F-
bounded polymorphism [8] or subtyping, and allow to
investigate metamathematical properties such as sound-
ness, consistency, and coherence of different encoded
idioms. Tn contrast to our work, neither encapsulation,
Tike in
this paper, finite unwindings are employed to resolve

nor inheritance, nor late-binding are treated.

the fixed points in the object encodings. To represent
record types for objects, Hickey [21] introduces a new
type constructor, which he calls ”very dependent func-
tion type”, which is "almost” a recursive type but he
imposes well-foundedness conditions to avoid circular-
ity. The approach 1s formalized in the NuPRI. proof
development system [12].

Further Work

Apart from the need for developing more extensive
case studies, several directions for further work suggest
themselves. Our approach is based on an encoding of
one specific, albeit powerful and well-studied, object
model. Tt would be worthwhile to the extend or change

the encoding to comprise other object-oriented features
or idioms, such as multiple inheritance, which can be
modelled in an extension of F¢ with intersection types
[11]. One could add syntactic sugar or fancier notions of
specification, e.g. splitting the specification into a vis-
ible, external part, and an internal, hidden one, or to
include matching [5] as a weaker relation than subtyp-
ing which seems to have advantages in inheriting binary
methods.

A pragmatic path might be, to spare the user from
perfoming every minute step of the required proofs.
This could include the automatic generation of the get
and put functions proposed in [23] for positive signa-
tures, or the automatic calculation of the number of
fixpoint unwindings. To perform larger case studies,
a high-level syntax is inevitable that withholds Lego
specific notations and commands.

Besides verifying properties of actual programs, the
transfer into Lego could also be used to prove general
properties about the encoding itself, such as properties
of the inheritance or instantiation operator.

A deeper question concerns the equality of objects.
An intensional equality such as Leibniz’s equality is in-
adequate for the comparison of objects, since 1t would
distinguish between objects of different implementa-
tions, which contradicts the idea of encapsulation. As
pointed out in Section 2.3.3, it is also problematic to
place the test of equality on objects as an equality
method inside the objects. Tn the chosen model, generic
methods cannot be defined for signatures containing bi-
nary generic methods like a method comparing two ob-

jects whose internal representation is hidden by weak

existential quantification. We believe that the correct
equality for objects would be given by observational
equivalence with respect to method invocations as ad-
vocated e.g. by Jacobs [25].

Acknowledgments

Thanks to Luis Dominguez, Michael Mendler, and
Uwe Nestmann for giving useful suggestions on earlier
versions which helped to improve the paper. We are
grateful to the members of the Lego-club at the L.LFCS
whose comments influenced the entire work. Tn partic-
ular we want to thank Rod Burstall, James McKinna,
and Thomas Schreiber for their discussions. Finally we
thank the two anonymous referees for their helpful re-
marks.

This research was supported by the Spezifikation und
Verifikation verteilter Systeme project, funded by the
Deutsche Forschungsgemeinschaft, Sonderforschungs-
bereich 182, and by the Britsh Council and the
Deutscher Akademischer Austauschdienst within the
ARC-programme “Ko-Entwicklung objektorientierter
Programme in Lego”.

THEORY AND PRACTICE OF OBJECT SYSTEMS 7?7 17

Notes

1. The T.ego-sources can be accessed by anonymous ftp at
ftp.informatik.uni-erlangen.de in the directory /local/
inf7/vs/sfbc2/lego/oo-verification.1

2. An extension to the encoding presented so far to specify such
details has been presented in [42] using ideas of [23].

References

[1] Pierre America. A behavioural approach to subtyping in
object-oriented programming languages. 443, Phillips Re-
search Laboratories, January/April 1989.

[2] Philippe Audebaud. CC+: An extension of the Calculus of
Constructions with fixpoints. Research Report 93-12, T.ab-
oratoire de I'Informatique du Parallélisme, FEcole Normale
Supérieure de l.yon Unité de recherche associée au CNRS,
July 1993.

[3] Ralph-Johan R. Back. On the Correctness of Refinement in
Program Development. PhD thesis, Department of computer
Science, University of Helsinki, 1978.

[4] Henk P. Barendregt. T.ambda calculi with types. Tn Sam-
son Abramsky, Dov (Gabbay, and Thomas Maibaum, editors,
Handbook of Logic in Computer Science, volume 1: Mathe-
matical Structures, pages 117 309. Oxford University Press,
1992.

[5] Kim B. Bruce. A paradigmatic object-oriented programming
language: Design, static typing and semantics. Journal of
Functional Programming, 4(2), April 1994. A preliminary
version appeared in POPT, 1993 under the title “Safe Type
Checking in a Statically Typed Object-Oriented Program-
ming Language”, and as Williams College Technical Report
S-92-01.

[6] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, the Hop-
kins Objects Group (Jonathan Fifrig, Scott Smith, Valery
Trifonov), Gary T. lLeavens, and Benjamin Pierce. On binary
methods. Theory and Practice of Object Systems, 1(3):221
242, 1996.

[7] Rod Burstall and James McKinna. Deliverables: a categor-
ical approach to program development in type theory. Tn
A. M. Borzyszkowski and S. Sokolowski, editors, Fighteenth
Mathematical Foundations of Computer Science (Gdansk,
Poland), volume 711 of Lecture Notes in Computer Science,
pages 32 67. Springer, September 1993.

[8] Peter Canning, William Cook, Walt Hill, and Walter Olthoff
John C. Mitchell.

oriented programming. Tn Fourth ACM Conference on Func-

F-bounded polymorphism for object-

tional Programmaing Languages and Computer Architecture,
Tecture Notes in Computer Science, pages 273 280. ACM,
Springer, September 1989.

[9] T.uca Cardelli and John Mitchell.
Mathematical Structures in Computer Science, 1:3 48,1991.
Also in the collection [20]; available as DEC Systems Re-
search Center Research Report #48, August, 1989, and in
the proceedings of MFPS ’89, Springer LNCS volume 442.

Operations on records.

[10] Tuca Cardelli and Peter Wegner. On understanding types,
data abstraction and polymorphism. Computing Surveys,

17(4):471 522, 1985.

[11] Adriana B. Compagnoni and Benjamin C. Pierce. Tntersec-
tion types and multiple inheritance. Mathematical Structures
in Computer Science, 6(5):469 501, October 1996. Prelim-
inary version available as University of FEdinburgh technical
report ECS-T.,FCS-93-275 and Catholic University Nijmegen
computer science technical report 93-18, Aug. 1993, under
the title Multiple Inheritance via Intersection Types.

[12] R. T.. Constable et al. Implementing Mathematics with the
NuPRI Proof Development System. Prentice Hall, 1986.

18 THEORY AND PRACTICE OF OBJECT SYSTEMS 2?77

[13] C. Cornes, J. Courant, J-C. Filiatre, G. Huet, P. Manoury,
C. Mounoz, C. Murthy, C. Parent, C. Paulin-Mohring,
A. Saibi, and B. Werner. The Coq Proof Assistant User’s
Guide. Rapports Techniques 0177, INRTA Rocquencourt,
Projet Formel, 1995. Version 5.10.

[14] Pierre-T.ouis Curien and Giorgio Ghelli. Coherence of sub-
Technical Report T.TENS 90-10, Tlaboratoire
d’Tnformatique de I’Ecole Normale Supérieure, February
1990.

sumption.

[15] Krishna Kishore Dhara and Gary T. leavens. Subtyping
for mutable types in object-oriented programming languages.
Technical report, Towa State University, Department of Com-

puter Science, November 1992. TR 92-36, submitted to

FECOOP ’93.
[16] E. W. Dijkstra. A Discipline of Programming. Prentice Hall,
1976.

[17] Kathleen Fisher and John Mitchell. Notes on typed object-
oriented programming. In M. Hagiya and J. C. Mitchell,
editors, Theoretical Aspects of Computer Software, volume
789 of Lecture Notes in Computer Science, pages 844 885.
Springer, 1994.

[18] Jean-Yves Girard. Interprétation fonctionelle et élimination
des coupure dans Uarithmetique d’ordre supérieur. PhD) the-
sis, Université Paris VII, 1972.

Adele Goldberg and David Robson. Smalltalk-80: The Lan-
guage and its Implemementation. Addison-Wesley, Reading,
MA, 1983.

Carl A. Gunter and John C. Mitchell. Theoretical Aspects of

Object-Oriented Programmaing, Types, Semantics, and Lan-

[19

[20

guage Design. Foundations of Computing Series. MIT Press,
1994.

[21] Jason J. Hickey. Formal objects in type theory using very
dependent types. In Kim Bruce, editor, Informal Proceed-
ings of the Third International Workshop on Foundations of
Object-Oriented Languages (FOOL’96). Cornell University,
Department of Computer Science, August 1996. Available
electronically through http://wuw.cs.williams.edu/~kim/
FOOL/Abstracts.html.

[22] Martin Hofmann.
grams in type theory

Formal development of functional pro-
a case study. Report ECS-T1.FCS-92-
228, l.aboratory for Foundations of Computer Science, Uni-
versity of Edinburgh, 1992.

[23] Martin Hofmann and Benjamin Pierce. Positive subtyping.
Tn 22nd Annual Symposium on Principles of Programming
Languages (POPIL) (San Francisco, California), pages 186
197. ACM, ACM Press, January 1995. Full version in In-
formation and Computation, volume 126, number 1, April
1996. Also available as University of FEdinburgh technical
report ECS-T1.FCS-94-303, September 1994.

[24] Martin Hofmann and Benjamin Pierce. A unifying type-
theoretic framework for objects. Journal of Functional Pro-
gramming, 5(4):593 635, October 1995. Previous versions
appeared in the Symposium on Theoretical Aspects of Com-
puter Science, 1994, (pages 251 262) and, under the ftitle
“An Abstract View of Objects and Subtyping (Preliminary
Report),” as University of Fidinburgh, LFCS technical report
ECS-T.FCS-92-226, 1992.

[25] Bart Jacobs. Objects and classes, coalgebraically. Tn
C. B. Jones, C. Lengauer, and H.-J. Schek, editors, Object-
orientation with parallelism and persistence. Kluwer Acad.
Publ., 1996.

[26] Claire Jones and Savi Maharaj. The LEGO library. Available
on the World Wide Web [32], February 1994.

[27] Gary T. Leavens. Verifying Object-Oriented Programs that
use Subtypes. PhD thesis, Massachusetts Institute of Tech-
nology, 1988.

[28] Gary T. T.eavens.
programs with subtypes. Technical Report 90-09, Towa State

Modular verification of object-oriented

University, Department of Computer Science, July 1990.
[29] Gary T. lLeavens. Specifying and verifying object-oriented

programs: an overview of the problems and a solution. Tech-

nical report, Towa State University, Department of Computer

Science, February 1991.
[30

Gary T. leavens. TInheritance of interface specifications.
Technical Report TR 93-23, Towa State University, Depart-
ment of Computer Science, September 1993. (FExtended Ab-
stract).

[31] Gary T. Leavens and William E. Wheil. Specification and
verification of object-oriented programs using supertype ab-
straction. Acta Informatica, 1994. An expanded version ap-
peared as Towa State Unversity Report, 92-28d.

[32] The .ego World Wide Web page, 1997. Accessible through
http://www.dcs.ed.ac.uk/home/lego.

[33] Zhaohui Luo. An extended Calculus of Constructions. Thesis
ECS-T.FCS-90-118, .aboratory for Foundations of Computer
Science, University of Edinburgh, July 1990.

[34] Zhaohui T.uo. A unifying theory of dependent types: the
schematic approach. Technical Report ECS-T.FCS-92-202,
T.aboratory for Foundations of Computer Science, University
of Edinburgh, March 1992.

[35] Zhaohui T.uo and Randy Pollack. T.EGO proof development
system: User’s manual. Technical Report ECS-T.FCS-92-211,
T.aboratory for Foundations of Computer Science, University
of Edinburgh, May 1992.

[36] David MacQueen. Using dependent types to express modular
structure. In Thirteenth Annual Symposium on Principles
of Programming Languages (POPL) (St. Peterburg Beach,
FIL), pages 277 286. ACM, ACM Press, January 1986.

[37

Harry G. Mairson. A Constructive Logic of Multiple Tnher-
itance. In Twentieth Annual Symposium on Principles of
Programming Languages (POPL) (Charleston, SC), pages
313 324. ACM, ACM Press, January 1993.

[38] John C. Mitchell. Toward a typed foundation for method
specialization and inheritance. In Seventeenth Annual Sym-
posium on Principles of Programming Languages (POPIL)
(San Fancisco, CA), pages 109 124. ACM, ACM Press, Jan-
uary 1990. Also in the collection [20].

[39] John C. Mitchell and Gordon D. Plotkin. Abstract types
have existential type. ACM Transactions on Programming
Languages and Systems, 10(3):470 502, July 1988.

=
i=)

Carrol C. Morgan. Programming from Specifications. Pren-
tice Hall, 1990.

[41

Joseph M. Morris. A theoretical basis for stepwise refine-
ment and the programming calculus. Science of Computer
Programming, 9(3):287 306, December 1987.

42] Wolfgang Naraschewski. Object-oriented proving. Tn Pro-
gang g
grams € Proofs: Working in Type Theory, Hetzelsdorf, 14
18 August 1995.

[43] Wolfgang Naraschewski. Object-Oriented Proof Principles
using the Proof-Assistant Lego. Diplomarbeit, Universitat
Erlangen, 1996.

[44] Wolfgang Naraschewski.
fication language. Tn Proceedings of the

Towards an object-oriented progi-
1997 Inter-
national Conference in Theorem Proving in Higher Or-
der Logics, Bell Labs, Murray Hill, NJ, USA, 1997.
To appear as Springer lLecture Notes in Computer
Available through http://www4.informatik.
tu-muenchen.de/~narasche/TPHOL/.

Science.

[45] Benjamin Pierce. F-Omega-Sub User’s Manual, Version 1.4,
February 1993. Available by FTP as part of the fomega im-
plementation.

[46] Benjamin Pierce and David Turner. Object-oriented pro-
gramming without recursive types. Technical Report ECS-
1.FCS-92-225, Laboratory for Foundations of Computer Sci-
ence, University of Edinburgh, August 1992. See also Prin-

ciples of Programming Languages (POPL ’93).

[47] Benjamin Pierce and David Turner. Simple type-theoretic
foundations for object-oriented programming. Journal of
Functional Programming, 4(2):207 247, April 1994. A pre-
liminary version appeared in Principles of Programming lL.an-
guages, 1993, and as University of Edinburgh technical report
ECS-T.FCS-92-225, under the title “Object-Oriented Pro-
gramming Without Recursive Types”.

[48

Berhard Reus. Program wverification in Synthetic Domain

Theory. PhD thesis, LMU, Miinchen, 1995.

[49] John Reynolds.
B. Robinet, editor, Collogue sur la programmation (Paris,

Towards a theory of type structure. In

France), volume 19 of Lecture Notes in Computer Science,
pages 408 425. Springer, 1974.

[0] Thomas Schreiber. Verifikation von imperativen Program-
men mit dem Beweisprifer 1LLEGO. Diplomarbeit, Universitat
Erlangen, 1993.

[51] Mark Utting. An Object-oriented Refinement Caleulus with
Modular Reasoning. PhD thesis, University of New South
Wales, Australia, 1992.

[52] Mark Utting and Ken Robinson. Modular reasoning in an
object-oriented refinement calculus. Tn R. S. Bird, C. C.
Morgan, and J. P. C. Woodcock, editors, Mathematics of
Program Construction 1992, volume 669 of Lecture Notes in
Computer Science, pages 344 367. Springer, 1993.

[53] P. Wand.

T.ego. Master’s thesis, L.aboratory for Foundations of Com-

Functional programming and verification with

puter Science, University of Edinburgh, 1992.

THEORY AND PRACTICE OF OBJECT SYSTEMS 7?7 19

