
Divide, Abstract, and Model-Check?

Karsten Stahl??, Kai Baukus, Yassine Lakhnech, and Martin Ste�en

Institut f�ur Informatik und Praktische Mathematik
Christian-Albrechts-Universit�at zu Kiel
Preu�erstr. 1{9, D-24105 Kiel, Germany
fkst,kba,yl,msg@informatik.uni-kiel.de

Abstract. The applicability of model-checking is often restricted by the size of
the considered system. To overcome this limitation, a number of techniques have
been investigated. Prominent among these are data independence, abstraction, and
compositionality. This paper presents a methodology based on deductive reasoning
and model-checking which combines these techniques. As we show, the combination
of abstraction and compositionality gives a signi�cant added value to each of them in
isolation. We substantiate the approach proving safety of a sliding window protocol
of window size 16 using Spin and PVS.

1 Introduction

Model-checking [CE81,QS81] has proven a valuable approach for the formal,
automatic veri�cation of reactive systems. The size of the system to be ver-
i�ed limits, however, the applicability of this approach. First of all, many
applications such as protocols use in�nite data domains. This immediately
renders the state space in�nite, and hence, simple state exploration fails. Even
when dealing with �nite data, systems of parallel processes yield a state space
exponential in the number of processes. This is known as the state explosion
problem.

The obstacle of in�nite data domains can be tackled by the data inde-
pendence technique [Wol86]. Intuitively, a program is data independent if its
behavior does not depend on the speci�c values of the data. In this case, many
properties of the program stated over an in�nite data domain can be equiva-
lently expressed over �nite domains that must contain enough elements. We
call safety of data independence the requirement that the �nite and in�nite
properties are equivalent.

Abstraction techniques are a prominent approach to address the state ex-
plosion problem (see e.g. [CGL94,BBLS92,Lon93,DGG94,Dam96]). Abstrac-
tion is a general approach [CC77] which allows to deduce properties of a
concrete system by examining a more abstract |and in general smaller|
one. Both systems are connected by an abstraction relation which is called
safe with respect to a given property, if it preserves satisfaction of the prop-
erty. This means, whenever the property holds for the abstract system, it

? This work has been partially supported by the Esprit-LTR project Vires.
?? Contact author.

holds for the concrete one as well. In general, for a given concrete system,
the abstract one depends on the property to be established. Therefore, in
case the property to be veri�ed is global, i.e., it depends on the exact behav-
ior of all processes, it is hard to signi�cantly abstract these components. It
should be intuitively clear that the more local to a set of processes a property
is, the more radically the remaining processes can be abstracted. Therefore,
it is appealing to decompose a global property into a number of local ones
which together imply the original one. Breaking a veri�cation problem into
more manageable subproblems is the essential idea of compositional reason-
ing (see e.g. [dRLP98] for a recent collection of relevant work in this �eld).
To summarize, combining abstraction techniques and compositionality gives
a signi�cant added value to each of these techniques in isolation.

The veri�cation requirements arising from the three techniques, namely
safety of data independence and of the abstraction, as well as correctness
of the decomposition, are in general undecidable. Escaping fully automatic
reasoning, they are natural candidates for deductive reasoning. This means,
the proposed methodology leads to a clean combination of model-checking
and interactive theorem proving.

The contribution of this paper is to explore the proposed methodology and
to substantiate its applicability with a safety proof of a sliding-window pro-
tocol. The chosen variant of the protocol is inspired by the one implemented
in Mascara [DPA+98], a medium-access layer for wireless ATM-networks,
which uses a window size of 16. Judging from experience, model-checking
directly the protocol with this window size is far beyond the reach of Spin or
similar model-checkers. Using decomposition together with abstraction and
data independence we were able to automatically verify the decomposed sub-
problems with the Spin model-checker [Hol91]. To verify the safety of the
abstraction we used the theorem-prover PVS [ORSvH95].

The remainder of the paper is organized as follows: Section 2 explains the
techniques used towards veri�cation. Section 3 contains (part of) the Promela
model of the sliding window protocol before in Section 4 we present safety
proof for the protocol. Finally, Section 5 contains concluding remarks and ref-
erences to related work. The complete Promela code and the PVS derivation
can be found at http://www.informatik.uni-kiel.de/~kst/sw/.

2 Veri�cation Approach

The goal is to prove that a system S, given as a parallel composition of a
number of subsystems Si, satis�es a given property ', that is

S1k : : : kSn j= ':

In practice, when trying to apply model-checking in this setting, several prob-
lems occur. First, the data part is often in�nite or at least very large. Second,

the parallel composition of the Si's leads to an exponential blowup of the state
space of the overall system, which is known as the state explosion problem.

This paper presents a practical methodology to build abstract systems
which can be handled by model-checkers. It is applied to a sliding window
protocol taken from a wireless ATM protocol.

The methodology is based on three principles:

1. Decomposition of the property to prove,
2. data independence of the system, and
3. building abstractions.

2.1 Decomposition

We �rst decompose the property ' into a set of properties '1; : : : ; 'k which
together imply ', i.e., '1^: : :^'k =) ', such that each property 'i is easier
to establish than the original property '. In order to derive 'i, one can in
turn use the principles of data independence, abstraction, and decomposition

As a guideline of a decomposition one should always try to introduce
properties 'i for which only a few processes are relevant, and which are
therefore local to these processes. In such a case, this property can be shown
with very abstract versions of the remaining processes.

2.2 Data Independence

For a property ', we make use of the data independence [Wol86] of a system
to change the input language, favorably reducing the alphabet of the input
language to a �nite set.

Data independence means that the system does not change the data re-
ceived nor that it invents new data. For example, the system is allowed to
compose the input to build new blocks in case it is later decomposed without
change, or store some data and use it later unchanged. These assumptions
can be checked syntactically and often hold for data-transmission protocols,
and in particular, for the sliding window protocol of the following section.

When changing the input language, usually also the property ' has to be
adapted yielding a property e' over the new input language. The requirement
e' has to satisfy is that it holds for the program operating on the new input
language if and only the original property holds for the program with the
original input language.

For example, suppose we want to check that a process, given as input the
increasing sequence of natural numbers starting from 0, �rst delivers a 0 as
output. Since satisfaction of the property depends on whether 0 or any other
value appears �rst, one can identify all values other than 0. In other words,
under the assumption that the process is data independent, one can show the
stated property with the restricted input language 0 11, using only a �nite
alphabet instead of the natural numbers.

2.3 Abstraction

Abstraction [CC77,CGL94,Lon93,DGG94,Kur94,LGS+95,Dam96,Kel95], the
third technique we use, is a general way of deriving properties for systems by
investigating smaller, more abstract ones. In our speci�c setting, to establish
a property ' local to component Sj , we create abstract versions eSl of the
remaining processes Sl such that

fS1k : : : k]Sj�1kSjk]Sj+1kfSn j= ' implies S1k : : : kSn j= ':

Of course, in general the part of interest might not consist of a single process
Sj but of a set of processes. The connection between the concrete and the
abstract system is given by an abstraction relation � between the two state
spaces. Since we consider only path universally quanti�ed properties, it is
su�cient that the abstract versions eSl exhibit more behavior than the orig-
inal Sl with respect to the abstraction relation, i.e., the abstraction relation
is a simulation relation. Formally, � is a simulation relation between both
systems, if the following condition, called safety of abstraction, holds:

8c; c0 2 �C ; a 2 �A:�C(c; c
0) ^ �(c; a) =) 9a0 2 �A:�A(a; a

0) ^ �(c0; a0);

where �C is the concrete state space and �C is a concrete transition (respec-
tively �A and �A for the abstract system).

In the veri�cation of the sliding window protocol, we prove safety of ab-
straction using the theorem prover PVS [ORSvH95]. The translation of the
system transitions and the state space into a PVS theory is straightforward
and omitted from the paper.

2.4 Veri�cation Strategies

The techniques presented above can be applied in any suitable order and
the application can be iterated. Having in mind that a property should be
decomposed into more local properties, it is, however, advantageous to �rst
apply decomposition. Indeed, it does not enlarge the state space but rather
gives more possibilities for applying the two other abstraction techniques.

In the sequel, we present an iterative method which can be applied in
order to decompose a given property into more local ones. To do so, assume
we are given two processes S1 and S2 in parallel, and a property '. Suppose
we want to show S1 k S2 j= ' and let C denote the chaotic process which
exhibits all possible behaviors. In Figure 1, we describe an (semi-)algorithm
given in pseudo-code which can be applied to decompose a property into
more local properties. In the given description we tacitly identify processes
and properties and denote by R(S) the set of reachable states of S.

Clearly, we can replace R(S1 k 2) (resp. R(1 k S2)) by any property
which follows from R(S1 k 2) (resp. R(1 k S2)) and axioms which can
be derived from the semantics such as the usual assumptions concerning the
bu�ers.

 1 := C;
 2 := C;
Do
 1 := R(S1k 2)

[]
 2 := R(1kS2)

Until 1 ^ 2) '

Fig. 1. Property Decomposition

We now illustrate this methodology by proving safety of a sliding window
protocol used inMascara [DPA+98], a medium-access layer for wireless ATM-
networks. We start with a description of the protocol.

3 The Sliding Window Protocol

The sliding window protocol [Ste76] is a communication protocol to guaran-
tee reliable data transmission over unreliable, bu�ered communication chan-
nels. Considering only unidirectional communication, the protocol consists
of a sender and a receiver process, connected by two channels, one in each
direction (cf. Figure 2).

Source Target

 Sender Receiver

 Data Channel

 Acknowledgment

Fig. 2. Communication structure

The sender receives data from the source which has to be transmitted
to the target. The data is sent to the receiver over the data channel, which
may lose but not reorder messages. The sender stamps each data item with
a sequence number such that the receiver can detect whether a message had
been lost. The receiver acknowledges received data by sending the sequence
number which it expects next over the lossy acknowledgment channel. The
sender can retransmit unacknowledged messages, which are kept in the so-
called transmission window until acknowledged. To hand out the data items

to the target in the correct order, the receiver can temporarily store them in
its reception window.

The protocol has three important parameters:

Transmission window size tw: This value speci�es the maximal number
of messages sent but not yet acknowledged together with those received
from the source but not yet sent.

Reception window size rw: This is the maximum number of messages
that can be kept at the receiver side without being delivered.

Cardinality of sequence numbers n: Since the transmission window is
�nite, a �nite set of sequence numbers su�ces to ensure unique iden-
ti�cation of each message. The protocol works correctly with at least
n = tw + rw sequence numbers. In this case the numbers f0; : : : ; n� 1g
are used cyclically modulo n.

Mascara's sliding window protocol uses a transmission window size of 15
and size 1 for the receiver, which means the receiver either delivers a message
in case it �ts into the output stream or it discards it. The protocol uses
the minimal possible amount of sequence numbers, namely 16. Although in
general, a sliding window protocol assures safety over unbounded lossy FIFO-
channels, in Mascara the bu�er is restricted to a size of 16.

In the following we give the Promela model (Promela is the input language
of Spin) for sender and receiver.1 In Section 4 we will refer to the transitions
of sender and receiver using the names mentioned in the comments of the
Promela code. The lossiness of communication is modeled using Promela
communication channels of bu�er size 16, where the receiving side may decide
nondeterministically to lose the message.

proctype Sender()

{

Data transmit_window[window_size];

Window_index last_unacknowledged = 0;

Window_index next_to_send = 0;

Window_index next_free = 0;

Seq_Number ack;

do

:: atomic{ /* receive_data */

!(data_window_full) ->

gen_to_send?(transmit_window[next_free]);

next_free = ((next_free + 1) % window_size)

}

:: d_step{ /* send */

data_pending && nfull(send_to_rec) ->

1 In the Promela code we leave out macro de�nitions for the data operations, which
should be clear from the context.

send_to_rec! transmit_window[next_to_send], next_to_send;

next_to_send = (next_to_send + 1) % window_size

}

:: d_step{

sliding_window_full -> /* timeout */

next_to_send = last_unacknowledged

}

:: d_step{ /* receive_ack */

nempty(rec_to_send) -> rec_to_send?ack;

if

:: (ack == last_unacknowledged) ->

next_to_send = last_unacknowledged

:: else -> last_unacknowledged = ack

fi

:: rec_to_send?_ /* ack_lost */

}

od

}

0
 1

2

3

4

5

 6
78

9

10

11

12

 13

14
15

read from source
 already sent

 open window

1

2

3

1

2

3

last_unacknowledged

 next_free

 next_to_send

Fig. 3. Transmission window of the sender

As long as the transmission window is still capable of storing messages
to be sent, the sender can read new data items from the data source. The
new items are put in the open part of the window together with the already
sent but yet unacknowledged messages. The position in the window corre-
sponds with the sequence number given to the data items. Those messages
are sent in the cyclic order of their sequence numbers (see Figure 3). This
is done by the send transition. A speci�c feature of Mascara's sliding win-
dow protocol is how the retransmission is triggered: in smooth operation of
the protocol each acknowledgment will con�rm one or more messages. The
fact that twice the same acknowledgment is received is taken as indication

by the sender that a transmission error has occurred and it start resending
(by setting next to send back to last unacknowledged). Another cause for
resending in practice is a timeout occurring in case the acknowledgments are
too late. This situation is modeled here in a simpli�ed way where the timeout
is bound to occur when the maximum number of 15 unacknowledged cells
has been sent (sliding window full). An arriving acknowledgment causes
the acknowledged message to fall out of the open window, the window 'slides'
one message forward (receive ack). The acknowledgment may also be lost
which is modeled by ack lost.

proctype Receiver()

{

byte next_expected = 0;

Seq_Number received_number;

do

:: send_to_rec?(_,_) /* receive_lost */

:: atomic{ /* receive */

send_to_rec?(data_item,received_number) ->

if

:: (received_number == next_expected) ->

rec_to_upper!data_item;

printf("Output %d\n", data_item);

next_expected = (next_expected + 1) % window_size

:: else -> skip

fi

}

:: rec_to_send!next_expected /* send_ack */

od

}

If the receiver gets a message with the expected sequence number, it deliv-
ers the corresponding data item to the data target. The counter for the next
expected sequence number is increased cyclically by 1. Also, an acknowledg-
ment may be sent at any time, indicating the next expected sequence number
(send ack).

4 Veri�cation of the Sliding Window Protocol

We want to prove a safety property of the sliding window protocol of Section 3,
namely that the protocol ensures reliable communication. This means no data
item is lost nor duplicated and the receiver delivers the data in the original
order. Relating the input stream at the sender to the output stream delivered
by the receiver, we say that the protocol is correct, if for all input sequences
the output sequence of each possible run of the protocol is a pre�x of the
input sequence. Trying to establish the correctness of the protocol with the
full window size of 16 directly will not succeed using Spin.

Observing that the protocol is data independent, we can start by consid-
ering the stream of natural numbers as input, as opposed to arbitrary data,
i.e., it is enough to establish that if we have as input the stream of natural
numbers, the output is always a pre�x thereof.

Before we formalize the properties, we introduce some useful notations. A
sequence of data items from the data domain D is a function seq : N�k ! D
for a k 2 N [f1g, this k is the length of seq and is denoted as #seq . We
also denote a sequence as (seq i)i<k, or (seq i)i2N in case #seq =1. If out is
a possible output sequence of the sliding window protocol for a given input
sequence in, we denote this with out 2 SW (in). Let inN = (j)j2N. A language
is a set of sequences. For a language L, we denote with out 2 SW (L) that
there is a word in 2 L with out 2 SW (in). A run or a computation with
a certain input is a sequence of consecutive states of the sliding window
protocol.

Lemma 1. If the protocol satis�es the property

For all out 2 SW (inN); k < #out : out(k) = k; (Prefix)

then it is correct in the sense described above.

Proof. Assume that the protocol is erroneous, i.e., there exists an input se-
quence in and a trace of the protocol such that the output sequence out is
no pre�x of in . Then, we �nd a �rst error on a position k < #out such that

out(k) 6= in(k) and for all j < k : out(j) = in(j):

Since the protocol is data independent, we can adapt this trace with the input
inN. Data independence ensures that exactly the same steps are possible. This
yields to an output sequence gout of the same length as out . Consider now
position k of gout . Then, gout(k) 6= inN(k). Thus, there exists j 6= k with
inN(j) =gout(k). But by choice of inN we are now able to derivegout(k) 6= k.

In the following, let out be an arbitrary output sequence of the sliding
window protocol for the input sequence inN.

4.1 Decomposition of (Prefix)

After exploiting data independence to simplify the data domain, we con-
tinue by a �rst decomposition step, splitting the safety requirement into the
following four properties.

Lemma 2. The following properties are a decomposition of (Prefix):

8i < #out : out(i) 2M16(i) (Mod16)

#out > 0 =) out(0) = 0 (Init)

8i < #out � 1 : out(i+ 1) > out(i)� 15 (WinSize)

8i < #out � 1 : out(i+ 1) � out(i) + 15 (Lose)

where M16(i) = fj 2 N j j �16 ig = N \ i+ 16Z.

The induction principle motivates this decomposition. Property (Init)
is the induction base, saying that the �rst output is correct. The other
properties decompose the induction step, which states that out(i) = i =)
out(i+ 1) = i+ 1.

One can observe that whatever happens between sender and receiver, the
labeling of the input data items with the sequence numbers, and the receiving
in just the right order of the sequence numbers done by the receiver, ensures
Property (Mod16), restricting the positions on which input data elements can
occur in the output sequence.

Properties (WinSize) and (Lose) now give further restrictions to the out-
put sequence positions, saying that the values of neighbored positions in the
output sequence are not too far away.

Proof. We have to show that these properties together imply (Prefix), so
assume they are valid. Let i < #out . We prove out(i) = i by induction on i.
Case: i = 0. In this case we have out(0) = 0 by (Init).
Case: i! i+1. Assume out(i) = i, i+1 < #out , and consider out(i+1). We
know by (Mod16) that there exists a k 2 Z such that out(i+1) = i+1+16k.
Since i = out(i) we have out(i+ 1) = out(i) + 1 + 16k.

{ If k � 1, we have out(i+ 1) � out(i) + 17 in contradiction to (Lose).
{ If k � �1, we have out(i+1) � out(i)�15 in contradiction to (WinSize).

Consequently, k = 0 and out(i+ 1) = i+ 1.

We now establish Properties (Mod16), (Init), (WinSize), and (Lose).

In the following sections we use the abbreviations R for the receiver and
S for the sender process. The notion send means that the message has been
put into the channel.

4.2 Property (Mod16)

First, we want to establish Property (Mod16): 8i < #out : out(i) 2 M16(i).

Data Independence By data independence, we can reduce the input lan-
guage to the word inm = (0 1 2 : : : 15)1. So we identify data items on posi-
tions 16k + i and 16k0 + i. We have to show the following:

(i) For all out 2 SW (inm): out is a pre�x of inm.

Now we apply the decomposition principle explained in Section 2.4.
Considering a chaotic sender, we observe that R sends only acknowledg-

ments n such that either n = 0, or n > 0 and R has received a message
(d; n� 1) before. Since the messages are exchanged via a bu�er, one can de-
rive that R sends only n if either n = 0, or n > 0 and S has sent a message
(d; n� 1) before.

If R behaves in this way, S can only send positions of the transmit window
to which it has written before. Hence, we can derive a restriction for the
messages standing in the bu�er. With this restriction, we can construct an
abstract system usable for veri�cation of Property (i).

This decomposition is explained in detail below.

Abstractions Even with the reduced input language the system is far from
being model-checkable. The main problem for the veri�cation are the bu�ers
from S to R and vice versa. A method often successful to overcome the state
explosion caused by such a bu�er is to restrict the possible messages which
can occur in it, and to use two variables as the abstract bu�er: one which
holds the head value of the bu�er, and one boolean which is true if and only if
the bu�er is empty, since these are the important informations for one system
step.

The abstraction relation then says that the abstract variable holds exactly
the head value of the bu�er in the case it is non-empty. This relation must
be restored after each read operation by assigning arbitrary values to the
abstract variables. Here, restricting these values is often helpful.

As explained, we now apply the decomposition principle from Section 2.4
and start considering a chaotic sender. This leads to the following property:

(ii) In every run (with input inm), each acknowledgment n sent by R is either
0, or n > 0 and R received a message (d; n� 1) before.

Now we describe the abstraction used for the veri�cation of this property.
We abstract the bu�er from S to R in the way described above, discard
the acknowledgment bu�er, and use a chaotic sender which is able to send
any message. The receiver functionality is unchanged, except that R is not
required to send, and that R changes the bu�er variables arbitrarily after
reading a message. Then we use Spin to establish that property.

Since every message occurring in the bu�er is written to it by S, Prop-
erty (ii) implies Property (iii).

(iii) In every run (with input inm), each acknowledgment n sent by R is
either 0, or n > 0 and S sent a message (d; n� 1) before.

Relying on this Property (iii), we obtain by setting S in parallel with a
receiver ful�lling Property (iii):

(iv) For all messages (d; n) occurring in the bu�er from S to R (at any time
in any run with input inm), d = n.

The abstract system used to establish Property (iv) by model-checking is
the following. The bu�er from S to R is discarded, and the acknowledgment
bu�er is abstracted in a similar way as before. The abstract receiver can

non-deterministically send every acknowledgment allowed by Property (iii).
S assigns non-deterministically values allowed by Property (iii) to the bu�er
variables after an acknowledgment reception, the rest of S is unchanged. For
this abstract system, Property (iv) can be model-checked.

Now we describe the abstraction used for verifying Property (i) with Spin.
The channel from S to R is abstracted to two variables as described above,
the acknowledgment bu�er is discarded. After each read operation of R, R
restores the abstraction relation by assigning non-deterministically a value
(n; n). These are the only possible values according to Property (iv). The
abstract sender can assign arbitrary values (restricted by Property (iv)) to
the bu�er variables. Then, the property is easily model-checked using Spin.

The abstraction relation ensures that the receiver variables of the abstract
and concrete systems coincide, and that the abstract channel variable holds
the head value of the concrete channel in case it is non-empty.

4.3 Property (Init)

Following our approach we now prove #out > 0 =) out(0) = 0.

Decomposition Decomposing (Init) leads to the following requirements:

(v) For all runs with input inN, if a message with a data value d � 16 is sent
by S, then the sender read an acknowledgment 6= 0 earlier.

(vi) R gives out only data items which R has received through the data
channel.

We will show (v) by model-checking. For this property we use in the
following sections data independence and abstractions to yield a suitable
system. Property (vi) follows easily by data independence. Indeed, we can
directly derive from the program text that R does not change received data
nor introduces new data, that is, it only passes on the received data items.

The decomposition leads to a proof obligation, namely that the conjunc-
tion of Property (v) and (vi) implies Property (Init). This is shown next.

Proof. Consider a computation, a state in that computation, and assume
#out > 0 in that state. With Property (Mod16) we know that out(0) = 16k
for a suitable k 2 N. By (v) we know that before a data item d � 16 is sent
by S, the sender receives an acknowledgment a di�erent from 0. Consider the
point in the computation when S receives an acknowledgment a 6= 0 for the
�rst time. Then, a was sent by R, since the bu�er does not invent data.

Consequently, R has changed the value of its variable next expected

which is initialized to 0, and therefore,R has received a message with sequence
number 0.

Every message which R receives was sent by S earlier. Since (0; 0) is the
only message sent by S so far with sequence number 0, R has received this
message.

If R changes next expected, it also gives out the data item attached to
the received message in the same atomic transition. Therefore, R starts the
output sequence with the data item 0.

Data Independence By data independence we reduce the input language
of the system for Property (v) to 015 0� 1 0!. Adapting Property (v) to this
new input language, we have to show the following:

(vii) For all runs with the input language 015 0� 1 0!, whenever S sends data
value \1", S received an acknowledgment 6= 0 before.

Now we use abstraction to construct an abstract system used to model-check
this property.

Abstraction For Property (vii), we can use a very abstract receiver which
non-deterministically is able to send every possible acknowledgment. The
functionality of the sender is unchanged, except two modi�cations. First, the
bu�er between sender and receiver can be discarded. Second, the capacity of
the acknowledgment channel still leads to state space explosion. Therefore, we
abstract the bu�er analogously to Section 4.2 to two variables rec to send

(for the head element) and rec to send empty. The abstract system can set
these variables to arbitrary values after reading an acknowledgment.

After constructing this abstract system, one can observe that the func-
tionality of the sender transition ack lost is almost the same than the func-
tionality of the whole receiver. Therefore, only little modi�cations must be
made to abstract away the whole receiver. The concrete receiver steps are
then simulated by the abstract ack lost transition.

Furthermore, we introduce an auxiliary variable last sent which holds
the value of the last data item sent and is used to formulate the property,
and which replaces the abstract channel from S to R with respect to Prop-
erty (vii).

The abstraction relation which de�nes the relationship between the con-
crete and the abstract system is given in Figure 4. Here, �C (resp. �A) is
a concrete (resp. abstract) state, head of a FIFO queue gives the next ele-
ment which will be read, last gives the last value appended, proji is the i'th
projection, and nonempty of a FIFO queue holds whenever the queue is not
empty.

With this abstract system, it is possible to establish the (adapted) prop-
erty using model-checking. We made the abstraction proofs using PVS. The
translation of the Promela-model into a PVS theory is straightforward, and
the abstraction proofs were almost automatic.

4.4 Property (WinSize)

To establish 8i < #out � 1 : out(i + 1) > out(i) � 15, we use a similar
approach as for Property (Init). Therefore, we do not go into every detail

�(�C ; �A)
def

= �C(transmit window) = �A(transmit window)

^ �C(next to send) = �A(next to send)

^ �C(next free) = �A(next free)

^ �C(last unacknowledged) = �A(last unacknowledged)

^ nonempty(�C(rec to send)) =)

head(�C(rec to send)) = �A(rec to send)

^ :�A(rec to send empty) ()

nonempty(�C(rec to send))

^ nonempty(�C(send to rec)) =)

proj1(last(�C(send to rec))) = �A(last sent)

Fig. 4. Property Decomposition

for this property. The property holds, since the transmit window is bounded,
and since the sender �lls the transmit window in cyclic order. After a data
items falls out of the window, which happens if we read too many items from
the upper layer, it can never be send again.

Decomposition We only mention one of the properties we got by decom-
posing (WinSize):

(viii) For all runs with input inN, if the sender sends a value d, it will never
send a value d0 � d� 15 afterwards.

We will establish this property by model-checking and describe in the fol-
lowing sections how to apply data independence and abstraction to it. The
decomposition further needs the fact that we have a FIFO bu�er, and that
R does not store, but directly delivers when it receives data.

Data Independence To verify Property (viii), we use data independence
to reduce the input language of the system to L = 0� 1 014 0� 2 01. Then, we
have to reformulate Property (viii) and obtain:

(ix) For all runs with input from L, after sending data item \2", the sender
never sends a \1".

Abstractions To verify the reduced property, we again concentrate on the
sender and use a very abstract receiver which only sends non-deterministically
an arbitrary acknowledgment. In fact, the same abstract system (apart from
the input language) can be used as given in Section 4.3.

4.5 Property (Lose)

To prove 8i < #out � 1 : out(i + 1) � out(i) + 15, let us start with the
following lemma which is proven analogously to Lemma 2.

Lemma 3. If Properties (Mod16){(Lose) from page 9 hold for all states of

a computation comp = s0
t0�! s1

t1�! : : : up to a state sn, then sn satis�es:
8j � #out � 1 : out(j) = j.

For the proof of the next proposition, we introduce some new notions.
A non-empty position of the transmit window in state s of the sender is a
position i with 0 � i � 15 such that

(i� s(last unacknowledged))mod 16

< (s(next free)� s(last unacknowledged))mod 16:

In other words, it is a position in the open transmit window, one in the
modulo interval [s(last unacknowledged) : : : predm(s(next free))], where
predm(i) = (i � 1)mod 16. Analogously, an empty position is a position
which is not non-empty. The notion that the sender acknowledges position
i by taking transition t means that, in the original state, position i was
a non-empty position, and after taking transition t, i has become an empty
position. The sender acknowledges erroneously by executing a sequence of ac-
knowledgment receptions, when after executing the sequence steps, there are
more non-empty positions than before executing that sequence. This covers
the case when the pointer last unacknowledged jumps to an empty position
by reading an acknowledgment, thus enlarging the open transmit window.

Proposition 4. The sliding window protocol satis�es Property (Lose).

Proof. Assume that Property (Lose) does not hold. Then we �nd a compu-
tation

comp = s0
t0�! s1

t1�! : : :
tn�1

�! sn

such that Property (Lose) is violated. Each si is a state and each ti is a
transition of the system (for example a transition of the receiver). Let n be
the �rst position such that sn satis�es one of the following clauses:

(a) out(i+ 1) > out(i) + 15 for an i.
(b) By reading the acknowledgments from the acknowledgment bu�er, S is

able to acknowledge a data item d which has not been given out by R.
(c) S can acknowledge erroneously by executing a sequence of acknowledg-

ment receptions.
(d) By reading the acknowledgments from the acknowledgment bu�er, S can

reach a state such that the value of next expected is a bad acknowl-
edgment in the sense of (b) or (c), i.e. S can reach a state, in which the
value of next expected would acknowledge a data item which has not
yet been given out by R, or it would acknowledge erroneously.

It is obvious by initialization of the processes that n > 0.

Case: Property (a) holds in state sn. Choose i such that (a) holds for that i.
Since n is the minimal position such that (a) holds, the last transition tn�1
must have added out(i + 1) to the output sequence. Since n is the minimal
position for which one of (a){(d) holds, we know that in state sn�1 (a) does
not hold, which implies that Property (Lose) holds together with the other
Properties (Init){(WinSize).

Lemma 3 then implies, that the output sequence of sn�1 is 0; 1; : : : ; i.
Consequently, out(i) = i. Step tn�1 extends this sequence with out(i + 1).
By (Mod16) we know that out(i + 1) = i + 1 + 16k for a suitable k. With
Property (a) we then derive that k � 1. Consequently, out(i+1) > (i+1)+16.

Then, the sender has already sent i + 1 before. But this data item has
never been given out by the receiver. On the other hand, the sender must
have acknowledged data item i + 1 in the past, otherwise it could not get
data item out(i+ 1) into its transmit window. Hence, on an earlier point in
the computation, (b) must hold. Contradiction!

Case: Property (b) holds in sn. Hence, by reading acknowledgments from the
bu�er, S can acknowledge a data item d which has not yet been given out by
the receiver. Consider transition tn�1.

{ tn�1 2 fsend; timeout; receive lost; receiveg: In this case, the vari-
ables next free, last unacknowledged, and the bu�er rec to send are
unchanged. Hence, (b) also holds in state sn�1. Contradiction!

{ tn�1 = receive data: Consider �rst the case that the new data item
received by S and inserted in the transmit window on position j =
sn�1(next free) is the one falsely acknowledged. After step tn�1, the
sender is able to acknowledge d by reading acknowledgments. These tran-
sitions do not a�ect variable next free. Hence, it is unchanged, and the
only possibility to remove d from the transmit window, is to set the
pointer last unacknowledged to position sn(next free).
Now consider that the same sequence of acknowledgment receptions is
done beginning in state sn�1. With this sequence of steps we reach
a state s such that s(next free) = predm(s(last unacknowledged)),
which means the transmit window is maximally open.
In case the open window had this size already in sn�1, it is not possible
to take tn�1 in state sn�1. Contradiction. In the other case, (c) is already
satis�ed in sn�1.
Now consider the case, that d was already in position j in the trans-
mit window in state sn�1. After the same sequence of acknowledgment
receptions starting in state sn�1, a state s is reached.
If s(last unacknowledged) 6= sn(next free), then the open window in
state s is a subset of the open window in the state in which d is falsely
acknowledged. Consequently, d is acknowledged in s. Hence, (b) is valid
in state sn�1. Contradiction!

In case s(last unacknowledged) = sn(next free), the transmit window
in state s is again maximal. This again leads to a contradiction (either
tn�1 is not enabled, or (c) is already valid in sn�1).

{ tn�1 2 freceive ack; ack lostg: In this case, every state which can
be reached by reading acknowledgments was also reachable before from
sn�1 by reading acknowledgments. Hence, (b) must also hold in sn�1.
This holds also for all subsequent cases, they are therefore left out.

{ tn�1 = send ack: In this case, (d) holds in state sn�1, since the new
acknowledgment appended to the acknowledgment channel by R is the
value of its variable next expected.

Case: Property (c) holds in sn. By reading the acknowledgments in the ac-
knowledgment bu�er, S can acknowledge erroneously, which means it can
enlarge its transmit window. Again, consider transition tn�1.

{ tn�1 2 fsend; timeout; receive lost; receiveg: (c) already holds in
state sn�1. Contradiction!

{ tn�1 = receive data: The sender is able to enlarge the open transmit
window by reading some acknowledgments . Consider again the same
reception sequence of acknowledgments but starting in sn�1 reaching a
state s.
If s(last unacknowledged) = sn�1(next free), then in the sequence
starting from sn enlarging the window, the resulting open window size is
1. But this is also the size in sn, thus, the open window is not enlarged.
Also if s(last unacknowledged) = sn(next free), the open window size
is not enlarged.
Otherwise, in both sequences, starting either from sn or sn�1, the open
window size is enlarged by the same amount. Thus, (c) is already valid
in sn�1.

{ tn�1 = send ack: In this case, (d) holds in state sn�1.

Case: Property (d) holds in sn. Assume that (a) does not hold. Then we can
derive (using Lemma 3) that the output sequence is 0; 1; : : : ; i for a suitable
i � 0. Consider transition tn�1.

{ tn�1 2 fsend; timeout; receive lostg: (d) also holds in state sn�1. Con-
tradiction!

{ tn�1 = send ack: Since the value of the variable next expected is ap-
pended to the acknowledgment channel, (d) is also valid in sn�1.

{ tn�1 = receive data: Basically the same argumentation can be used as
in the cases (b) and (c). One can think of an acknowledgment channel
extended by the value of next expected.

{ tn�1 = receive: If the variable next expected is unchanged by transi-
tion tn�1, then (d) holds in sn�1. Consequently, R must have received a
message (d0; n0) with n0 = sn�1(next expected). Then, d0 is given out

by the receiver in this step, and there once was a state in which d0 was
in the transmit window on position n0.
Assume �rst that (d) holds since the value of next expected can be a
bad acknowledgment in the sense of (b).
Since (d) does not hold in sn�1, the position in the transmit window in
which the error occurs must be position n0 (since tn�1 increases |modulo
window size| the variable next expected by 1). The output sequence
(in state sn) must be 0; 1; 2; : : : ; d

0.
Hence, there is a data item d00 > d0 on position n0. Then, d0 must have
been acknowledged by the sender with a transition tj with j < n. Since
n is minimal, d0 must already have been given out by R before step j.
Consequently, d0 is given out at least twice, once before transition tj and
once by taking transition tn�1. Contradiction!
Now assume that (d) holds since the value of next expected would
acknowledge erroneously, that means, enlarge the open transmit win-
dow. Thus, a state s is reachable by acknowledgment receptions such
that n00 = sn(next expected) enlarges the open transmit window. Since
n0 = predm(n

00), n0 would also enlarge it in case n0 6= sn(next free). But
then, (d) would be valid in sn�1. Consequently, sn�1(next expected) =
n0 = sn(next free) = sn�1(next free). But then, position n0 in the
transmit window of sn�1 is not in the open transmit window. Thus, d0 is
already acknowledged. But it has not yet been given out in state sn�1.
Hence, (b) is valid in sn�1.

4.6 Veri�cation Results

The following table shows the experimental results on a SUN Ultra Sparc with
1 GB of memory and 167 MHz processor. The last column shows whether we
used the Spin option for compression in this particular case. We always used
partial order reduction.

Property time max. depth memory compression

(Init) 3 h 1,000,000 516MB no
(WinSize) 15 h 1,000,000 901MB yes
(i) 1min 1,675 80MB no
(ii) 1 h 2,781 139MB no
(iv) 1.5 h 1,000,000 259MB no

5 Conclusion

In this paper we proposed a veri�cation methodology that combines data
independence, abstraction, and compositional reasoning. The essence of the
approach is to exploit the added value of combining those techniques. Addi-
tionally it serves as a clean guideline to separate the properties amenable to
automatic model-checking and those to be veri�ed deductively.

We applied this methodology to analyze a realistic sliding window protocol
taken from a wireless ATM protocol of window size of 16. To our knowledge,
this is the largest size of a sliding window protocol veri�ed with the help
of model-checking techniques. In fact we applied the same methodology to
prove a liveness property of the same protocol.

Related Work Various versions of the sliding window protocol have been
studied in the literature. The treatment ranges from informal arguments
[Knu81] [SL92] et. al. (and already in the original proposal [Ste76] of the
protocol), over model-checking (e.g. in [RRSV87]), compositional reasoning
(e.g. [Jon87]), proofs using theorem provers [Car89], or combinations of vari-
ous techniques [Kai97]. Closest to our investigation is [Kai97], who also uses
a combination of model-checking, abstraction and decomposition. Di�erent
from our work, [Kai97] does not use a theorem prover, but automatically
checks safety of the abstraction using speci�c behavioral preorders. He suc-
ceeds in proving safety and liveness up to the window size of 7.

Acknowledgments We thank the anonymous referees for their very helpful
comments and suggestions.

References

[BBLS92] A. Bouajjani, S. Bensalem, C. Loiseaux, and J. Sifakis. Property pre-
serving simulations. In G. v. Bochmann and D. K. Probst, editors,
CAV'92, volume 663 of LNCS. Springer, 1992.

[Car89] R. Cardell-Oliver. The speci�cation and veri�cation of sliding window
protocols. Technical Report 183, University of Cambridge, 1989.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A uni�ed lattice
model for static analysis of programs by construction or approximation
of �xpoints. In 4th POPL, Los Angeles, CA. ACM, 1977.

[CE81] E. M. Clarke and E. A. Emerson. Synthesis of synchronisation skeletons
for branching time temporal logic. In D. Kozen, editor, Workshop on
Logic of Programs 1981, volume 131 of LNCS. Springer, 1981.

[CGL94] E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction.
TOPLAS, 16(5):1512{1542, 1994.

[Dam96] D. Dams. Abstract interpretation and partition re�nement for model
che cking. PhD thesis, Technical University of Eindhoven, 1996.

[DGG94] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of re-
active systems: Abstractions preserving ACTL�, ECTL� and CTL�. In
E.-R. Olderog, editor, Proceedings of PROCOMET '94. North-Holland,
1994.

[DPA+98] I. Dravapoulos, N. Pronios, A. Andristou, I. Piveropoulos, N. Passas,
D. Skyrianoglou, G. Awater, J. Kruys, N. Nikaein, A. Enout, S. De-
crauzat, T. Kaltenschnee, T. Schumann, J. Meierhofer, S. Th�omel, and
J. Mikkonen. The Magic WAND, Deliverable 3D5, Wireless ATM MAC,
Final Report, 1998.

[dRLP98] W.-P. de Roever, H. Langmaack, and A. Pnueli, editors. Compos '97,
volume 1536 of LNCS. Springer, 1998.

[Hol91] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice
Hall, 1991.

[Jon87] B. Jonsson. Compositional Veri�cation of Distributed Systems. PhD
thesis, University of Uppsala, 1987. Technical Report DoCS 87/09.

[Kai97] R. Kaivola. Using compositional preorders in the veri�cation of sliding
window protocol. In O. Grumberg, editor, Proceedings of CAV '97,
volume 1256 of LNCS, pages 48{59. Springer, 1997.

[Kel95] P. Kelb. Abstraktionstechniken f�ur Automatische Veri�kationsmetho-
den. PhD thesis, University of Oldenburg, 1995.

[Knu81] D. E. Knuth. Veri�cation of link-level protocols. BIT, 21:31{36, 1981.
[Kur94] R. P. Kurshan. Computer-Aided Veri�cation of Coordinating Processes,

the automata theoretic approach. Princeton Series in Computer Science.
Princeton University Press, 1994.

[LGS+95] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Prop-
erty preserving abstractions for the veri�cation of concurrent systems.
Formal Methods in System Design, 6(1), 1995.

[Lon93] D. E. Long. Model Checking, Abstraction, and Compositional Reason-
ing. PhD thesis, Carnegie Mellon, 1993.

[ORSvH95] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal veri�ca-
tion for fault-tolerant architectures: Prolegomena to the design of PVS.
IEEE Transactions on Software Engineering, 21(2):107{125, 1995.

[QS81] J. P. Queille and J. Sifakis. Speci�cation and veri�cation of concurrent
systems in CESAR. In Proceedings of the Fifth International Sympo-
sium on Programming, 1981.

[RRSV87] J. L. Richier, C. Rodriguez, J. Sifakis, and J. Voiron. Veri�cation in
Xesar of the sliding window protocol. In PSTV VII. North-Holland,
1987.

[SL92] A. U. Shankar and S. S. Lam. A stepwise re�nement heuristics for
protocol construction. TOPLAS, 14(3):417{461, 1992.

[Ste76] N. V. Stenning. A data transfer protocol. Computer Networks, 11:99{
110, 1976.

[Wol86] P. Wolper. Expressing interesting properties of programs in proposi-
tional temporal logic. In Thirteenth POPL (St. Peterburg Beach, FL),
pages 184{193. ACM, 1986.

