
Polarized Higher-Order Subtyping

Der Technischen Fakultät der
Universität Erlangen-Nürnberg

zur Erlangung des Grades

D O K T O R – I N G E N I E U R

vorgelegt von

Martin Steffen

Erlangen – 1997

Summary

The calculus of higher order subtyping, known as F ω
≤ , a higher-order polymorphic

λ-calculus with subtyping, is expressive enough to serve as core calculus for typed
object-oriented languages. The versions considered in the literature usually support
only pointwise subtyping of type operators, where two types S U and T U are in
subtype relation, if S and T are. In the widely cited, unpublished note [Car90],
Cardelli presents F ω

≤ in a more general form going beyond pointwise subtyping of
type applications in distinguishing between monotone and antimonotone operators.
Thus, for instance, T U1 is a subtype of T U2, if U1 ≤ U2 and T is a monotone
operator.

My thesis extends F ω
≤ by polarized application, it explores its proof theory, es-

tablishing decidability of polarized F ω
≤ . The inclusion of polarized application rules

leads to an interdependence of the subtyping and the kinding system. This contrasts
with pure F ω

≤ , where subtyping depends on kinding but not vice versa. To retain
decidability of the system, the equal-bounds subtyping rule for all-types is rephrased
in the polarized setting as a mutual-subtype requirement of the upper bounds.

ii

Contents

Summary i

Contents iii

1 Introduction 1
1.1 Typed programming . 2
1.2 Object-oriented programming . 2
1.3 F ω

≤ : the calculus of higher-order subtyping 9
1.4 Background material . 13
1.5 Results and contribution of the thesis 14
1.6 Structure of the thesis . 15
1.7 Publications . 15

I Higher-Order Subtyping 17

2 Higher-Order Subtyping 19
2.1 Syntax . 21
2.2 Contexts . 22
2.3 Conversion . 22
2.4 Kinding . 23
2.5 Subtyping . 24
2.6 Typing . 25

3 Decidability of F ω
≤ 27

3.1 Introduction . 28
3.2 Kinding . 30
3.3 The reducing system . 33
3.4 Subject reduction for subtyping . 35
3.5 Cut elimination . 36
3.6 A subtyping algorithm for F ω

≤ . 40

iv Contents

II Polarized Higher-Order Subtyping 43

4 Polarized F ω
≤ 45

4.1 Syntax . 46

4.2 Contexts . 47

4.3 Subtyping . 47

4.4 Kinding . 51

4.5 Typing . 54

5 Stratifying Kinding and Subtyping 55

5.1 Introduction . 56

5.2 Proof outline . 58

5.3 Variable occurrence . 62

5.4 Kinding . 65

5.5 Equivalence of types . 73

5.6 The reducing system . 78

5.7 Properties of the reducing system . 79

5.8 Subject reduction for subtyping . 82

5.9 Strong normalization . 85

5.10 Strengthening . 88

5.11 Characterization of strong, cut-free derivations 89

5.12 Cut elimination . 92

5.13 Elimination of promotion . 94

5.14 Decidability of polarized subtyping 95

6 Typing 105

III Conclusions 109

7 Conclusions 111

7.1 Summary . 111

7.2 Related and future work . 111

Bibliography 126

IV German translations 147

Zusammenfassung 151

Contents v

1 Einleitung 153
1.1 Typen und Programme . 153
1.2 Objektorientierte Programmiersprachen 154
1.3 F ω

≤ : Untertypisierung höherer Ordnung 162
1.4 Weiterführende Literatur . 166
1.5 Der Beitrag der Arbeit . 167
1.6 Gliederung . 168
1.7 Veröffentlichungen . 168

Inhaltsverzeichnis 169

V Proofs 175

A Reduction Relations 177
A.1 Properties of β>-reduction and substitution 177
A.2 Γ-reduction . 180

B Proofs for F ω
≤ 191

B.1 Kinding . 191
B.2 The reducing system . 192
B.3 Subject reduction for subtyping . 192
B.4 Cut elimination . 197
B.5 A subtyping algorithm for F ω

≤ . 198

C Proofs for Polarized F ω
≤ 201

C.1 Kinding . 201
C.2 Equivalence of types . 210
C.3 Properties of the reducing system . 216
C.4 Subject reduction for subtyping . 222
C.5 Strong normalization . 233
C.6 Characterization of strong, cut-free derivations 235
C.7 Cut elimination . 238
C.8 Elimination of promotion . 240
C.9 Decidability of polarized subtyping 243
C.10 Typing . 250

vi Contents

Chapter 1

Introduction

The introductory chapter collects and reviews relevant research in the field of typed
(functional) calculi for object-oriented languages, at the same time introducing some
object-oriented jargon. The material is well-known and included for reference. I
also give an overview of the rest of the thesis and provide references for background
literature.

1.1 Typed programming . 2

1.2 Object-oriented programming 2

1.3 F ω
≤ : the calculus of higher-order subtyping 9

1.4 Background material . 13

1.5 Results and contribution of the thesis 14

1.6 Structure of the thesis . 15

1.7 Publications . 15

2 Chapter 1 Introduction

1.1 Typed programming

Types are a natural concept in programming. The type of a program characterizes
its allowed use and strong typing means, that no run-time type error can occur
by illegitimate use of a program, such as feeding an argument into a procedure it
was not designed for, or invoking a method on an object it doesn’t support. A
language is called type-safe, if such errors are caught by type checking. For statically
typed languages this check is carried out at compile-time, before actually running the
program.

The type system constitutes a formal system, dividing all syntactically correct pro-
grams into well-typed and ill-typed ones. This protection against accidental errors
increases the chances of catching errors early, contributing to more reliable software.
Moreover, assigning a type to each program at compile-time frees the run-time sys-
tem from costly checks during the execution of the program. In documenting the
intended usage of a program, types can lead to more readable code. Especially for
large, structured programs, types specify the interfaces of a module or an object and
type checking amounts to a consistency check of the modules’ interfaces. Moreover
compilers use type information to generate more efficient code.

Not everything that might go wrong at run-time is statically checkable (because
it is undecidable whether a program has some undesired property or it is simply too
inefficient). Since a static, safe type system has to be conservative in this respect, it
will reject programs that would otherwise run well, and the weaker the type system,
the more programs it will reject. Thus the design of expressive, yet safe and decidable
type systems is a major theme in the evolution of programming languages and an
important contribution of theoretical computer science. The development of provably
safe, expressive type systems is especially challenging for object-oriented languages,
which are known for a large array of different, advanced features, not all too well
understood.

1.2 Object-oriented programming

Objects and classes

Even if there is not too much agreement about what the array of features of an object-
oriented language should consist of, one thing is for sure: programs are arranged
in objects. An object contains an internal state together with procedures, called
methods, to manipulate it. The only way to access the state of an object is via its
methods, building the object’s interface; thus objects form an encapsulation barrier
around their internals. The support of clean interface mechanisms and abstraction

Section 1.2 Object-oriented programming 3

is crucial for structuring large programs by libraries. (See [Coo91] for a discussion of
the differences between abstract data types and objects.)

A salient feature of object-oriented languages is late-binding of methods, also
known as dynamic binding, dynamic look-up, message passing, or run-time dispatch
of methods. Late-binding of a method means that the code executed for a method
is not selected statically at compile-time, when the object is constructed, but at
run-time, when the method is invoked by message passing. This is a fundamental
difference between function application and message-passing. Since methods may be
defined referring to other methods of the same object (via self in Smalltalk or this
in C++, for instance), a re-implementation of the referenced methods, called method
override, affects the referring methods of the same object, as well. It is plausible that
this dynamic feature is complicated to capture in static type systems.

The actual program is structured into objects, but whether the program develop-
ment centers around objects is a separate question. In class-based languages, such as
Simula [BDMN79], Smalltalk [GR83], C++ [Str86] [ES90], Eiffel [Mey92], Java [AG96]
[LY96], to name a few, classes are used for incremental program construction.1 They
serve as blueprint for objects, containing the description of their implementation, i.e.,
some initial values for the internal data and the code for the methods. Classes can be
used in two ways. First, to create new objects sharing the implementation common to
all objects belonging to the class, its instances. Second, to incrementally define new
classes by inheritance, where parts of the old superclass may be used, i.e., inherited,
old methods replaced or “overridden”, and new methods added. Thus, inheritance
is a tool for constructing programs, supporting reuse of code of superclasses by their
subclasses through inheritance, and structuring large programs or libraries into an
inheritance hierarchy.

Polymorphism

Like all high-level languages deserving the name, object-oriented languages support
polymorphism in one form or the other. A polymorphic program, as opposed to a
monomorphic one, accepts inputs of different types, adding flexibility and expressive-
ness to a language (cf. Cardelli and Wegner [CW85] for a discussion of different forms
of polymorphism.)

Parametric polymorphism Parametric polymorphism allows the formulation of
typed programs working uniformly on input of different types by providing the pro-
gram with the type as parameter.

1Class-based languages constitute the mainstream of object-oriented languages. Alternatively,
object-based languages, e.g. Self [US91], do without classes, performing inheritance and the creation
of new objects directly on objects.

4 Chapter 1 Introduction

A standard illustrating example is the function swapping the components of a pair
of elements of a given type. There is nothing specific to the concrete type involved and
the function works uniformly for all possible types. So instead of writing a specific
function of type (T × T) → (T × T) for each type T for which the function is needed
in the rest of the program, it is clearly preferable to uniformly define a function for all
types, attaching to it the universally quantified type ∀A.(A × A) → (A × A), where
A is a type variable.

This type characterizes functions which take as first argument the type which
they are supposed to work on. Polymorphic functions, taking types as parameters
by type abstraction and using type application to instantiate them is an elegant and
powerful tool for code reuse, leading to clear and concise programs. Furthermore
it can help the compiler to avoid code duplication. For object-oriented languages,
parametric polymorphism can be used to avoid type-casts resulting in more efficient
code.

This form of parametric polymorphism is called explicit, in contrast to widely used
polymorphic type systems of modern languages (e.g., in ML, Haskell, Miranda et. al.)
where type inference algorithms free the programmer from explicitly providing the
type as parameter to a function. These so-called Hindley-Milner type systems [Hin69]
[Mil78] [DM82] (see also Cardelli [Car87]) or systems with “let-polymorphism” are
weaker in that they assume the types of polymorphic functions to be implicitly quan-
tified in prenex position, only. The advantage of these type systems is that, unlike
for systems with unrestricted higher-order polymorphism [Boe85] [Pfe93a] [Wel94],
type inference is decidable.

Subtype polymorphism Subtyping is based on a simple idea: types are ordered
and a program of a smaller type can be used at places, where programs of a larger
type are expected. Consider, as a not specifically object-oriented example, integer
numbers and reals. Even if the type system should prevent using the real number at
places where an integer is required, there is nothing wrong from the programmer’s
point of view, using conversely an integer instead of a real number, since after all he
has learned, an integer is also a real number. The set of reals thus subsumes the set
of integers and the type Int is said to be a subtype of Real , written Int ≤ Real. Of
course, from the compiler’s point of view, integers and reals are probably represented
differently and some measures have to be taken internally, to prevent for example the
direct addition of the different representations, converting the representation of the
integer number into a common floating point representation.2

2More generally, using programs non-uniformly on arguments is called overloading. In the exam-
ple, the arithmetic operation +, adding two numbers, whether they are reals or integers, is said to be
overloaded. Since the way the sum is computed for a pair of integers differs from the addition of two
reals, overloading is also called “ad-hoc”-polymorphism, to contrast it with the uniform definitions

Section 1.2 Object-oriented programming 5

If subtyping were all about using at times integers instead of reals, it would not
be too exciting. But besides atomic or base types such as the type of integers or of
reals, a language usually possesses also compound types. If there is any types system
at all, it is likely to contain functional types of the form T1 → T2, describing all
functions with input of type T1 and output of type T2. Considering the subtypes of
the arrow type T1 → T2 and guided by the intuition that values of such a smaller
type are expected to be substituted safely for values (here functions) of the larger
type T1 → T2, the subtypes have to contain functions, as well. More specifically, the
functions inhabiting the subtype must be able to accept at least all values of type
T1 as input, while yielding results ranging at most over T2. This is captured in the
following inference rule:

T1 ≤ S1 S2 ≤ T2

S1 → S2 ≤ T1 → T2

Thus arrow-types are said to behave contravariantly on the argument type, inverting
the direction of the subtype relation, and covariantly on the result type.

The idea that the subtype relation is determined by the structure of the types is
called structural subtyping [Car88a] [Car88b] [Rey85] [Sta88].3 The subtype relation,
generally a preorder on all types, is inductively defined by a set of inference rules
similar to the one for arrow types above, which constitute the subtype system.

The essence of subtyping, namely that elements or programs of a smaller type
also carry all larger types and thus may safely be substituted for those of the larger
types, is expressed in the rule of subsumption, which connects the typing system with
the subtyping system:

t ∈ T ′ T ′ ≤ T

t ∈ T

Subtype polymorphism, also called inclusion polymorphism, is characteristic for
object-oriented languages. For example, an object supporting more methods can
safely replace an object with less methods without incurring a run-time error such as
“message-not-understood”; thus the types of both objects are in subtype relation.

Subtype-bounded polymorphism An important contribution for typed object-
oriented languages is the combination of parametric or universal polymorphism and
subtype polymorphism. In the seminal paper [CW85], Cardelli and Wegner proposed

of parametric polymorphism.
3This is in contrast to declarative subtyping, where it is up to the user to declare certain types

to be in subtype relation. That some typed object-oriented languages, e.g., C++ or Eiffel, do not
distinguish between classes and types adds to the confusion.

6 Chapter 1 Introduction

“Bounded Fun”, a second-order polymorphic λ-calculus with bounded subtyping and
records as a functional model for object-oriented languages. Let’s take the standard
toy example for illustration: point objects with an internal state denoting its coor-
dinates and two methods for manipulating it. Thus assuming Point as the type of
all such point objects supporting setx and getx as methods to read and write to its
x-coordinate allows us type the invocation of the getx -method, for instance, with
∀A≤Point .A → Int , where A ranges over all subtypes of Point . The structural defi-
nition of the subtype relation guarantees that all elements for all subtypes of Point
share some common structural properties, in the example of point-objects assuring
that all objects of a subtype of Point support at least a getx - and a setx -method of
the appropriate type.

To account for the more complex situation where, unlike in the getx -example of
above, a method changes the state of an object, for example the setx -method of the
intended type ∀A≤Point .A → Int → A, the second-order calculus with subtype-
bounded polymorphism has been extended or changed in various ways, for instance
by recursion, F-bounded polymorphism, match-bounded polymorphism, or higher-
order polymorphism. Meanwhile, there are numerous languages supporting subtype-
bounded polymorphism; among others Pizza, Rapide, Trellis/OWL [SCB+86], Eiffel,
polyTOIL . . . On the other hand, the lack of parametric, subtype-bounded poly-
morphism is one major drawback in the design of the object-oriented language Java.
Consequently, different proposals have been made to include parametric polymor-
phism, for example in [AFM97], or by Odersky and Wadler’s Pizza-language [OW97b]
[OW97a], both based of F-bounded polymorphism. Other work in this direction is
done in [MBL97] [BLM96].

Inheritance As pointed out earlier, inheritance is a mechanism for the incremental
construction of objects, reusing already defined code. On the other hand subtyping
is about the external use of instantiated objects, not their implementation. It is com-
monly accepted that both concepts are different and should thus be separated. This
contrasts with some languages identifying classes with types and hence inheritance
with subtyping, e.g. C++ or Eiffel, where inheritance is the only way to produce sub-
types. See [Sny86] [BHJ+87] [CHC90] [LP91] and many others for a discussion of
subtyping vs. inheritance.

Objects as records An often used intuition about objects regards them as records
of their methods [CW85], where method invocation corresponds to record selection.
In first approximation, also the intuition of subtyping of object types fits nicely
with the subtyping rules for records: two record types are in subtype relation, if the
smaller one contains all the fields of the larger, and possibly more, and the types of
the common fields are related covariantly by subtyping (the fields li of the record are

Section 1.2 Object-oriented programming 7

assumed to be distinct and their order does not play a role):

Si ≤ Ti for all 1 ≤ i ≤ n

{l1:S1, . . . , ln:Sn, ln+1:Sn+1, . . . , ln+m:Sn+m} ≤ {l1:T1, . . . , ln:Tn}

Nearly all typed calculi for object-oriented languages are loosely related to this
analogy. This simplistic view, though, has to be refined to account for the interplay
of subtyping, inheritance with late-binding of methods and overriding, and encapsu-
lation.

If especially in an object-based setting, the records or objects are the direct target
of manipulations beyond method invocation, i.e. record selection, the analogy of
subtyping between record types and object types breaks down. Record extension,
adding new fields to a record, requires to abandon one half of the above subtyping
rule for records, namely that a record type with more fields is a subtype of one with
less, called width-subtyping; otherwise, by subsumption, one would be induced to
extend an object by a method it already possesses, causing a run-time error. To deal
with method addition or record extension, record calculi have been devised to include
information about which methods are not already present in an object, and hence
can be safely added.

On the other hand, method override, replacing the code for one method means
to give up the second half of the above subtyping rule, namely that the types of the
common fields are in subtype relation, called depth-subtyping, and require the types
of the common fields of two records to coincide.

To deal with these problems, a number of record calculi have been proposed and
investigated (especially wrt. type inference), allowing record update, record exten-
sion, or record concatenation [Wan87a] [Wan88] [Wan87b] [Car88a] [Wan91] [CM91]
[Rém89] [Rém92] [HP91] [Car92] [Wan94] [Aba94] [JM93] [Hen94] [GJ96] [Zwa96]
. . . As a method can call methods — including itself — of the same object, recur-
sive records have been studied to model this self-referencing. In [Coo87] [Coo89],
classes are represented as functions, called object generators, and objects are recur-
sively defined records as the fixed point of the generator. Other work on recursive
records includes [CP89] [Red88] [KR94] [Bru92] [CHC90] [CCHM89] [Mit90b]. For
an elaborate language design using recursive records see [Bru94].

Overloading Instead of belonging to an object, a method can be viewed (and im-
plemented) as an entity on its own where depending on the type of the object it is
invoked on different code is chosen. By placing the methods outside the objects, there
is nothing specific to any object and the code chosen when executing the method may
depend on more than one object. This is known as multiple-dispatch, as for exam-
ple in CLOS [KG89] [DG87] or Cecil [Cha93] [Cha92]. The messages are modelled
as functions with the receiving objects as parameters; thus messages are viewed as

8 Chapter 1 Introduction

overloaded functions. An extension of simply typed λ-calculus for late-binding, sub-
typing, and overloaded functions called λ& is presented in [Cas93] [CGL95]. This can
be applied to model multiple dispatch or multimethods. The system F &

≤ [Cas95] is
the extension to the second-order case. A meta-language λobject , based on λ&, is in-
vestigated in [Cas93]. See Castagna [Cas97] for a comprehensive account of modelling
object-oriented languages based on multiple dispatch.

Matching Matching, written S <# T , is a relation on types, similar to subtyping,
but more general.4 Matching, in particular, does not enjoy the subsumption prop-
erty, which is the essence of subtyping. This relation has been proposed by Bruce and
others as a generalization of the subtype relation. It allows the definition of classes
where the type of allowed implementations ranges not over all subtypes but over all
types which match the type of the current implementation. This is more general, as
it allows to construct subclasses by inheritance, whose instances’ types are not neces-
sarily subtypes of the instances of the superclass [Bru94] [Bru96b] [BFP97] [AC96a].
Bounded polymorphism where the parameter is bounded by the matching relation
instead of an upper bound as supertype is called match-bounded polymorphism or
bounded matching. Matching can be encoded by full higher-order subtyping [AC96a].
Sample language designs using matching are Toil [BSvG93] and polyTOIL [BSvG95],
statically typed languages with subtyping together with matching and imperative
features. In the recent language Loom [BFP97] [Bru96b], subtyping is dropped al-
together and replaced by matching. Further languages supporting match-bounded
polymorphism are Theta [LCD+94] [DGLM95] and School [RIR93].

F-bounded polymorphism F-bounded subtype polymorphism, which was pro-
posed in [CCHM89] [CHC90], can be seen as a specific form of higher-order sub-
typing. The upper bound S in the polymorphic type ∀A≤S.T may contain free
occurrences of the type variable A, which makes it act like a function from types to
types, and polymorphic function of this type accepts as type argument each type U
with U ≤ [U/A]T . See also [BCGŠ91] [KLMM94]. Languages supporting F-bounded
polymorphism are Sather [OL92], Pizza, and a couple of others.

Object calculi

The mentioned functional calculi have in common, that they treat objects as a derived
concept. Alternatively, a couple of formalisms have been proposed with objects as
primitive notion. The most advanced array of such calculi, ranging from untyped
object calculi and first-order calculi to higher-order ones with recursion, can be found

4Matching here should not be confused with pattern matching in high-level languages, such as
ML.

Section 1.3 F ω
≤ : the calculus of higher-order subtyping 9

in Abadi and Cardelli’s book [AC96b]. Starting from an untyped object calculus
ς-calculus [AC94], based on the notion of method update and late-binding5, but
without method extension the formalism is extended by first- order and higher-order
type system and subtyping, all in an object-based setting. The object calculus is
extended in [Liq97].

Other calculi are concerned with concurrent object-oriented programming. One
example is the language Pict [PT97b][PT97c] based on the π-calculus [MPW92], a
process algebra for mobile computation. Also in the setting of process calculi, typing
is an important issue [PS96]. Whereas in a sequential, functional setting types impose
a discipline on programs to avoid illegitimate function application, the way process
calculi interact with their environment is more complex, namely by communication
and synchronization. Here, static type systems are employed to enforce appropriate
usage of channels for communication. In Pict, for example, a sophisticated version of
F ω
≤ is implemented, supporting recursive types, partial type inference, and pattern

matching. Other concurrent object-oriented calculi include [Nie92] [DF96] [HT91]
[HT92] [VT93]. Cardelli’s object-based language Obliq [Car95], ABCL [Yon90], based
on the actor model, and America’s language Pool [Ame89]. Other process algebra
based languages include [Vas94] [Nie92] [KY94] [Jon93].

1.3 F ω
≤ : the calculus of higher-order subtyping

The study of typed functional calculi, i.e. typed λ-calculi, flexible and expressive
enough to provide a theoretical framework for object-oriented languages has received
considerable attention in the literature over the past ten years. The object of study
in this thesis is F ω

≤ (called “F-omega-sub”), one prominent representative of λ-calculi
for object-oriented programming. It is a higher-order, typed λ-calculus with subtyp-
ing and can be understood as the combination of its simpler fragments: the pure
polymorphic λ-calculus or system F , the ω-order calculus F ω, and the polymorphic
λ-calculus with subtyping (F≤).

As starting point serves Girard and Reynold’s Système F [Gir71] [Gir72] [Rey74]
or the second order polymorphic λ-calculus. This system extends Church’s simply
typed λ-calculus [Chu40] by parametric polymorphism, adding type abstraction λA.t
and type application t T , on the level of terms (where A is a type variable and T
is a type). Adding type operators, i.e., functions from types to types, yields F ω

[Gir72], a system with higher-order polymorphism. On the other hand, extending
the polymorphic λ-calculus with subtyping and bounded quantification yields F≤;
Cardelli and Wegner’s language Bounded Fun [CW85] is one variant of this system.

5The ς of the ς-calculus replaces λ as variable binder to remind that late binding of methods is
different from static binding of functions.

10 Chapter 1 Introduction

The metatheoretical properties F≤ have been extensively studied in the literature
(cf. [CMMŠ94] [Ghe91] [CG92] [BCGŠ91] [Pie94] et. al.). The integration of both
subtyping and type operators leads to F ω

≤ [Car90] [Mit90b], the calculus of higher-
order subtyping. It is sufficiently expressive to model class inheritance with late
binding, encapsulation, and subtype polymorphism in a uniform framework, and
has thus been proposed as underlying core calculus for class-based typed object-
oriented languages [PT94] [HP95b] in the style of Smalltalk. Objects are represented
as elements of existential type, explicitly hiding the state and the implementation of
the methods. By adding type operators it is possible, to represent not only the type
of objects, but also the interfaces or signatures of objects as functions from types to
types, namely taking the representation type and yielding the interface.

Implementation issues and extensions of F≤, such as partial type inference for sec-
ond order types, de Bruijn indices, and a syntax extension mechanism, are discussed
in [Car93]. Similarly for higher-order subtyping implemented by explicit coercions
in [Cra97]. The KML-compiler [Cra96a] [Cra96b] is based on the explicitly typed
λK-calculus, an extension of F ω

≤ containing records, recursive types, singleton and
power kinds. Pierce and Turner’s [PT94] model can be represented in FCP [Jon97],
a calculus with first-class polymorphism, type inference, and abstract data-types.

See [PT94] [HP95b] for a more detailed account of F ω
≤ ’s object model. See also

the surveys [FM96] and [BCP96] for a comparison of different object-models and
encodings. A refinement of F ω

≤ ’s object model to deal with friendly functions using
partially abstract types (cf. [MP88]) is presented [PT93]. Extensions of the type
systems to include recursive types can be found in [AC93] [MPS86] [CC91].

Semantical models based on partial equivalence relations (PER’s) have proven
useful for denotational semantics of subtyping and polymorphism. An important pa-
per about semantics of subtyping based on partial equivalence relations is Bruce and
Longo [BL90]. A PER-model for F ω

≤ in can be found in [BM92] [AP90], likewise a
model for F≤ with positive subtyping in [HP95a]. A coercion-based model is elabo-
rated in [BCGŠ91]. Other material about model theory in this context can be found
in [Pho90] [Ama91] [MV96] [FMRS92].

Variants

The subtyping calculi F≤, F ω
≤ , and related ones, come in different variants. An

important distinctive feature is the subtyping rule for universal quantification. A
simple version of the All-rule was proposed in [CW85] for the language “Kernel
Fun”, requiring that the upper bound of to All-types under comparison have to be
identical:

Section 1.3 F ω
≤ : the calculus of higher-order subtyping 11

Γ, A≤U ` S2 ≤ T2

Γ ` All(A≤U)S2 ≤ All(A≤U)T2
(S-All-Kernel)

A stronger and equally sensible formulation, here called S-All-Full, allows the
upper bounds of the two types to vary contravariantly:

Γ, A≤T1 ` S2 ≤ T2 Γ ` T1 ≤ S1

Γ ` All(A≤S1)S2 ≤ All(A≤T1)T2
(S-All-Full)

Ghelli [Ghe95] showed that a previously proposed subtype “algorithm” can diverge
in the presence of the full subtyping rule; Pierce [Pie94] additionally proved that this
rule renders the subtyping relation for F≤ actually undecidable. Other investigations
about the implications of this rule can be found in Ghelli [Ghe93]. In Curien and
Ghelli [CG92], the full version of the quantifier rule is used in a study of F≤’s meta-
theory based on coercions as explicit representation for the derivations of subtyping
statements. By proof-rewriting techniques, they obtain a sound and complete semi-
decision procedure for F≤. Similarly in [BCGŠ91], mapping F≤ to the polymorphic
λ-calculus F with record types. The weaker rule S-All-Kernel leads to systems
with much nicer properties than the more complex formulation and has been used in
[Com95b] [PS97]. A further comparison of the two different rules in the presence of
bounded existential types can be found in [GP97]. See also [Ghe90].

In this thesis, we propose yet another variant of the All-subtyping rule. On the
one hand we strife to retain as much of the well-behavior of the kernel variant of
F ω
≤ . On the other hand, the presence of polarized subtyping will lead us to relax

the equal-bounds requirement of S-All-Kernel to a mutual-subtype requirement
(denoted by ≷):

Γ ` S1 ≷ T1 ∈ K1 Γ, A≤S1:K1 ` S2 ≤ T2 ∈ K

Γ ` All(A≤S1:K1)S2 ≤ All(A≤T1:K1)T2 ∈ ?
(S-All-Pol)

In presence of polarized subtyping, this rule is strictly more general than the
equal-bound subtyping rule, since, unlike for pointwise subtyping, the mutual sub-
typing relation between types will not imply β-equivalence. Based on the proof of
decidability of polarized higher-order subtyping in Part II, we believe that this rule
is the adequate generalization in the presence of polarized applications.

Extensions

In Hofmann and Pierce [HP95a], a “positive” variant of Kernel F≤ is proposed with
the aim to capture the semantics of updating. Commonly, the subtype relation
S ≤ T can be interpreted by a coercion function of type S → T , converting elements

12 Chapter 1 Introduction

of the smaller type S to elements of type T . Hofmann and Pierce deviate from this
“orthodox” view, stipulating that S ≤ T requires not only the existence of a standard
extraction function, coercing values of type S into values of type T , but also an
update-function of type S → T → S, which, given an element of types S overwrites
the “T -part” of it by the value of its second argument of type T . The introduction
of a constant put [S, T] on term level for each pair S and T to that effect leads to a
stronger, more restrictive interpretation of the subtyping relation. For example, no
subtyping is allowed between existential types, i.e., no object subtyping. Also, the
subtyping rule for arrow types is restricted in that the argument types on both sides
have to coincide. The resulting object-model with positive subtyping extends and
simplifies the one from [PT94], for example resulting in a simpler representation of
inheritance, as the subtype relation already comes equipped with update functions
which otherwise needs explicitly to be programmed. The stronger interpretation also
allows to reason about object-oriented programs in a structured way, as it allows to
transfer properties of the methods from superclasses to subclasses. This model of
positive subtyping is encoded in [HNSS98] in the type-theoretic proof-assistant Lego.
Exploiting the correspondence between propositions and types or the Curry-Howard
isomorphism [CF58] [How80] [GLT89], classes are extended by a proof-component,
thus including proof methods into the encapsulated objects, where in much the same
way as with ordinary, computational method, the actual proofs are hidden and only
the properties are accessible via the methods interface.

Intersection types A couple of extensions generalize F≤ or F ω
≤ to include inter-

section types. The resulting calculi are called F∧ (“F-meet”) [Pie97b] [Ma92] for the
second-order case and Fω

∧ (“F-omega-meet”) [Com95a] including type operators. The
intuition of the intersection of S and T (written S∧T for binary intersection of S and
T) is that the values of intersection types carry both types. Using intersection types
in the upper bound of polymorphic expressions for inheritance allows to express that
the interface of the sub-class inherits from more than one super-class. This model of
multiple inheritance via intersection types is developed in [CP96]. The system F ω

∧

is a proper generalization of F ω
≤ , where the maximal type Top can be understood

as the empty intersection. For the treatment of intersection types in combination
with higher-order subtyping the reader is referred to Compagnoni’s thesis [Com95b]
or [Com97a] [Com97b]. A language-design based on intersection types is Reynold’s
Forsythe [Rey96].

Dependent types F ω
≤ is an impredicative type theory, where terms depend on

terms and types, and types take types as parameters (in which case they are called
type operators). Systems where types can depend on terms, are said to have depen-
dent types. This allows to express functions, uniformly parametric for a range of

Section 1.4 Background material 13

terms. As a very simple example take the type of arrays of a fixed length n, whose
type depends on n, a natural number. The strength of systems with dependent types
goes far beyond the simple example of the type of arrays and can be used to specify
properties of programs. Thus, these calculi form the basis of many type-theoretic
proof-checkers such as Lego [leg97], Coq [CCF+95], Isabelle [Pau93], Nuprl [C+86]
et. al. For a systematic classification of the different λ-calculi by the different com-
binations of dependence between types and terms in the so-called λ-cube, consult
Barendregt’s handbook article [Bar92].)

Recently, interest in calculi with dependent types extended by subtyping has
started. Aspinall and Compagnoni [AC96c] investigate λP≤, a first order calculus
with dependent types (known as λP or λΠ) extended by subtyping, establishing
decidability of the system. Chen [Che97a] studies a different formulation of the same
system, which he calls λΠ≤. The inclusion of dependent types leads to a cyclic
dependence of the typing, the subtyping, and the kinding statements, posing similar
proof-theoretic problems as the study of polarized applications pursued in this thesis.
A more detailed discussion and a comparison with the results of this work is left for
the conclusions.

1.4 Background material

I assume some acquaintance with typed functional and object-oriented calculi. The
reader is encouraged to consult the following works of a broader perspective.

Comprehensive material about typed functional programming languages, i.e.,
typed λ-calculi, their operational and denotational semantics, can be found in the
books of Mitchell [Mit96] and Gunter [Gun92]. While both books focus on functional
languages, they contain also some sections about subtype polymorphism. Mitchell
especially discusses the functional record-model of object-oriented languages and
bounded subtype polymorphism, including F-bounded and higher-order polymor-
phism. Similarly, but with more emphasis on type theory in its own right than on
programming language design in Thompson’s book [Tho91]. The latter also dis-
cusses type systems featuring dependent types, which find their application in proof
checkers. Two handbook articles about type systems in programming languages are
Mitchell [Mit90a] and more recently Cardelli [Car97]. For a discussion of the use
of types in programming, with reference to many existing languages and also with
respect to implementation issues, see Cardelli [Car91].

Whereas there are a couple of accessible references for the foundations of func-
tional languages, less textbook material is available for the semantical issues of object-
oriented languages. One comprehensive treatment and a standard reference is Abadi
and Cardelli’s book [AC96b], advocating the standpoint that objects are the funda-

14 Chapter 1 Introduction

mental notion for the investigation of object-oriented languages, and not functions.
Thus the study presents different typed and untyped object-calculi with method-
update, late-binding, and subtyping of varying expressiveness. More complex fea-
tures such as classes and inheritance are explained via encoding in the basic cal-
culi. Castagna’s recent book [Cas97] similarly contains the theoretical treatment of
object-oriented languages with multiple dispatch as in CLOS, and the mathematical
formalisms here are λ-calculi with overloading. Type systems for class-based object-
oriented languages with emphasis on type-inference algorithms are investigated in
Palsberg and Schwarzbach’s book [PS94].

Different approaches to the controversial issue of binary methods are discussed
by several researchers in the field in [BCC+96]. In [BCP96], different known object
encodings are compared; the vehicle of comparison is the calculus F ω

≤ with recursive
types. In the survey paper [Bru96b], Bruce reviews a couple of typed calculi for
object-oriented languages and argues in favor of match-bounded instead of subtype-
bounded polymorphism. He illustrates his point by a couple of examples and refer-
ring to many existing object-oriented languages and current experimental language
designs. Many influential, original papers about functional calculi for object-oriented
programming are reprinted in [GM94].

1.5 Results and contribution of the thesis

The calculus of higher-order subtyping, known as F ω
≤ , a polymorphic λ-calculus with

subtyping and type operators, is expressive enough to serve as a functional core
calculus for typed object-oriented languages. The versions considered in the literature
usually support pointwise subtyping of type operators, only, where two types S U
and T U are in subtype relation, if S and T are. In the widely cited, unpublished
note [Car90], Cardelli presents F ω

≤ in a more general form going beyond pointwise
subtyping of type applications in distinguishing between monotone and antimonotone
operators. Thus, for instance, T U1 is a subtype of T U2, if U1 ≤ U2 and if T is a
monotone operator.

My thesis extends F ω
≤ by polarized application, it explores its proof theory, es-

tablishing decidability of polarized F ω
≤ . The inclusion of polarized application rules

leads to an interdependence of the subtyping and the kinding system. This contrasts
with pure F ω

≤ , where subtyping depends on kinding, but not vice versa. To retain
decidability of the system, the equal-bounds subtyping rule for all-types is rephrased
in the polarized setting as a mutual-subtype requirement of the upper bounds. To
my knowledge, this is the first proof-theoretic account of a polarized extension of
pure F ω

≤ .

Section 1.6 Structure of the thesis 15

1.6 Structure of the thesis

Part I covers the material about pure F ω
≤ without polarization. Part II contains

the core of the thesis, extending the calculus of higher-order subtyping by polarity
information and exploring its metatheory. Both parts proceed largely in parallel and
sometimes only the proof for the more complicated polarized calculus are included.
Especially typing is considered only in the polarized setting. The concluding chapter
in Part III discusses related work, and proposes directions for further research. Most
of the proofs have been included in the appendix in Part V.

1.7 Publications

The material about pure F ω
≤ in Part I has already been published together with Ben-

jamin Pierce in the technical report [SP94] and in a journal version [PS97]. It has
been included with minor rearrangements and some simplifications. The material of
Part II has been presented at the annual Types-group workshop, “Subtyping, Inheri-
tance, and Modular Development of Proofs” in Durham, 1997 and on the Kolloquium
on “Programmiersprachen und Grundlagen der Programmierung” in Avendorf, Isle
of Fehrmarn, 1997.

16 Chapter 1 Introduction

Part I

Higher-Order Subtyping

Chapter 2

Higher-Order Subtyping

This chapter introduces the syntax and the rules for kinding, subtyping, and typing
of F ω

≤ (“F-omega-sub”), a typed λ-calculus of polymorphic functions, subtyping,
and type operators. To retain decidability of subtyping and typing, we present the
calculus in its “Kernel”-variant, where the subtyping rule for universally quantified
types relates only All-types with equal upper bounds (cf. Chapter 1).

2.1 Syntax . 21

2.2 Contexts . 22

2.3 Conversion . 22

2.4 Kinding . 23

2.5 Subtyping . 24

2.6 Typing . 25

20 Chapter 2 Higher-Order Subtyping

F ω
≤ is a typed λ-calculus supporting polymorphic function, subtyping, and type

operators. Thus besides term abstraction (fun(x:T)t) and application (f a) of the
simply typed λ-calculus and type abstraction fun(A:K)t and application (t T) of
Girard’s and Reynold’s second-order polymorphic λ-calculus, it includes functions on
the level of kinds, allowing abstraction (Fun(A:K)T) and application (T U) within
type expressions. The basic typing judgement for F ω

≤ is Γ ` t ∈ T , reads “term t has
type T in context Γ,” where Γ records the type of each free term variable x and the
kind of each free type variable A.

To include subtyping, the declaration of each type variable A in contexts Γ is
extended with an upper bound, written A≤T , which constrains A to range only over
subtypes of T in the appropriate kind. To allow new constraints of this form to
be introduced into the context, the universal quantifier All(A:K)U is extended to a
bounded quantifier All(A≤T)U .

To ensure that the new system can still type all the terms of plain F ω, we assume
that the subtype relation in every kind K has a maximal element Top(K). The
assumption A≤Top(K) replaces A:K in the contexts. For type operators of kind
K1 → K2, the subtype relation is just the pointwise extension of subtyping for K2:
a type operator S ∈ K1 → K2 is smaller than T ∈ K1 → K2 if S U ≤ T U for every
U ∈ K1.

At the base kind ?, the subtype relation includes rules for the type constructors
T1 → T2 and All(A≤T1)T2. The rule for arrow types embodies the familiar contravari-
ant/covariant inclusion of function spaces:

Γ ` T1 ≤ S1 Γ ` S2 ≤ T2

Γ ` S1 → S2 ≤ T1 → T2

Intuitively, a function f whose results inhabit S2 whenever its arguments inhabit S1

may safely be substituted for a function in T1 → T2, provided that any element of
T1 that might be given as an argument to f can safely be used as an element of S1

and that f ’s result, an element of S2, can be used in place of the expected T2. To
retain decidability also in the higher-order case, we adopt the Kernel Fun subtyping
rule for universal quantifiers, insisting on equal bounds for the two All-types under
comparison:

Γ, A≤U ` S2 ≤ T2

Γ ` All(A≤U)S2 ≤ All(A≤U)T2

That is, a polymorphic function f ∈ All(A≤U)S2 can be used in a context that
expects an element of All(A≤U)T2, provided that, for each legal argument type T ,
the value of f at T can safely be used as an element of T2. The complete definition
of the subtyping system is presented in Section 2.5.

Section 2.1 Syntax 21

2.1 Syntax

The syntax of F ω
≤ is given by the following abstract grammar.

K ::= ? kind of types
| K →K kind of type operators

T ::= A type variable
| Fun(A:K)T type operator
| T T application of a type operator
| Top(K) maximal type
| T → T function type
| All(A≤T)T universally quantified type

t ::= x variable
| fun(x:T)t abstraction
| t t application
| fun(A≤T)t type abstraction
| t T type application

Γ ::= • empty context
| Γ, x:T variable binding
| Γ, A≤T type variable binding

Terms, types, contexts, and statements that differ only in the names of bound
variables are regarded as indentical.

The system allows to derive four families of statements: well-formedness of con-
texts, kinding, subtyping, and finally typing.

` Γ ok Γ is a well-formed context
Γ ` T ∈ K type T has kind K in context Γ
Γ ` S ≤ T S is a subtype of T in Γ
Γ ` t ∈ T term t has type T in Γ.

In the following, each set of statements will be inductively axiomatized by a corre-
sponding set of derivation rules.

22 Chapter 2 Higher-Order Subtyping

2.2 Contexts

Well-formed contexts are inductively defined by the three rules below. The empty
context is well-formed, and a well-formed context can be extended by adding a dec-
laration for a type variable or a term variable. The side condition concerning the free
appearance of the variable assures that each variable can be declared at most once
in a well-formed context.

` • ok (C-Empty)

Γ ` T ∈ K A /∈ dom(Γ)

` Γ, A≤T ok
(C-TVar)

Γ ` T ∈ ? x /∈ dom(Γ)

` Γ, x:T ok
(C-Var)

For a term variable x declared in a well-formed context Γ, we write Γ(x) for its type;
likewise Γ(A) for the upper bound of a type variable A, i.e., if Γ = Γ1, x:T , Γ2, then
Γ(x) = T , and if Γ = Γ′

1, A≤T , Γ′
2, then Γ(A) = T .

2.3 Conversion

With kind abstraction and application we need to consider reduction and conver-
sion within types. As basic notion of reduction, we use a slight extension of the
standard β-conversion relation: in addition to reduction steps of the usual form
(Fun(A:K1)T) U //

β[U/A]T , we introduce reductions of the form Top(K1 →
K2) T //

>Top(K2), which relate the maximal elements of different kinds.

Definition 2.1 (β>-reduction) The relation //
β> is the smallest binary rela-

Section 2.4 Kinding 23

tion on types satisfying the following rules:

(>)
Top(K1 → K2) S //

β>Top(K2)
(β)

(Fun(A:K)S) T //
β>[T/A]S

S //
β>S′

S T //
β>S′ T

T //
β>T ′

S T //
β>S T ′

S //
β>S′

(S → T) //
β>(S′ → T)

T //
β>T ′

(S → T) //
β>(S → T ′)

S //
β>S′

All(A≤S)T //
β>All(A≤S′)T

T //
β>T ′

All(A≤S)T //
β>All(A≤S)T ′

S //
β>S′

Fun(A:K)S //
β>Fun(A:K)S ′

The many-step β>-reduction relation //∗
β> is the transitive closure of one-step

reduction; β>-equivalence, written =β>, is its transitive and symmetric closure;
//+
β> denotes reductions containing at least one proper β- or >-step. When T

has a normal form, it will necessarily be unique, we denote it by T !. Reduction to
β>-normal form is written //!

β>.

2.4 Kinding

With abstraction and application on type level one has to check the appropriate
usage of type operators by another level of inference rules, leading to what is called
a three-level type system. Types take care of safe usage of terms, and the “types” of
types, called kinds, control the safe application of type operators. The kinding system
imposed as third level upon the types is fairly simple: basically the simply typed λ-
calculus, with the base kind ? classifying ordinary types (which are inhabited by
terms), while kinds of the form K1 → K2 classify type operators: functions mapping
types of kind K1 to types of kind K2 (cf. K-Arrow-I and K-Arrow-E below).
The proper types for functions and polymorphic functions carry the base kind ?.
The subtyping system of the next section will axiomatize Top(K) as maximal type
in its kind K. The kind of type variables, finally, is determined by the kind of their
upper bound.

Γ ` Γ(A) ∈ K

Γ ` A ∈ K
(K-TVar)

24 Chapter 2 Higher-Order Subtyping

` Γ ok

Γ ` Top(K) ∈ K
(K-Top)

Γ, A:K1 ` T ∈ K2

Γ ` Fun(A:K1)T ∈ K1 →K2

(K-Arrow-I)

Γ ` S ∈ K1 →K2 Γ ` T ∈ K1

Γ ` S T ∈ K2
(K-Arrow-E)

Γ ` T1 ∈ ? Γ ` T2 ∈ ?

Γ ` T1 → T2 ∈ ?
(K-Arrow)

Γ, A≤T1 ` T2 ∈ ?

Γ ` All(A≤T1)T2 ∈ ?
(K-All)

2.5 Subtyping

The subtyping relation orders the types of each kind. The conversion rule S-Conv

and transitivity (rule S-Trans) define ≤ an order relation on types, respecting β>-
equivalence, and with type Top(K) as maximal type for each kind (rule S-Top).
Type variables are smaller than their upper bound as declared the context Γ. As
mentioned, function types behave contravariantly on the left-hand side of the arrow
and covariantly on the right, and two All-types are compared by relating their bodies
and by insisting on their upper bound to coincide. The pointwise application rule
finally S-App lifts the subtype relation of two type operators to type applications.
Correspondingly, the rule for type abstraction.

S =β> T Γ ` S, T ∈ K

Γ ` S ≤ T
(S-Conv)

Γ ` S ≤ U Γ ` U ≤ T Γ ` U ∈ K

Γ ` S ≤ T
(S-Trans)

Γ ` S ∈ K

Γ ` S ≤ Top(K)
(S-Top)

Γ ` A ≤ Γ(A) (S-TVar)

Γ ` S ≤ T

Γ ` S U ≤ T U
(S-App)

Section 2.6 Typing 25

Γ, A:K1 ` S ≤ T

Γ ` Fun(A:K1)S ≤ Fun(A:K1)T
(S-Abs)

Γ ` T1 ≤ S1 Γ ` S2 ≤ T2

Γ ` S1 → S2 ≤ T1 → T2
(S-Arrow)

Γ, A≤U ` S2 ≤ T2

Γ ` All(A≤U)S2 ≤ All(A≤U)T2

(S-All)

2.6 Typing

The typing relation Γ ` t ∈ T is a straightforward extension of the one for F≤. The
rule T-Subsumption captures the intended interpretation of subtyping as “safe sub-
stitutability” and connects the subtyping with the typing system. The only axiom of
the typing system relates term variables with their declaration in the context. Arrow-
and All-types possess a pair of introduction- and elimination rules, each. In the first
case by term abstraction and term application from the simply typed λ-calculus, for
universally quantified types, correspondingly polymorphic type abstraction and type
application.

Γ ` s ∈ S Γ ` T ∈ ? Γ ` S ≤ T

Γ ` s ∈ T
(T-Subsumption)

` Γ ok

Γ ` x ∈ Γ(x)
(T-Var)

Γ, x:T1 ` t ∈ T2

Γ ` fun(x:T1)t ∈ T1 → T2
(T-Arrow-I)

Γ ` f ∈ T1 → T2 Γ ` a ∈ T1

Γ ` f a ∈ T2
(T-Arrow-E)

Γ, A≤T1 ` t ∈ T2

Γ ` fun(A≤T1)t ∈ All(A≤T1)T2
(T-All-I)

Γ ` f ∈ All(A≤T1)T2 Γ ` S ∈ K Γ ` S ≤ T1

Γ ` f S ∈ [S/A]T2
(T-All-E)

26 Chapter 2 Higher-Order Subtyping

Chapter 3

Decidability of F ω
≤

This chapter proves decidability of subtyping for pure F ω
≤ , i.e., we develop a deter-

ministic decision procedure that, given two types S and T together with a context,
answers the question whether in that context S is smaller than T . The problem for
pure F ω

≤ is simpler than for polarized F ω
≤ in Chapter 5 in the main part of the the-

sis, but some of the difficulties we will face later in the polarized setting are already
discussed here. Thus we try to proceed in parallel in both cases, and the proofs for
F ω
≤ , if included at all, can be found in Chapter B in the appendix.

The material of this chapter has been published together with Benjamin Pierce
in [PS97]. It has been included with some rearrangement and minor simplifications.

3.1 Introduction . 28

3.2 Kinding . 30

3.3 The reducing system . 33

3.4 Subject reduction for subtyping 35

3.5 Cut elimination . 36

3.6 A subtyping algorithm for F ω
≤ 40

28 Chapter 3 Decidability of F ω
≤

3.1 Introduction

We start with a discussion of the main difficulties to obtain a subtyping algorithm for
deciding for two types, whether they are in subtype relation wrt. to a given context.

Considering the subtype rules from Section 2.5, we identify two major sources
of non-determinism standing in the way for an algorithm: the possibility to convert
types into β>-equivalent ones, expressed in rule S-Conv, and the rule of transitivity,
also called the “cut-rule”.

Conversion and reduction

The conversion rule S-Conv allows to convert a type to β>-equivalent ones. For an
algorithm we cannot tolerate such a liberty, that in order to find out whether S ≤ T
we have to check all, which is infinitely many, β>-equivalent pairs of types. The usual
and obvious approach [AC96b] [Com95b] [AC96c] [Che96] [PS97] to this problem is
to prove that it suffices to check the subtype relation for the unique normal forms of
types, only.

As a first step towards a system operating exclusively on types in normal form
we use a directed version of the system by distributing the effect of the undirected
conversion rule over the rest of the subtype rules. This means that for each rule we
allow the types of the goal to be reduced by an arbitrary number of steps in the
premises. For example, instead of S-Arrow we will use the following rule:

S //∗
β>S1 → S2 T //∗

β>T1 → T2 Γ ` T1 ≤ S1 Γ ` S2 ≤ T2

Γ ` S ≤ T

Transitivity and promotion

The second major obstacle mentioned is the rule of transitivity

Γ ` S ≤ U Γ ` U ≤ T Γ ` U ∈ K

Γ ` S ≤ T

which, proceeding from the goal to the subgoals amounts to guess the cut-type U .
Aiming for an algorithm we cannot live with this kind of non-determinism and our
intention is to prove S-Trans superfluous by a cut-elimination argument. So the
question is: can we eliminate R-Trans? The answer is, almost. It is well-known
already from the second-order case of F≤ that there are cases where the derivability
of a statement essentially depends on transitivity. Statements with variables on the
left-hand side cannot, in general, be proved without using transitivity. For example,

Section 3.1 Introduction 29

suppose Γ = C: ? , B≤C: ? , A≤B:?. Then the statement Γ ` A ≤ C ∈ ? can only be
derived using S-Trans:

S-TVar
Γ ` A ≤ B Γ ` B ≤ C

S-Trans
Γ ` A ≤ C

The instance of transitivity here connects A’s the upper bound B with type C,
where A and B are related by the variable axiom S-TVar. This means nothing
lies between a type variable of A and its upper bound, thus we can take care of
transitivity by internalizing S-TVar and S-Trans into one rule:

Γ ` Γ(A) ≤ T

Γ ` A ≤ T
(S-TVar-Plus-Trans)

Together with S-Conv this rule subsumes the axiom for type variables S-TVar.
Now writing A ↑Γ Γ(A) for “the type variable A promotes to its upper bound
Γ(A) from the context.” we can reformulate the enriched variable subtyping rule
S-TVar-Plus-Trans as

A ↑Γ Γ(A) Γ ` Γ(A) ≤ T

Γ ` A ≤ T
or, more generally

S ↑Γ U Γ ` U ≤ T

Γ ` S ≤ T
(S-Promote)

where the partial function ↑Γ is undefined except on type variables.
With these instances of transitivity taken care of, one can use standard induction

to show that all other instances can be eliminated. That this elimination is possible
means that nothing lies in between a type A and its upper bound Γ(A). This gives
rise to a subtyping algorithm (or a semi-decision procedure, depending on the form
of All-rule one allows) for the second order fragment F≤ [CG92] [CG90] [BCGŠ91].

In the presence of higher-order subtyping, we encounter one new kind of situation
in which transitivity plays an essential role. For example, in the context

Γ = A: ? , F≤Id?→?,

where Id?→? = Fun(B:?)B, the statement Γ ` F A ≤ A is provable as follows:

S-TVar
Γ ` F ≤ Id?→?

S-App
Γ ` F A ≤ Id?→? A

S-Conv
Γ ` Id?→? A ≤ A

S-Trans
Γ ` F A ≤ A

30 Chapter 3 Decidability of F ω
≤

The instance of transitivity in this derivation is again essential, but it is not an
instance of the schema that motivated S-Tvar-Plus-Trans. In fact, it is possible
to construct more involved examples where the instance of S-TVar is separated from
the instance of S-Trans by arbitrarily many applications of S-App. This suggests
the following generalization of the promotion relation:

Definition 3.1 (Promotion) Assume type A T1 . . . Tn ∈ K well-kinded in con-
text Γ. The promotion of type A T1 . . . Tn in the context Γ, written A T1 . . . Tn ↑Γ

Γ(A) T1 . . . Tn, is defined as Γ(A) T1 . . . Tn.

With this definition we can include the following rule into our system, to cap-
ture the essential uses of transitivity for type variables and the application of type
variables.

S //∗
β> ↑Γ U Γ ` U ≤ T

Γ ` S ≤ T
(R-Promote)

Proof outline

As said, the two major obstacles for a deterministic decision procedure are type
conversion and the rule of transitivity. We address neither of them in the original
system of Section 2.5, but in a directed version of the subtyping system, which we will
call reducing system, with the aim to prove that no expressivity is lost by eliminating
the cut rule and when the arbitrary reduction sequences in the premises are replaced
by normalizing reductions. The key to the proof that we can indeed work on types
in normal form will be a subject reduction property, i.e., preservation of subtyping
under reduction.

Before we turn to subtyping, we start in Section 3.2 dealing with the more prim-
itive kinding statements. In Section 3.3 we present the mentioned directed variant
of the subtyping system. We proceed with the proof of subject reduction and cut-
elimination in Section 3.4 and 3.5. Finally Section 3.6 contains the decision procedure
for F ω

≤ together with the proof of soundness and completeness.

3.2 Kinding

The task of this section is to develop a kinding algorithm, showing decidability of
kinding for F ω

≤ . The second main point is subject reduction for kinding, which we
will need at different places in the coming proofs for the subtyping system. First we
collect some standard properties of the kinding system.

Section 3.2 Kinding 31

3.2.1 Properties of the kinding system

Lemma 3.2 (Transposition and weakening) Assume A2 /∈ fv(T1) and let Γ ab-
breviate the context Γ1, A2≤T2, A1≤T1, Γ2. Let further Γ′ be be a well-formed
extension of Γ1, A1≤T1, A2≤T2, Γ2. If Γ ` S ∈ K, then Γ′ ` S ∈ K.

Lemma 3.3 (Context update for kinding) If Γ1, A≤S, Γ2 ` T ∈ K and Γ1 `
S, S ′ ∈ K ′, then Γ1, A≤S ′, Γ2 ` T ∈ K.

Lemma 3.4 (Generation for contexts)

1. If ` Γ ok , then:

(a) Γ = •; or

(b) Γ = Γ′, x:T with ` Γ′ ok and Γ′ ` T ∈ ? as subderivation; or

(c) Γ = Γ′, A≤T with ` Γ′ ok and Γ′ ` T ∈ K as subderivations.

2. If Γ ` T ∈ K, then ` Γ ok as subderivation.

Lemma 3.5 (Generation for kinds)

1. If Γ ` A ∈ K, then Γ ` Γ(A) ∈ K.

2. If Γ ` Fun(A:K1)T ∈ K, then, for some K2, we have Γ, A:K1 ` T ∈ K2 and
K = K1 → K2.

3. If Γ ` S T ∈ K, then, for some K ′, we have Γ ` S ∈ K ′ → K and Γ ` T ∈ K ′.

4. If Γ ` S → T ∈ K, then K = ? and Γ ` S, T ∈ ?.

5. If Γ ` Top(K) ∈ K ′, then K = K ′.

6. If Γ ` All(A≤S)T ∈ K, then K = ? and Γ, A≤S ` T ∈ ?.

Moreover, the implied derivations are all subderivations of the originals.

Lemma 3.6 (Uniqueness of kinding) If Γ ` T ∈ K and Γ ` T ∈ K ′, then
K = K ′.

This justifies the following notation:

Definition 3.7 The unique kind of a well-kinded type T in a context Γ is written
kindΓT .

32 Chapter 3 Decidability of F ω
≤

3.2.2 Kinding algorithm

We prove the decidability of the kinding system by showing that it is equivalent to a
different system whose decidability is straightforward.

Definition 3.8 (Algorithmic kinding) The algorithmic kinding relation Γ `A T ∈
K is the smallest relation closed under rules of Section 2.4, with rule K-TVar re-
placed by the following rule:

Γ1 `A T ∈ K `A Γ1, A≤T , Γ2 ok

Γ1, A≤T , Γ2 `A A ∈ K
(K-TVar-A)

Lemma 3.9 (Context strengthening for algorithmic kinding)

1. If Γ1, A≤S, Γ2 `A T ∈ K and A is not free in Γ2 or in T , then Γ1, Γ2 `A T ∈ K.

2. If `A Γ1, A≤S, Γ2 ok and A is not free in Γ2, then `A Γ1, Γ2 ok .

3. If Γ1, x:S, Γ2 `A T ∈ K, then Γ1, Γ2 `A T ∈ K.

4. If `A Γ1, x:S, Γ2 ok , then `A Γ1, Γ2 ok .

Lemma 3.10 (Decidability of kinding) The relations ` Γ ok and Γ ` T ∈ K are
decidable.

3.2.3 Subject reduction for kinding

In this section we will prove subject reduction, i.e., preservation of kinding under
reduction (Lemma 3.14 on the facing page). With substitution as underlying mech-
anism, we first need preservation of kinding under substitution.

Lemma 3.11 (Transposition and weakening) Let Γ abbreviate the context Γ1, A2≤T2, A1≤T1, Γ2,
with A2 /∈ fv(T1). Let further Γ′ be be a well-formed extension of Γ1, A1≤T1, A2≤T2, Γ2.
If Γ `A S ∈ K, then Γ′ `A S ∈ K.

Lemma 3.12 (Top reduction) If Γ ` Top(K) T1 . . . Tn ∈ K ′, then there exists a
kind K ′ such that Top(K) T1 . . . Tn

//∗
β>Top(K ′).

Lemma 3.13 (Substitution preserves kinding) Assume Γ1 ` U ∈ K. Let Γ
abbreviate the context Γ1, A′:K, Γ2 and Γ′ abbreviate Γ1, [U/A′]Γ2.

1. If ` Γ ok , then ` Γ′ ok .

2. If Γ ` T ∈ K ′, then Γ′ ` [U/A′]T ∈ K ′.

Section 3.3 The reducing system 33

We can use preservation of kinding under substitution to prove subject reduction,
and further invariance under conversion.

Lemma 3.14 (Subject reduction for kinding)

1. If ` Γ ok and Γ //∗
β>Γ′, then ` Γ′ ok .

2. If Γ ` S ∈ K and S //∗
β>T with Γ //∗

β>Γ′, then Γ′ ` T ∈ K.1

Corollary 3.15 (Kind invariance under conversion) Assume T ′ well-kinded in
Γ. If T ′ =β> T and Γ ` T ∈ K, then Γ ` T ′ ∈ K.

3.3 The reducing system

As mentioned in the introductory Section 3.1, as a first step towards an algorithm, we
dispense with the rule of conversion, distributing its effect over the rest of the rules.
This is done by allowing the types to be arbitrarily reduced in the premises. The
rule of promotion R-Promote generalizes the rule for type variables and takes care
of the essential uses of transitivity implicit in T-TVar. This leads to the following
variant of the subtyping system.

Definition 3.16 (Reducing system) The reducing system is inductively given by
the following set of rules:

Γ ` S ≤ U Γ ` U ≤ T Γ ` U ∈ K

Γ ` S ≤ T
(R-Trans)

S //∗
β>U T //∗

β>U

Γ ` S ≤ T
(R-Refl)

S //∗
β>U ↑Γ U ′ Γ ` U ′ ≤ T

Γ ` S ≤ T
(R-Promote)

Γ ` S ∈ K T //∗
β>Top(K)

Γ ` S ≤ T
(R-Top)

S //∗
β>S1 → S2 T //∗

β>T1 → T2

Γ ` T1 ≤ S1 Γ ` S2 ≤ T2

Γ ` S ≤ T
(R-Arrow)

1The relation //∗
β> on contexts is the obvious extension of β>-relation from types to con-

texts.

34 Chapter 3 Decidability of F ω
≤

S //∗
β>All(A≤U)S2 T //∗

β>All(A≤U)T2

Γ, A≤U ` S2 ≤ T2

Γ ` S ≤ T
(R-All)

S //∗
β>Fun(A:K)S ′ T //∗

β>Fun(A:K)T ′

Γ, A:K ` S ′ ≤ T ′

Γ ` S ≤ T ∈
(R-Abs)

S //∗
β>S1 U T //∗

β>T1 U Γ ` S1 ≤ T1

Γ ` S ≤ T
(R-App)

Notation 3.17 To avoid confusion, we distinguish derivations in different systems by
marking the turnstile symbol: `O for the original system, `R for the reducing system,
`S for strong derivations in the reducing system, `C for cut-free derivations in the
reducing system, and `CS for strong, cut-free derivations in the reducing system.

The system is just a variant of our original formulation and is nondeterministic
since it contains transitivity and arbitrary reductions in the premises. So the tasks
of the remainder of this chapter are the proof that we can replace the arbitrary
reductions premises by normalizing reductions, that we can eliminate the cut rule,
and finally, the development of a subtyping algorithm.

Before we start with subject reduction in the following section, we need to collect
some technical properties of the reducing system.

Lemma 3.18 (Preservation of kinding under promotion) If Γ ` T ∈ K and
T ↑Γ T ′, then Γ ` T ′ ∈ K.

Lemma 3.19 (Expansion preserves subtyping) Assume S and T well-kinded in
Γ. If Γ `R S ′ ≤ T ′ where S //∗

β>S ′ and T //∗
β>T ′, then Γ `R S ≤ T . The same

is correspondingly true for cut-free and strong derivations.

Next we prove a simple invariant of the system, namely that starting with two
well-kinded types, well-kindedness is preserved for all subderivations.

Lemma 3.20 (Well-kindedness of subderivations) Suppose the types S and
T well-kinded in Γ. Let d be a derivation of Γ `R S ≤ T and d′ a derivation of
Γ′ `R S ′ ≤ T ′. If d′ is a subderivation of d, then Γ′ ` S ′ ∈ K ′ and Γ′ ` T ′ ∈ K ′ for
some kind K ′.

Lemma 3.21 (Maximality of Top) Assume the types Top(K) S1 . . . Sn and T well-
kinded in Γ. If Γ `C Top(K) S1 . . . Sn ≤ T , then T //∗

β>Top(K ′) for some kind
K ′.

Section 3.4 Subject reduction for subtyping 35

3.4 Subject reduction for subtyping

Next we show that, for cut-free derivations, β>-reduction in types does not interfere
with the subtyping judgment. This will allow us to carry out the cut-elimination
proof of in the system with strong derivations so that we can rely on the subgoals
being in unique normal form.

The cornerstone of the argument is the preservation of the subtype relation under
substitution.

Lemma 3.22 (Substitution preserves subtyping) Let Γ stand for the context
Γ1, A:K, Γ2 and Γ′ abbreviate Γ1, [U/A]Γ2. Suppose further Γ1 ` U ∈ K, and S and
T well-kinded in Γ. If Γ `C S ≤ T , then Γ′ `C [U/A]S ≤ [U/A]T .

The following two lemmas will allow us to perform one outermost β-reduction
step, resp. one >-reduction step, on both sides of a subtyping statement. The lemma
for the outermost β-step builds upon preservation of subtyping under substitution.

Lemma 3.23

1. Assume the types S U and (Fun(A:K)T) U well-kinded in context Γ. If Γ `C

S ≤ Fun(A:K)T , then Γ `C S U ≤ [U/A]T .

2. Assume the types (Fun(A:K)S) U and T U well-kinded in context Γ. If Γ `C

Fun(A:K)S ≤ T , then Γ `C [U/A]S ≤ T U .

Lemma 3.24 Assume the types Top(K ′) U and T well-kinded in Γ, and assume
further Top(K ′) U //

>Top(K ′′). If Γ `C Top(K ′) ≤ T , then Γ `C Top(K ′′) ≤ T U .

Lemma 3.25 (Outer β-step) Assume the two types S and (Fun(A:K)T) U well-
kinded in context Γ.

1. If Γ `C S ≤ (Fun(A:K)T) U , then Γ `C S ≤ [U/A]T .

2. If Γ `C (Fun(A:K)T) U ≤ S, then Γ `C [U/A]T ≤ S.

It is now easy to generalize preservation of subtyping under one outer reduction
step to an arbitrary parallel reduction step. In the lemma we use parallel reduction
of contexts (written Γ // //

β>Γ′) as the pointwise extension of parallel reduction on
types.

Lemma 3.26 (Parallel reduction preserves subtyping) Assume the types S and
T well-kinded in Γ.

1. If Γ `C S ≤ T with S // //
β>S ′ and Γ // //

β>Γ′, then Γ′ `C S ′ ≤ T .

36 Chapter 3 Decidability of F ω
≤

2. If Γ `C S ≤ T with T // //
β>T ′ and Γ // //

β>Γ′, then Γ′ `C S ≤ T ′.

After we can do one parallel step, the generalization to arbitrary reduction se-
quences is a direct corollary.

Corollary 3.27 (Reduction preserves subtypes) Assume the types S and T well-
kinded in Γ. If S //∗

β>S ′ and T //∗
β>T ′ with Γ `C S ≤ T , then Γ `C S ′ ≤ T ′.

Corollary 3.28 Suppose the four types S, S ′, T , and T ′ well-kinded in Γ with
S =β> S ′ and T =β> T ′. If Γ `C S ≤ T , then Γ `C S ′ ≤ T ′.

Now that we know that subtyping in cut-free derivations is preserved under re-
duction we can use this fact to prove that a cut-free derivation can be strengthened,
i.e., turned into a derivation where all subtyping rules reduce their subgoals to normal
forms.

Lemma 3.29 (Strengthening) Suppose S and T well-kinded in Γ. If Γ `C S ≤ T ,
then Γ `CS S ≤ T .

Proof of Lemma 3.29: We are given Γ `C S ≤ T . By Corollary 3.27 we obtain
Γ `C S ! ≤ T ! ∈ K. The derivation of this statement is not necessarily strong since
the rule of promotion may generate subgoals not in normal form. By well-kindedness
of subderivation one can normalize these again using the same corollary.

The fact that substitution into a subtyping statement (Lemma 3.22) does not
increase the number of instances of R-Promote in the subtyping derivation, implies
that neither β>-reduction increases this number, which guarantees that this process
of strengthening terminates. �

3.5 Cut elimination

We are now ready we prove that admissibility of S-Trans for strong-cut-free deri-
vation, i.e., we will be prove that

Γ `CS S ≤ U and Γ `CS U ≤ T

by two cut-free derivations implies that

Γ `CS S ≤ T

can be derived without cut (assuming U well-kinded in Γ). The proof of this im-
plication will be carried out as induction over the combined length of derivations of
Γ `CS S ≤ U and Γ `CS U ≤ T (cf. also [BCGŠ91], [CG92], [CMMŠ94], or [Com95b]).

Section 3.5 Cut elimination 37

If, for instance, the derivations of the left and the right statement both end with
an instance of R-Arrow, i.e., we are given S = S1 → S2, U = U1 → U2, and
T = T1 → T2, we obtain four subgoals: Γ `CS U1 ≤ S1 and Γ `CS S2 ≤ U2, together
with Γ `CS T1 ≤ U1 and Γ `CS U2 ≤ T2.

2 From the pair of the first and the third
statement induction yields Γ `CS T1 ≤ S1; analogously, the remaining two statements
give Γ `CS S2 ≤ T2, and thus by the subtyping rule for arrow types:

Γ `CS T1 ≤ S1 Γ `CS S2 ≤ T2

Γ `CS S1 → S2 ≤ T1 → T2

All possible combinations of subtyping rules for the left and the right derivation
can either be solved directly — for instance, if one of the rules is an instance of
reflexivity — or by the inductive argument sketched in the case of arrow types.
The induction works especially also for universally quantified types, as both Γ `CS

All(A≤U1)S2 ≤ All(A≤U1)U2 and Γ `CS All(A≤U1)U2 ≤ All(A≤U1)T2 extend the
context Γ by the same bound A≤U1.

The notable exception concerns the rule of promotion: if the statement on the
right Γ `CS U ≤ T produces as subgoal Γ `CS U ′ ≤ T with U = A U1 . . . Un ↑Γ U ′, the
inductive argument fails. The problem lies in the asymmetry of the promotion rule in
that it affects only the left-hand side of a subtype statement. There is no possibility
to make direct use of the subderivation for Γ `CS U ′ ≤ T for the inductive argument,
as the combined length of the derivations of Γ `CS S ≤ U and Γ `CS U ′ ≤ T may
be smaller than the combined length of the original derivations, but we do no longer
have a common cut-type.

But now we can profit by the restrictions we imposed upon the derivations. That
the type U can be promoted means U //!

β>A U1 . . . Un. Furthermore, in absence of
transitivity, for a derivation of Γ `CS S ≤ U , only reflexivity, the rule of application,
and the promotion rule are available. This means that there exists a derivation of
Γ `CS S ≤ U , ending in a sequence of R-Promote’s preceded by reflexivity:

2For sake of illustration, assume the types involved to be in normal form already. Since we can
work with strong derivations, the argument does not depend on this simplification.

38 Chapter 3 Decidability of F ω
≤

S //!
β> ↑Γ S1

Sm−1
//!
β> ↑Γ Sm

Sm
//!
β>A U1 . . . Un U //!

β>A U1 . . . Un

Γ ` A U1 . . . Un ∈ K

Γ `CS Sm ≤ U

...

Γ `CS S1 ≤ U

Γ `CS S ≤ U

Since we are given Γ `CS U ≤ T , we also know Γ `CS A U1 . . . Un ≤ T , and we
can use the derivation above to construct the desired one for Γ `CS S ≤ T :

S //!
β> ↑Γ S1

Sm−1
//!
β> ↑Γ Sm

Sm
//!
β>A U1 . . . Un Γ `CS A U1 . . . Un ≤ T

Γ `CS Sm ≤ U

...

Γ `CS S1 ≤ T

Γ `CS S ≤ T

Before we turn to the cut-elimination proof we cast this observation into a Lemma
(3.33) which characterizes the derivations for subtypes of applications and which
covers the critical case of promotion in the proof of cut-elimination. To describe the
effect of a couple of instances of R-Promote upon a type, we introduce the following
notation.

Definition 3.30 (Promotion and reduction) The binary relation ↗Γ between
types is defined as //!

β> ↑Γ. By ↗∗
Γ we denote the corresponding multi-step-

relation.

The following lemma expresses an easy reduction property of this relation.

Lemma 3.31 Assume the type S T well-kinded in Γ where S and T in normal form.
If S↗∗

Γ
//!
β>A S1 . . . Sn, then S T ↗∗

Γ
//!
β>A S1 . . . Sn T .

Lemma 3.32 Suppose the types S, S ′, and T well-kinded in Γ. If Γ `CS S ≤ T and
S ′↗∗

Γ
//!
β>S, then Γ `CS S ′ ≤ T .

Section 3.5 Cut elimination 39

Lemma 3.33 (Subtypes of an application) Assume the types S and T well-kinded
in context Γ with T //!

β>A T1 . . . Tn for some n ≥ 0. If Γ `CS S ≤ T , then

S↗∗
Γ

//!
β>A T1 . . . Tn.

We now can turn to the cut-elimination proof.

Proposition 3.34 (Cut elimination) Assume S, T , and U well-kinded in context
Γ. If Γ `CS S ≤ U and Γ `CS U ≤ T , then Γ `CS S ≤ T .

Proof: By induction on the combined size of the given subderivations. Proceed by
a case analysis on the last rule in each.

If the statement Γ `CS S ≤ U on the left-hand side ends with an instance of
reflexivity, we are given S //!

β>V and T //!
β>V . Thus Γ `CS S ≤ T is justified

directly by the derivation of Γ ` U ≤ T . Similarly, if Γ `CS U ≤ T on the right ends
with R-Refl in the last step. If Γ `CS U ≤ T ends with R-Top, the case follows
immediately by well-kindedness of subderivations and R-Top. If R-Top is the last
rule for the left derivation, the case follows by maximality of Top (Lemma 3.21)
and R-Top. The cases for R-Promote on the left-hand side can be solved by
well-kindedness of subderivations, induction, and the promotion rule.

Case: R-Promote on the right: U //!
β>A U1 . . . Un ↑Γ U ′ Γ `CS U ′ ≤ T

Γ `CS U ≤ T

By Lemma 3.33 S ↗∗
Γ

//!
β>A U1 . . . Un. Since Γ `CS U ≤ T implies Γ `CS

A U1 . . . Un ≤ T , the result follows by Lemma 3.32.
The remaining combinations are can either be solved directly or simpler. We only

show the case for universally quantified types.

Case R-All:

S //!
β>All(A≤U1)S2

U //!
β>All(A≤U1)U2

Γ, A≤U1 ` S2 ≤ U2

Γ `CS S ≤ U

T //!
β>All(A≤U1)T2

U //!
β>All(A≤U1)U2

Γ, A≤U1 ` U2 ≤ T2

Γ `CS U ≤ T

By the well-kindedness of subderivations, the induction hypothesis applies, giving:

S //!
β>All(A≤U1)S2 T //!

β>All(A≤U1)T2

Γ, A≤U1 ` S2 ≤ T2

Γ `CS S ≤ T

�

40 Chapter 3 Decidability of F ω
≤

3.6 A subtyping algorithm for F ω
≤

Now the system with strong, cut-free derivation almost immediately give rise to an
algorithm for the subtyping system of Section 2.5. The only choices, we still have
to resolve, concern reflexivity, the rule for maximal types, and the possible conflict
between the promotion rule on the one hand and the rule for application on the other.

The first two cases mentioned are treated by ordering the rules in such a way that
the easy cases R-Refl and R-Top are always checked first. The conflict between
R-App and R-Promote is resolved in favor of promotion: by Lemma 3.33, a subtype
of an application can always be promoted until it coincides with this application. This
means if the application rule is applicable, the algorithm might as well choose the
promotion rule, which explains why the rules of Definition 3.35 can do without a rule
A-App.

Definition 3.35 (Subtyping algorithm) Let the types S and T be well-kinded in
context Γ and in normal form. The subtyping algorithm Γ `A S ≤ T is inductively
given by the rules below, applied on a first-match basis.

Γ `A U ≤ U (A-Refl)

Γ `A S ∈ K

Γ `A S ≤ Top(K)
(A-Top)

S ↑Γ
//!
β>U Γ `A U ≤ T

Γ `A S ≤ T
(A-Promote)

Γ `A T1 ≤ S1 Γ `A S2 ≤ T2

Γ `A S1 → S2 ≤ T1 → T2
(A-Arrow)

Γ, A≤U `A S2 ≤ T2

Γ `A All(A≤U)S2 ≤ All(A≤U)T2
(A-All)

Γ, A:K `A S ′ ≤ T ′

Γ `A Fun(A:K)S ′ ≤ Fun(A:K)T ′
(A-Abs)

Proposition 3.36 (Soundness and completeness) Assume the type S and T
well-kinded in context Γ. Then Γ `O S ≤ T , iff. Γ `A S ! ≤ T !.

Proposition 3.37 (Termination) Suppose S and T well-kinded in Γ and in normal
form. Then the algorithm of Definition 3.35 always terminates with Γ, S, and T as
input.

Section 3.6 A subtyping algorithm for F ω
≤ 41

Proof: The assumption that the rules of the algorithm can generate a tree of sub-
typing statements of infinite depth contradicts strong termination (Lemma A.9) of

//
β>Γ-reduction from Definition A.10. �

Proposition 3.38 (Decidability of subtyping) The subtype relation Γ ` S ≤ T
of F ω

≤ is decidable.

Proof: In order to decide whether Γ `O S ≤ T , we can use the sound and complete
(Proposition 3.36) algorithm Definition 3.35. Moreover, the algorithm always halts
by Proposition 3.37. �

42 Chapter 3 Decidability of F ω
≤

Part II

Polarized Higher-Order Subtyping

Chapter 4

Polarized F ω
≤

This chapter extends the calculus F ω
≤ from Chapter 2 by subtyping rules for a more

general form of application, taking monotonicity information into account. Thus,
besides the pointwise subtyping rule S-App for applications, the system now allows
to derive for example Γ ` T U1 ≤ T U2, if Γ ` U1 ≤ U2 and provided T is mono-
tone. Besides monotone operators, the systems formalizes also antimonotone and
constant ones. In effect, F ω

≤ appeared in a form including monotonicity information
in Cardelli’s note [Car90].

The inclusion of non-pointwise application into the subtyping system will affect
the kinding system, as well, since determining the polarity of a type operator will be
the task of the kinding system. What will make the investigation principally more
challenging than for pure F ω

≤ is the fact that the kinding system in turn will rest on
subtyping derivations, leading to a mutual dependence of kinding and subtyping not
present in this form in pure F ω

≤ .

4.1 Syntax . 46

4.2 Contexts . 47

4.3 Subtyping . 47

4.4 Kinding . 51

4.5 Typing . 54

46 Chapter 4 Polarized F ω
≤

4.1 Syntax

The syntax of polarized F ω
≤ extends the one for the pure calculus from Section 2.1 by

annotating arrow kinds with one of four different polarities. As the polarity of a type
operator implies nothing about the polarity of its subtypes, we need the possibility
to independently specify the polarity for bounded universal quantification: we thus
extend the syntax of universal types from All(A≤T1)T2 to All(A≤T1:K1)T2, containing
polymorphic functions with type arguments smaller than T1 and additionally of kind
K1. Correspondingly, the syntax of type abstraction for terms, and the form of the
contexts for the declaration of bound type variables is adapted.

The syntax is given by the following abstract grammar.

? ::= ± unspecified
| + positive
| − negative
| ◦ constant

K ::= ? kind of types
| K →? K kind of type operators with polarity ?

T ::= A type variable
| Fun(A:K)T type operator
| T T application of a type operator
| Top(K) maximal type
| T → T function type
| All(A≤T :K)T universally quantified type

t ::= x variable
| fun(x:T)t abstraction
| t t application
| fun(A≤T :K)t type abstraction
| t T type application

Γ ::= • empty context
| Γ, x:T variable binding
| Γ, A≤T :K type variable binding

In addition to the statements of pure F ω
≤ — well-formedness of contexts, kinding,

Section 4.2 Contexts 47

subtyping, and typing — the system contains statements for subkinding:

K ≤ K ′ K is a subkind of K ′

` Γ ok Γ is a well-formed context
Γ ` T ∈ K type T has kind K in context Γ
Γ ` S ≤ T ∈ K S is a subtype of T in Γ
Γ ` t ∈ T term t has type T in Γ

Subtyping statements now take the form Γ ` S ≤ T ∈ K, meaning that S is a
subtype of T , both bearing kind K. This more general form is needed, as the system
will no longer enjoy a unique kinding property. As usual, we consider types, terms,
contexts, and statements only up-to α-equality.

4.2 Contexts

Besides extra kinding annotation for type variables, context-formation for polarized
F ω
≤ is the same as for pure F ω

≤ . The empty context is well-formed, and a well-formed
context can be extended by adding a declaration for a new type or term variable.

` • ok (C-Empty)

Γ ` T ∈ K A /∈ dom(Γ)

` Γ, A≤T :K ok
(C-TVar)

Γ ` T ∈ ? x /∈ dom(Γ)

` Γ, x:T ok
(C-Var)

For a type variable A appearing in a well-formed context Γ, we write kindΓA for
its kind as declared in Γ, i.e., if Γ = Γ1, A≤T :K, Γ2, then kindΓA = K, and, as
before, its upper bound Γ(A) = T .

4.3 Subtyping

The following two sections are concerned with the definition of the subtyping sys-
tem and, mutually dependent, the rules for the kinding system. We start with the
formalization of the subtype relation.

The difference between the F ω
≤ and the polarized version of this section is most

visible in the application rules. For F ω
≤ , the pointwise application rule lifts the

subtype relation of two type operators S and T to type applications, as expressed in
S-App:

48 Chapter 4 Polarized F ω
≤

Γ ` S ≤ T

Γ ` S U ≤ T U

To extend the system beyond pointwise subtyping we need a characterization of
the monotonicity or polarity of type operators — this will be the task of the kinding
system in the following section — and new subtyping rules exploiting the additional
knowledge about the polarity of the operators.

To start with the monotone case, the basic intuition about a monotone type
operator T is that, applied to two arguments in subtype ordering, the application is
ordered likewise. This is captured by the following rule S-App+ (ignoring for the
moment the additional kinding information in the subtyping statements for sake of
simplicity):

Γ ` T + Γ ` U1 ≤ U2

Γ ` T U1 ≤ T U2

The premise Γ ` T + expresses monotonicity of the type operator T , abbreviating
a kinding statement of the form Γ ` T ∈ K1 →+ K2 for some kinds K1 and K2.
For duality, we will have to consider antimonotone ones, as well, and we include a
corresponding rule S-App−

Γ ` T − Γ ` U1 ≤ U2

Γ ` T U2 ≤ T U1

into the system.

Besides expressing that a type operator depends monotonely or anti-monotonely
upon its arguments, we would like to be able to denote that it does not depend upon
its arguments at all, i.e., that it is constant in its arguments. Using the symbol ◦ for
constant polarity, the behavior of constant application is formalized by rule S-App◦:

Γ ` T ◦

Γ ` T U1 ≤ T U2

For an operator to be constant is equivalent to be monotone and antimonotone at the
same time. This can be seen by the following informal argument: suppose Γ ` T +
and Γ ` T −, and assume two arbitrary arguments U1 and U2 of an appropriate
kind. Thus we know Γ ` U1 ≤ Top(K) as well as Γ ` U2 ≤ Top(K), yielding both
Γ ` T U1 ≤ T Top(K) and Γ ` T Top(K) ≤ T U2, using monotonicity and anti-
monotonicity of T respectively, which transitivity combines to Γ ` T U1 ≤ T U2.
(The reverse direction is immediate since constant operators will also be monotone
and antimonotone by subsumption.)

It is well worth noticing that for a type operator being constant does not mean it
throws away its arguments. In other words, Γ ` T ◦ does not imply β>-equivalence

Section 4.3 Subtyping 49

of T U1 and T U2. The reason is that type variables can be declared as constant op-
erators, but they cannot swallow their arguments. The need to differentiate between
constant operators and those ignoring their arguments altogether contrasts with the
work of Fisher [Fis96] and Hofmann and Pierce [HP95b] which also determine the
polarity of type operators (in [Fis96] called row functions). Since there, only type
variables of kind ? are considered, type variables cannot be applied to other types,
and both notions coincide.

To make the system symmetric, we add a fourth polarized application rule, more
generous than pointwise application, in that it does not insist on its arguments being
identical, but requiring only that each argument is a subtype of the other. Writing
Γ ` U1 ≷ U2 for such pairs of subtyping statements Γ ` U1 ≤ U2 and Γ ` U2 ≤ U1,
we can write this last application rule S-App± as (ignoring again kinding):

Γ ` T ± Γ ` U1 ≷ U2

Γ ` T U1 ≤ T U2

Having type variables act as constant type operators means that not only constant
operators differ from the ones ignoring their arguments, but also that the notion of
β-equivalence of two types S and T and the fact that the two types are in mutual
subtype relationship are to be distinguished.1 This distinction is not present in pure
F ω
≤ and neither in the “polarized” calculi of Fisher [Fis96] and Hofmann and Pierce

[HP95a]. But this fourth rule neither appears in the higher-order setting of Cardelli
[Car90].

The remaining rules are similar to the ones for pure F ω
≤ . The conversion rule

S-Conv and transitivity S-Trans define ≤ an order relation on types, respecting
β>-equivalence (the relation =β> was introduced in Section 2.3 Here we use the ob-
vious transfer of this definition to the slightly adapted syntax for universal types).
A type variable is smaller than its upper bound as declared in the context where
additionally its kind has to conform to the kinding part of the subtyping statement.
Each kind contains a maximal type by rule S-Top. Since in the presence of sub-
kinding, the types will no longer enjoy a unique kinding property, we have to check
also Top(K ′) for respecting the required kind. Type variables are smaller than their
upper bound as declared the context Γ. As before, the rule S-Arrow for function
types behaves contravariantly on the left-hand side of the arrow, and covariantly on
the right. The rule for type operators compares the bodies of the two operators and
use the kinding system to determine their polarity.

Finally the rule for universally quantified types. For we want to retain decidability
of the subtyping system, we would like to stick close to the decidable variant of F ω

≤ ,

1Technically, the fourth application rule is needed to obtain preservation of subtyping under
reduction.

50 Chapter 4 Polarized F ω
≤

which insists on equal upper bounds for the All-types. By the same arguments that
made it necessary to introduce S-App±, we are led to relax the conditions upon the
two bounds of universally quantified types, requiring that they must be mutually
smaller than each other.2

The subtype relation is thus inductively given by the set of rules below.

S =β> T Γ ` S, T ∈ K

Γ ` S ≤ T ∈ K
(S-Conv)

Γ ` S ≤ U ∈ K Γ ` U ≤ T ∈ K

Γ ` S ≤ T ∈ K
(S-Trans)

Γ ` A ∈ K

Γ ` A ≤ Γ(A) ∈ K
(S-TVar)

Γ ` S ∈ K Γ ` Top(K ′) ∈ K

Γ ` S ≤ Top(K ′) ∈ K
(S-Top)

Γ ` Fun(A:K1)S, Fun(A:K1)T ∈ K1 →
? K2

Γ, A:K1 ` S ≤ T ∈ K2

Γ ` Fun(A:K1)S ≤ Fun(A:K1)T ∈ K1 →? K2
(S-Abs)

Γ ` S ≤ T ∈ K1 →
±K2 Γ ` U ∈ K1

Γ ` S U ≤ T U ∈ K2
(S-App)

Γ ` T ∈ K1 →
◦K2 Γ ` U1, U2 ∈ K1

Γ ` T U1 ≤ T U2 ∈ K2

(S-App◦)

Γ ` T ∈ K1 →
+ K2 Γ ` U1 ≤ U2 ∈ K1

Γ ` T U1 ≤ T U2 ∈ K2
(S-App+)

Γ ` T ∈ K1 →
−K2 Γ ` U2 ≤ U1 ∈ K1

Γ ` T U1 ≤ T U2 ∈ K2
(S-App−)

Γ ` T ∈ K1 →
±K2 Γ ` U1 ≷ U2 ∈ K1

Γ ` T U1 ≤ T U2 ∈ K2
(S-App±)

2One can see it also from another perspective: requiring mutual subtype relationship of the
upper bounds to obtain decidability means in the pure, non-polarized case two β>-convertible upper
bounds which, in the presence of a conversion rule S-Conv, amounts to the same as the equal-bounds
requirement of Kernel Fun. Here, with more informative subtyping rules for application, mutual
subtype relationship does not imply convertibility.

Section 4.4 Kinding 51

Γ ` T1 ≤ S1 ∈ ? Γ ` S2 ≤ T2 ∈ ?

Γ ` S1 → S2 ≤ T1 → T2 ∈ ?
(S-Arrow)

Γ ` S1 ≷ T1 ∈ K1 Γ, A≤S1:K1 ` S2 ≤ T2 ∈ ?

Γ ` All(A≤S1:K1)S2 ≤ All(A≤T1:K1)T2 ∈ ?
(S-All)

4.4 Kinding

This section deals with the kinding statements, mutually dependent from the subtyp-
ing statements of the previous section. As we have seen, arrow kinds come decorated
with polarities to express monotonicity information. For instance, the type operator

Fun(A:?)Top(?) → A

will carry the kind ? →+ ? indicating that it operates monotonely on its arguments
of kind ?. A type operator Fun(A:K)T is monotone, if for all types U1 and U2 of
the appropriate kind, U1 ≤ U2 implies [U1/A]T ≤ [U2/A]T . This is captured in the
following rule:

Γ, A:K1 ` T ∈ K2

Γ, A2:K1, A1≤A2:K1 ` [A1/A]T ≤ [A2/A]T ∈ K2

Γ ` Fun(A:K1)T ∈ K1 →+ K2

A similar definition in a second-order setting appears in Abadi and Cardelli
[AC96b], Section 8.1, using only three different variances: covariant, contravariant,
and “invariant” operators, where the last term corresponds to our ±-polarity.3 The
rule is also reminiscent to the way, in which in subtyping systems with recursion
[AC93] the monotonicity of the recursion types under comparison is assured.

Following the discussion of the subtyping section we will use four polarities: mono-
tone and antimonotone, constant, and a fourth one denoting absence of information.
Intuitively, the polarities are ordered, e.g., a constant operator uses its arguments
monotonely, as well. The order is summarized in the diagram below:4

3The different terminology is caused by a different perspective: Abadi and Cardelli [AC96b]
would call a type operator of ±-polarity “invariant” with the rationale, that it is sound to use such
an operator only on invariant arguments. As far as + and − are concerned, there is no ambiguity.

4Also Fisher [Fis96] uses four polarities, again written somewhat differently and without distinc-
tion between constant polarity ◦ and the fact that a variable does not occur freely.

52 Chapter 4 Polarized F ω
≤

±

+

??~~~~~~~
−

``@@@@@@@

◦

``AAAAAAAA

>>}}}}}}}}

The intuitive ordering will be reflected in the kinding system by the fact that to derive
a weaker polarity of an operator on has to prove stronger premises in the kinding
rule.

The corresponding reflexive and transitive relation on polarities is written ? ≤ ?′.
In accordance with usual conventions, the smaller the polarity, the better, so ◦ ≤ −
for example. In this way, the polarities form a small lattice and we use ?∨ ?′ as
notation for the binary least upper bound of ? and ?′, and ?∧ ?′ for the greatest
lower bound on this domain.

Now the definition of the kinding system is straightforward. First we use the
≤-relation on polarities just defined to impose a corresponding ordering upon kinds
(for which we will once again use the symbol ≤). This ordering is formalized the
axiom K-Refl and the rule K-Sub:

K ≤ K (K-Refl)

K ′
1 ≤ K1 K2 ≤ K ′

2 ? ≤ ?′

K1 →? K2 ≤ K ′
1 →

?′ K ′
2

(K-Sub)

Under this ordering, we get subsumption on the level of kinds, expressed in rule
K-Subsumption. The kind of a type variable A is determined by its declaration
kindΓA in the context Γ. The type Top(K) is intended as the maximal type for
the respective kind K. Since, regardless of type S, we think of the application
Top(K1 →? K2) S as bigger than all types of the appropriate kind K2, the operator
Top(K1 →

? K2) behaves constantly on its arguments; hence its kind K1 →
◦K2. This

also justifies the following notation for contexts: we abbreviate Γ1, A≤Top(K):K, Γ2

by Γ1, A:K, Γ2, as the maximal type Top(K) carries no further formation.
The four rules for arrow-introduction establish the connection between the sub-

typing system and the kinding rules: the polarity of a type operator is determined by
a subtyping derivation, with the appropriate assumption about the formal parame-
ters in the context. As in pure F ω

≤ , arrow- and All-types for functions, respectively
polymorphic functions finally carry the unique kind ?.

Section 4.4 Kinding 53

K ′ ≤ K Γ ` T ∈ K ′

Γ ` T ∈ K
(K-Subsumption)

` Γ ok

Γ ` A ∈ kindΓA
(K-TVar)

` Γ ok

Γ ` Top(?) ∈ ?
(K-Top?)

Γ ` Top(K2) ∈ K ′
2

Γ ` Top(K1 →? K2) ∈ K1 →◦K ′
2

(K-Top)

Γ, A:K1 ` T ∈ K2

Γ ` Fun(A:K1)T ∈ K1 →±K2

(K-Arrow-I±)

Γ, A:K1 ` T ∈ K2

Γ, A2:K1, A1≤A2:K1 ` [A1/A]T ≤ [A2/A]T ∈ K2

Γ ` Fun(A:K1)T ∈ K1 →+ K2

(K-Arrow-I+)

Γ, A:K1 ` T ∈ K2

Γ, A2:K1, A1≤A2:K1 ` [A2/A]T ≤ [A1/A]T ∈ K2

Γ ` Fun(A:K1)T ∈ K1 →−K2

(K-Arrow-I−)

Γ, A:K1 ` T ∈ K2

Γ, A1:K1, A2:K1 ` [A1/A]T ≤ [A2/A]T ∈ K2

Γ ` Fun(A:K1)T ∈ K1 →◦K2

(K-Arrow-I◦)

Γ ` S ∈ K1 →
? K2 Γ ` T ∈ K1

Γ ` S T ∈ K2
(K-Arrow-E)

Γ ` T1 ∈ ? Γ ` T2 ∈ ?

Γ ` T1 → T2 ∈ ?
(K-Arrow)

Γ, A≤T1:K1 ` T2 ∈ ?

Γ ` All(A≤T1:K1)T2 ∈ ?
(K-All)

54 Chapter 4 Polarized F ω
≤

4.5 Typing

The rules for the typing relation Γ ` t ∈ T are the same as the ones for F ω
≤ from

Section 2.6, modulo a few extra kinding assumptions, as we changed the syntax
for universal quantification and added kinding requirements to the subtyping state-
ments. Subsumption again connects the typing system with the subtyping part.
Term abstraction and application introduce and eliminate arrow-types, likewise type
abstraction and type application for universally quantified types.

Γ ` s ∈ S Γ ` T ∈ ? Γ ` S ≤ T

Γ ` s ∈ T
(T-Subsumption)

` Γ ok

Γ ` x ∈ Γ(x)
(T-Var)

Γ, x:T1 ` t ∈ T2

Γ ` fun(x:T1)t ∈ T1 → T2

(T-Arrow-I)

Γ ` f ∈ T1 → T2 Γ ` a ∈ T1

Γ ` f a ∈ T2

(T-Arrow-E)

Γ, A≤T1:K1 ` t ∈ T2

Γ ` fun(A≤T1:K1)t ∈ All(A≤T1:K1)T2

(T-All-I)

Γ ` S ≤ T1 ∈ K1

Γ ` f ∈ All(A≤T1:K1)T2 Γ ` S ∈ K1

Γ ` f S ∈ [S/A]T2
(T-All-E)

Chapter 5

Stratifying Kinding and Subtyping

This chapter contains the proof of proof of decidability of the subtyping relation of the
previous chapter. The proof proceeds partly in parallel with the corresponding one
for the pure case from Chapter 3: we again address conversion on the level of kinds
by a normal-form argument and the rule of transitivity by cut-elimination. New is
the mutual dependence of kinding and subtyping via the polarized application rules.
Finding an algorithm is thus more challenging now, since we cannot directly address
kinding and subtyping in isolation.

5.1 Introduction . 56

5.2 Proof outline . 58

5.3 Variable occurrence . 62

5.4 Kinding . 65

5.5 Equivalence of types . 73

5.6 The reducing system . 78

5.7 Properties of the reducing system 79

5.8 Subject reduction for subtyping 82

5.9 Strong normalization . 85

5.10 Strengthening . 88

5.11 Characterization of strong, cut-free derivations 89

5.12 Cut elimination . 92

5.13 Elimination of promotion 94

5.14 Decidability of polarized subtyping 95

56 Chapter 5 Stratifying Kinding and Subtyping

5.1 Introduction

This chapter contains the proof of decidability of polarized subtyping. We start with
a discussion of the main difficulties to obtain an algorithm.

The principal complication of the subtyping system compared to pure F ω
≤ is the

mutual dependence of subtyping and kinding statements via the rules for polarized
application and abstraction on type level:

kinding
pol. application

--
subtypingmm

typing
subsumption

==

Figure 5.1: Polarized subtyping

Just as for F ω
≤ , the key of the argument for decidability of subtyping will be a

proof of subject reduction which allows to restrict the attention on types in normal
form. A direct approach would mean to treat kinding and subtyping at the same
time, complicating the arguments quite a bit. Especially termination of the algorithm
would get considerably more involved.

Variable occurrence and stratification of the subtyping system

Instead of a direct approach, we break the mutual dependence of kinding and sub-
typing, yielding a stratified presentation of the system where, as in F ω

≤ , subtyping
still depends upon kinding as the more primitive statement, but not vice versa. This
amounts to finding an independent characterization of the polarity of type operators
not relying on subtyping derivations.

In Section 5.3 we will present such a characterization: instead of comparing
[A1/A]T ≤ [A2/A]T under appropriate subtyping assumptions for the type variables
A1 and A2 to characterize the polarized kind of a type operator Fun(A:K1)T , we di-
rectly determine its polarity by looking at the positions in which its formal parameter
A occurs inside the operator’s body. This will lead to a new set of statements

Γ ` T ?A,

judging the occurrence of variables in types. In the bigger part of Chapter 5 we will
work within this stratified presentation. This allows a divide-and-conquer approach,

Section 5.1 Introduction 57

subkinding

kinding

subsumption 66

pol. application
..
var. occurrencemm

subtyping

bb

typing

subsumption

OO

Figure 5.2: Stratifying kinding and subtyping

addressing kinding and subtyping one after the other. The dependencies between the
different sets of statements are depicted in Figure 5.2.

Apart from separating the subtyping from the kinding derivations, we proceed
along the lines of the proof for pure F ω

≤ (cf. Section 3.1). As a first step towards a
subtype system working exclusively on types in normal form, we distribute the effect
of the conversion rule over the rest of the subtyping rules. As in the case of pure F ω

≤ ,
we call this directed version the reducing system in Section 5.6. To compensate for
the effect of transitivity for type variables we again use promotion; the corresponding
rule now reads:

S //∗
β>S ′ ↑Γ U Γ ` S ′ ∈ K Γ ` U ≤ T ∈ K

Γ ` S ≤ T ∈ K
(R-Promote)

Polarized application

A further complication over pure F ω
≤ concerns polarized application. The corre-

sponding rules as presented in Section 4.3 are too strict for our goal to eliminate the
cut rule. For instance, assuming the upper bound of the type variable A defined as
Γ(A) = Fun(A1:?)Fun(A2:?)A1 → A2 and kindΓ(A) = ? →− (? →+ ?) the statement

Γ ` A S1 S2 ≤ A T1 T2 ∈ ?

can, in general, not be derived without transitivity (assuming further Γ ` T1 ≤ S1 ∈
? and Γ ` S2 ≤ T2 ∈ ? in accordance with the kind of A). With assistance of
transitivity, a possible derivation looks as follows:

58 Chapter 5 Stratifying Kinding and Subtyping

Γ ` A ∈ ? →− (? →+ ?) Γ ` T1 ≤ S1 ∈ ?

Γ ` A S1 ≤ A T1 ∈ ? →+ ?

Γ ` A S1 S2 ≤ A T1 S2 ∈ ?

Γ ` A T1 ∈ ? →+ ? Γ ` S2 ≤ T2 ∈ ?

Γ ` A T1 S2 ≤ A T1 T2 ∈ ?

Γ ` A S1 S2 ≤ A T1 T2 ∈ ?

Seemingly, we can do without transitivity here by allowing a more generous for-
mulation of the application rules, not insisting of the two type operators in an appli-
cation to coincide. In a similar way as the rule of promotion takes care of transitivity
for type variables we will use more general application rules; in case of monotone
operators, for example:

S //∗
β>S1 S2 T //∗

β>T1 T2

Γ ` S1 ≤ T1 ∈ K1 →K2 Γ ` S1 + Γ ` S2 ≤ T2 ∈ K1

Γ ` S ≤ T ∈ K2

allowing the two type operators S1 and T1 to be in subtype relation. Note that
we impose a polarity requirement upon one of the operators only, in the rule above
requiring nothing about the polarity of T1. Thus T1 may or may not be monotone
and, in fact, Γ ` S1 ≤ T1 ∈ K1 → K2 implies nothing about the polarity of T1. Of
course, we thus need a symmetrical rule handling the polarity of operators on the
right-hand side of a subtyping statement, as well.

5.2 Proof outline

As mentioned in the introduction , we will not carry out the subject reduction, nor
the cut-elimination proof, within the original subtyping and kinding system. Instead
we use a presentation where the kinding and the subtyping system are stratified in
that subtyping still depends of kinding, though not vice versa, at the price of new
statements Γ ` T ?A for the occurrence of type variables in a type. In addition, we
discussed another three changes:

• reduction in the premises of the subtyping rules replaces the conversion rule,

• the rule of promotion takes care of essential uses of transitivity for type vari-
ables, and

• we use generous application rules to the same effect for applications.

Section 5.2 Proof outline 59

As in the corresponding proof for pure F ω
≤ , our goal will be twofold: a proof

that we can restrict our attention to types in normal form, thereby eliminating the
non-determinism inherent in the conversion rule, and secondly elimination of the cut.

Variable occurrence

First, consider treating the non-deterministic reduction steps in the premises of the
rules by always reducing the types to their unique normal form. To be able to do
so amounts to a subject reduction property, i.e., preservation of subtyping under
reduction. The underlying mechanism of β>-reduction is substitution, and the key
of the argument, as for pure F ω

≤ , will be preservation of subtyping under substitution.
The main complication over F ω

≤ here is that we have to deal with polarized instead
of pointwise substitution. To understand the problems concerning substitution we
need to have a closer look at variable occurrence (the formalization of the relation
Γ ` T ?A follows in Section 5.3). For instance, preservation of subtyping under
monotone substitution means:

If Γ ` S ≤ T ∈ K and Γ1 ` U1 ≤ U2 ∈ K ′ with the variable A
occuring monotonely, then Γ′ ` [U1/A]S ≤ [U1/A]T ∈ K.

To start with, in the above implication it is not clear what “A occurring mono-
tonely” means. Preservation under substitution is needed for subject reduction, so
the guideline has to be the form of the application rules of the subtyping system.
For the monotone case, to stick with the example, there are two corresponding rules,
R-App+l and R-App+r, one for each side. The above preservation property has to
cover both rules by requiring A occurring monotonely inside S on the left-hand side
or inside T on the right-hand side.

The next question is about the occurrence of the type variable A in the context.
There, we have to consider in which way the subtyping system extends the contexts.
Concerning possible occurrences of type variables in upper bounds, the interesting
rule is the one for All-types — type operators simply add trivial Top-bounds to
the context not containing any type variable. So, given Γ ` All(A′≤S1:K1)S2 ≤
All(A′≤T1:K1)T2 ∈ ?, the rule for universally types extends the context asymmetri-
cally, adding one upper bound as new binding to the context, where additionally we
know Γ ` S1 ≷ T1 ∈ K1. Since the last statement abbreviates two subtype deriva-
tions, Γ ` S1 ≤ T1 ∈ K1 and Γ ` T1 ≤ S1 ∈ K2, we have to require A occurring
monotonely and antimonotonely at the same time, which is the same as occurring
constantly. Hence the above implication more precisely reads:

If Γ1, A:K ′, Γ2 ` S ≤ T ∈ K and Γ1 ` U1 ≤ U2 ∈ K ′, then
Γ1, [U1/A]Γ2 ` [U1/A]S ≤ [U1/A]T ∈ K, where A occurs monotonely
in S or monotonely in T , and constantly in the context.

60 Chapter 5 Stratifying Kinding and Subtyping

The proof of this substitution property will be an induction on the depth of inference
of Γ1, A:K ′, Γ2 ` S ≤ T ∈ K. Looking closer at an inductive argument and
considering again, for sake of example, the monotone case with A monotone in S,
but perhaps not in T , we can see two problems:

1. In case of S-Trans, how can we guarantee that the cut-type bears the same
variable polarity than the relevant type (in the example, monotone polarity) in
order to have the induction go through?

2. In case of S-All, asymmetrically extending the context by one of the upper
bounds, how can we guarantee that the variable replaced occurs constantly in
the upper bound?

The answer in both cases is, we cannot. As a matter of fact, given Γ ` S ≤ T ∈ K
the polarity of the variable A in S implies nothing about the polarity of that variable
in T , nor vice versa. Thus for transitivity in the first point, we have to face the fact
that we know nothing about the occurrence of A in the cut-type, which is clearly not
enough to have the above induction hypothesis go though for S-Trans.

The difficulty concerning universally quantified types in the second point is re-
lated. The subtyping rule for All-types, like the All-rule in full F ω

≤ , but unlike the
one insisting on equal upper bounds, is asymmetric wrt. the bounds: the subgoal for
Γ ` All(A′≤S1:K1)S2 ≤ All(A′≤T1:K1)T2 ∈ ? concerning the bodies of the universally
quantified type reads

Γ, A′≤S1:K1 ` S2 ≤ T2 ∈ ?,

i.e., only one of the two upper bounds extends the context. It is well-known that
requiring only Γ ` T1 ≤ S1 ∈ K1 for the upper bounds renders the subtype relation
undecidable already in the second-order case of F≤ [Pie94]. With Γ ` S1 ≷ T1 ∈ K1,
though, we are given something quite stronger here. Nevertheless, imposing a polarity
requirement upon one of the two types only, suffices solely to infer that one of the
two upper bounds contains the variable in question constantly, yet knowing nothing
about the second, which may be the one used to extend the context. The additional
information Γ ` S1 ≷ T1 ∈ K1 does not suffice to transfer polarity information from
S1 to T1, nor vice versa. Responsible for this fact are the rule of promotion and
the possibility of reduction: while variable polarity is preserved under reduction and
under promotion, it is not guaranteed that it cannot become better by reduction or
promotion.

The above analysis reveals that for subtyping it is the rule S-Trans standing in
the way for a subject reduction argument, and for the mutual subtype requirement
Γ ` S ≷ T ∈ K a used in upper bound of All-types to extend the context it is

Section 5.2 Proof outline 61

additionally the rule of promotion and the possibility of reduction. We address these
two obstacles by simply circumventing them:

As in the unpolarized case, we will prove subject reduction for subtyping state-
ments Γ ` S ≤ T ∈ K for cut-free derivations, i.e., in absence of S-Trans. For pairs
of statements Γ ` S ≷ T ∈ K we additionally disallow the use of promotion, and
while we are at it, throwing out reduction in the premises, as well. We capture this
strong connection between two types — no reduction, no promotion, no cut — by a
separate set of rules for, as we will call it, the equivalence of two types, written as
Γ ` S ≡ T ∈ K.

The dependencies of the different levels of statements are sketched in Figure 5.3:
as before, the subtyping system in its reducing variant depends on kinding as the
more primitive form of statements; the same is true for equivalence, standing for a
restricted form of Γ ` S ≷ T ∈ K-statements.

subkinding

kinding

subsumption 55

pol. application
..
var. occurrencenn

equivalence

mm

reducing system
R-All, R-App±

88

\\

typing

subsumption

OO

Figure 5.3: Equivalence of types

It is in the resulting restricted system in that we will carry out the subject reduc-
tion proof. Afterwards we can restrict our attention to unique normal forms forms,
which we exploit for proving:

1. that transitivity is admissible using an inductive cut-elimination argument, and

2. that for an uppermost pair of statements Γ ` S ≷ T ∈ K with S and T already
in normal form, the derivations do not contain an instance of promotion and,
as a consequence, neither reduction.

62 Chapter 5 Stratifying Kinding and Subtyping

Organization of the chapter

The remainder of the chapter is organized as follows. Section 5.3 introduces the
independent characterization of polarized kinding based on the occurrence of type
variables. The stratification allows to prove first in Section 5.4 decidability and
subject reduction of the kinding system in isolation. Section 5.5 formalizes the notion
of equivalence on types, used in the definition of the reducing system of Section 5.6 in
which we will carry out the cut-elimination proof. Section 5.7 collects some properties
of the stratified subtyping system before we prove preservation of subtyping under
reduction (Section 5.8). After some digression in Section 5.9 concerning a termination
measure, we proceed showing that for the proof of cut-elimination we can effectively
restrict our attention to types in normal form (Section 5.10). Section 5.11 then
contains a couple of technical lemmas we need to prove admissibility of cut and
relaxing the restrictions of the reducing system wrt. equivalence again (Sections 5.12
and 5.13). Finally in Section 5.14 we present an algorithm for subtyping polarized
F ω
≤ , proving it sound and complete.

5.3 Variable occurrence

The foremost complication compared to pure F ω
≤ is the mutual dependence of kinding

and subtyping. This section presents an alternative formulation of the kinding system
— and thus indirectly of the subtyping system, as well — breaking this cycle of
dependence.

Kinding

The only rules of the kinding system depending on a subtyping derivation are the
ones for polarized arrow introduction. For instance, the kinding rule for monotone
operators

Γ, A:K1 ` T ∈ K2

Γ, A2:K1, A1≤A2:K1 ` [A1/A]T ≤ [A2/A]T ∈ K2

Γ ` Fun(A:K1)T ∈ K1 →+ K2
(K-Arrow-I+)

relies on a subtyping derivation for the bodies with appropriately ordered variables
substituted for the formal parameter.

To avoid this recourse to the subtyping system, we are looking for a way to
determine the polarity of a kinding operator not by comparing [A1/A]T and [A2/A]T
via the subtyping system, but by looking at the body T alone and determining in
which way its formal parameter occurs inside T . To do so, we introduce a new set of

Section 5.3 Variable occurrence 63

statements Γ ` T ?A. The polarity of A can be monotone, antimonotone, or constant.
Again, we denote absence of information by the symbol ±.

With these statements for variable occurrence we can write the rule for arrow
introduction as follows:

Γ, A:K1 ` T ?A Γ, A:K1 ` T ∈ K2

Γ ` Fun(A:K1)T ∈ K1 →? K2
(K-Arrow-I?)

Remains the formalization of variable occurrence.

Variable occurrence

The definition of the rules for Γ ` T ?A is straightforward. With the polarities
ordered as given in Section 4.4, we introduce subsumption for the corresponding
polarity judgements. A type variable A occurs positively in A itself; if a variable
A does not occur freely inside a type T , it occurs constantly. For arrow-types we
have to take into account that the subtype relation behaves contravariantly on the
left-hand side of the arrow and covariantly on its right-hand side. So, for example,
we expect an arrow-rule like

Γ ` T1 −A Γ ` T2 +A

Γ ` T1 → T2 +A

To cut down on the number of rules it is convenient to introduce negation as
unary operation on polarities, as given by Table 5.1.

? ¬ ?
◦ ◦
+ −
− +
± ±

Table 5.1: Negation

The polarity of a variable in an arrow-type T1 → T2 cannot be better than either its
polarity in T2 or the negation of its polarity on the contravariant side T1. Thus we
can write the rule for arrow-types as follows:

Γ ` T1 ?1
A Γ ` T2 ?2

A ? = ¬ ?1 ∨ ?2

Γ ` T1 → T2 ?A

64 Chapter 5 Stratifying Kinding and Subtyping

For a type variable occurring with non-trivial polarity, i.e. other than ±, inside
an All-type, we require that it shows up constantly in the All-type’s upper bound.
It will turn out that requiring A to be constant in the upper bound corresponds
to the requirement of the subtyping system where the upper bounds of two All-
types in subtype relation have to be each one mutually smaller than the other. The
occurrence of a variable inside a type operator is determined by its occurrence inside
the operator’s body.

Finally the statements for type applications: the polarity of A in an application
S T depends on three parts: the occurrence of A inside S, its occurrence in T , and
finally the kind of S as type operator. So, for example, Γ ` S T −A, if Γ ` S −A, if
S is an antimonotone operator (Γ ` T −), and Γ ` T +A.

As in the case of arrow-types where we introduced negation, we are looking for a
functional dependence between the polarity of A in S and T and the polarity of S
as type operator on the one hand, and the occurrence of A in the application S T
on the other. Since Γ ` S T ?A cannot be better than Γ ` S ?1

A, we can state
? = ?1 ∨ ?2 × ?3, where the commutative, binary operator × is given by Table 5.2.

× ◦ + − ±
◦ ◦ ◦ ◦ ◦
+ ◦ + − ±
− ◦ − + ±
± ◦ ± ± ±

Table 5.2: Operator × on polarities

Note that all operations introduced for polarities, including negation, are mono-
tone in their arguments.

The relation Γ ` T ?A is then given inductively by the following set of rules:

?′ ≤ ? Γ ` T ?′A

Γ ` T ?A

` Γ ok

Γ ` A +A

A 6∈ fv(T) ` Γ ok

Γ ` T ◦A

Section 5.4 Kinding 65

Γ ` T1 ?1
A Γ ` T2 ?2

A ? = ¬ ?1 ∨ ?2

Γ ` T1 → T2 ?A

Γ ` T1 ◦A Γ, A′≤T1:K ` T2 ? A A′ 6= A

Γ ` All(A′≤T1:K)T2 ? A

Γ, A′:K ` T ?A A′ 6= A

Γ ` Fun(A′:K)T ?A

Γ ` S ?1
A Γ ` S ?2 Γ ` T ?3

A ? = ?1 ∨(?2 × ?3)

Γ ` S T ?A

Fisher [Fis96] defines a similar set of operations to determine the variance (or
polarity) of a type variable in a “row”, a restricted form of type operator. The
functions Merge and inversion used there correspond to our least upper bound and
to negation. The calculation of polarity for applications is simpler in [Fis96], because
only operators of kind ? → ? (called row functions) are treated. Hence there is no
need to distinguish between constant appearance and the fact, that a variable does
not occur at all.

5.4 Kinding

The aim of this section is to develop a kinding algorithm, showing decidability of
kinding. The second main point is subject reduction for kinding, which we will need
at different places in the coming proofs for the subtyping system. Compared to the
kinding system of F ω

≤ , the task is more complicated because of the new statements for
variable occurrence and since the type system no longer enjoys uniqueness of kinding.

5.4.1 Properties of the kinding system

First we collect some properties of the kinding system.

Lemma 5.1 (Partial order) The relation ≤ on kinds is a partial order, i.e. reflex-
ive, transitive, and antisymmetric.

66 Chapter 5 Stratifying Kinding and Subtyping

Lemma 5.2 (Transposition and weakening) Let Γ stand for the context Γ1,
A2≤T2:K2, A1≤T1:K1, Γ2, with A2 /∈ fv(T1). Let further Γ′ be be a well-formed
extension of Γ1, A1≤T1:K1, A2≤T2:K2, Γ2.

1. If Γ ` S ? A, then Γ′ ` S ? A.

2. If Γ ` S ∈ K, then Γ′ ` S ∈ K.

The system of Section 5.3 generously allows the application of subsumption any
place in a derivation. This often complicates the proofs needlessly by additional cases.
Thus we first show that we can restrict the subsumption rules to the axioms, i.e.,
to type variables and Top-types, and the rules dealing with variables not occurring
freely.

Definition 5.3 (Alternative presentation of kinding) An alternative presenta-
tion of the kinding relation is given by the definition from Section 5.3 with the fol-
lowing changes: The rules K-Subsumption and the subsumption rule for polarities
are removed; likewise K-TVar, K-Top, and K-Arrow-I. In return, the following
rules are added:

` Γ ok

Γ ` A +A

` Γ ok

Γ ` A ±A

A 6∈ fv(T) ` Γ ok

Γ ` T ?A′

kindΓA ≤ K ` Γ ok

Γ ` A ∈ K
(K-TVar-Sub)

K ′
1 ≤ K1 Γ ` Top(K2) ∈ K ′

2

Γ ` Top(K1 →? K2) ∈ K ′
1 →

?′ K ′
2

(K-Top-Sub)

K1 ≤ K ′
1

Γ, A:K ′
1 ` T ?A Γ, A:K ′

1 ` T ∈ K2

Γ ` Fun(A:K ′
1)T ∈ K1 →? K2

(K-Arrow-I-Sub)

Lemma 5.4 (Generation for contexts)

1. If ` Γ ok , then:

(a) Γ = •; or

(b) Γ = Γ′, x:T with ` Γ′ ok and Γ′ ` T ∈ ? as subderivation; or

(c) Γ = Γ′, A≤T :K with ` Γ′ ok and Γ′ ` T ∈ K as subderivations.

2. If Γ ` T ∈ K, then ` Γ ok as subderivation.

Section 5.4 Kinding 67

3. If Γ ` T ?A, then ` Γ ok as subderivation.

(This generation property holds for the system of Section 5.3 as well as the one of
Definition 5.3).

That this indeed is only a variant of the definition of Section 5.3 is expressed by
the following three lemmas:

Lemma 5.5 In the system of Definition 5.3 the following holds:

1. Assume T well-kinded in Γ. If Γ ` T ?A and ? ≤ ?′, then Γ ` T ?′A.

2. If Γ ` T ∈ K and K ≤ K ′, then Γ ` T ∈ K ′.

Corollary 5.6 If T is well-kinded in Γ, then Γ ` T ±A for all type variables A.

Lemma 5.7 The system of Definition 5.3, containing statements ` Γ ok , Γ ` T ?A,
and Γ ` T ∈ K, is equivalent to the original definition from Section 5.3.

From now on, we will work with the more restrictive formulation of Definition 5.3,
for example in the following generation lemma.

Lemma 5.8 (Generation for kinds)

1. (a) If Γ ` S T ?A, then Γ ` S ?′A with ?′ ≤ ?.

(b) – If Γ ` S T ◦A and Γ 6` S ◦, then Γ ` T ◦A.

– If Γ ` S T ?A with Γ ` S + and Γ 6` S ◦, then Γ ` T ?′A for some
polarity ?′ with ?′ ≤ ?.

– If Γ ` S T ?A with Γ ` S − and Γ 6` S ◦, then Γ ` T ?′A for some
polarity ?′ with ?′ ≤ ¬ ? .

– If Γ ` S T ?A with Γ 6` S + and Γ 6` S −, where ? 6= ±, then
Γ ` T ◦A.

(c) If Γ ` Fun(A:K)T ?A, then Γ, A:K ` T ?A.

(d) If Γ ` T1 → T2 ?A, then Γ ` T1 ?1
A and Γ ` T2 ?2

A with two polarities ?1

and ?2 such that ? = ¬ ?1 ∨ ?2.

(e) If Γ ` All(A′≤T1:K1)T2 ?A with ? ∈ {◦, +,−}, then Γ, A′≤T1:K1 ` T2 ?A

and Γ ` T1 ◦A.

2. (a) If Γ ` A ∈ K, then kindΓA ≤ K.

(b) If Γ ` Top(?) ∈ K, then K = ?.

(c) If Γ ` Top(K1 →? K2) ∈ K, then K = K ′
1 →?′ K ′

2 with K ′
1 ≤ K1 and

Γ ` Top(K2) ∈ K ′
2.

68 Chapter 5 Stratifying Kinding and Subtyping

(d) If Γ ` Fun(A:K1)T ∈ K, then there are two kinds K ′
1 and K ′

2 and a
polarity ? with K = K ′

1 →? K ′
2 and K ′

1 ≤ K1. Furthermore Γ, A:K1 `
T ∈ K ′

2 and Γ, A:K1 ` T ?A.

(e) If Γ ` S T ∈ K, then there is a kinds K ′ and a polarity ? with Γ ` S ∈
K ′ →? K and Γ ` T ∈ K ′.

(f) If Γ ` S → T ∈ K, then K = ? where Γ ` S ∈ ? and Γ ` T ∈ ?.

(g) If Γ ` All(A≤S1:K1)S2 ∈ K, then K = ? and Γ, A≤S1:K1 ` S2 ∈ ?.

Moreover, the derivations in the “then”-parts are subderivations of the original deriva-
tions.

We have defined the operations ∨ and ∧ as supremum and infimum on the domain
of polarities. We can lift this small lattice to the level of kinds, relating all kinds that
coincide after erasing the polarity information.

Definition 5.9 (Erasure) The erasure of a kind K, written erase(K), is inductively
defined as ? for K = ? and erase(K1) → erase(K2) for K = K1 →

? K2.

Lemma 5.10 If K1 ≤ K2, then erase(K1) = erase(K2).

Lemma 5.11 (Erasure and kinds) If Γ ` T ∈ K1 and Γ ` T ∈ K2, then erase(K1) =
erase(K2)

Lemma 5.12 (Lattice of kinds) Given kind K, the kinds Ki with erase(Ki) = K
and ordered by ≤ form a lattice.

The following lemma states that the set of kinds for a given kind and a context
is closed under infimum and supremum. This is not a consequence of the previous
lemma but a property of the kinding system.

Lemma 5.13 (Closure under ∧ and ∨)

1. Assume the type T well-kinded in Γ. If Γ ` T ?1
A and Γ ` T ?2

A, then
Γ ` T ?A, for ? = ?1 ∧ ?2 and for ? = ?1 ∨ ?2.

2. If Γ ` T ∈ K1 and Γ ` T ∈ K2, then Γ ` T ∈ K1 ∧ K2 and Γ ` T ∈ K1 ∨ K2 .

Thus we get as an immediate corollary:

Corollary 5.14 If Γ ` T + and Γ ` T −, then Γ ` T ◦.

Section 5.4 Kinding 69

5.4.2 Kinding algorithm

Even after the restriction of the subsumption rule, the kinding system is not syntax
directed. It allows to derive different statements for type variables; the same is
true for the maximal type. An algorithm for kinding should not allow such liberty,
but will instead give back the minimal kind of the given type. We start with the
corresponding definition.

Definition 5.15 (Minimal kinds) A kind K is called minimal for a type T in
context Γ, if Γ ` T ∈ K, and for all kinds K ′ with Γ ` T ∈ K ′, we have K ≤ K ′.

In principle, the existence of a minimal kind for a given type is already a conse-
quence of the closure under infimum for kinds of a given type (Lemma 5.13). More-
over, it is easy to see that each kind can only bear a finite number of kinds. Hence
the existence of a binary lower bound on kinds entails the existence of a minimal
kind for a given type. It is, though, algorithmically not too clever to determine the
minimal kind of a given type by calculating the set of possible kinds and looking for
the minimal kind in it. The aim must be to find a deterministic procedure directly
yielding the minimal kind. The idea of the algorithm is simple: take the rules of the
kinding system (without the rule of subsumption) and give back the kind as careful,
i.e., as small, as possible.

Definition 5.16 (Algorithmic kinding) The algorithmic relations Γ `A T ∈ K
and Γ `A T ?A are the smallest relations closed under the rules listed below.

A 6∈ fv(T) `A Γ ok

Γ `A T ◦A

` Γ ok

Γ `A A +A

Γ `A T1 ?1
A Γ `A T2 ?2

A ? = ¬ ?1 ∨ ?2

Γ `A T1 → T2 ?A

Γ `A T1 ◦A Γ, A′≤T1:K1 `A T2 ? A A 6= A′

Γ `A All(A′≤T1:K1)T2 ? A

Γ `A T1 ?′A ?′ 6= ◦ Γ, A′≤T1:K1 `A T2 ? A A 6= A′

Γ `A All(A′≤T1:K1)T2 ±A

Γ `A S ?1
A Γ `A S ?2 Γ `A T ?3

A ? = ?1 ∨(?2 × ?3)

Γ `A S T ?A

70 Chapter 5 Stratifying Kinding and Subtyping

Γ, A′:K `A T ?A A 6= A′

Γ `A Fun(A′:K)T ?A

` Γ ok

Γ `A A ∈ kindΓA
(K-TVar)

` Γ ok

Γ `A Top(?) ∈ ?
(K-Top?)

Γ `A Top(K2) ∈ K ′
2

Γ `A Top(K1 →? K2) ∈ K1 →◦K ′
2

(K-Top)

Γ, A:K1 `A T ?A Γ, A:K1 `A T ∈ K2

Γ `A Fun(A:K1)T ∈ K1 →? K2
(K-Arrow-I?)

K ′
1 ≤ K1

Γ `A S ∈ K1 →
? K2 Γ `A T ∈ K ′

1

Γ `A S T ∈ K2
(K-Arrow-E-A)

Γ `A T1 ∈ ? Γ `A T2 ∈ ?

Γ `A T1 → T2 ∈ ?
(K-Arrow)

Γ, A≤T1:K1 `A T2 ∈ ?

Γ `A All(A≤T1:K1)T2 ∈ ?
(K-All)

Additionally, we write Γ `A T ?, if Γ `A T ∈ K1 →? K2 for some kinds K1 and
K2.

The system of the previous definition is deterministic and syntax directed.1 It
is, of course, not equivalent to the non-algorithmic definition of the kinding relation:
after all, the algorithm is not intended to give back all possible kinds for a given type,
but only a special one: the minimal. Correctness and completeness of the algorithm
means that the algorithm synthesizes the minimal kind for each well-kinded type:

Lemma 5.17 (Soundness and completeness of algorithmic kinding)

1. (a) If `A Γ ok , then ` Γ ok .

(b) If Γ `A T ? A, then Γ ` T ? A.

(c) If Γ `A T ∈ K, then Γ ` T ∈ K.

2. (a) If ` Γ ok , then `A Γ ok .

1The choice between the two rules for occurrence of variables in All-types is resolved by the
occurrence of the type variable in the upper bound.

Section 5.4 Kinding 71

(b) If Γ ` T ? A, then Γ `A T ?′A with ?′ ≤ ?.

(c) If Γ ` T ∈ K, then Γ `A T ∈ K ′ with K ′ ≤ K.

As an immediate consequence we get that the algorithm gives back the minimal
kind.

Corollary 5.18 (Minimality)

1. If Γ `A T ? A, then Γ ` T ? A is minimal.

2. If Γ `A T ∈ K, then Γ ` T ∈ K is minimal.

Finally the proof, that the system is not only deterministic, but also terminates.

Lemma 5.19 (Termination) The kinding algorithm of Definition 5.16 always ter-
minates.

Proof: The algorithmic system of Definition 5.16, containing the statements `A

Γ ok , Γ `A T ?A, and Γ `A T ∈ K, is syntax directed. It terminates as for each
rule, proceeding from goal to the premises, the number of characters in the context
and the types, but not counting the kinds on the right-hand side of the ∈–symbol
(because of K-Arrow-E-A), strictly decreases. Furthermore, the relation ≤ on
kinds is decidable. �

Note how much more complicated a termination argument for kinding would be
if we used the kinding system of Section 4.4, where the kinding statements depend
on subtyping, and vice versa. Termination for an algorithm for subtyping will be a
major problem, even after stratifying the two systems.

Corollary 5.20 (Decidability of the stratified kinding relation) The three re-
lations ` Γ ok , Γ ` S ?A, and Γ ` S ∈ K of Section 5.3 are decidable.

Proof: By soundness and completeness of the algorithm (Lemma 5.17) and termi-
nation (Lemma 5.19). To decide Γ ` T ?A respectively Γ ` T ∈ K, we can use the
algorithm to determine the minimal statement Γ `A T ?′A, respectively Γ ` T ∈ K ′,
and check ?′ ≤ ?, respectively K ′ ≤ K. These checks are decidable, as well. �

5.4.3 Subject reduction for kinding

In this section we will prove subject reduction, i.e., preservation under reduction,
for kinding statements and variable occurrence (Lemma 5.25). With substitution as
underlying mechanism of reduction, we will first need preservation of kinding under
substitution. We start with some technical lemmas.

72 Chapter 5 Stratifying Kinding and Subtyping

Lemma 5.21 (Generation of minimal kinds) Assume Γ ` S T ∈ K and Γ `
S T ?2

A. Assume further Γ `A S ?1 as minimal statement.

1. If ?2 ∈ {+,−, ◦} and ?1 = ± , then Γ ` T ◦A; if ?2 = ±, then Γ ` T ±A.

2. If ?1 = +, then Γ ` T ?2
A.

3. If ?1 = −, then Γ ` T ¬ ?2
A.

4. If ?1 = ◦, then Γ ` T ±A.

Lemma 5.22 The operations ∨ and × on polarities are associative and commutative.
Additionally, the following equations hold (we assume ¬ to bind stronger than the
binary operators):

¬(p ∨ q) = ¬p ∨ ¬q

¬(p × q) = ¬p × q

(p ∨ q) × r = (p × r) ∨ (q × r).

An important step towards subject reduction is the following substitution lemma: po-
larity and kinds are preserved by substitution. We will use the lemma also at different
places for the preservation of the subtype relation under substitution (Lemma 5.57
and Lemma 5.58). First we need a weakening lemma for algorithmic kinding, analo-
gous to Lemma 5.2.

Lemma 5.23 (Transposition and weakening) Let Γ abbreviate the context Γ1, A2≤T2:K2, A1≤T1:K1, Γ2,
with A2 /∈ fv(T1). Let further Γ′ be be a well-formed extension of Γ1, A1≤T1:K1, A2≤T2:K2, Γ2.

1. If Γ `A S ? A, then Γ′ `A S ? A.

2. If Γ `A S ∈ K, then Γ′ `A S ∈ K.

Lemma 5.24 (Substitution preserves (minimal) kinding) Let Γ abbreviate the
context Γ1, A′:K, Γ2 where Γ1 `A U ∈ K and let Γ′ stand for Γ1, [U/A′]Γ2.

1. If `A Γ ok , then `A Γ′ ok .

2. Assume Γ `A T pA, Γ `A T qA′ , and Γ1 `A U rA, with A 6= A′. Then
Γ′ `A [U/A′]T sA, where s = p ∨ q × r.

3. If Γ `A T ∈ K ′, then Γ′ `A [U/A′]T ∈ K ′.

The same holds for the non-algorithmic kinding system of Definition 5.3, as well.

Section 5.5 Equivalence of types 73

With preservation of kinding under substitution in hand, we are ready to show
preservation of kinding under β>-reduction. Since the previous lemma even proved
preservation of minimal kinding under substitution, one could suspect preservation
of minimal kinding under reduction. Rule K-Arrow-E-A of the kinding algorithm
shows why we should be careful: the application of a type operator to its argument
requires that the kind of the argument is at least as good as stated by the kind of
the formal parameter of the operator. But the substitution Lemma 5.24 guarantees
preservation of minimal kinding if the kind of the argument exactly matches the kind
expected for the formal parameter. If the argument’s kind is better, reduction may
lead to a smaller kind.

Lemma 5.25 (Subject reduction for kinding)

1. If ` Γ ok and Γ //∗
β>Γ′, then ` Γ′ ok .

2. Assume type S well-kinded in Γ. If Γ ` S ?A and S //∗
β>T with Γ //∗

β>Γ′,
then Γ ` T ?A.

3. If Γ ` S ∈ K and S //∗
β>T with Γ //∗

β>Γ′, then Γ ` T ∈ K.2

We get as an immediate corollary a corresponding property for minimal kinds, as
calculated by the kinding algorithm.

Corollary 5.26 (Subject reduction for minimal kinds)

1. If `A Γ ok and Γ //∗
β>Γ′, then `A Γ′ ok .

2. If Γ `A S ?A and S //∗
β>T with Γ //∗

β>Γ′, then Γ′ `A T ?′A with ?′ ≤ ?.

3. If Γ ` S ∈ K and S //∗
β>T with Γ //∗

β>Γ′, then Γ′ ` T ∈ K ′ with K ′ ≤ K.

Corollary 5.27 Assume type T well-kinded in Γ. If T //∗
β>T ′ with Γ ` T ′ ∈ K ′,

then Γ ` T ∈ K and K ′ ≤ K.

5.5 Equivalence of types

This section defines the notion of equivalence on types and proves the basic facts
about this relation. The relation will be used in the definition of the reducing system
in Section 5.6. Later we will show that equivalence of two types S and T corresponds
to a pair S ≤ T and T ≤ S of subtyping statements justified by two subtyping
derivations without cut, without reduction, and without the rule of promotion.

2The relation //∗
β> on contexts is the obvious extension of β>-relation from types to con-

texts.

74 Chapter 5 Stratifying Kinding and Subtyping

Definition 5.28 (Equivalence) The relation Γ ` S ≡ T ∈ K is inductively given
by the set of rules below. We sometimes also write S ≡K

Γ T for Γ ` S ≡ T ∈ K and
call S and T equivalent (in context Γ and for kind K).

Γ ` S ∈ K

Γ ` S ≡ S ∈ K
(E-Refl)

Γ ` Top(K1), Top(K2) ∈ K

Γ ` Top(K1) ≡ Top(K2) ∈ K
(E-Top)

Γ ` T1 ≡ S1 ∈ ? Γ ` S2 ≡ T2 ∈ ?

Γ ` S1 → S2 ≡ T1 → T2 ∈ ?
(E-Arrow)

Γ, A≤S1:K1 ` S2 ≡ T2 ∈ ? Γ ` S1 ≡ T1 ∈ K1

Γ ` All(A≤S1:K1)S2 ≡ All(A≤T1:K1)T2 ∈ ?
(E-All)

Γ, A:K ′
1 ` S ′ ≡ T ′ ∈ K2 Γ, A:K ′

1 ` S ′, T ′ ?A K1 ≤ K ′
1

Γ ` Fun(A:K ′
1)S

′ ≡ Fun(A:K ′
1)T

′ ∈ K1 →? K2

(E-Abs)

Γ `A S1 ◦ Γ ` S1 ≡ T1 ∈ K1 → K2 Γ ` S2, T2 ∈ K1

Γ ` S1 S2 ≡ T1 T2 ∈ K2

(E-App◦)

Γ `A S1 + Γ ` S1 ≡ T1 ∈ K1 → K2 Γ ` S2 ≡ T2 ∈ K1

Γ ` S1 S2 ≡ T1 T2 ∈ K2

(E-App+)

Γ `A S1 − Γ ` S1 ≡ T1 ∈ K1 → K2 Γ ` S2 ≡ T2 ∈ K1

Γ ` S1 S2 ≡ T1 T2 ∈ K2

(E-App−)

Γ `A S1 ± Γ ` S1 ≡ T1 ∈ K1 → K2 Γ ` S2 ≡ T2 ∈ K1

Γ ` S1 S2 ≡ T1 T2 ∈ K2
(E-App±)

The rules of the system above closely resemble the ones of the stratified kinding
system of Definition 5.3. The strong connection between the two systems is expressed
by the following lemma.

Lemma 5.29 If Γ ` S ≡ T ∈ K, then Γ ` S ∈ K and Γ ` T ∈ K.

Lemma 5.30 Suppose K ≤ K ′. If Γ ` S ≡ T ∈ K, then Γ ` S ≡ T ∈ K ′.

We lift the notion of equivalence from types to contexts by the following definition.

Section 5.5 Equivalence of types 75

Definition 5.31 (Equivalence of contexts) The equivalence of two contexts Γ1

and Γ2, denoted by ` Γ1 ≡ Γ2, is inductively defined by the following three rules:

` • ≡ •

` Γ1 ≡ Γ2

` Γ1, x:T ≡ Γ2, x:T

` Γ1 ≡ Γ2 Γ1 ` S ≡ T ∈ K

` Γ1, A≤S:K ≡ Γ2, A≤T :K

Lemma 5.32 (Equivalence and kinding) Suppose ` Γ ok and ` Γ ≡ Γ′. Then

1. ` Γ′ ok .

2. If Γ ` T ∈ K and Γ ` T ≡ T ′ ∈ K ′, then Γ′ ` T ′ ∈ K ′.

3. If Γ ` T ? and Γ ` T ≡ T ′ ∈ K, then Γ′ ` T ′ ?.

4. If Γ ` T ?A and Γ ` T ≡ T ′ ∈ K, then Γ′ ` T ′ ?A.

Lemma 5.33 (Weakening for equivalence) Assume A2 /∈ fv(T1) and let the con-
text Γ abbreviate Γ1, A2≤T2:K2, A1≤T1:K1, Γ2 Let further Γ′ be be a well-formed
extension of Γ1, A1≤T1:K1, A2≤T2:K2, Γ2. If Γ ` S ≡ T ∈ K, then Γ′ ` S ≡ T ∈ K.

Next, we show that ≡ is indeed an equivalence relation, proving it symmetric and
transitive.

Lemma 5.34 (Symmetry and transitivity) Suppose S, T , and U well-kinded in
Γ and ` Γ ≡ Γ′.

1. If Γ ` S ≡ T ∈ K, then Γ′ ` T ≡ S ∈ K.

2. If Γ ` S ≡ U ∈ K and Γ′ ` U ≡ T ∈ K, then Γ ` S ≡ T ∈ K.

Symmetry of equivalence implies with Lemma 5.32, that also the minimal kinds
of two equivalent types coincide:

Corollary 5.35 Suppose `A Γ ok and ` Γ ≡ Γ′.

1. If Γ `A T ? and Γ ` T ≡ T ′ ∈ K, then Γ′ `A T ′ ?.

2. If Γ `A T ?A and Γ ` T ≡ T ′ ∈ K, then Γ′ `A T ′ ?A.

76 Chapter 5 Stratifying Kinding and Subtyping

Since ≡K
Γ is reflexive by definition, it is an equivalence relation on well-kinded

types. The next substitution lemmas prove it a congruence.

Lemma 5.36 (Substitution) If Γ1, A:K ′, Γ2 ` S ∈ K and Γ1 ` U1 ≡ U2 ∈ K ′,
then Γ1, [U1/A]Γ2 ` [U1/A]S ≡ [U2/A]S ∈ K.

Lemma 5.37 (Substitution) If Γ1, A:K ′, Γ2 ` S1 ≡ S2 ∈ K and Γ1 ` U1 ≡ U2 ∈
K ′, then Γ1, [U1/A]Γ2 ` [U1/A]S ≡ [U2/A]T ∈ K.

The following property shows that equivalence is preserved by substitution of a
variable occurring constantly. Remember that the motivation to introduce equiva-
lence was twofold. In the discussion of the form of the All-rule in Section 4.3, we
argued that in the context of polarized application rules it is natural to relax the
requirement of equal upper bounds for the All-types to the mutual subtype require-
ment and likewise to introduce application rules for the ±-polarity, not insisting on
equality of the argument, as in the decidable variants of F ω

≤ or F≤ in an unpolarized
setting. As neither identity on types nor β>-equivalence is preserved by constant
substitution, we introduced the weaker statements Γ ` S ≷ T ∈ K and ± as fourth
polarity.

The relation ≡ of this section was introduced for proof-technical reasons, to have
a more disciplined version of ≷. The following lemma justifies the choice of ≡ in that,
unlike =β>, this relation is preserved by constant substitution. So in certain respect,
the relation ≡ for polarized kinding corresponds to identity for F ω

≤ -kinding without
polarity information, and ≷ is the analogue to =β>. The second correspondence will
be justified in a later section by a proof that for types in normal form the relations
≡ and ≷ coincide.

First, though, we will prove preservation of equivalence under substitution, where
the variable being substituted occurs constantly in the types and in the context. To
be able to express this, we define constant occurrence of a variable within a context:
it occurs constantly if it does so for all upper bounds in the context:3

Definition 5.38 Let Γ be a well-formed context and A a type variable. The relation
` Γ ◦A is inductively defined by the following three rules:

` • ◦A

` Γ ◦A Γ ` T ◦A

` Γ, A′≤T :K ◦A

` Γ ◦A

` Γ, x:T ◦A

3It is straightforward to lift the definition from types to contexts also for polarities other than
constant, but we will not need this.

Section 5.5 Equivalence of types 77

Lemma 5.39 (Equivalence and constant substitution) Let context Γ abbrevi-
ate Γ1, A:K ′, Γ2 and Γ′ stand for Γ1, [U1/A]Γ2. Assume further ` Γ ◦A and
Γ1 ` U1 ∈ K ′ as well as Γ1 ` U2 ∈ K ′. If Γ ` S ≡ T ∈ K with Γ ` S ◦A,
then Γ′ ` [U1/A]S ≡ [U2/A]T ∈ K

With these preservation lemmas, we can prove a simple combined confluence
property of equivalence and β>-reduction: If one of two equivalent types can do one
β>-step, the equivalence of the to types can be re-established by zero or one step of
the second type. That the second type need not perform a step at all is a consequence
of the fact, that equivalence of types disregards parts of the type appearing constantly.
So if the redex of the first type occurs constantly, its contraction does not destroy
equivalence with the second type.

Lemma 5.40 (Equivalence and β>-reduction) Assume Γ ` S ≡ T ∈ K.

1. If S //
β>S ′, then there exists a type T ′ with T //∗

β>T ′ and Γ ` S ′ ≡ T ′ ∈
K:4

S
Γ

K

β>

��

T

β> ∗

��
S ′ Γ

K
T ′.

2. Γ ` S ! ≡ T ! ∈ K.

As similar property holds for the promotion relation. A difference is, that now
the right-hand side will do a proper step to re-establish equivalence, since the head-
variable which is identical on both sides is guaranteed not to occur in constant posi-
tion.

Lemma 5.41 (Equivalence and promotion) If Γ ` S ≡ T ∈ K and S ↑Γ S ′,
then there exists a type T ′ such that T ↑Γ T ′ and Γ ` S ′ ≡ T ′ ∈ K.

As final property of equivalence we will need its decidability.

Lemma 5.42 (Decidability of equivalence) The relation Γ ` S ≡ T ∈ K on
well-kinded types is decidable.

4We could strengthen the lemma by stating that T //∗
β>T ′ by zero or one step, but we will

not need this.

78 Chapter 5 Stratifying Kinding and Subtyping

Proof: The rules for equivalence are syntax directed with the exception of the
ones for application. The choice of application rules is determined by the minimal
polarity of the type operator, which is decidable by the corresponding algorithm
(Lemma 5.20).

The application of equivalence rules must terminate since each premise for each
equivalence rule is either a kinding statement (by Lemma 5.20 kinding is decidable)
or a equivalence subgoal for syntactic subformulae of the original pair of types. �

5.6 The reducing system

Having formalized equivalence on types, we are now in the position to define the
stratified variant of the subtyping system used for the cut-elimination proof.

Besides the changes discussed in the proof outline — separation of kinding and
subtyping, introduction of R-Promote, using reduction in the premises of the sub-
typing rules instead of one conversion rule S-Conv, and allowing a more generous
formulation of the application rules — the last distinguishing feature of the system
below is a matter of convenience. Having almost duplicated the number of applica-
tion rules by introducing a variant for the polarity of the operator on the left-hand
side as well as for the one on the right-hand side, we will make our life easier in the
proofs to come by cutting down on the number of application rules to choose from.

To this end, similar to the rules for equivalence, the system takes the applica-
tion rule according to which one of the two applicator’s minimal polarity is bet-
ter, i.e. smaller. This means for the monotone rule, for instance, that we require
Γ `A S1 + instead of Γ ` S1 + (the kinding algorithm `A gives back this minimal
polarity) and additionally that the minimal polarity of T1 as type operator is not
strictly smaller than monotone; if T1 were a constant operator, the system would
choose the analogous rule for constant application on the right-hand side.

As in the proof for pure F ω
≤ , we distribute the effect of conversion over all rules by

allowing the types to be arbitrarily reduced in the premises. The rule of promotion
(R-Promote) generalizes the variable rule S-TVar, taking care of the essential uses
of transitivity implicit in S-TVar. The foremost difference between the two systems
is not directly visible in the subtyping rules, but was already discussed in connection
with kinding in Section 5.3: kinding does no longer depend on subtyping. In this way
we were already able to prove properties such as subject reduction and decidability
of kinding without reference to the subtyping system, so that in the following we can
concentrate on the subtyping part, alone.

Definition 5.43 (Reducing system) The reducing system is given inductively by
the set of rules of Table 5.3 on page 80, where we omit the four symmetric rules for

Section 5.7 Properties of the reducing system 79

polarized application. Moreover, the eight rules for polarized type application are
ordered in such a way, that always the “best possible rule” is chosen.

Notation 5.44 Again, we distinguish derivations in different systems by marking
the turnstile symbol: `O for the original, non-stratified system, `R for the reducing
system, `S for strong derivations in the reducing system, `C for cut-free derivations in
the reducing system, and `CS for strong, cut-free derivations in the reducing system.

The next three tasks are preservation of subtyping under reduction, elimination
of transitivity, and a proof that equivalence on types is a restricted form of mutual
subtype relationship. Before we address these tasks in turn, we continue in the
following section with some properties of the reducing system.

5.7 Properties of the reducing system

In this section we collect a couple of properties of the reducing system just defined.

Lemma 5.45 (Preservation of kinding under promotion) If Γ ` T ∈ K and
T ↑Γ T ′, then Γ ` T ′ ∈ K.

Note that minimal kinds are not preserved under promotion. The reason is similar
to the one that prevents preservation of minimal kinding under reduction: the mini-
mal kind of a type variable A in a context Γ is determined by its kinding declaration
kindΓA, but nothing prevents its upper bound Γ(A) from bearing a better kind that
this.

Corollary 5.46 If Γ `A T ∈ K and T ↑Γ T ′, then Γ `A T ′ ∈ K ′ with K ′ ≤ K.

Likewise, variable occurrence is, in general, not preserved under promotion. For
example, the type variable A may not occur free in type A′ T1 . . . Tn, i.e., Γ `
A′ T1 . . . Tn ◦A, but if Γ 6` Γ(A′) ◦A, then also Γ 6` Γ(A′) T1 . . . Tn ◦A. The po-
larity of a variable is preserved under promotion, though, provided the upper bound
of the variable promoted contains the variable in question in constant positions, only.

Lemma 5.47 Assume Γ ` T ∈ K and T ↑Γ T ′. If Γ ` T ?A and ` Γ ◦A, then
Γ ` T ′ ?A.

Lemma 5.48 (Expansion preserves subtyping) Assume S and T well-kinded in
Γ. If Γ `R S ′ ≤ T ′ ∈ K where S //∗

β>S ′ and T //∗
β>T ′, then Γ `R S ≤ T ∈ K.

The same is correspondingly true for cut-free and strong derivations.

80 Chapter 5 Stratifying Kinding and Subtyping

Γ ` S ≤ U ∈ K Γ ` U ≤ T ∈ K Γ ` U ∈ K

Γ ` S ≤ T ∈ K
(R-Trans)

S //∗
β>U T //∗

β>U Γ ` U ∈ K

Γ ` S ≤ T ∈ K
(R-Refl)

S //∗
β>U ↑Γ U ′ Γ ` U ∈ K Γ ` U ′ ≤ T ∈ K

Γ ` S ≤ T ∈ K
(R-Promote)

S //∗
β>S ′ T //∗

β>Top(K ′)
Γ ` S ′ ∈ K Γ ` Top(K ′) ∈ K

Γ ` S ≤ T ∈ K
(R-Top)

S //∗
β>S1 → S2 T //∗

β>T1 → T2

Γ ` T1 ≤ S1 ∈ ? Γ ` S2 ≤ T2 ∈ ?

Γ ` S ≤ T ∈ ?
(R-Arrow)

S //∗
β>All(A≤S1:K1)S2 T //∗

β>All(A≤T1:K1)T2

Γ, A≤S1:K1 ` S2 ≤ T2 ∈ ? Γ ` S1 ≡ T1 ∈ K1

Γ ` S ≤ T ∈ ?
(R-All)

S //∗
β>Fun(A:K ′

1)S
′ T //∗

β>Fun(A:K ′
1)T

′

K1 ≤ K ′
1 Γ, A:K ′

1 ` S ′ ≤ T ′ ∈ K2 Γ, A:K ′
1 ` S ′, T ′ ?A

Γ ` S ≤ T ∈ K1 →? K2
(R-Abs)

S //∗
β>S1 S2 T //∗

β>T1 T2

Γ `A S1 ◦
Γ ` S1 ≤ T1 ∈ K1 →K2 Γ ` S1, T2 ∈ K1

Γ ` S ≤ T ∈ K2
(R-App◦l)

S //∗
β>S1 S2 T //∗

β>T1 T2

Γ `A S1 +
Γ ` S1 ≤ T1 ∈ K1 →K2 Γ ` S2 ≤ T2 ∈ K1

Γ ` S ≤ T ∈ K2
(R-App+l)

S //∗
β>S1 S2 T //∗

β>T1 T2

Γ `A S1 −
Γ ` S1 ≤ T1 ∈ K1 →K2 Γ ` T2 ≤ S2 ∈ K1

Γ ` S ≤ T ∈ K2

(R-App−l)

S //∗
β>S1 S2 T //∗

β>T1 T2

Γ `A S1 ±
Γ ` S1 ≤ T1 ∈ K1 →K2 Γ ` S2 ≡ T2 ∈ K1

Γ ` S ≤ T ∈ K2
(R-App±l)

Table 5.3: Reducing system

Section 5.7 Properties of the reducing system 81

Next we prove a simple invariant of the system, namely that if Γ `R S ≤ T ∈ K
then for the normal forms of S and T we have Γ ` S ! ∈ K and Γ ` T ! ∈ K. This
means, the interpretation of the kind K in a subtyping statement Γ `R S ≤ T ∈ K
is not exactly that, besides being in subtype relation, S and T are of kind K, but at
least that their normal forms are. That we obtain the kinding relation only for S and
T ’s normal form is a consequence of the fact that minimal kinds are not preserved
under reduction.

Lemma 5.49 (Well-kinded subderivations) Suppose S and T well-kinded in Γ.
Let d be a derivation of Γ `R S ≤ T ∈ K and d′ a derivation of Γ′ `R S ′ ≤ T ′ ∈ K ′.
If d′ is a subderivation of d, then Γ′ ` S ′! ∈ K ′ and Γ′ ` T ′! ∈ K ′.

Lemma 5.50 (Weakening for subtyping) Assume A2 /∈ fv(T1) and let the con-
text Γ abbreviate Γ1, A2≤T2:K2, A1≤T1:K1, Γ2.. Let further Γ′ be be a well-formed ex-
tension of Γ1, A1≤T1:K1, A2≤T2:K2, Γ2. If Γ `R S ≤ T ∈ K, then Γ′ `R S ≤ T ∈ K.
The same is correspondingly true for the `C– and the `CS–system.

Lemma 5.51 (Maximality of Top) Assume the types Top(K) S1 . . . Sn and T well-
kinded in Γ. If Γ `C Top(K) S1 . . . Sn ≤ T ∈ K ′, then T //∗

β>Top(K ′′) for some
kind K ′′.

The next lemma shows that for a given subtyping statement one can weaken
the kinding requirement. The property corresponds to subsumption for kinding in
Lemma 5.5 and the analogous Lemma 5.30 for equivalence.

Lemma 5.52 Suppose S and T well-kinded in Γ. If Γ `R S ≤ T ∈ K and K ≤ K ′,
then Γ `R S ≤ T ∈ K ′. The same is true for cut-free derivations, strong derivations,
and strong, cut-free derivations.

Lemma 5.53 Suppose S and T well-kinded in Γ. If Γ `R S ≤ T ∈ K, where
Γ ` S ∈ K ′ and Γ ` T ∈ K ′, then Γ `R S ≤ T ∈ K ′. The same is true for cut-free
derivations, strong derivations, and strong, cut-free derivations.

We can now begin to relate the subtyping system with equivalence on types.

Lemma 5.54 (Equivalence and subtyping) Let Γ be a well-formed context with
` Γ ≡ Γ′. Suppose in addition the types S and T well-kinded in Γ. If Γ `R S ≤ T ∈
K with Γ ` S ≡ S ′ ∈ K and Γ ` T ≡ T ′ ∈ K, then Γ′ `R S ′ ≤ T ′ ∈ K. The same
is true for the `C– and the `CS–system.

We introduced Γ ` S ≡ T ∈ K with the intention to characterize pairs of cut-free
subtyping derivations without promotion and reduction. The following two lemmas

82 Chapter 5 Stratifying Kinding and Subtyping

justify this claim. Lemma 5.55 proves the easier direction: equivalence of two types
implies the existence of two subtyping derivations of this restricted form. The reverse
implication is stated in Lemma 5.56.

Lemma 5.55 If Γ ` S ≡ T ∈ K, then Γ `C S ≤ T ∈ K and Γ `C T ≤ S ∈ K by
two cut-free subtyping derivations without //

β>-reduction and without the use of
R-Promote.

Lemma 5.56 Assume S and T well-kinded in Γ. If Γ `C S ≷ T ∈ K by two cut-free
subtyping derivations without β>-reduction and without instances of R-Promote,
then Γ ` S ≡ T ∈ K.

Note that for two types S and T in normal form, Γ `C S ≷ T ∈ K by two cut-free
derivations without promotion implies Γ ` S ≡ T ∈ K, since the rule of promotion
is the only rule that may destroy the normal form of the types in the statement.
After having proven, that the types of a subtype statement can always be reduced to
their unique normal form without loosing derivability, this observation will allow us
replace ≷ by equivalence on types.

5.8 Subject reduction for subtyping

The task of this section is to show that, for cut-free derivations, β>-reduction in
types does not interfere with the subtyping judgment. This will allow to carry out
the cut-elimination proof in the system with strong derivations so that we can rely
on the subgoals being in unique normal form.

As in F ω
≤ , the core of the argument is the preservation of the subtype relation un-

der substitution. Since the application rules of the subtyping system include polarized
application, we have to deal with polarized substitution, i.e., replacement of a type
variable with a given polarity by two types ordered appropriately. The application
rules in the subtyping system under consideration pose requirements upon the polar-
ity of one operator, only. This is mirrored in the coming substitution Lemma 5.58
by the fact that we have to prove preservation under monotone substitution, for ex-
ample, if the substituted variable occurs positively only on one side of the subtyping
statement.

That this weaker requirement is intuitively correct can be seen by reasoning the
following way: we can use transitivity to prove the required subtype relation; assum-
ing for example the variable A positive in S, but maybe not in T , with U1 ≤ U2,
we can prove in a first step [U1/A]S ≤ [U2/A]S, exploiting the monotonicity of A in
S. Afterwards [U2/A]S ≤ [U2/A]T by pointwise substitution, and finally we can use
transitivity to obtain [U1/A]S ≤ [U2/A]T .

Section 5.8 Subject reduction for subtyping 83

After preservation of subtyping under polarized substitution we will proceed in
much the same manner as for pure F ω

≤ , showing that the reduction of an outermost
redex on either the left-hand or the right-hand side of a subtyping statement preserves
its derivability (Lemma 5.61). As in the proof of Church-Rosser in Section A.1, we
extend these properties to a proof of preservation of subtyping under arbitrary multi-
step reduction by passing through an intermediate step where we show it for one-step
parallel reduction.

Before we treat the substitution property in its general form in Lemma 5.58, the
following simpler substitution lemma will take care of the case for reflexivity.

Lemma 5.57 (Substitution) Let Γ abbreviate the context Γ1, A:K ′, Γ2 and Γ′

abbreviate Γ1, [T1/A]Γ2. Suppose further Γ1 ` T1 ∈ K ′ and Γ1 ` T2 ∈ K ′. If
Γ ` S ∈ K, then Γ′ `C [T1/A]S ≤ [T2/A]S ∈ K, provided one of the following cases
holds:

1. ` Γ ◦A and Γ ` S ◦A.

2. ` Γ ◦A and Γ ` S +A and Γ1 `C T1 ≤ T2 ∈ K ′.

3. ` Γ ◦A and Γ ` S −A and Γ1 `C T2 ≤ T1 ∈ K ′.

4. Γ1 ` T1 ≡ T2 ∈ K ′.

In case 1 and 4 the stronger statement Γ′ ` [T1/A]S ≡ [T2/A]S ∈ K is implied.

Lemma 5.58 (Substitution preserves subtyping) Let Γ stand for the context
Γ1, A:K ′, Γ2 and Γ′ abbreviate Γ1, [V1/A]Γ2. Suppose further Γ1 ` V1 ∈ K ′ and
Γ1 ` V2 ∈ K ′, and S and T well-kinded in Γ. If Γ `C S ≤ T ∈ K, then Γ′ `C

[V1/A]S ≤ [V2/A]T ∈ K, provided one of the following cases holds:

1. ` Γ ◦A and Γ ` S ◦A. Moreover Γ ` V1 ∈ K ′ and Γ ` V2 ∈ K ′.

2. ` Γ ◦A and Γ ` S +A and Γ1 `C V1 ≤ V2 ∈ K ′.

3. ` Γ ◦A and Γ ` S −A and Γ1 `C V2 ≤ V1 ∈ K ′.

4. Γ1 ` V1 ≡ V2 ∈ K ′.

The same is true if one of the four conditions on the polarity of A holds for T on
the right-hand side instead of for S on the left.

The following two lemmas will allow us to perform one outermost β-reduction
step, resp. one >-reduction step, on both sides of a subtyping statement. The lemma
for the outermost β-step builds upon preservation of subtyping under substitution.

84 Chapter 5 Stratifying Kinding and Subtyping

Lemma 5.59

1. Assume the types S U1 and (Fun(A:K ′
1)T) U2 well-kinded in context Γ. If

Γ `C S ≤ Fun(A:K ′
1)T ∈ K1 →

? K2, then Γ `C S U1 ≤ [U2/A]T ∈ K2, provided
one of the following cases holds:

(a) Γ ` Fun(A:K ′
1)T ◦.

(b) Γ ` Fun(A:K ′
1)T + and Γ `C U1 ≤ U2 ∈ K ′

1.

(c) Γ ` Fun(A:K ′
1)T − and Γ `C U2 ≤ U1 ∈ K ′

1.

(d) Γ ` U1 ≡ U2 ∈ K ′
1.

2. Assume the types (Fun(A:K ′
1)S) U1 and T U2 well-kinded in Γ. If Γ `C

Fun(A:K ′
1)S ≤ T ∈ K1 →

? K2, then Γ `C [U1/A]S ≤ T U2 ∈ K2, provided one
of the following cases holds:

(a) Γ ` Fun(A:K ′
1)S ◦.

(b) Γ ` Fun(A:K ′
1)S + and Γ `C U1 ≤ U2 ∈ K ′

1.

(c) Γ ` Fun(A:K ′
1)S − and Γ `C U2 ≤ U1 ∈ K ′

1.

(d) Γ ` U1 ≡ U2 ∈ K ′
1.

Lemma 5.60 Assume the types Top(K ′) U and T well-kinded in Γ, and further
Top(K ′) U //

>Top(K ′′). If Γ `C Top(K ′) ≤ T ∈ K1 →
? K2, then Γ `C Top(K ′′) ≤

T U ∈ K2.

Lemma 5.61 (Outer β-step)

1. Assume the two types S and (Fun(A:K ′
1)T) U well-kinded in Γ. If Γ `C S ≤

(Fun(A:K ′
1)T) U ∈ K, then Γ `C S ≤ [U/A]T ∈ K.

2. Assume the two types (Fun(A:K ′
1)S) U and T well-kinded in Γ. If Γ `C

(Fun(A:K ′
1)S) U ≤ T ∈ K, then Γ `C [U/A]S ≤ T ∈ K.

It is now straightforward to generalize preservation of subtyping under one outer
reduction step to an arbitrary parallel reduction step. In the lemma we use parallel
reduction of contexts (written Γ // //

β>Γ′) as the pointwise extension of parallel
reduction on types.

Lemma 5.62 (Parallel reduction preserves subtyping) Suppose the types S and
T well-kinded in Γ.

1. If Γ `C S ≤ T ∈ K with S // //
β>S ′ and Γ // //

β>Γ′, then Γ′ `C S ′ ≤ T ∈ K.

Section 5.9 Strong normalization 85

2. If Γ `C S ≤ T ∈ K with T // //
β>T ′ and Γ // //

β>Γ′, then Γ′ `C S ≤ T ′ ∈ K.

After we can do one parallel step, the generalization to arbitrary reduction se-
quences is a direct corollary.

Corollary 5.63 (Reduction preserves subtypes) Assume the types S and T well-
kinded in Γ with Γ `C S ≤ T ∈ K. If S //∗

β>S ′ and T //∗
β>T ′, and furthermore

Γ //∗
β>Γ′, then Γ′ `C S ′ ≤ T ′ ∈ K.

Corollary 5.64 Suppose the four types S, S ′, T , and T ′ well-kinded in Γ with
S =β> S ′ and T =β> T ′. If Γ `C S ≤ T ∈ K, then Γ `C S ′ ≤ T ′ ∈ K.

Now that we know that subtyping in cut-free derivations is preserved under re-
duction we can use this fact to prove that a cut-free derivation can be strengthened,
i.e., turned into a derivation where all subtyping rules reduce their subgoals to normal
forms. We can achieve this using Corollary 5.63 each time a subgoal not in normal
form is generated. This can only be the case when R-Promote is used. We have to
take care, however, that this process of re-normalizing comes to an end.

For F ω
≤ , this is comparatively easy: without polarized application rules, reduc-

ing the types in a subtyping statement did not increase the number of instances of
R-Promote in the derivation. Since, on the other hand, promotion is the only rule
able to generate for statements in normal form subgoals which are not, one can use
the number of R-Promote’s as terminating measure (cf. Lemma 3.29 on page 36).

This simple argument does not work here, because now that the arguments of two
type applications in subtype relation need not be identical as for pointwise subtyping,
the substitution of the two different arguments may well increase the number of
R-Promote’s needed to prove that after substitution the subtype relation still holds.

So we take as termination measure based on the maximal number on β>Γ-steps
of the two types under comparison. To cope with the asymmetric rule of All-types,
we have to generalize this relation, considering Γ-steps only up-to equivalence of
contexts. We come back to strengthening cut-free derivations in Section 5.10.

5.9 Strong normalization

This section proves strong termination of the combination of the relations //
β>Γ

and ≡K
Γ , which we will use for the termination proof of the algorithm. The proof of

strong normalization of this relation will be by contradiction, where the assumption
of an infinite such sequence leads to an infinite β>Γ–sequence. We additionally
generalize Γ-reduction in that we will consider the context Γ up-to equivalence, only.

86 Chapter 5 Stratifying Kinding and Subtyping

One complication compared to the case of pure F ω
≤ is the rule for universal quan-

tification, which asymmetrically extends the context. To include this into the Γ–
and correspondingly β>Γ–reduction, we must generalize these relations in that we
consider the context Γ only up to equivalence. Before we can prove that a cut-free
derivation can be strengthened by re-normalizing subtype statements in the deriva-
tion each time an instance of R-Promote generates a subgoal not in normal form,
we prove strong-normalization of β>Γ≡-reduction. We start with the definition of
this more general reduction relation.

Definition 5.65 The binary family of relations //
Γ≡ on types is inductively de-

fined by the same set of rules as //
Γ from Definition A.10, with the exception of

the rule for applications which is relaxed to:

A T1 . . . Tn ↑Γ′ Γ′(A) T1 . . . Tn ` Γ′ ≡ Γ

A T1 . . . Tn
//
Γ≡Γ′(A) T1 . . . Tn

We combine this relation with β>-reduction in the same way as for //
Γ, writ-

ing //
β>Γ≡ for the union of the two. We will often use the composite relation

//∗
β>

//
Γ≡

//∗
β>, which we abbreviate by //

(β>)∗Γ≡.

First we collect three properties of this this relation in connection with the equi-
valence relation on types and contexts.

Lemma 5.66 Suppose ` Γ1 ≡ Γ2 and Γ1 ` T ∈ K. If T //
Γ1

T ′, then there exists
a type T ′′ with T //

Γ2
T ′′ and Γ1 ` T ′ ≡ T ′′ ∈ K:

T ′
Γ1

K
T ′′

T.

Γ1

OO

Γ2

>>

Lemma 5.67 (Equivalence and Γ-step) If Γ ` S ≡ T ∈ K and S //
ΓS ′, then

there exists a type T ′ such that T //
ΓT ′ and Γ ` S ′ ≡ T ′ ∈ K:

S ′ Γ

K
T ′

S
Γ

K

Γ

OO

T.

Γ

OO

Section 5.9 Strong normalization 87

Lemma 5.68 Assume Γ ` T ∈ K. If T //
Γ≡T ′, then there exists a type T ′′ such

that T //
ΓT ′′ and Γ ` T ′ ≡ T ′′ ∈ K:

T ′ Γ

K
T ′′

T.

Γ≡

OO

Γ

>>

Now we can transfer the termination result of Section A to prove strong ter-
mination of β>Γ≡–reduction. Note that //

(β>)∗Γ contains at least one ↑Γ-step,
whereas the β>-part may be empty. The reason is that for the Γ-part of the relation
we have a stronger diamond-property with respect to equivalence (Lemma 5.67 vs.
Lemma 5.40): for two equivalent types, a β>-step in one of the types does not mean
that also the second has to perform a β>-step to re-establish equivalence. Thus we
have to rely on the Γ-part to construct a contradiction.

Lemma 5.69 Assume Γ ` T ∈ K. Then there is no infinite //
(β>)∗Γ ≡K

Γ -
sequence starting from T .

Proof: Assuming an infinite //
(β>)∗Γ ≡K

Γ -sequence, starting from a well-kinded
type T , use Lemma 5.40 to construct an infinite //

(β>)∗Γ-sequence starting form
T , contradicting the strong termination of //

(β>)∗Γ from Lemma A.20.
So suppose Γ ` T ∈ K with an infinite sequence T (//

(β>)∗Γ ≡K
Γ)∞ originating

from T and assume the head of the sequence as

T //
(β>)∗ΓT ′

1 ≡
K
Γ T1

//
(β>)∗ΓT ′

2 ≡
K
Γ T2 (//

(β>)∗Γ ≡K
Γ)∞.

By an internal induction on the number of β>-steps, using Lemma 5.40, transitivity
of equivalence, and Lemma 5.67 for the Γ-step, there exists a type T ′′

1 such that the
following diagram commutes:

T ′′
2 Γ

K
T ′

2

T ′
1

β>∗Γ

OO

Γ

K
T1.

(β>)∗Γ

OO

By transitivity of equivalence (Lemma 5.34) we get Γ ` T ′′
2 ≡ T2 ∈ K. Hence using

the same corollary we can continue

88 Chapter 5 Stratifying Kinding and Subtyping

...
...

T ′′
3 Γ

K T ′
3

T ′′
2 Γ

K

(β>)∗Γ

OO

T ′
2 Γ

K
T2

(β>)∗Γ

OO

T ′
1

(β>)∗Γ

OO

Γ

K
T1

(β>)∗Γ

OO

T,

(β>)∗Γ

OO

yielding an infinite //
β>Γ-sequence starting from T . �

We later will also need the following slight generalization.

Lemma 5.70 Assume Γ ` T ∈ K. Then there is no infinite //
(β>)∗Γ≡ ≡K

Γ -
sequence starting from from T .

5.10 Strengthening

After this digression we show that cut-free derivations can be turned intro strong ones.
We use the following measure, similar to the one that allowed to prove termination
the algorithm for pure F ω

≤ .

Definition 5.71 (Rank) Assume the type U well-kinded in Γ. The rank of U in Γ
is defined the pair (n, c), where n is the maximum length of all //

β>Γ≡–reduction
sequences starting from U , and c the number of characters in U . The rank of a
well-kinded subtyping statement Γ ` S ≤ T ∈ K is the pairwise sum of the ranks of
S and T . The ranks are ordered lexicographically.

Lemma 5.72 (Strengthening) Suppose S and T well-kinded in Γ. If Γ `C S ≤
T ∈ K, then Γ `CS S ≤ T ∈ K.

Section 5.11 Characterization of strong, cut-free derivations 89

Proof of Lemma 5.72 on the preceding page: We are given Γ `C S ≤ T ∈ K.
By Corollary 5.63 and strong normalization of β>-reduction we obtain Γ `C S ! ≤
T ! ∈ K. The derivation of this statement is not necessarily strong since the rule
of promotion may generate subgoals not in normal form. By well-kindedness of
subderivation one can normalize these again using the same corollary.

So see, that this process is finite, observe that for each subtyping rule the rank
of the subtyping subgoals is strictly smaller than the rank of the goal. Especially for
universally quantified types we have:

S //!
β>All(A≤S1:K1)S2 T //!

β>All(A≤T1:K1)T2

Γ, A≤S1:K1 `C S2 ≤ T2 ∈ ? Γ ` S1 ≡ T1 ∈ K1

Γ `C S ≤ T ∈ ?

The maximal //
β>Γ≡–sequence starting from S is greater or equal than the

sequence in the extended context //
(β>)∗(Γ,A≤S1:K1)≡ starting from S2. This is also

true for T , since ` Γ, A≤S1:K1 ≡ Γ, A≤T1:K1 and //
β>Γ≡–reduction considers

contexts only up to equivalence. �

5.11 Characterization of strong, cut-free derivations

This section contains a couple of technical lemmas needed to prove admissibility of cut
in Section 5.12 and eliminating promotion for pairs of statements Γ `CS S ≷ T ∈ K
in Section 5.13.

For the different forms of types we present a characterization of their subtypes
together with a characterization of the respective subtype derivations; for example a
subtype of an arrow-type can only be an arrow-type itself, or it can be promoted and
reduced to an arrow-type. More complicated will be the treatment of the application
rules.

It will often be the case that the subtyping derivation under consideration ends
in a couple of instances of R-Promote. As in Section 3.5 for pure F ω

≤ , we use the
reduction relation↗Γ (cf. Definition 3.30) to describe the effect of such a derivation
upon a type.

By definition, ↗Γ ⊆ //∗
β>Γ. Since equivalence on types is well-behaved with

respect to β>-reduction and to Γ-reduction we get the following corollary:

Corollary 5.73 Assume Γ1 ` S ≡ T ∈ K and ` Γ1 ≡ Γ2. If S↗∗
Γ1

//!
β>S ′, then

there exists a type T ′ with T ↗∗
Γ2

//!
β>T ′ with Γ1 ` S ′ ≡ T ′ ∈ K.

The following two lemmas express easy reduction properties of this relation.

90 Chapter 5 Stratifying Kinding and Subtyping

Lemma 5.74 Assume the application S T well-kinded in Γ, with S and T in normal
form. If S↗∗

Γ
//!
β>A S1 . . . Sn, then S T ↗∗

Γ
//!
β>A S1 . . . Sn T .

Lemma 5.75 Suppose the types S, S ′, and T well-kinded in Γ. If Γ `CS S ≤ T ∈ K
and S ′↗∗

Γ
//!
β>S, then Γ `CS S ′ ≤ T ∈ K ′ for some kind K ′.

Before we come to the mentioned characterization of subtypes, we have a closer look
at the kinds of applications in normal form. In general, the subtyping system cannot
assure that, if Γ ` S ≤ T ∈ K and Γ ` S ∈ K ′, then also Γ ` T ∈ K ′, nor vice versa.
For example, a monotone operator may well be smaller than a constant one. But in
case of an application of the form Γ `CS A S1 . . . Sn ≤ A T1 . . . Tn ∈ K, we can infer,
that if the left-hand side carries a kind K ′, also the right-hand side does, and vice
versa. This is expressed in:

Lemma 5.76 Assume the types A S1 . . . Sn and A T1 . . . Tn well-kinded in Γ. Then
Γ ` A S1 . . . Sn ∈ K iff. Γ ` A T1 . . . Tn ∈ K.

The next two lemmas characterize the form of subtyping derivation in the system
with strong, cut-free derivation. We treat the case for applications seperately, as it
is more involved than the rest.

Lemma 5.77 (Subtypes of an application) Assume the types S and T well-kinded
in context Γ with T //!

β>A T1 . . . Tn for some n ≥ 0. If Γ `CS S ≤ T ∈ K, then

there are types S1, . . . , Sn such that S ↗∗
Γ

//!
β>A S1 . . . Sn. Moreover, for all Si

and Ti with 0 ≤ i ≤ n

Γ `CS A S1 . . . Si ≤ A T1 . . . Ti ∈ Ki

for some kind Ki and where Kn = K (we identify T0 and S0 with A to avoid some
extra case for i = 0) and, for each i > 0, one of the following cases holds:

1. Γ `A A S1 . . . Si−1 ◦ and Γ `A A T1 . . . Ti−1 ◦.

2. Γ `A A S1 . . . Si−1 + and Γ `A A T1 . . . Ti−1 + with Γ `CS Si ≤ Ti ∈ K ′
i

3. Γ `A A S1 . . . Si−1 − and Γ `A A T1 . . . Ti−1 − with Γ `CS Ti ≤ Si ∈ K ′
i.

4. Γ `A A S1 . . . Si−1 ± and Γ `A A T1 . . . Ti−1 ± with Γ ` Si ≡ Ti ∈ K ′
i.

Additionally, in the cases 2 and 3, the mentioned subtype statements are justified by
subderivations of Γ `CS S ≤ T ∈ K.

The next lemma is the analogue to the previous one, treating types other than
application.

Section 5.11 Characterization of strong, cut-free derivations 91

Lemma 5.78 (Characterization of subtypes) Assume the types S and T well-
kinded in Γ with Γ `CS S ≤ T ∈ K.

1. If T //!
β>T1 → T2, then S↗∗

Γ
//!
β>S1 → S2 with Γ `CS T1 ≤ S1 ∈ ? and

Γ `CS S2 ≤ T2 ∈ ?.

2. If T //!
β>All(A≤T1:K1)T2, then S ↗∗

Γ
//!
β>All(A≤S1:K1)S2 with Γ `

S1 ≡ T1 ∈ K1 and Γ, A≤S1:K1 `CS S2 ≤ T2 ∈ ?.

3. If T //!
β>Fun(A:K ′

1)T , then S ↗∗
Γ

//!
β>Fun(A:K ′

1)S
′ with Γ, A:K ′

1 `CS

S ′ ≤ T ′ ∈ K1 →
? K2.

Additionally, in all three parts, the mentioned subtype statements are justified by a
subderivation of Γ `CS S ≤ T ∈ K.

Lemma 5.79 Assume the types S and A U1 . . . Un well-kinded in context Γ, and
A U1 . . . Un in normal form. If Γ `CS S ≤ A U1 . . . Un ∈ K with Γ ` S ∈ K ′, then
also Γ ` A U1 . . . Un ∈ K ′.

The next lemma proves that for two applications with the same head variable and
with their arguments ordered appropriately, we can indeed “promote” both sides of
the subtype statement. This is a consequence of the strengthening lemma.

Lemma 5.80 Assume A S1 . . . Sn and A T1 . . . Tn well-kinded in Γ and in normal
form. If Γ `CS A S1 . . . Sn ≤ A T1 . . . Tn ∈ K, then Γ `CS Γ(A) S1 . . . Sn ≤
Γ(A) T1 . . . Tn ∈ K, provided for all Si and Ti with 1 ≤ i ≤ n one of the follow-
ing four cases holds (we again identify S0 and T0 with A to avoid an extra case for
i = 1):

1. Γ `A A S1 . . . Si−1 ◦ or Γ `A A T1 . . . Ti−1 ◦.

2. Γ `A A S1 . . . Si−1 + or Γ `A A T1 . . . Ti−1 +, and Γ `CS Si ≤ Ti ∈ Ki.

3. Γ `A A S1 . . . Si−1 − or Γ `A A T1 . . . Ti−1 −, and Γ `CS Ti ≤ Si ∈ Ki.

4. Γ `A A S1 . . . Si−1 ± or Γ `A A T1 . . . Ti−1 ±, and Γ ` Ti ≡ Si ∈ Ki.

We can now combine the last lemma with the characterization of subtypes from
Lemma 5.78 and Lemma 5.77 to prove that a sequence of↗Γ-steps of a type on the
right-hand side of a subtyping statement can indeed be mimicked by the type on the
left-hand side. These two important lemmas — we again treat application separately
— will help to solve one of the crucial cases in the proof of cut-elimination and will
also be a cornerstone in the elimination proof of promotion.

92 Chapter 5 Stratifying Kinding and Subtyping

Lemma 5.81 Assume S and T well-kinded in Γ with Γ `CS S ≤ T ∈ K and
T ↗∗

Γ
//!
β>A T1 . . . Tm. Then S↗∗

Γ
//!
β>A S1 . . . Sm for some type A S1 . . . Sm

with Γ `CS A S1 . . . Sm ≤ A T1 . . . Tm ∈ K.
Moreover, for all Si and Ti with 0 ≤ i ≤ m

Γ `CS A S1 . . . Si ≤ A T1 . . . Ti ∈ Ki

for some kind Ki with Kn = K (we identify T0 and S0 with A to avoid some extra
case, handling i = 0) and, for all i > 0, at least one of the following cases holds:

1. Γ `A A S1 . . . Si−1 ◦ and Γ ` A T1 . . . Ti−1 ◦.

2. Γ `A A S1 . . . Si−1 + and Γ ` A T1 . . . Ti−1 + with Γ `CS Si ≤ Ti ∈ K ′
i

3. Γ `A A S1 . . . Si−1 − and Γ ` A T1 . . . Ti−1 − with Γ `CS Ti ≤ Si ∈ K ′
i.

4. Γ ` Si ≡ Ti ∈ K ′
i.

Additionally, in the cases 2 and 3 the mentioned subtype statements are justified by
subderivations of Γ `CS S ≤ T ∈ K.

If further the sequence T ↗∗
Γ

//!
β>A T1 . . . Tm contains at least one promotion

step, so does S↗∗
Γ

//!
β>A S1 . . . Sm.

Lemma 5.82 Assume the types S and T well-kinded in Γ with Γ `CS S ≤ T ∈ K.

1. If T ↗∗
Γ

//!
β>T1 → T2, then there exists a type S1 → S2 with S ↗∗

Γ
//!
β>S1 → S2. Moreover Γ `CS T1 ≤ S1 ∈ ? and Γ `CS S2 ≤ T2 ∈ ?.

2. If T ↗∗
Γ

//!
β>All(A≤T1:K1)T2, then there exists a type All(A≤S1:K1)S2

with S ↗∗
Γ

//!
β>All(A≤S1:K1)S2. Moreover Γ ` S1 ≡ T1 ∈ K1 and

Γ, A≤S1:K1 `CS S2 ≤ T2 ∈ ?.

3. If T ↗∗
Γ

//!
β>Fun(A:K1)T , then there exists a type Fun(A:K1)S with S↗∗

Γ
//!
β>Fun(A:K1)S and Γ, A:K1 `CS S ≤ T .

Additionally for all cases, the mentioned subtype statements are justified by a sub-
derivation of the original derivation of Γ `CS S ≤ T ∈ K.

5.12 Cut elimination

In this section we prove that S-Trans is an admissible rule in the system with
strong derivations, i.e., as in Section 3.5 we will show, that Γ `CS S ≤ U ∈ K and
Γ `CS U ≤ T ∈ K implies Γ `CS S ≤ T ∈ K, assuming U well-kinded with K in Γ.

Section 5.12 Cut elimination 93

As before the proof will be by induction over the combined length of derivations of
Γ `CS S ≤ U ∈ K and Γ `CS U ≤ T ∈ K.

The inductive cut-elimination argument, comparing the immediate subgoals of
both derivations works for all possible combinations of rules with one exception: the
rule of promotion for the statement on the right. In this case, the subgoal reads
Γ `CS U ′ ≤ T ∈ K with U //!

β>A U1 . . . Un ↑Γ U ′ and there is no possibility to
make direct use of Γ ` U ′ ≤ T ∈ K for the inductive argument.

The solution in pure F ω
≤ was to treat this case without induction (cf. Section 3.5).

Instead, we directly were able to construct a derivation for the goal Γ `CS S ≤ T .
That a direct construction, avoiding induction, is possible in the unpolarized case
depends on two observations: first, we know that the normal form of the cut-type U
which, by the definition of promotion, must be an application A U ′

1 . . . U ′
m. Secondly,

with pointwise subtyping only, we have precise knowledge about the subtypes of
applications and the form of their derivation in the strong, cut-free system: the
statement Γ `CS S ≤ A U1 . . . Um ∈ K implies that S ↗∗

Γ
//!
β>A U1 . . . Um.

Thus the type S can seamlessly be promoted and reduced to U = A U1 . . . Um and
one can obtain a derivation for the goal Γ ` S ≤ T ∈ K from the derivation of
Γ ` U ≤ T ∈ K by an appropriate number of instances of R-Promote — and
especially without induction.

In presence of the more general form of application rules, the above observation
that allowed to avoid induction in the critical case of promotion, namely the knowl-
edge that S↗∗

Γ
//!
β>A U1 . . . Um, no longer holds. Instead, the system now only

enjoys the weaker property of Lemma 5.77 that a cut-free derivation of the statement
Γ `CS S ≤ A U1 . . . Um ∈ K implies

S↗∗
Γ

//!
β>A S1 . . . Sm.

Each of the types Si is no longer identical to the corresponding Ui, as was the case
for pointwise application, but related with Ui in accordance with the kind of the head
variable A.

To treat the case of R-Promote in the last step for Γ `CS U ≤ T ∈ K, we can
use the characterization of subtyping derivations from Section 5.11. For the inductive
cut-elimination argument we no longer rely on the subtyping statements produced
as immediate subgoals for both statements. Using Lemma 5.77 and 5.78 we can
distinguish according to the structure of T ’s normal form.

So take again the arrow case as illustration. If T //!
β>T1 → T2, we cannot be

sure that the last rule applied for Γ `CS U ≤ T ∈ ? was R-Arrow, but we know
that there exists a derivation, which eventually does use R-Arrow, which is, after
some some instances of R-Promote. Thus we know

U ↗∗
Γ

//!
β>U1 → U2 with Γ `CS T1 ≤ U1 ∈ ? and Γ `CS U2 ≤ T2 ∈ ?,

94 Chapter 5 Stratifying Kinding and Subtyping

where the two subtyping statements are justified by subderivations of Γ `CS U ≤ T ∈
?.

With this knowledge about the cut-type U , we continue with the left-hand state-
ment Γ `CS S ≤ U ∈ ?. As a subtype of U , type S can mimic the sequence of
promotions and reductions of U , resulting in

S↗∗
Γ

//!
β>S1 → S2 with Γ `CS U1 ≤ S1 ∈ ? and Γ `CS S2 ≤ U2 ∈ ?,

where again both subtyping statements are justified by subderivations of the original
one for Γ `CS S ≤ U ∈ ?. This suffices to fit together the corresponding pairs of
statements by induction, yielding Γ `CS T1 ≤ S1 ∈ ? and Γ `CS S2 ≤ T2 ∈ ?, and
by R-Arrow Γ `CS S1 → S2 ≤ T2 → T2 ∈ ?. From there it is easy to “descend”
the sequence of promotions and reductions S ↗∗

Γ
//!
β>S1 → S2 back to the goal

Γ `CS S ≤ T ∈ ?.

That this inductive argument also works for All-types, which asymmetrically ex-
tends the contexts, is a consequence of the properties of equivalence: Lemma 5.54
shows that equivalence behaves symmetrically with respect to contexts and derivabil-
ity of subtyping statements is preserved under exchange of equivalent contexts.

Proposition 5.83 (Cut elimination) Suppose S, T , and U well-kinded in context
Γ. If Γ `CS S ≤ U ∈ K and Γ `CS U ≤ T ∈ K, then Γ `CS S ≤ T ∈ K.

5.13 Elimination of promotion

As explained in the proof outline in Section 5.2, the motivation to introduce equi-
valence on types was to have a restricted version of a pair of subtyping statements
Γ ` S ≤ T ∈ K and Γ ` T ≤ S ∈ K (abbreviated by Γ ` S ≷ T ∈ K) in that the
two derivations neither use transitivity nor promotion, and not even reduction in the
premises is allowed (cf. Lemma 5.55 and Lemma 5.56).These strong restrictions were
necessary to be able to prove preservation of subtyping under reduction, and, more
specifically, preservation of subtyping under polarized substitution (Lemma 5.58).

The original subtyping system from Section 4.3, though, uses a more natural
formulation of equivalence of two types for the arguments in S-App± and the upper
bounds of universally quantified types (even if we did not call it so): the requirement
is that both types are mutually less or equal the other, irrespective of restrictions on
the form of derivation justifying both statements.

It is now our obligation to show that we have not unduly simplified the system
for sake of the subject reduction proof, i.e. to show that Γ ` S ≤ T ∈ K and
Γ ` T ≤ S ∈ K together imply Γ ` S ≡ T ∈ K.

Section 5.14 Decidability of polarized subtyping 95

We do so in the `CS-system, where the two derivations, albeit cut-free, may
contain instances of R-Promote and thus may use β>-reduction in the premises,
even when starting from two type in normal form. Unlike the cut-elimination proof
of the previous section, the proof of this property will not be by induction on the
combined length of both derivations, but by induction on the sum of ranks of two
statements.

The proof of this section highlights one difference between pure F ω
≤ and the po-

larized version. In F ω
≤ , the pair of statements Γ ` S ≷ T implies S =β> T or, in

case of normal forms, S = T . In the presence of the new polarized subtyping rules
this no longer holds; assuming S and T again in normal form, we get the weaker
relation Γ ` S ≡ T ∈ K, which enjoys preservation under constant substitution
(cf. Lemma 5.39). The same difference between the two systems shows up in the
two different subtyping rules for All-types: the “equal bounds” requirement has to
be relaxed to the “mutual subtype”-requirement.

Proposition 5.84 (Elimination of promotion) If Γ `CS S ≤ T ∈ K and Γ `CS

T ≤ S ∈ K, then neither derivation contains an instance of R-Promote.

Starting with two types in normal form, promotion is the only rule that may
destroy the normal form of the types in a subderivation. Hence we immediately get
the following:

Corollary 5.85 If Γ `CS S ≷ T ∈ K with S and T in normal form, then Γ ` S ≡
T ∈ K.

5.14 Decidability of polarized subtyping

This section puts the pieces together, combining cut-elimination and the elimination
of promotion into one proof that the original version of the subtyping system with
kinding and subtyping mutually dependent, and the stratified version with one strong,
cut-free derivations are equivalent, after all.

Two directions we have to show: soundness and completeness. We start with the
completeness of the `CS-system with respect to the original formulation of Section 4.3.
Section 5.14.3 finally presents an algorithm for subtyping.

5.14.1 Completeness

We start with completeness of strong, cut-free derivations. The key Lemma 5.87 for
the completeness result justifies the statements for variable occurrence of the reducing
system by proving that these rules are complete wrt. to the original formulation. The

96 Chapter 5 Stratifying Kinding and Subtyping

proof hinges on the fact that for two equivalent types, there is no subtyping derivation,
relating the two with an instance of promotion (Proposition 5.84).

First a technical lemma, collapsing two related type variables into one.

Lemma 5.86 Let Γ = Γ1, A2:K
′, A1≤A2:K

′, Γ2 or Γ = Γ1, A2:K
′, A1:K

′, Γ2. Let
further Γ′ stand for Γ1, A:K ′, [A/A1][A/A2]Γ2. Suppose in addition S and T well-
kinded in Γ.

1. If ` Γ ok then ` Γ′ ok .

2. If Γ ` T ∈ K, then Γ′ ` [A/A1][A/A2]T ∈ K.

3. If Γ ` T ?A′ with A′ 6= A1 and A′ 6= A2, then Γ′ ` T ?A′ .

4. If Γ `CS S ≤ T ∈ K then Γ′ `CS [A/A1][A/A2]S ≤ [A/A1][A/A2]T ∈ K.

Lemma 5.87

1. If Γ1, A2:K
′, A1≤A2:K

′, Γ2 `CS [A1/A]T ≤ [A2/A]T ∈ K, then Γ′ ` T ! +A.

2. If Γ1, A1:K
′, A1≤A2:K

′, Γ2 `CS [A2/A]T ≤ [A1/A]T ∈ K, then Γ′ ` T ! −A.

3. If Γ1, A2:K
′, A1:K

′, Γ2 `CS [A1/A]T ≤ [A2/A]T ∈ K, then Γ′ ` T ! ◦A.

In all three cases, let Γ′ = Γ1, A:K ′, [A/A1][A/A2]Γ2 with ` Γ′ ◦A, and T be well-
kinded in the given context of the subtyping statement.

Proposition 5.88 (Completeness)

1. If `O Γ ok , then ` Γ ok .

2. If Γ `O T ∈ K, then Γ ` T ! ∈ K.

3. If Γ `O S ≤ T ∈ K, then Γ `CS S ! ≤ T ! ∈ K.

Proof: All three parts by induction on the length of derivation.
The first part for contexts is straightforward, as the rules for both formulations

coincide.
Also in the second part, most cases are solved straightforwardly by induction and

preservation of kinding under reduction (Lemma 5.25) for the case of K-Arrow-E

and of K-All; the difference between the two systems surfaces only in the arrow-
introduction rules.

Section 5.14 Decidability of polarized subtyping 97

Case K-Arrow-I+: Γ, A:K1 `O T ∈ K2

Γ, A2:K1, A1≤A2:K1 `O [A1/A]T ≤ [A2/A]T ∈ K2

Γ `O Fun(A:K1)T ∈ K1 →+ K2

By induction Γ, A:K1 ` T ! ∈ K2 and Γ, A2:K1, A1≤A2:K1 `CS [A1/A]T ≤ [A2/A]T ∈
K2. By Lemma 5.87 we get Γ, A:K1 ` T ! +A and we can conclude by K-Arrow-I?:

Γ, A:K1 ` T ! ∈ K2 Γ, A:K1 ` T ! +A

Γ ` Fun(A:K1)T
! ∈ K1 →+ K2

The remaining three cases for arrow-introduction are similar, using Corollary 5.6
for the ±-case.

Finally the cases for subtyping.

Case S-Conv: S =β> T Γ `O S, T ∈ K

Γ `O S ≤ T ∈ K

By induction Γ ` S ! ∈ K and Γ ` T ! ∈ K, and the case follows with R-Refl and
uniqueness of normal forms.

Case S-Trans: Γ `O S ≤ U ∈ K Γ `O U ≤ T ∈ K

Γ `O S ≤ T ∈ K

By induction we get Γ `CS S ! ≤ U ! ∈ K and Γ `CS U ! ≤ T ! ∈ K. Thus by uniqueness
of normal forms and cut-elimination (Proposition 5.83) Γ `CS S ! ≤ T ! ∈ K.

Case S-TVar: Γ `O A ∈ K

Γ `O A ≤ Γ(A) ∈ K

By induction on part 1 of the lemma we get Γ ` A ∈ K. The context Γ is well-
formed, and thus of the form Γ = Γ1, A≤T :K ′, Γ2, i.e. Γ(A) = T ′ and K ′ ≤ K. By
the corresponding generation lemmas Γ1 `O T ∈ K ′ by a subderivation, hence by
induction Γ1 ` T ∈ K ′, and further by subsumption and weakening Γ ` T ∈ K.
Thus the case follows by R-Promote, R-Refl, and preservation of kinding under
reduction.

Case S-App+: Γ `O S ∈ K1 →+ K2 Γ `O U1 ≤ U2 ∈ K1

Γ `O S U1 ≤ S U2 ∈ K2

By induction we get Γ ` S ! ∈ K1 →+ K2 and Γ `CS U !
1 ≤ U !

2 ∈ K1. Using R-App+l

(or R-App+r) and reflexivity of subtyping, we can conclude:

Γ `A S! + Γ ` S! ≤ S! ∈ K1 → K2 Γ `CS U !
1 ≤ U !

2 ∈ K1

Γ `C S! U !
1 ≤ S! U !

2 ∈ K2

98 Chapter 5 Stratifying Kinding and Subtyping

(In case, the minimal polarity of S ! is Γ `A S ! ◦, one of the constant applica-
tion rules will do.) Note that the derivation is not necessarily strong, but with
Lemma 5.72 (using additionally Lemma C.2, induction, and preservation of kind-
ing under reduction to check the well-kindedness condition of this lemma) finally
Γ `CS (S U1)

! ≤ (S U2)
! ∈ K2.

Case S-App±: Γ `O S ∈ K1 →±K2 Γ `O U1 ≷ U2 ∈ K1

Γ `O S U1 ≤ S U2 ∈ K2

By induction Γ ` S ! ∈ K1 →± K2 and Γ `CS U !
1 ≷ U !

2 ∈ K1. With the help
of Lemma C.2, Corollary 5.85 yields Γ ` U !

1 ≡ U !
2 ∈ K1. Thus by R-App±l (or

R-App±l) and reflexivity of subtyping we conclude:

Γ `A S! ± Γ ` S! ≤ S! ∈ K1 → K2 Γ ` U !
1 ≡ U !

2 ∈ K1

Γ `C S! U !
1 ≤ S! U !

2 ∈ K2

Again, in case the minimal polarity of S ! is better than ±, the corresponding appli-
cation rule gives the result, using Lemma 5.55 for the monotone and antimonotone
case, and with Lemma 5.72 finally Γ `CS (S U1)

! ≤ (S U2)
! ∈ K2. The remaining

application cases are analogous.

Case S-All: Γ `O S1 ≷ T1 ∈ K1 Γ, A≤S1:K1 `O S2 ≤ T2 ∈ ?

Γ `O All(A≤S1:K1)S2 ≤ All(A≤T1:K1)T2 ∈ ?

By induction we get the two subtyping statements Γ `CS S !
1 ≷ T !

1 ∈ K1 and further-
more Γ, A≤S1:K1 `CS S !

2 ≤ T !
2 ∈ ?. By Corollary 5.85 Γ `CS S !

1 ≡ T !
1 ∈ K1 (using

again Lemma C.2 and preservation of kinding under reduction). By preservation of
subtyping under reduction (Corollary 5.63) Γ, A≤S !

1:K1 `CS S !
2 ≤ T !

2 ∈ ?, and the
case follows with R-All. �

5.14.2 Soundness

The soundness proof basically will be by straightforward induction. The statements
about variable occurrence in the reducing system, though, have no equivalent in the
original fomulation. So we introduce statements for the polarity of variable occurrence
using the same set of rules as in Definition 5.3. Of course, the difference here is that
the polarity statements depend on kinding derivations in the original, unstratified
system.

Definition 5.89 The relation Γ `O T ?A is defined analogous to the corresponding
relation for the stratified system in Definition 5.3.

Since for the extra statements Γ `O T ?A we use exactly the same rules as in
Definition 5.3, the same generation lemmas holds:

Section 5.14 Decidability of polarized subtyping 99

Observation 5.90 (Generation for (minimal) kinds) With the exception of the
case for type operators (part 2(d)) the generation Lemma 5.8 is correspondingly valid
for statements Γ `O T ?A. Also Lemma 5.21 holds.

The following lemma is the key step in the soundness proof. It basically proves in
part 4 that the newly introduced statements Γ `O T ?A of variable occurrence behave
correctly wrt. to the polarized kinding definition of Section 4.4 which does not rely
on variable occurrence. It can be seen as the reverse direction of Lemma 5.86 for the
completeness proof. Interestingly, the proof of the lemma needs the completeness of
the stratified system, already.

Lemma 5.91 Let Γ abbreviate the context Γ0, A1:K1, Γ2, . . . , An:Kn, Γn for some
n ≥ 0. Let ~A stand for the vector of type variables (A1 . . . An), and ~A′ and ~A′′

for the primed versions (A′
1 . . . A′

n) and (A′′
1 . . . A′′

n), correspondingly. (We assume
all variables involved to be distinct.) As further abbreviation we use Γl

i and Γr
i if

Γ = Γl
i, Ai:Ki, Γr

i . Let finally Γ′ be a context such that [~A/ ~A′′][~A/ ~A′]Γ′ = Γ (i.e. Γ′

equals Γ′l
i, A′′

i :Ki, A′
i:Ki, Γ′r

i or Γ′l
i, A′′

i :Ki, A′
i
≤A′′

i :Ki, Γ′r
i , or A′

i and A′′
i transposed.)

1. If `O Γ ok , then `O Γ′ ok .

2. If Γ `O T ∈ K and T ′ a type such that [~A/ ~A′′][~A/ ~A′]T ′ = T , then Γ′ `O T ′ ∈ K.

3. If Γ `O T ?A′ and T ′ a type such that [~A/ ~A′′][~A/ ~A′]T ′ = T , then Γ′ `O T ′ ?A′ .

4. Assume Γ `O T ∈ K with T in normal form, and let σ1 and σ2 be two sub-
stitutions with domain {A1, . . . , An} and where for all Ai, σ1(Ai) = A′

i or
σ1(Ai) = A′′

i ; likewise for σ2. Then Γ′ `O Tσ1 ≤ Tσ2 ∈ K provided for all Ai

one of the following cases hold:

(a) Γ ` T ◦Ai
.

(b) Γ ` T +Ai
, where σ1(Ai) = A′

i and σ2(Ai) = A′′
i , and furthermore Γ′ =

Γ′l
i, A′′

i :Ki, A′
i
≤A′′

i :Ki, Γ′r
i .

(c) Γ ` T −Ai
, where σ1(Ai) = A′

i and σ2(Ai) = A′′
i , and furthermore Γ′ =

Γ′l
i, A′

i:Ki, A′′
i
≤A′

i:Ki, Γ′r
i .

(d) σ1(Ai) = σ2(Ai).

In the cases a) – c) we additionally assume `O Γ ◦Ai
.

With the knowledge that variable occurrence behaves as expected, the soundness
proof is straightforward.

Lemma 5.92 (Soundness)

100 Chapter 5 Stratifying Kinding and Subtyping

1. If ` Γ ok , then `O Γ ok .

2. If Γ ` T ?A, then Γ `O T ?A.

3. If Γ ` T ∈ K, then Γ `O T ∈ K.

4. If Γ ` S ≡ T ∈ K, then Γ `O S ≤ T ∈ K and Γ `O T ≤ S ∈ K.

5. Assume S und T well-kinded in context Γ. If Γ `CS S ≤ T ∈ K, then Γ `O

S ! ≤ T ! ∈ K.

5.14.3 Algorithm

We have now arrived at a reasonably deterministic system. We have stratified the
system by introducing statements for variable occurrence, eliminated the cut-rule
of transitivity, have shown that Γ ` S ≷ T ∈ K can be reduced to checking Γ `
S ≡ T ∈ K, and have proven that reducing types to normal form does not loose any
expressiveness. But there are still some ambiguities concerning the rule of promotion,
and concerning kinding.

Kinding

Let us first consider kinding. As it stands, the subtyping system defines a quarterny
relation between two types S and T , a context, and a kind. Our goal is to have
the algorithm answer the question whether S is smaller than T in the given context,
determining on-the-fly a corresponding kind. As with the kinding algorithm, the
natural way to proceed is to determine in each subtyping rule an appropriate kind
as strict as possible and relaxing the kinding condition using the least upper bound
of two kinds whenever necessary. (This strategy is justified by well-kindedness of
subderivations in Lemma 5.49 and especially Lemma 5.52 that allows for a subtyping
statement Γ `CS S ≤ T ∈ K to weaken K to any kind K ′ with K ≤ K ′ without
loosing derivability.) This means the algorithm does not simply yield a boolean
answer whether or not S is smaller then T in a given context, but returns the minimal
kind K for which Γ ` S ≤ T ∈ K in case of success, and false, if S and T are
unrelated in the given context. In a similar vein we adapt the algorithm for checking
the equivalence of two types.

Promotion vs. application

The second ambiguity mentioned above concerns the application rules on the one
hand and the promotion rule on the other. In cases where we have to compare two
applications A S1 . . . Sn and A′ T1 . . . Tm and where A 6= A′, the situation is clear:

Section 5.14 Decidability of polarized subtyping 101

Lemma 5.77 tells us, even if taking one of the application rules might lead to a success,
an algorithm might as well choose R-Promote.

This means we can make the system even more deterministic by allowing applica-
tions only in cases where the head variables on both sides of the subtyping statement
coincide. In these cases, where Γ ` A S1 . . . Sn ≤ A T1 . . . Tn ∈ K, we can addition-
ally use the identity of the kinds on both sides (Lemma 5.76), so that the distinction
between R-App+l and R-App+r, for example, is no longer necessary. In this way
we can simplify `CS-system a little more, allowing only four application rules instead
of eight, one for each polarity. In the monotone case, for instance, it suffices to have
one rule

S //!
β>A S1 . . . Sn T //!

β>A T1 . . . Tn K ′
1 ≤ K1

Γ `A Sn ≤ Tn ∈ K ′
1

Γ `A A S1 . . . Sn−1 ≤ A T1 . . . Tn−1 ∈ K1 →
+K2

Γ `A S ≤ T ∈ K2
(A-App+)

insisting on the head variable on both sides to coincide.

As we have just argued, we need not use one of the application rules for types
whose head variables are not identical. More complicated is the question, whether or
not we should use the rule of promotion in case they do.

At first glance, one might think that in a situation like Γ `CS A S1 . . . Sn ≤
A T1 . . . Tn ∈ K the rule of promotion is the wrong choice. The following example
shows that this is not true:

A (A T) ↑Γ Id (A T) //!
β>A T Γ `CS A T ≤ A T ∈ ?

Γ `CS A (A T) ≤ A T ∈ ?

where Γ = Γ, A≤Id :? →+?. In this example, though, there exists a derivation ending
with R-App+, as well, so it might still be the case that for two applications with
the same head variable, it doesn’t matter whether to use R-Promote or one of the
application rules, and taking an application rule would be at least a safe choice. The
following example proves otherwise:

Example 5.93 Let S ′
1 = Fun(A′:?)A (S1 A′) and S ′

2 = Fun(A′′:? → ?)A′′ S2 and
furthermore Γ = A≤S ′

2:(? → ?) →+ ?. We can thus derive (assuming S1 S2 in normal
form with the kinds Γ ` S1 ∈ ? → (? → ?) and Γ ` S2 ∈ ?):

A S ′
1 ↑Γ S ′

2 S ′
1

S ′
2 S ′

1
//!
β>A (S1 S2) Γ ` A (S1 S2) ∈ ?

R-Refl
Γ `CS S ′

2 S ′
1 ≤ A (S1 S2) ∈ ?

R-Promote
Γ `CS A S ′

1 ≤ A (S1 S2) ∈ ?

102 Chapter 5 Stratifying Kinding and Subtyping

On the other hand, this time there is no derivation ending with an instance of
R-App+:

Γ `CS A ≤ A ∈ ? →+?

?

Γ `CS S ′
1 = Fun(A′:?)A (S1 A′) ≤ A (S1 S2) ∈ ?

Γ `CS A S ′
1 ≤ A (S1 S2) ∈ ?

For the right subgoal there is no rule applicable. The example thus shows that for
statements Γ `CS A S1 . . . Sn ≤ A T1 . . . Tn ∈ K there are cases where we crucially
depend on R-Promote.

On the other hand it is easy to think of situations where taking the promotion
rule is the wrong choice. This means that for checking an application of the form
Γ `CS A S1 . . . Sn ≤ A T1 . . . Tn ∈ K there is no way to know beforehand which
direction to take: if the algorithm tries to use one of the application rules it has to
call itself checking the subtype relation for all pairs of arguments. If the check fails,
still the promotion rule might lead to a success. The effort, though, spent in checking
pairs Si and Ti is, in general, lost. And choosing the promotion rule might lead to a
dead end, as well. This means that in these cases the algorithm has to backtrack.

Remember that with pointwise subtyping only, the dilemma is not present: the
identity of the arguments of two applications Γ `CS A S1 . . . Sn ≤ A T1 . . . Tn ∈ K
(i.e. the identity of the two applications in normal form) can be “locally” checked,
i.e. without resorting to a recursive call for each pair of Si and Ti.

So, finally, we arrived at a subtyping algorithm.

Definition 5.94 (Subtyping algorithm) Assume S and T well-kinded in context
Γ and in normal form. The subtyping algorithm Γ `A S ≤ T ∈ K is given inductively
by the rules below.

Γ `A U ∈ K

Γ `A U ≤ U ∈ K
(A-Refl)

S ↑Γ
//!
β>U Γ `A S ∈ K1 Γ `A U ≤ T ∈ K2

Γ `A S ≤ T ∈ K1 ∨ K2
(A-Promote)

Γ `A S ∈ K Γ `A Top(K ′) ∈ K

Γ `A S ≤ Top(K ′) ∈ K1 ∨ K2

(A-Top)

Γ `A T1 ≤ S1 ∈ ? Γ `A S2 ≤ T2 ∈ ?

Γ `A S1 → S2 ≤ T1 → T2 ∈ ?
(A-Arrow)

Section 5.14 Decidability of polarized subtyping 103

Γ, A≤S1:K1 `A S2 ≤ T2 ∈ ? Γ `A S1 ≡ T1 ∈ K1

Γ `A All(A≤S1:K1)S2 ≤ All(A≤T1:K1)T2 ∈ ?
(A-All)

Γ, A:K1 `A S ′ ?′A Γ, A:K1 `A T ′ ?′A ? = ?′ ∨ ?′′

Γ, A:K1 `A S ′ ≤ T ′ ∈ K2

Γ `A Fun(A:K1)S ′ ≤ Fun(A:K1)T ′ ∈ K1 →? K2

(A-Abs)

K ′
1 ≤ K1 Γ `A Sn ≡ Tn ∈ K ′

1

Γ `A A S1 . . . Sn−1 ≤ A T1 . . . Tn−1 ∈ K1 → K2

Γ `A A S1 . . . Sn ≤ A T1 . . . Tn ∈ K2
(A-App±)

K ′
1 ≤ K1 Γ `A Sn ≤ Tn ∈ K1

Γ `A A S1 . . . Sn−1 ≤ A T1 . . . Tn−1 ∈ K1 →
+ K2

Γ `A A S1 . . . Sn ≤ A T1 . . . Tn ∈ K2

(A-App+)

K ′
1 ≤ K1 Γ `A Tn ≤ Sn ∈ K1

Γ `A A S1 . . . Sn−1 ≤ A T1 . . . Tn−1 ∈ K1 →
−K2

Γ `A A S1 . . . Sn ≤ A T1 . . . Tn ∈ K2
(A-App−)

K ′
1 ≤ K1 K ′′

1 ≤ K1 Γ `A Sn ∈ K ′
1 Γ `A Tn ∈ K ′′

1

Γ `A A S1 . . . Sn−1 ≤ A T1 . . . Tn−1 ∈ K1 →
◦K2

Γ `A A S1 . . . Sn ≤ A T1 . . . Tn ∈ K2

(A-App◦)

Proposition 5.95 (Termination of the algorithm) Suppose Γ ` S ∈ KS and
Γ ` T ∈ KT and both types in normal form. Then the system of Definition 5.94
always terminates with Γ, S, and T as input.

Proof: The assumption that the rules of the algorithm can generate a tree of sub-
typing statements of infinite depth contradicts strong termination (Lemma 5.70) of

//
β>Γ≡-reduction. �

Proposition 5.96 (Decidability of subtyping) The subtyping relation Γ ` S ≤
T ∈ K is decidable.

Proof: That in order to decide whether Γ ` S ≤ T ∈ K, we can use the terminating
procedure of Definition 5.94, is a is a consequence of the following:

Γ `O S ≤ T ∈ K iff. Γ `A S ! ≤ T ! ∈ K ′ for some K ′ ≤ K.

By soundness of completeness of strong, cut-free derivations (Proposition 5.92 and
5.88) we know, that the original subtyping system is equivalent to the stratified
variant with strong, cut-free derivations. That we can restrict the algorithm to
the four A-App?–rules instead of the eight R-App?l– and R-App?r–rules follows

104 Chapter 5 Stratifying Kinding and Subtyping

from the characterization of subtypes of an applications in Lemma 5.77 and from
Lemma 5.76. That finally the subtyping algorithm gives back a kind less or equal
to the non-algorithmic system can be proven by straightforward induction, using the
generation lemma for kinds, soundness and completeness of the kinding algorithm,
well-kindedness of subderivations, and the properties of the subkinding relation. �

Chapter 6

Typing

At the end of the previous chapter, we derived an algorithm for checking the polarized
subtyping relation by controlling the non-syntax-directed rules of transitivity and
conversion. Now we transfer this result to the typing relation, eliminating the rule of
subsumption from the system defined in Section 4.5 and accounting for its effects by
extending some of the other rules.1

Compared to what we had to do for subtyping, this is actually a rather simple
task. Indeed, the resulting algorithm strongly resembles standard algorithms for
typechecking F≤ and pure F ω

≤ . The only essential difference comes from the fact that
the promotion relation here must deal with application in addition to the promotion
of type variables. As usual, we obtain the algorithm by analyzing the shapes of
minimal types.

First, we check that the typing relation guarantees well-kindedness of derivable
statements:

Lemma 6.1 If Γ ` t ∈ T , then Γ ` T ∈ ?.

The minimal type of an expression is a type smaller or equal to all the other types
of the expression. For the algorithm, we also need to talk about a term’s minimal
types of certain specific shapes.

Definition 6.2 (Minimal, arrow-minimal, and All-minimal types)

1. A type S is minimal for a term s in a context Γ if Γ ` s ∈ S and, for all T with
Γ ` s ∈ T , we have Γ ` S ≤ T ∈ ?.

2. A type S1 → S2 is arrow-minimal for s in Γ if Γ ` s ∈ S1 → S2 and, for all
arrow-types T1 → T2 with Γ ` s ∈ T1 → T2, we have Γ ` S1 → S2 ≤ T1 → T2 ∈
?.

1Basically the same development as given below proves also decidability of typing for the pure
case. Cf. [PS97].

106 Chapter 6 Typing

3. A type All(A≤S1:K1)S2 is All-minimal for s in Γ if Γ ` s ∈ All(A≤S1:K1)S2

and, for all All-types All(A≤T1:K1) T2 with Γ ` s ∈ All(A≤T1:K1) T2, we have
Γ ` All(A≤S1:K1) S2 ≤ All(A≤T1:K1) T2 ∈ ?.

We next show how All-minimal and arrow-minimal types of a term can be calcu-
lated from its minimal type. First we transfer Lemma 5.78 to the original subtyping
system. In the following we write S↗!

Γ T if S↗∗
Γ T and if there exists not T ′ such

that T ↗Γ T ′ (Cf. Definition 3.30).

Corollary 6.3

1. Let S and T1 → T2 be well-kinded in Γ. If Γ ` S ≤ T1 → T2 ∈ ?, then S ↗!
Γ

//!
β>S1 → S2 for some type S1 → S2 with Γ ` S1 → S2 ≤ T1 → T2 ∈ ?.

2. Let S and All(A≤T1:K1)T2 be well-kinded in Γ. If Γ ` S ≤ All(A≤T1:K1)T2 ∈ ?,
then S ↗!

Γ
//!
β>All(A≤S1:K1)S2 for some type All(A≤S1:K1)S2 with Γ `

All(A≤S1:K1)S2 ≤ All(A≤T1:K1)T2 ∈ ?.

Corollary 6.4

1. If the type S is minimal for s in Γ and S↗!
Γ

//!
β>S1 → S2, then S1 → S2 is

arrow-minimal for s in Γ.

2. If the type S is minimal for s in Γ and S ↗!
Γ

//!
β>All(A≤S1:K1)S2, then

All(A≤S1:K1)S2 is All-minimal for s in Γ.

The typing algorithm can now be obtained directly from the original typing rela-
tion by removing T-Subsumption — in effect, restricting the set of types derivable
for a well-typed term to one of its minimal types — and generalizing the application
and type application rules to compensate for this restriction in their premises. We
use `A to distinguish the typing algorithm from the original typing relation.

Definition 6.5 (Typechecking algorithm)

` Γ ok

Γ `A x ∈ Γ(x)
(A-Var)

Γ, x:T1 `A e ∈ T2

Γ `A fun(x:T1)e ∈ T1 → T2

(A-Arrow-I)

S↗!
Γ

//!
β>T1 → T2

Γ `A s ∈ S Γ `A t ∈ T Γ `A T ≤ T1 ∈ ?

Γ `A s t ∈ T2
(A-Arrow-E)

107

Γ, A≤T1:K1 `A e ∈ T2

Γ `A fun(A≤T1:K1)e ∈ All(A≤T1:K1)T2
(A-All-I)

T ↗!
Γ

//!
β>All(A≤T1:K1) T2

Γ `A t ∈ T Γ ` S ∈ K Γ `A S ≤ T1 ∈ K1

Γ `A t S ∈ [S/A]T2
(A-All-E)

The termination of this algorithm is straightforward, given the decidability of kinding,
the termination of the subroutine for checking equivalence and subtyping, and the
strong normalization of β>Γ-reduction, which guarantees that S ↗!

Γ
//!
β>T can

be calculated in finite time whenever S is well-kinded.

Theorem 6.6 (Soundness and completeness)

1. If Γ `A t ∈ T then Γ ` T ∈ ? and Γ ` t ∈ T .

2. If Γ ` s ∈ T then Γ ` T ∈ ? and Γ `A s ∈ S, where S is minimal for s in Γ.

This brings us to our final result:

Corollary 6.7 (Decidability of typing) The original typing relation Γ ` t ∈ T is
decidable.

Proof: To check whether a statement Γ ` t ∈ T is derivable, first check that T is
well kinded, then calculate the minimal type S of t in Γ using the algorithm above
and use the subtyping algorithm to verify that Γ ` S ≤ T ∈ ?. �

108 Chapter 6 Typing

Part III

Conclusions

Chapter 7

Conclusions

7.1 Summary

My thesis proposes and investigates a polarized version of F ω
≤ , the higher-order poly-

morphic λ-calculus with subtyping, similar to the one found in Cardelli [Car90]. It
explores its meta-theory, establishing decidability of the system. Including polar-
ized application rules leads to an interdependence of the subtyping and the kinding
system. This contrasts with pure F ω

≤ , where subtyping depends on kinding but not
vice versa. To retain decidability of the system, the equal-bounds subtyping rule is
rephrased in the polarized setting as a mutual-subtype requirement. The work here
also extends the calculus of Hofmann and Pierce in [HP95b] who focus on polarity
information of type variables of the base kind ?, not considering type operators in
generality, and not investigating type-checking algorithms. To my knowledge this is
the first algorithmic account of polarized extensions of pure F ω

≤ .

The cycle between subtyping and kinding resembles the situation when so-called
bounded operator abstraction (cf. again [Car90]) is included in F ω

≤ or for systems with
dependent types. Closer scrutiny reveals differences in the structure of the proofs for
decidability for such calculi. For the rest of the chapter I compare the work with recent
results in this area, discussing work on bounded operator abstraction, on subtyping
dependent types, and on type inference,

7.2 Related and future work

Variance or polarity annotations

In the context of functions over an ordered domain (such as type operators as func-
tions on the domain of types, ordered by subtyping), monotonicity is a natural con-
cept. For different subtyping calculi, the issue of monotonicity has shown up in

112 Chapter 7 Conclusions

different guises, especially in connection with binary methods.

Declarative variance annotations on methods In [AC96b] [ACV96] versions
of Abadi and Cardelli’s object-calculi with variance annotations are investigated.
The objects in this calculus can be seen as records, supporting method- or record-
selection, method-update, and cloning.1 Another difference to functional records is
that late-binding is directly modelled in the semantics. As explained in the section
about record calculi in the introduction, the definition of subtyping for object types
supporting method update has to be more restrictive than for record types: the
possibility of method update requires for object types to insist on identical types for
the common fields, disallowing depth-subtyping.

As a consequence, object types of this form do not support method specialization,
i.e., when changing to a more refined object carrying a subtype of the original object’s
type, the types of the methods should reflect this change. This is not feasible if the
types of the “inherited” methods are forced to stay identical. To cater for greater
flexibility in subtyping, the methods (not the methods’ types) of an object type are
decorated by variance annotations, where ◦ means invariance, + stands for covariance,
and − for contravariance. The intuition here differs from ours. The annotations serve
to control the allowed run-time manipulations upon the record of methods — namely
read- or write-access to the record of methods, which is method-selection and -update
— and not to describe the way the methods act upon the data of the object. In other
words, the annotations are of declarative nature, and not derived structurally, and
it is up to the typing system to assure, that the programs conform to the discipline
imposed upon them by the variance annotations. For instance, the typing rules have
to forbid the update of a method declared as covariant, which means that for methods
with read-only access one regains the full depth- plus width-subtyping behavior of
ordinary records. The variance notation is lifted to object types with self types, going
beyond the simple updatable-records type for objects. This object-calculus can be
interpreted [ACV96] in F≤µ, the polymorphic λ-calculus with subtyping and recursive
types.2 The idea of declarative variance annotations for an object-calculus are also
used in [Hic97], where it is extended to a dependent record types and implemented
in Nuprl-Light [Hic96].

Variance of row functions In an object-based setting, Fisher [Fis96] (cf. also
[FM95]) investigates an object calculus with recursive record types, which, besides
method invocation and method override as in the calculi of Abadi and Cardelli, sup-
ports method extension, the run-time addition of methods to an object. As sketched

1Cloning is the creation of a new object from an existing one. This is different from class-based
languages, where new objects are instantiated from classes.

2For a comparison of this object-encoding with other models known in the literature, see [BCP96].

Section 7.2 Related and future work 113

in the section about record calculi in the introduction, in this situation neither depth-
nor width-subtyping is sound, leaving us with no subtyping at all for object types,
which is clearly undesirable.

The solution proposed there is to distinguish two phases for objects, one in which
both method extension and method override are allowed, and a second one where
the structure of the objects is “sealed” and no longer amenable to changes; on the
other hand, in this second phase depth- and width-subtyping are allowed. The type
system reflects this distinction in separating pro-types for extensible objects (called
prototypes) from object types for the fixed ones. This resembles the situation in
class-based languages with their strict separation of classes and objects.

But the sealing of prototypes to objects or subtyping between object types is
sound only in case the recursion variable does not occur contravariantly inside the
record type (pro-types pro A.R and object types obj A.R are recursive record types).
For example, the type of an extensible object modelling a point would be written
pro A.〈〈x:Int , setx :Int → A〉〉, where the type variable A is recursively bound in the
body 〈〈x:Int , setx :Int → A〉〉, a so-called row expression, and pro indicates that the
methods of values of this type may the extended and overridden. To capture the
way the type variable occurs in such a row, variance annotations are introduced and
integrated into the kinding system, allowing statements of the form Γ ` T ∈ V or
Γ ` R ∈ V . There, V is a variance set, which stores variance information for all
type variables in R. Similar the variance statements for rows Γ ` R ∈ (V, M), where
in addition to the variance set, also information about the absence of methods is
included in the set M to allow for sound addition of not-yet-present methods. The
type system supports also a simple form of type operators, there called row functions,
whose variance can be determined by the occurrence of the formal parameter. Row
functions in the type system in [Fis96] are restricted in that no higher-order type
operators are included, and only types of kind ? and ? →? ? are supported, to use our
notation. Also an ordering on variances and variance sets is introduced, corresponding
roughly to our subkinding relation.

The notation and terminology in [Fis96] differs from ours: an operator, there
called row function, with invariant variance there means, that it only allows its ar-
guments of be invariant, i.e. identical. Invariant occurrence is denoted by o and
corresponds to our ±. The case where a row function ignores its argument is de-
noted by ?, corresponding to our ◦. For monotone and antimonotone appearance
of variables there is no ambiguity. Otherwise the rules for calculating variances are,
naturally, similar to ours. Since she does not deal with higher-order application in
its generality, though, there is no distinction between non-free occurrence of vari-
ables and constant occurrence: the distinction becomes visible only in the presence
of applying type variables, declared as operators of constant polarity, to types. For
example, the type variable A′ appears constantly in the type A A′, if A is declared

114 Chapter 7 Conclusions

to be of kind K1 →◦ K2.
3 Since in [Fis96], the only functions on type level are row

functions of kind ? →? ?, it suffices to consider type variables of base kind ?. By the
same token, β-reduction on type level is almost trivial.

Positive type operators and binary methods In [HP95b], Hofmann and Pierce
present a uniform, type-theoretic account of object-oriented concepts of class-based
languages, including encapsulation, subtyping, and message passing. Instead of con-
centrating on one specific encoding of object-oriented language features, they are
interested in a more abstract framework, comprising different known encodings.

In specifically F ω
≤ ’s object-model [PT94], as one prominent representative fitting

in their uniform framework, objects carry existential types to protect the objects’
internal states by assuring that they can be accessed via their methods only.4 Falling
back upon the point example, a point object with some internal state for its coor-
dinates and supporting two methods, getx and setx , to extract the x-coordinate of
integer type from the point and to set it, carries the existential type:5

Point = ∃R: ? .R × {getx :R → Int , setx :R → Int → R}

Thus, point objects consist of a state paired with the record of its methods, in this
case the two methods setx and getx , where the existential type only reveals, that there
exists some type R for the internal state, but not its nature. The signature of points,
to stick with the example, is written as type operator, taking the internal represen-
tation type as argument and giving back the record of methods: Fun(R:?){getx :R →
Int , setx :R → Int → R}. In F ω

≤ ’s functional representation of objects — a state
paired with the record of methods, and both hidden by an existential type — the
methods uniformly take the internal state of type R as first parameter, which means
the first parameter can be “factored out” from the interface. This changes the type
in the above example to Point = ∃R: ? .R ×R → {getx :Int , setx :Int → R}, with the
signature of

PointSig = Fun(R:?){getx :Int , setx :Int → R},

3To avoid confusion, I always use the conventions of this thesis, not the ones from [Fis96] or from
the works of Abadi and Cardelli.

4Existential types to model encapsulation were introduced by Mitchell and Plotkin in [MP88].
5The system presented later will not include existentials, but they can be represented in the

system. The second order universal type ∀A.T of System F quantifies over all types, including

itself. This circle, known as impredicativity, makes up the strength of the type system and can be
used to encode datatypes [Wra89] not present in the core system; for instance, existential types can
be represented as ∃A.T = ∀A.(∀B.(T → B)) → A. See Ghelli and Pierce [GP97] for a discussion of
especially the encoding of existential types in the presence of the different versions of the bounded
All-quantifier subtyping rule in F≤.

Section 7.2 Related and future work 115

instead. So the type of point objects is defined as Point = ∃R.R×(R → PointSig(R)),
or for object types in general O = ∃R: ? .R × (R → Sig(R)), containing a state of
the internal representation type R, which is hidden by the existential quantifier,
paired with the methods. To program with objects, it must be possible not only
to build objects and give them a type, but also to invoke their methods. This
means to transform the internal method implementation of type R → Sig(R) for
some type R into an externally usable version, so-called generic methods, of type
Object(Sig) → Sig(Object(Sig)), where Object is the type constructor that builds the
existential object type, given a signature Sig.

In [HP95b] it is shown that F ω
≤ ’s object model sketched here allows a uniform

definition of generic methods in case the signature is a positive type operator, i.e. of
kind ? →+ ? (in [HP95b], positive type operators are denoted by pos(T)). This is the
case for the signature of points with the getx and setx method, as the components
of the record type behave covariantly and thus PointSig ∈ ? →+ ?. In contrast,
the signature of point objects with an equality method, comparing the states of two
points,

PointSig ′ = Fun(R:?){getx :Int , setx :Int → R, eq:R → bool}

is not positive — the type variable R occurs negatively, on the left-hand side of the
arrow, in type of the eq-method — but carries the weaker kind ? →± ?. Here, eq is
one standard example for a so-called binary method, binary, as it requires access to
two the internal representation of different objects of the same class.

To be able to characterize monotone signatures that allow the uniform definition
generic methods as above, Hofmann and Pierce extend F ω

≤ (or rather a fragment
of it) with a predicate pos on type operators of kind ? → ?. In fact, they do not
only characterize the circumstances under which generic methods exist, but give
the uniform construction by “lifting” a function f ∈ S1 → S2 through a type T ,
yielding a function lift f→A

T of type [S1/A]T → [S2/A]T , in case the variable A occurs
only monotonely inside T . In the presence of monotonicity (and anti-monotonicity)
information about type operators, besides pointwise subtyping, also monotone and
antimonotone subtyping is allowed.

Γ ` T ∈ ? → ? pos(T) Γ ` U1 ≤ U2

Γ ` T U1 ≤ T U2

(S-Pos-Mono)

Our definition of variable occurrence in Section 5.3 is a generalization of the
definition in [HP95b]. First of all, like in Fisher’s system, the definition of pos only
handles type variables of the base kind ?, and polarized operators of kind ? → ?,

116 Chapter 7 Conclusions

which corresponds to a fragment of F 3 with subtyping.6 This restriction makes
it unnecessary to consider the positive or negative occurrence of type variables in
applications. Another difference is that Hofmann and Pierce do not consider the
additional polarities ± and ◦. As already mentioned in the comparison with Fisher’s
work, in restricting the type variables to the base kind ?, there is no need to introduce
constant variable occurrence, because it coincides with the fact that the variable does
not occur free at all, and likewise there is no need for the non-variant application rule
S-App±. It’s only in the presence of polarized application in the higher order case
that the concepts of constant occurrence and “no free occurrence” of a type variable
split; likewise the notions of β>-equality and equivalence of types. Consequently the
positive occurrence of a type variable A in a universally quantified type All(A′≤T1)T2

depends on the type variable A not occurring freely inside the upper bound T1, lest
to destroy the Kernel Fun subtyping rule for All-types. In our higher-oder setting,
we will have to rephrase the equal-bounds subtyping rule in the polarized setting
requiring mutual subtype relationship between the upper bounds of the All-types,
and instead of insisting on the type variable not occurring at all, we require only
constant appearance, which is weaker.

Type inference Monotonicity information for type variable or for type operators
seems also relevant for type inference. By reconstructing (or trying to reconstruct)
omitted types from the context, type inference can free the programmer from explic-
itly feeding a type as parameter to a polymorphic function, or from annotating the
type of the formal parameter of a function. Recently, in a couple of papers Pierce
and Turner [PT98] [PT97a] [Pie97a] investigate partial, local type-inference for a
Kernel-Fun variant of F≤ including a bottom type as the dual to the more common
maximal type Top. Considering the case of inferring an omitted type argument of
a polymorphic function, the types to be inferred are represented by type variables
and at a certain stage during the inference process, the algorithm has to calculate a
substitution of these variables, such that the result after the substitution is minimal
and where the type replacing the variable is drawn from an interval in the subtyping
hierarchy (These “interval”-constraints for the omitted type arguments are collected
at an earlier stage of the algorithm). Obviously, the choice of the replacement is
determined by the way the variable it replaces occurs inside the type; for example,
if the type variable occurs monotonely, choosing the minimal substitution satisfying
the constraint yields a minimal result. Their type inference algorithm can also han-
dle type operator constants in case they are monotone, for instance, the List type
constructor of kind ? →+ ?. Lacking is support for user-definable type-operators as
in the higher-order F ω

≤ . The system of polarized higher-order subtyping presented

6For an introduction to the hierarchy of polymorphic calculi, from the polymorphic λ-calculus F
or F 2 to the full higher-order case of F ω see [PDM89].

Section 7.2 Related and future work 117

here could be helpful in the generalization. Currently, Pierce and Turner experiment
with various extension for type inference for Pict, a π-calculus based programming
language whose type system is based on F ω

≤ .

Subtyping dependent types F ω
≤ is an impredicative type theory, where terms

depend on terms and types, and types take types as parameters (in which case they
are called type operators). Systems where types can depend on terms are said to
have dependent types. This allows to express functions, uniformly parametric for a
range of terms.

Recently, interest in calculi with dependent types extended by subtyping has
started. Aspinall and Compagnoni [AC96c] investigate λP≤, a first order calculus
with dependent types (known as λP or λΠ) extended by subtyping, establishing
decidability of the system. Chen [Che97a] studies a variant of this system, which he
calls λΠ≤.7

With dependent types, the ordinary, non-dependent function types S → T gen-
eralize to dependent function types of the form Πx:S.T , characterizing function with
domain S, whose range T may depend on the term parameter x of type S. The
non-dependent function space is a proper type and carries the kind ?. Allowing de-
pendent function types, the kinding systems has to be extended to assure that only
terms of the appropriate type are fed into the dependent function type constructor:

Γ, x:S ` T ∈ K

Γ ` Λx:S.T ∈ Πx:T.K
(K-Pi)

Correspondingly there is an elimination rule for the Π-kinds, controlling the ap-
plication of a dependent function type to a term:

Γ ` T ∈ Πx:S.K Γ ` t ∈ S

Γ ` T t ∈ [t/x]K
(K-App)

The conclusion of this kinding rule depends on the derivation of a typing state-
ment. In the presence of subtyping, i.e., subsumption, this leads to the following
mutual dependence:

This is in contrast to polarized F ω
≤ , where the polarized application rules entails

an interdependence of Figure 7.2.
Thus, the dependent type systems λP≤ and λΠ≤ are more complicated, since

the mutual dependence concerns three families of statements, not just two. One the

7The systems λΠ≤ and λP≤ are different formulations of the same theory. They can be regarded
as an extension of Pfenning’s refinement type system [Pfe93b] for the Logical Framework. Pfenning’s
subsort relation is more restricted than the full subtyping relation in that only trivial subtyping is
allowed between type families and reflexivity of the subsorting relation insists on identity, not on
β-convertibility.

118 Chapter 7 Conclusions

kinding

dep. types ((

subtyping
qq

typing
subsumption

==

Figure 7.1: First-order dependent types

kinding
pol. application

--
subtypingmm

typing
subsumption

==

Figure 7.2: Higher-order polarized subtyping

other hand, they are simpler in one important respect: as first-order systems, unlike
F ω
≤ or Fω

∧ , they do not have universally quantified types, let alone All-types with
subtype-bounded variables. This means, no rule in the system extends the contexts
by new non-trivial subtype declarations of the form A≤T :K, making, for example,
the proof of strong normalization a lot easier.

At the highest level, both Aspinall/Compagnoni and Chen address the problem of
the interdependence of the statements the same way: As it is not possible to dispense
with the subsumption rule or with the dependence of kinding upon typing — both
forming the essence of the system — they break the link between subtyping and
kinding. Of course at the end they have to make sure that this does not allow to
derive subtype relation between ill-kinded types.

On a more detailed scale, there are a some differences between both works. As-
pinall and Compagnoni prove admissibility of cut in their algorithmic system, which
operates exclusively on normalized types, whereas Chen performs cut-elimination (or
admissibility of cut) not in a normalizing system, but allows types of arbitrary form.

Another complication not present in the systems for F ω
≤ concerns subject re-

duction. Since kinding depends on typing, subject reduction for kinding depends
on subject reduction for typing. Both works address the problem by separating β-
reduction into reduction on term level and reduction on type-level (substituting term
into a type), treating reduction on types first, while proving general subject reduction
after cut-elimination.

Section 7.2 Related and future work 119

Comparing the two figures 7.1 and 7.2 for λΠ≤ and for polarized F ω
≤ , the ob-

vious question is whether we could use the approach of Aspinall and Compagnoni,
resp. Chen, to break the cycle, i.e., instead of introducing an additional set of state-
ments for variable occurrence Γ ` T ?A in order to separate typing and subtyping,
would it be possible to render subtyping not depending on kinding instead?8 The
answer is no. The essence of polarized subtyping are the application rules, where the
choice of rule crucially depends on the specific polarized kind of the type operator,
which cannot be determined beforehand. This is different from the situation for λP≤,
λΠ≤ (or pure F ω

≤) where for a start one can ignore kinding in subtyping derivations,
knowing that the subtyping derivations does not destroy well-kindedness and thus,
beginning with well-kinded types, the types of each subtyping statement justified by
a subderivation carries some kind (which is, without subkinding, moreover unique
and coincides for each pair of types).

An extension of the work on λΠ≤ is carried out in [Che97b], establishing de-
cidability of a subtyping extension of the full calculus of constructions, called λC≤.
This system, though, does not contain bounded quantification nor subkinding. Com-
pared to λP≤, the situation gets even more involved, giving altogether four different
β-reduction relations. What still is simpler than in F ω

≤ , F∧, or even F≤ is that the
subtyping extension of the calculus of constructions does not contain the notion of
bounded quantification. The issue of subtyping of dependent types is further dis-
cussed in [CL96].

Another extension (called λ≤{}) of the first-order typed λ-calculus by an especially
simple form of dependent types, so called singleton types, is presented by Aspinall in
[Asp95]; similarly for the second-order case, incorporating singleton types into F≤,
in [Hay94]. Luo [Luo96] studies subtyping based on coercions in the framework of
his UTT [Luo92], the unified theory of types, i.e., the calculus of constructions with
type universes and inductive types, implemented in the Lego proof assistant [LPT89]
[leg97]. Proof-reuse via subtyping is investigated in [Luo95]. An implementation of
subtyping in Lego is currently under way [Bai96].

Bounded operator abstraction The formulation of F ω
≤ investigated in this the-

sis, whether polarized or not, contains an asymmetry concerning the bindings of type
variables. Whilst the type variable in the bounded quantifier type ranges over all
subtypes of its upper bound, no such restriction is expressible for the type operators
(More exactly, in operators Fun(A:K)T the argument ranges over all subtypes of the
trivial upper bound Top(K)).

It is relative straightforward to formulate a system relaxing this constraint, allow-

8The separation of different forms of β-reduction is not an issue here, since for F ω
≤ , reduction on

term level can be performed separately.

120 Chapter 7 Conclusions

ing operators with non-trivial upper bound Fun(A≤T1:K1)T2. Indeed, it was in this
more general form, that F ω

≤ appeared in Cardelli’s note [Car90]. As a consequence,
also the kinding system has to be adapted. The kind of a type operator with bounded
abstract type parameter now has to capture the fact that no longer all types of kind
K1 are legitimate arguments for the operator, as expressed by the kind K1 → K2,
but only those less or equal type T1:

Γ, A≤T1:K1 ` T2 ∈ K2

Γ ` Fun(A≤T1:K1)T2 ∈ ΠA≤T1:K1.K2
(K-Pi-I)

The corresponding elimination rule (replacing K-Arrow-E) then reads:

Γ ` S ∈ ΠA≤T1:K1.K2 Γ ` T ≤ T1 ∈ K1

Γ ` S T ∈ [T/A]K2
(K-Pi-E)

Further the subtype system gets more complicated, which can be seen at the rule
for pointwise application:

Γ ` S ≤ T ∈ ΠA≤V :K1.K2 Γ ` U ≤ V ∈ K1

Γ ` S U ≤ T U ∈ [V/A]K2

(S-App)

Compagnoni and Goguen [CG97] study a system like this, proving decidability
of F ω

≤ with bounded operator abstraction (without subkinding, without polarities,
and of course using the equal-bounds subtyping rule for All-types). The rule K-Pi-E

for the application of subtype bounded operators renders kinding dependent upon
subtyping, similar to the situation for dependent types, only that for λΠ≤ and λP≤,
kinding depends on subtyping via the typing statements, whereas bounded operator
abstraction directly leads to the cycle. The situation is sketched in Figure 7.3.

kinding
bounded abstr. --

subtypingmm

typing
subsumption

==

Figure 7.3: Bounded operator abstraction

So the picture very much looks like the one for polarized F ω
≤ in Figure 7.2, but

the source of the interdependence now is bounded operator abstraction, not polarized
application.

Section 7.2 Related and future work 121

The approach pursued in this thesis, namely breaking the cycle by rendering kind-
ing independent of subtyping is out of question here, as the very nature of bounded
operator abstraction requires this dependence in rule K-Pi-E.

Instead, in an elegant proof Compagnoni and Goguen handle kinding and sub-
typing at the same time. They introduce a typed operational semantics to get the
metatheoretical results of cut-elimination, subject reduction, and decidability. The
proof is an adaption of the one in [Gog95], where the typed operational seman-
tics is used for strong termination of the simply typed λ-calculus with dependent
types, lifted on the type level and including subtyping. The core of the argument,
which they call soundness, is a strong normalization proof à la Tait and Martin-Löf
[Tai67][ML75].9 The typed operational semantics can be understood as a deriva-
tion system combining subtyping statements, kinding statements, and normal-form
reduction.10 The typed operational semantics is a rough analogue to the algorith-
mic formulations of subtyping in [Com95b][PS97] which corresponds to the strong
cut-free system here, and where due to the dependence of kinding upon subtyping,
the reduction relation has to be incorporated to the premises of the kinding system,
as well. (For a more detailed account of typed operational semantics, see Goguen
[Gog94b] [Gog94a] [Gog95].) Unlike [CG97], our system allowed to address kind-
ing (and equivalence) and subtyping one after the other by stratifying kinding and
subtyping.

Like our system, F ω
≤ with bounded operator abstraction does not enjoy a unique

kinding property, but for a different reason. As kinds contain types, β-conversion on
kind level has to be considered; but types do have a unique normal form kind. On
the other hand, the lack of unique-kinding for polarized F ω

≤ stems from subkinding in
addition to type conversion, and kinding uniqueness has to be replaced by a minimal
kinding property.

We can draw the parallel further to the subtyping systems. As we have seen in
the development in Part II of the thesis, considering polarity information means that
β>-equality is no longer an adequate notion of equality on type level. Instead we
used mutual subtyping relation Γ ` S ≷ T ∈ K, which we were able to replace in the
algorithm by the stricter notion of equivalence on types, denoted by Γ ` S ≡ T ∈ K.
So the correspondence is the following: in the polarized setting, Γ ` S ≷ T ∈ K

9The soundness proof of Compagnoni and Goguen corresponds to the completeness-part of our
proof. Their choice of the term is justified, in that they take the typed-operational semantics —
corresponding roughly to our `CS-system — as starting point and prove the soundness of the original
formulation with respect to this semantics. Here, we take the dual perspective, proving soundness
and completeness of the algorithm against the original formal system.

10In effect, it is somewhat refined in that it not only considers normal forms, but also a variant
of weak-head normal forms at the same time. The variant of weak-head normal forms insists that
for types of the form A T1 . . . Tn the Ti’s are already in normal form, to deal with the problematic
cases of application and promotion.

122 Chapter 7 Conclusions

plays the role of β-equivalence for the calculus of bounded operator abstraction,
while equivalence replaces identity.

Polarized bounded operator abstraction The obvious question is: is it possible
to combine monotonicity information with bounded operator abstraction?

So, consider the kinding and subkinding relations. For bounded operator ab-
straction, kinds contains types, which means that well-formedness of kinds can no
longer be determined by the structure of the kind alone, and statements of the form
Γ ` K kind have to be included. By the same argument, the subkinding relation has
to be derived with respect to a context, yielding a system for Γ ` K1 ≤ K2. While
we are at it, we can go a step further beyond the form of subkinding which merely
lifts the ordering on polarities to the level of kinds, and take also the subtype-bound
of the operator into consideration, stipulating that an operator with a less restrictive
bound lies above one that can handle a larger range of types as arguments:

Γ ` K ′
1 ≤ K1 ? ≤ ?′

Γ ` T ′ ≤ T ∈ K ′
1 Γ, A≤T ′:K ′

1 ` K2 ≤ K ′
2

Γ ` ΠA?≤T :K1.K2 ≤ ΠA?′≤T ′:K ′
1.K

′
2

(K-Sub-Pi)

In a similar form, subkinding — without polarities — was proposed in Pierce and
Pollack’s formulation [PP92]. (See also [Car90], without an explicit rule of subsump-
tion for subkinding) In the presence of polarized subkinding, the kinding system has
to be adapted, too, incorporating for example a rule for monotone subtype-bounded
type operators:

Γ, A≤T1:K1 ` T ∈ K2

Γ, A2≤T1:K1, A1≤A2:K1 ` [A1/A]T2 ≤ [A2/A]T2 ∈ K2

Γ ` Fun(A≤T1:K1)T2 ∈ ΠA+≤T1:K1.K2

(K-Pi-I+)

This leads to a considerable complication of the polarized system as well as of
the one investigated by Compagnoni and Goguen; the graph of dependence sketched
in the following figure (the arrow from subkinding to subtyping is caused be rule
K-Sub-Pi):

As mentioned, it is well-known that the full F ω
≤ subtyping rule for All-types

has quite a number of unpleasant consequences for the meta-theory of the system,
including undecidability of even F≤ in the second-order case. This had led us to
consider a polarized variant of the equal-bounds quantifier rule, requiring the bounds
of the universally quantified types under comparison to be in mutual subtype relation
(cf. S-All).

Lest to face similar problems with subkinding of bounded operator abstraction,
it seems natural to impose an analogous discipline for bounded operator abstraction,
as well, using a rule S-Abs-Kernel

Section 7.2 Related and future work 123

subkinding

##
kinding

bounded abstr.
--

subsumption 66

subtypingmm

typing
subsumption

;;

Figure 7.4: Polarized bounded operator abstraction

Γ ` Fun(A≤S1:K1)S2, Fun(A≤T1:K1)T2 ∈ ΠA?≤S1:K1.K2

Γ, A≤S1:K1 ` S2 ≤ T2 ∈ K2 Γ ` S1 ≷ T1 ∈ K1

Γ ` Fun(A≤S1:K1)S1 ≤ Fun(A≤T1:K1)T2 ∈ ΠA?≤S1:K1.K2

instead of the more general S-Abs:11

Γ ` Fun(A≤S1:K1)S2, Fun(A≤T1:K1)T2 ∈ ΠA?≤S1:K1.K2

Γ, A≤T1:K1 ` S2 ≤ T2 ∈ K2 Γ ` T1 ≤ S1 ∈ K1

Γ ` Fun(A≤S1:K1)S1 ≤ Fun(A≤T1:K1)T2 ∈ ΠA?≤S1:K1.K2
(S-Abs)

The meta-theoretical investigations of subtyping calculi, partly discussed here, all
are sensitive in a delicate way to the order in which the proofs of subject reduction
for kinds and for subtyping, of cut-elimination or admissibility of cut, and of strong
termination are performed. The most elegant and insightful treatment of these issues
so far is the one by Compagnoni and Goguen, using typed operational semantics.
Hence it is natural to proceed in this direction.

The foremost complication I expect is the need to perform polarized substitu-
tion. The proof in [CG97] proceeds in the following order: first admissibility of
cut in the typed operational semantics, which corresponds to the strong, cut-free
derivations in this thesis, and afterwards (as part of the “soundness”-proof), preser-
vation of subtyping under substitution. Actually, this order seems impossible in the
presence of polarized subtyping. To pass in review the stages in which we showed cut-
elimination and subject reduction in the stratified system, the proof of admissibility
of cut (Proposition 5.83) already depends on subject reduction and preservation of
subtyping under (polarized) substitution, whereas in [CG97], the proof can be carried

11The name K-Abs-Kernel for this rule is chosen in reminiscence of the equal-bounds subtyping
rule for universally quantified types of Cardelli and Wegner’s Kernel Fun.

124 Chapter 7 Conclusions

out independently.12 In both cases, admissibility of cut is shown in the system `CS.13

The obstacle once more are the polarized application rules. Recall that the critical
case for cut-elimination was R-Promote used to promote the cut-type:

U //!
β>A U1 . . . Un ↑Γ Γ(A) U1 . . . Un Γ `CS Γ(A) U1 . . . Un ≤ T ∈ K

Γ `CS U ≤ T ∈ K

We were able to solve this case by the analysis of strong, cut-free derivations in
Section 5.11. One important step in this proof was Lemma 5.80 on page 91, stating
that under appropriate assumptions about kinding and polarity, Γ `CS A S1 . . . Sn ≤
A T1 . . . Tn ∈ K implies Γ `CS Γ(A) S1 . . . Sn ≤ Γ(A) T1 . . . Tn ∈ K. The proof of
this lemma used a property like the following:

Assume Γ `CS S ≤ T ∈ K1 →+ K2. If Γ `CS U1 ≤ U2 ∈ K1, then
Γ `CS S U1 ≤ T U2 ∈ K2. (1)

In the light of Compagnoni’s and Goguen’s insight, this corresponds to one crucial
step in Tait’s method. Remember that this proof technique proceeds by induction
on the structure of types, thus here by induction on the types of types, called kinds,
and the “application“ of Γ `CS S ≤ T ∈ K1 →+ K2 to Γ `CS U1 ≤ U2 ∈ K2

yields a statement, whose kind K2 is (structurally) smaller than K1 →+ K2.
14 The

use of Tait’s method (the soundness proof in [CG97]) depends on the proof of cut-
elimination, something we are just about to show in the polarized setting.

Note also that without polarized subtyping the promotion case is not really
an issue. As explained in Section 3.5, the case of promotion in the proof of cut-
elimination can be solved without induction and also without the above implica-
tion, namely by the simple observation that Γ `CS S ≤ A U1 . . . Un ∈ K implies
S ↗∗

Γ
//!
β>A U1 . . . Un. Hence the polarized version of subtyping introduces an

interdependence into the proof, not present in the pure case of bounded operator
abstraction and which does not lend itself readily to the order in which Compagnoni
and Goguen proceed, following Tait’s method.

12The subject reduction lemma in [CG97] is not subject reduction in its full meaning in that it
does not involve preservation of subtyping under reduction.

13For the sake of discussion, I will identify the system `CS from this thesis with the typed opera-
tional semantics from [CG97], even if there are differences; most notably, no operational behavior is
included in the kinding relation here as in the typed operational semantics. In [CG97], the deriva-
tions with the typed operational semantics are written `S , with S for “semantics”, not for “strong”
derivations.

14For material about Tait’s method, or reducibility method, consult Tait [Tai67][Tai75] or Girard
[Gir71][Gir72]. It has been widely used to establish for example strong-termination results for typed
λ-calculi.

Section 7.2 Related and future work 125

Another way to attack polarized bounded operator abstraction is to try to adapt
the proof structure of this thesis. As just explained, we could not help but prove
preservation of subtyping under substitution first, leading to preservation of subtyp-
ing under reduction, and finally to the proof that replacing ordinary reduction of
the cut-free reducing system by normalizing reduction in the `CS-system does not
loose any expressiveness, where the last step already required termination of β>Γ-
reduction.

Now, the obstacle is the polarized substitution property (cf. Lemma 5.58 on
page 83), more specifically the case of promotion. Considering the monotone case,
we are given Γ `CS A′ S1 . . . Sn ≤ T ∈ K by a derivation ending with an in-
stance of R-Promote and we are to show preservation of substitution concerning a
type variable A occurring monotonely in A′ S1 . . . Sn or T . The interesting case is,
where the monotonicity assumption concerns the type on the left, i.e., we are given
Γ ` A′ S1 . . . Sn +A. What happens if A = A′? Well, it depends on whether we
consider bounded operator abstraction or not. In the easier case, which we explored
in this thesis, A is bounded by the trivial upper bound Top(K). Hence we know by
the premise of the promotion rule Γ `CS Top(K ′) S1 . . . Sn ≤ T ∈ K, which directly
entails that T itself reduces to a maximal type, from which the case follows. In the
general case of bounded operator abstraction, we are given Γ(A) = S0 for an arbitrary
type S0 and thus Γ `CS S0 S1 . . . Sn ≤ T by subderivation. Since the type variable A
cannot occur free in S0, we easily obtain by induction

Γ′ `CS S0 [U1/A]S1 . . . [U1/A]Sn ≤ [U2/A]T ∈ K.

From Γ `CS A ≤ S0 ∈ K0 follows

Γ `CS A [U1/A]S1 . . . [U1/A]Sn ≤ S0 [U1/A]S1 . . . [Sn/A]Sn ∈ K

by the implication (1) from above and further Γ `CS A [U1/A]S1 . . . [Sn/A]Sn ≤
[U2/A]T ∈ K by transitivity. Once again we are stuck: both transitivity elimination
and property (1) depend on the substitution lemma, not as before, vice versa.

To deal with R-Trans, we could try to prove the substitution lemma not in the
cut-free system `C, hence we do not to bother about the admissibility of cut at this
point yet. However, as mentioned already in the in outline of proof in Section 5.2,
the form of the application rules requires that — to stick with the monotone case —
the type variable replaced is required to occur monotonely in one of the two types.
Now the rule of transitivity introduces a new meta-variable, the cut-type, for which
the occurrence of the variable replaced is unknown and the induction will fail. For
pointwise substitution it doesn’t matter, in which way the cut type contains the
variable under consideration, if at all, so pure F ω

≤ should allow to proceed in this
order also in the presence of bounded operator abstraction.

126 Chapter 7 Conclusions

Summing up it appears as if bounded operator abstraction and polarized appli-
cation extend F ω

≤ in two different and not orthogonal ways. Decidability of polarized
F ω
≤ with bounded operator abstraction, giving the full system of Cardelli’s note15

[Car90], remains open.

15modulo K-Sub-Kernel.

Bibliography

[Aba94] Mart́ın Abadi. Baby Modula-3 and a theory of objects. Journal of Func-
tional Programming, 4(2):249–283, April 1994. An earlier version ap-
peared as DEC Systems Research Center Research Report 95, (February,
1993).

[AC93] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM
Transactions on Programming Languages and Systems, 15(4):575–631,
1993. A preliminary version appeared in [ACM91] (pp. 104–118) and
as DEC Systems Research Center Research Report number 62, August
1990.

[AC94] Mart́ın Abadi and Luca Cardelli. A theory of primitive objects. untyped
and first-order systems. In Hagiya and Mitchell [HM94], pages 296–320.

[AC96a] Mart́ın Abadi and Luca Cardelli. On subtyping and matching. ACM
Transactions on Programming Languages and Systems, 18(4):401–423,
July 1996. A previous version appeared in [Olt95].

[AC96b] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Monographs in
Computer Science. Springer, 1996.

[AC96c] David Aspinall and Adriana Compagnoni. Subtyping dependent types.
In Eleventh Annual Symposium on Logic in Computer Science (LICS).
IEEE, Computer Society Press, July 1996.

[ACM86] ACM. Object Oriented Programing: Systems, Languages, and Applica-
tions (OOPSLA) ’86, 1986. in SIGPLAN Notices 21(11).

[ACM88a] ACM. Conference on Lisp and Functional Programming, July 1988.

[ACM88b] ACM. Fifteenth Annual Symposium on Principles of Programming Lan-
guages (POPL), January 1988.

128 Bibliography

[ACM90] ACM. Seventeenth Annual Symposium on Principles of Programming
Languages (POPL), January 1990.

[ACM91] ACM. Eighteenth Annual Symposium on Principles of Programming Lan-
guages (POPL), January 1991.

[ACM92] ACM. Nineteenth Annual Symposium on Principles of Programming Lan-
guages (POPL), January 1992.

[ACV96] Mart́ın Abadi, Luca Cardelli, and Ramesh Viswanathan. An interpre-
tation of objects and object types. In Proceedings of POPL ’96, pages
396–409. ACM, January 1996.

[AFM97] Ole Agesen, Stephen N. Freund, and John C. Mitchell. Adding type pa-
rameterization to the Java language. Technical report, Sun Microsystems
Laboratories and Standford University, January 1997.

[AG96] Ken Arnold and James Gosling. The Java Programming Language.
Addison-Wesley, 1996.

[AM97] M. Akşit and S. Matsuoka, editors. ECOOP ’97, volume 1241 of Lecture
Notes in Computer Science, 1997.

[Ama91] Roberto M. Amadio. Recursion over realizability structures. Information
and Computation, 90(2):55–85, 1991.

[Ame89] Pierre America. Issues in the design of a parallel object-oriented language.
Formal Aspects of Computing, 1(4):366–411, 1989.

[AP90] Mart́ın Abadi and Gordon D. Plotkin. A PER model of polymorphism
and recursive types. In Fifth Annual Symposium on Logic in Computer
Science (LICS) (Philadelphia, PA) [IEE90], pages 355–365.

[Asp95] David Aspinall. Subtyping with singleton types. In Pacholski and Tiuryn
[PT95a].

[Bai96] Antony Bailey. Lego with implicit coercions (draft).
Technical report, Department of Computer Science, Uni-
versity of Manchester, April 1996. Available through
http://www.cs.man.ac.uk/~baileya/research.html.

[Bar84] Hendrik Barendregt. The Lambda Calculus: Its Syntax and Semantics,
volume 103 of Studies in Logic and the Foundations of Mathematics.
North-Holland, revised edition, 1984.

Bibliography 129

[Bar92] Henk P. Barendregt. Lambda calculi with types. In Samson Abram-
sky, Dov Gabbay, and Thomas Maibaum, editors, Handbook of Logic in
Computer Science, volume 1: Mathematical Structures, pages 117–309.
Oxford University Press, 1992.

[BCC+96] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, the Hopkins Objects
Group (Jonathan Eifrig, Scott Smith, Valery Trifonov), Gary T. Leavens,
and Benjamin Pierce. On binary methods. Theory and Practice of Object
Systems, 1(3):221–242, 1996.

[BCGŠ91] Val Breazu-Tannen, Thierry Coquand, Carl Gunter, and André Ščedrov.
Inheritance as implicit coercion. Information and Computation, 93:172–
221, 1991. Also in the collection [GM94].

[BCP96] Kim Bruce, Luca Cardelli, and Benjamin Pierce. Comparing object en-
codings. In Bruce [Bru96a]. Summary.

[BDMN79] Graham M. Birtwistle, Ole-Johan Dahl, Bjorn Myhrhaug, and Kristen
Nygaard. Simula Begin. Studentlitteratur (Lund, Sweden), Bratt In-
stitute Fuer Neues Lerned (Goch, FRG), Chartwell-Bratt Ltd (Kent,
England), 1979.

[BFP97] Kim B. Bruce, Adrian Fiech, and Leaf Petersen. Subtyping is not a good
“match” for object-oriented languages. In Akşit and Matsuoka [AM97].

[BHJ+87] Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry
Carter. Distribution and abstract types in Emerald. IEEE Transactions
on Software Engineering, SE-13(1):65–76, January 1987.

[BL90] Kim B. Bruce and Giuseppe Longo. A modest model of records, in-
heritance, and bounded quantification. Information and Computation,
87:196–240, 1990. Also in the collection [GM94]. An earlier version ap-
peared in the proceedings of the IEEE Symposium on Logic in Computer
Science, 1988.

[BLM96] J. Bank, B. Liskov, and A. Myers. Parameterized types and Java. Tech-
nical Report MIT/LCS/TM-553, Massachusetts Institute of Technology,
May 1996.

[BM92] Kim Bruce and John Mitchell. PER models of subtyping, recursive
types and higher-order polymorphism. In Nineteenth Annual Sympo-
sium on Principles of Programming Languages (POPL) (Albuquerque,
NM) [ACM92], pages 316–327.

130 Bibliography

[Boe85] H.-J. Boehm. Partial polymorphic type inference is undecidable. In
Twenty-sixth Annual Symposium on Foundations of Computer Science
(FOCS), pages 339–345. IEEE, Computer Society Press, October 1985.

[Bru92] Kim Bruce. The equivalence of two semantic definitions for inheritance
in object-oriented languages. In S. Brookes, M. Main, A. Melton, M. Mis-
love, and D. Schmidt, editors, Mathematical Foundations of Programming
Semantics 1991, volume 598 of Lecture Notes in Computer Science, pages
102–123. Springer, 1992.

[Bru94] Kim B. Bruce. A paradigmatic object-oriented programming language:
Design, static typing and semantics. Journal of Functional Programming,
4(2), April 1994. A preliminary version appeared in POPL 1993 under
the title “Safe Type Checking in a Statically Typed Object-Oriented
Programming Language”, and as Williams College Technical Report CS-
92-01.

[Bru96a] Kim Bruce, editor. Informal Proceedings of the Third Interna-
tional Workshop on Foundations of Object-Oriented Languages
(FOOL’96), August 1996. Available electronically through
http://www.cs.williams.edu/∼kim/FOOL/Abstracts.html.

[Bru96b] Kim Bruce. Typing in object-oriented languages: Achieving expressibility
and safety. Technical report, Williams College, September 1996. Avail-
able through http://www.cs.williams.edu/∼kim, to appear in Computing
Surveys, 1997.

[BSvG93] Kim Bruce, Angela Schuett, and Robert van Gent. TOIL, a new type-
safe, object-oriented imperative language. Technical report, Williams
College, 1993.

[BSvG95] Kim Bruce, Angela Schuett, and Robert van Gent. PolyTOIL: A type-
safe polymorphic object-oriented language. In Olthoff [Olt95], pages 27–
51.

[C+86] R. L. Constable et al. Implementing Mathematics with the NuPRL Proof
Development System. Prentice Hall, 1986.

[Car87] Luca Cardelli. Basic polymorphic typechecking. Science of Computer
Programming, 8:147–172, 1987.

[Car88a] Luca Cardelli. A semantics of multiple inheritance. Information and
Computation, 76:138–164, 1988. A preliminary version appeared in
[KMP84].

Bibliography 131

[Car88b] Luca Cardelli. Structural subtyping and the notion of power types. In
Fifteenth Annual Symposium on Principles of Programming Languages
(POPL) (San Diego, CA) [ACM88b], pages 70–79.

[Car90] Luca Cardelli. Notes about Fω
<:. Unpublished manuscript, October 1990.

[Car91] Luca Cardelli. Typeful programming. In E. J. Neuhold and M. Paul,
editors, Formal Description of Programming Concepts. Springer, 1991.
An earlier version appeared as DEC Systems Research Center Research
Report #45, February 1989.

[Car92] Luca Cardelli. Extensible records in a pure calculus of subtyping. Tech-
nical Report 81, Digital Equipment Corporation, System Research, 1992.
Also in Carl A. Gunter and John C. Mitchell, editors, Theoretical As-
pects of Object-Oriented Programming: Types, Semantics, and Language
Design (MIT Press, 1994).

[Car93] Luca Cardelli. An implementation of F<:. Research report 97, DEC
Systems Research Center, February 1993.

[Car95] Luca Cardelli. A language with distributed scope. Computing Systems,
8(1):27–59, 1995. Short version in Proceedings of POPL ’95. A prelim-
inary version appeared as Report 122, Digital Systems Research, June
1994.

[Car97] Luca Cardelli. Type systems. In Allen B. Tucker, editor, Handbook of
Computer Science and Engineering., chapter 103. CRC Press, 1997.

[Cas93] Guiseppe Castagna. A meta-language for typed object-oriented lan-
guages. In R. K. Shyamasundar, editor, Foundations of Software Tech-
nology and Theoretical Computer Science, volume 761 of Lecture Notes
in Computer Science, pages 52–71. Springer, 1993.

[Cas95] Guiseppe Castagna. F&
≤: Integrating parametric and “ad-hoc” second or-

der polymorphism. Formal Aspects of Computing, 8(3):247–293, 1995. A
preliminary version appeared in the Proceedings of the 4th International
Workshop on Database Programming Languages, 1994 (p. 338-358).

[Cas97] Guiseppe Castagna. Object-Oriented Programming: A Unified Founda-
tion. Progress in Theoretical Computer Science. Birkhäuser, 1997.

[CC91] Felice Cardone and Mario Coppo. Type inference with recursive types:
Syntax and semantics. Information and Computation, 92(1):48–80, 1991.

132 Bibliography

[CCF+95] C. Cornes, J. Courant, J-C. Filiatre, G. Huet, P. Manoury, C. Mounoz,
C. Murthy, C. Parent, C. Paulin-Mohring, A. Säıbi, and B. Werner. The
Coq Proof Assistant User’s Guide. Rapports Techniques 0177, INRIA
Rocquencourt, Projet Formel, 1995. Version 5.10.

[CCHM89] Peter Canning, William Cook, Walt Hill, and Walter Olthoff John C.
Mitchell. F-bounded polymorphism for object-oriented programming.
In Fourth ACM Conference on Functional Programming Languages and
Computer Architecture, Lecture Notes in Computer Science, pages 273–
280. ACM, Springer, September 1989.

[CF58] Haskell B. Curry and Robert Feys. Combinatory Logic. North-Holland,
1958.

[CG90] Pierre-Louis Curien and Giorgio Ghelli. Coherence of subsumption. Tech-
nical Report LIENS 90-10, Laboratoire d’Informatique de l’Ecole Nor-
male Supérieure, February 1990.

[CG92] Pierre-Louis Curien and Giorgio Ghelli. Coherence of subsumption: Min-
imum typing and type-checking in F≤. Mathematical Structures in Com-
puter Science, 2:55–91, 1992. A preliminary version appeard as LIENS
Report Nr. 90-10, 1990. Also in the collection [GM94].

[CG97] Adriana Compagnoni and Healfdene Goguen. Typed operational seman-
tics for higher order subtyping. Technical Report ECS-LFCS-97-361,
Department of Computer Science, University of Edinburgh, 1997. Sub-
mitted for publication in Information and Computation.

[CGL95] Guiseppe Castagna, Giorgio Ghelli, and Guiseppe Longo. A calculus
for overloaded functions with subtyping. Information and Computation,
117(1):115–135, February 1995. A Preliminary Version appeared in ACM
Conference on LISP and Functional Programming, June 1992 (pp. 182–
192) and as LIENS Rapport de Recherche, LIENS-92-4, 1992.

[Cha92] Craig Chambers. Object-oriented multi-methods in Cecil. In
O. Lehrmann Madsen, editor, ECOOP ’92, volume 615 of Lecture Notes
in Computer Science, pages 33–56. Springer, 1992.

[Cha93] Craig Chambers. The Cecil language: Specification and rationale. Tech-
nical Report 93-03-05, Department of Computater Science and Engineer-
ing. University of Washington, 1993.

Bibliography 133

[CHC90] William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance
is not subtyping. In Seventeenth Annual Symposium on Principles of
Programming Languages (POPL) (San Fancisco, CA) [ACM90], pages
125–135. Also in the collection [GM94].

[Che96] Gang Chen. Subtyping calculus of constructions (extended abstact).
Technical report, DMI-LIENS, December 1996.

[Che97a] Gang Chen. Dependent type systems with subtyping; type level tran-
sitivity elimination. Technical report, Laboratoire d’Informatique ENS.
and Université de Paris 7, July 1997. To appear in the Proceedings of
the KIT 97 Summer School and Workshop, Beijing.

[Che97b] Gang Chen. Subtyping calculus of constructions (extended ab-
stract). In Proceedings of Mathematical Foundations of Computer
Science (MFCS ’97), 1997. A longer version is available through
http://www.dmi.ens.fr/~gang.

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5(1):56–68, 1940.

[CL96] Gang Chen and Guiseppe Longo. Subtyping parametric and dependent
types, an introduction. Technical report, DMI-LIENS, December 1996.

[CM91] Luca Cardelli and John Mitchell. Operations on records. Mathematical
Structures in Computer Science, 1:3–48, 1991. Also in the collection
[GM94]; available as DEC Systems Research Center Research Report
#48, August, 1989, and in the proceedings of MFPS ’89, Springer LNCS
volume 442.

[CMMŠ94] Luca Cardelli, Simone Martini, John Mitchell, and André Ščedrov. An
extension of system F with subtyping. Information and Computation,
109(1–2):4–56, 1994. A preliminary version appeared in TACS ’91
(Sendai, Japan, pp. 750–770, LNCS 526).

[Com95a] Adriana B. Compagnoni. Decidability of higher-order subtyping with
intersection types. In Pacholski and Tiuryn [PT95a]. Also available as
University of Edinburgh, LFCS technical report ECS-LFCS-94-281, titled
“Subtyping in F ω

∧ is decidable”.

[Com95b] Adriana B. Compagnoni. Higher-Order Subtyping with Intersection
Types. PhD thesis, Catholic University, Nijmegen, January 1995.

134 Bibliography

[Com97a] Adriana Compagnoni. Decidable higher-order subtyping. Technical re-
port, Laboratory for Foundations of Computer Science, University of
Edinburgh, August 1997. Draft Techreport.

[Com97b] Adriana Compagnoni. Subject reduction and minimal types for higher
order subtyping. Technical report, Laboratory for Foundations of Com-
puter Science, University of Edinburgh, August 1997. Draft Techreport.

[Coo87] William Cook. A self-ish model of inheritance. Manuscript, 1987.

[Coo89] William Cook. A Denotational Model of Inheritance. PhD thesis, Brown
University, 1989.

[Coo91] William Cook. Object-Oriented Programming Versus Abtract Data
Types. In de Bakker et al. [dBdR91], pages 151–178.

[CP89] W. Cook and J. Palsberg. A denotational semantics of inheritance and
its correctness. In Object Oriented Programing: Systems, Languages, and
Applications (OOPSLA) ’89 (New Orleans, LA), pages 433–444. ACM,
1989. in SIGPLAN Notices 24(10).

[CP96] Adriana B. Compagnoni and Benjamin C. Pierce. Intersection types
and multiple inheritance. Mathematical Structures in Computer Science,
6(5):469–501, October 1996. Preliminary version available as University
of Edinburgh technical report ECS-LFCS-93-275 and Catholic University
Nijmegen computer science technical report 93-18, Aug. 1993, under the
title Multiple Inheritance via Intersection Types.

[Cra96a] Karl Crary. KML Reference Manual. Department of Computer Science,
Cornell University, 1996.

[Cra96b] Karl Crary. A unified framework for modules and objects and its appli-
cation to programming language design (extended abstract). Technical
report, Department of Computer Science, Cornell University, September
1996.

[Cra97] Karl Crary. Foundations for the implementation of higher-order subtyp-
ing. In Proceedings of the 2nd International Conference on Functional
Programming (IFCP’ 97), Amsterdam. ACM Press, June 1997.

[CW85] Luca Cardelli and Peter Wegner. On understanding types, data abstrac-
tion and polymorphism. Computing Surveys, 17(4):471–522, 1985.

Bibliography 135

[dBdR91] J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors. Foun-
dations of Object-Oriented Languages (REX Workshop), volume 489 of
Lecture Notes in Computer Science. Springer, 1991.

[DF96] Paolo Diblasio and Kathleen Fisher. A concurrent object calculus. In
Ugo Montanari and Vladimiro Sassone, editors, Proceedings of CONCUR
’96, volume 1119 of Lecture Notes in Computer Science, pages 655–670.
Springer, 1996. An extended version appeared as Stanford University
Technical Note STAN-CS-TN-96-36, 1996.

[DG87] L. G. DeMichiel and R. P. Gabriel. Common Lisp Object System
oberview. In J. Bézivin, J.-M. Hullot, P. Cointe, and H. Lieberman,
editors, ECOOP ’87, volume 276 of Lecture Notes in Computer Science,
pages 151–170. Springer, 1987.

[DGLM95] Mark Day, Robert Gruber, Barbara Liskov, and Andrew C. Myers. sub-
types vs. where clauses: Constraining parametric polymorphism. In Ob-
ject Oriented Programing: Systems, Languages, and Applications (OOP-
SLA) ’95, pages 156–158. ACM, 1995. in SIGPLAN Notices) 30(10).

[DM82] Luis Damas and Robin Milner. Principal type-schemes for functional pro-
gramming languages. In Ninth Annual Symposium on Principles of Pro-
gramming Languages (POPL) (Albuquerque, NM), pages 207–212. ACM,
January 1982.

[ES90] M. Ellis and B. Stroustrup. The Annotated C++ Reference Manual.
Addison-Wesley, 1990.

[Fis96] Kathleen Fisher. Type Systems for Object-Oriented Languages. PhD
thesis, Stanford University, August 1996.

[FM95] Kathleen Fisher and John Mitchell. A delegation-based object calculus
with subtyping. In Horst Reichel, editor, Proceedings of FCT ’95, volume
965 of Lecture Notes in Computer Science. Springer, 1995.

[FM96] Kathleen Fisher and John Mitchell. The development of type systems
for object-oriented languages. Theory and Practice of Object Systems,
1(3):189–220, 1996. An earlier version appeared in [HM94] under the
title “Notes on Typed Object-Oriented Programming”.

[FMRS92] P. Freyd, P. Mulry, G. Rosolini, and D. Scott. Extensional PERs. Infor-
mation and Computation, pages 211–227, 1992. A preliminary version
appeared in Proceedings of LICS 1990, pages 346-354.

136 Bibliography

[Ghe90] Giorgio Ghelli. Proof Theoretic Studies about a Minimal Type System
Integrating Inclusion and Parametric Polymorphism. PhD thesis, Uni-
versità di Pisa, March 1990. Technical report TD–6/90, Dipartimento di
Informatica, Università di Pisa.

[Ghe91] Giorgio Ghelli. Modelling features of object-oriented languages in second
order functional languages with subtypes. In de Bakker et al. [dBdR91],
pages 311–340.

[Ghe93] Giorgio Ghelli. Recursive types are not conservative over F≤. In
M. Bezem and J.F. Groote, editors, Typed Lambda Calculus and Appli-
cations, volume 664 of Lecture Notes in Computer Science, March 16-18,
1993, Utrecht, The Netherlands, 1993. Springer.

[Ghe95] Giorgio Ghelli. Divergence of F≤ type checking. Theoretical Computer
Science, 139(1,2):131–162, 1995. Also appeared as Dipartimento di In-
formatica, Universitá di Pisa, Technical Report 5/93, 1993.

[Gir71] Jean-Yves Girard. Une extension de l’interpretation de Gödel à l’ana-
lyse, et son application à l’élimination des coupures dans l’analyse et la
théorie des types. In J. E. Fenstad, editor, Second Scandinavian Logic
Symposium ’71 (Oslo, Norway), number 63 in Studies in Logic and the
Foundations of Mathematics, pages 63–92. North-Holland, 1971.

[Gir72] Jean-Yves Girard. Interprétation fonctionelle et élimination des coupure
dans l’arithmetique d’ordre supérieur. PhD thesis, Université Paris VII,
1972.

[GJ96] Benedict R. Gaster and Mark P. Jones. A polymorphic type system
for extensible records and variants. Technical Report NOTTCS-TR-96-
3,, Functional Programming Research Group, Department of Computer
Science, University of Nottingham, 1996.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types.
Cambridge University Press, 1989.

[GM94] Carl A. Gunter and John C. Mitchell. Theoretical Aspects of Object-
Oriented Programming, Types, Semantics, and Language Design. Foun-
dations of Computing Series. MIT Press, 1994.

[Gog94a] Healfdene Goguen. The metatheory of UTT. In P P. Dybjer, B. Nord-
stroem, and J. Smith, editors, Types for Proofs and Programs, Interna-
tional Workshop (TYPES ’94); Bastad, Sweden, volume 996 of Lecture
Notes in Computer Science, pages 60–82. Springer, June 1994.

Bibliography 137

[Gog94b] Healfdene Goguen. Typed Operational Semantics for Type Theory. PhD
thesis, University of Edinburgh, 1994.

[Gog95] Healfdene Goguen. Typed operational semantics. In Mariangiola Dezani-
Ciancaglini and Gordon Plotkin, editors, Second International Confer-
ence on Typed Lambda Calculi and Applications (TCLA ’95), volume 902
of Lecture Notes in Computer Science, pages 186–200. Springer, 1995.

[GP97] Giorgio Ghelli and Benjamin Pierce. Bounded existentials and minimal
typing. Theoretical Computer Science, 1997. To appear.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: The Language and its
Implemementation. Addison-Wesley, Reading, MA, 1983.

[Gun92] Carl A. Gunter. Semantics of Programming Languages. MIT Press, 1992.

[Hay94] Susumu Hayashi. Singleton, union and intersection types for program
extraction. Information and Computation, 1994.

[Hen94] Andreas V. Hense. Polymorphic Type Inference for Object-Oriented Pro-
gramming Languages. PhD thesis, Technische Fakultät der Universität
des Saarlandes, 1994.

[Hic96] Jason J. Hickey. Nuprl-Light: An implementation framework for higher-
order logic. Technical report, Cornell University, 1996. Available elec-
tronically through http://www.cs.cornell.edu/home/jyh.

[Hic97] Jason J. Hickey. A semantics of objects in type theory (forthcoming).
Technical report, Computer Science Department, Cornell University,
1997.

[Hin69] J. R. Hindley. The principal type-scheme of an object in combinatory
logic. Transactions of the American Mathematical Society, 146:29–60,
December 1969.

[HM94] M. Hagiya and John C. Mitchell, editors. Theoretical Aspects of Com-
puter Software, volume 789 of Lecture Notes in Computer Science.
Springer, 1994.

[HNSS98] Martin Hofmann, Wolfgang Naraschewski, Martin Steffen, and Terry
Stroup. Inheritance of proofs. Theory and Practice of Object Systems
(Tapos), Special Issue on Third Workshop on Foundations of Object-
Oriented Languages (FOOL 3), July 1996, 4(1):51–69, January 1998.
An extended version appeared as Interner Bericht, Universität Erlangen-
Nürnberg, IMMDVII-5/96.

138 Bibliography

[How80] W. A. Howard. The formulae-as-types-notion of construction. In J. P.
Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combina-
tory Logic, Lambda Calculus and Formalism, pages 479–490. Academic
Press, 1980.

[HP91] R. Harper and B. Pierce. A record calculus based on symmetric concate-
nation. In Eighteenth Annual Symposium on Principles of Programming
Languages (POPL) (Orlando, FL) [ACM91], pages 131–142. Extended
version available as Carnegie Mellon Technical Report CMU-CS-90-157.

[HP95a] Martin Hofmann and Benjamin Pierce. Positive subtyping. In 22nd
Annual Symposium on Principles of Programming Languages (POPL)
(San Francisco, California), pages 186–197. ACM, January 1995. Full
version in Information and Computation, volume 126, number 1, April
1996. Also available as University of Edinburgh technical report ECS-
LFCS-94-303, September 1994.

[HP95b] Martin Hofmann and Benjamin Pierce. A unifying type-theoretic frame-
work for objects. Journal of Functional Programming, 5(4):593–635, Oc-
tober 1995. Previous versions appeared in the Symposium on Theoretical
Aspects of Computer Science, 1994, (pages 251–262) and, under the ti-
tle “An Abstract View of Objects and Subtyping (Preliminary Report),”
as University of Edinburgh, LFCS technical report ECS-LFCS-92-226,
1992.

[HT91] Kohei Honda and Mario Tokoro. An object calculus for asynchronous
communication. In P. America, editor, ECOOP ’91, volume 512 of Lec-
ture Notes in Computer Science, pages 133–147. Springer, 1991.

[HT92] Kohei Honda and Mario Tokoro. On asynchronous communication se-
mantics. In Tokoro et al. [TNW92], pages 21–51.

[IEE90] IEEE. Fifth Annual Symposium on Logic in Computer Science (LICS).
Computer Society Press, June 1990.

[JM93] L. Jategaonkar and J. Mitchell. Type inference with extended pattern
matching and subtypes. Acta Informatica, 19:127–166, 1993. A prelim-
inary version appeared in [ACM88a] (p. 198-211) under the title “ML
with extended pattern matching and subtypes”.

[Jon93] Cliff Jones. A pi-calculus semantics for an object-based design notation.
In Eike Best, editor, Proceedings of CONCUR ’93, volume 715 of Lecture
Notes in Computer Science, pages 158–172. Springer, 1993.

Bibliography 139

[Jon97] M. P. Jones. First-class polymorphism with type inference. In POPL ’97
[POP97].

[KG89] Sonya Keene and Dan Gerson. Object-Oriented Programming in Common
Lisp. Addison-Wesley, Reading, Massachusetts, 1989.

[KLMM94] Dinesh Katiyar, David Luckham, S. Meldal, and John Mitchell. Polymor-
phism and subtyping in interfaces. In Workshop on Interface Definition
Languages, pages 22–34. ACM, 1994. In SIGPLAN Notices) 29(8).

[KMP84] Gilles Kahn, David MacQueen, and Gordon Plotkin, editors. Seman-
tics of Data Types, volume 173 of Lecture Notes in Computer Science.
Springer, 1984.

[KR94] Samuel N. Kamin and Uday S. Reddy. Two semantic models of object-
oriented languages. In Theoretical Aspects of Object-Oriented Program-
ming, Types, Semantics, and Language Design [GM94], pages 464–495.

[KY94] Naoki Kobayashi and Akinori Yonezawa. Type-theoretic foundations for
concurrent object-oriented programming. In Object Oriented Programing:
Systems, Languages, and Applications (OOPSLA) ’94. ACM, 1994. to
appear.

[LCD+94] Barbara Liskov, Dorothy Curtis, Mark Day, Snjay Ghe-
mawat, Robert Gruber, Paul Johnson, and Andrew C. Myers.
Theta Reference Manual. MIT Laboratory for Computer Sci-
ence, Cambridge, Massachusetts, February 1994. Available at
http://www.pgm.lcs.mit.edu/papers/thetaref/.

[leg97] The lego World Wide Web page, 1997. Accessible electronically through
http://www.dcs.ed.ac.uk/home/lego.

[Liq97] Luigi Liquori. An extended theory of primitive objects: First order sys-
tems. In Akşit and Matsuoka [AM97].

[LP91] Wilf LaLonde and John Pugh. Subclassing 6= subtyping 6= is-a. Journal
of Object-Oriented Programming, pages 57–62, January 1991.

[LPT89] Zhaohui Luo, Randy Pollack, and Paul Taylor. How to use lego (a
preliminary user’s manual). Technical Report 27, Laboratory for Foun-
dations of Computer Science, University of Edinburgh, October 1989.

[Luo92] Zhaohui Luo. A unifying theory of dependent types: the schematic ap-
proach. Technical Report ECS-LFCS-92-202, Laboratory for Foundations
of Computer Science, University of Edinburgh, March 1992.

140 Bibliography

[Luo95] Zhaohui Luo. Developing reuse technology in proof engineering. In Pro-
ceedings of the AISB ’95 Workshop on Automated Reasoning, Sheffield,
UK, 1995.

[Luo96] Zhaohui Luo. Coercive subtyping in type theory. In Computer Sci-
ence Logic (CSL ’96), volume xxx of Lecture Notes in Computer Science.
Springer, 1996.

[LY96] T. Lindholm and F. Yellin. The Java Virtual Machine. Addison-Wesley,
1996.

[Ma92] QuingMing Ma. Parametricity as subtyping. In Nineteenth Annual Sym-
posium on Principles of Programming Languages (POPL) (Albuquerque,
NM) [ACM92], pages 281–292.

[MBL97] Andrew C. Myers, Joseph A. Bank, and Barbara Liskov. Parameterized
types and Java. In POPL ’97 [POP97], pages 132–145.

[Mey92] Bertrand Meyer. Eiffel: The Language. Prentice Hall, 1992.

[Mil78] R. Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17(3):348–375, December 1978.

[Mit90a] John Mitchell. Type systems for programming languages. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B:
Formal Models and Semantics, chapter 8, pages 365–458. Elsevier, 1990.

[Mit90b] John C. Mitchell. Toward a typed foundation for method specialization
and inheritance. In Seventeenth Annual Symposium on Principles of
Programming Languages (POPL) (San Fancisco, CA) [ACM90], pages
109–124. Also in the collection [GM94].

[Mit96] John C. Mitchell. Foundations of Programming Languages. Foundation
of Computing Series. MIT Press, 1996.

[ML75] Per Martin-Löf. An intuitionistic theory of types: Predicative part. In
H. E. Rose and John C. Shepherdson, editors, ASL Logic Colloquium ’73
(Bristol, England), number 80 in Studies in Logic and the Foundations
of Mathematics, pages 73–118. North-Holland, 1975.

[MP88] John C. Mitchell and Gordon D. Plotkin. Abstract types have existen-
tial type. ACM Transactions on Programming Languages and Systems,
10(3):470–502, July 1988.

Bibliography 141

[MPS86] David MacQueen, Gordon Plotkin, and Ravi Sethi. An ideal model for
recursive polymorphic types. Information and Control, 71:95–130, 1986.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, part I/II. Information and Computation, 100:1–77, 1992.

[MV96] John C. Mitchell and Ramesh Viswanathan. Effective models of polymor-
phism, subtyping, and recursion. In Friedrich Meyer auf der Heide and
Burkhard Monien, editors, 23rd Colloquium on Automata, Languages and
Programming (ICALP) (Paderborn, Germany), volume 1099 of Lecture
Notes in Computer Science. Springer, 1996.

[Nie92] Oscar Nierstrasz. Towards an object calculus. In Tokoro et al. [TNW92],
pages 1–20.

[OL92] Stephen M. Omohundro and Chu-Cheow Lim. The Sather languange and
libraries. Tr-92–17, International Computer Science Institute, Berkeley,
March 1992.

[Olt95] W. Olthoff, editor. ECOOP ’95, volume 952 of Lecture Notes in Com-
puter Science, 1995.

[OW97a] Martin Odersky and Philip Wadler. The Pizza compiler. Available
through http://www.math.luc.edu:/pizza, 1997.

[OW97b] Martin Odersky and Philip Wadler. Pizza into Java: Translating theory
into practice. In POPL ’97 [POP97]. A preliminary version appeared as
Technical Report, 26/96, University of Karlsruhe, July 1996.

[Pau93] Lawrence C. Paulson. The Isabelle reference manual. Technical Report
283, University of Cambridge, Computer Laboratory, 1993.

[PDM89] Benjamin Pierce, Scott Dietzen, and Spiro Michaylov. Programming in
higher-order typed lambda-calculi. Technical Report CMU-CS-89-111,
Carnegie Mellon University, March 1989.

[Pfe93a] Frank Pfenning. On the undecidability of partial polymorphic type re-
construction. Acta Informatica, 19(1,2):185–199, 1993.

[Pfe93b] Frank Pfenning. Refinement types for logical frameworks. In Informal
Proceedings of the 1993 Workshop on Types for Proofs and Programs,
pages 315–328, May 1993.

142 Bibliography

[Pho90] Wesley Phoa. Effective domains and intrinsic structure. In Fifth Annual
Symposium on Logic in Computer Science (LICS) (Philadelphia, PA)
[IEE90], pages 366–377.

[Pie94] Benjamin C. Pierce. Bounded quantification is undecidable. Information
and Computation, 112(1):131–165, July 1994. Also in Carl A. Gunter and
John C. Mitchell, editors, Theoretical Aspects of Object-Oriented Pro-
gramming: Types, Semantics, and Language Design (MIT Press, 1994).
A preliminary version appeared in POPL ’92.

[Pie97a] Benjamin C. Pierce. Bounded quantification with bottom. Technical
Report CSCI TR #492, Indiana University, November 1997.

[Pie97b] Benjamin C. Pierce. Intersection types and bounded polymorphism.
Mathematical Structures in Computer Science, 7(2):129–193, April 1997.
Summary version appeared in Conference on Typed Lambda Calculi and
Applications, March 1993, pp. 346–360. Preliminary version available as
University of Edinburgh technical report ECS-LFCS-92-200.

[POP97] ACM. 24th Annual Symposium on Principles of Programming Languages
(POPL) (Paris, France), January 1997.

[PP92] Benjamin Pierce and Randy Pollack. Higher-order subtyping. Unpub-
lished Manuscript. In the Dienstagsclub’s Blechschrank., November 1992.

[PS94] Jens Palsberg and Michael I. Schwartzbach. Object-Oriented Type Sys-
tems. John Wiley & Sons, 1994.

[PS96] Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mo-
bile processes. Mathematical Structures in Computer Science, 6(5):409–
454, 1996.

[PS97] Benjamin Pierce and Martin Steffen. Higher-order subtyping. Theoretical
Computer Science, 176(1,2):235–282, 1997. A shorter version appeared
in the Proceedings IFIP Working Conference on Programming Concepts,
Methods and Calculi (p. 511–530), 1994. Also LFCS technical report
ECS-LFCS-94-280 and Interner Bericht IMMD7-01/94, Universität Er-
langen.

[PT93] Benjamin Pierce and David Turner. Statically typed friendly functions
via partially abstract types. Technical Report ECS-LFCS-93-256, Labo-
ratory for Foundations of Computer Science, University of Edinburgh,
1993. Also available as INRIA-Rocquencourt Rapport de Recherche
No. 1899.

Bibliography 143

[PT94] Benjamin Pierce and David Turner. Simple type-theoretic foundations
for object-oriented programming. Journal of Functional Programming,
4(2):207–247, April 1994. A preliminary version appeared in Principles of
Programming Languages, 1993, and as University of Edinburgh techni-
cal report ECS-LFCS-92-225, under the title “Object-Oriented Program-
ming Without Recursive Types”.

[PT95a] L. Pacholski and J. Tiuryn, editors. Computer Science Logic (CSL ’94),
volume 933 of Lecture Notes in Computer Science. Springer, 1995.

[PT95b] Benjamin C. Pierce and David N. Turner. The Pict manual. Distributed
with the Pict implementation, 1995.

[PT97a] Benjamin C. Pierce and David N. Turner. Local type argument synthesis
with bounded quantification. Technical Report CSCI TR #495, Indiana
University, November 1997.

[PT97b] Benjamin C. Pierce and David N. Turner. Pict: A programming language
based on the pi-calculus. Technical Report CSCI 476, Computer Science
Department, Indiana University, 1997. To appear in Milner Festschrift,
MIT Press, 1997.

[PT97c] Benjamin C. Pierce and David N. Turner. Pict language
definition (version 4.0). Available electronically through
http://www.cs.indiana.edu/hyplan/pierce/ftp/, 1997.

[PT98] Benjamin C. Pierce and David N. Turner. Local type inference. In Pro-
ceedings of POPL ’98. ACM, 1998. Also as Indiana University Technical
Report CSCI TR #493.

[Red88] Uday S. Reddy. Objects as closures: Abstract semantics of object-
oriented languages. In Symposium on lisp and Functional Programming
(Snowbird, UT), pages 289–297. ACM, July 1988.

[Rém89] Didier Rémy. Typechecking records and variants in a natural extension
of ML. In Sixteenth Annual Symposium on Principles of Programming
Languages (POPL) (Austin, TX), pages 77–87. ACM, January 1989.

[Rém92] Didier Rémy. Typing record concatenation for free. In Nineteenth An-
nual Symposium on Principles of Programming Languages (POPL) (Al-
buquerque, NM) [ACM92], pages 166–176. Also in Carl A. Gunter and
John C. Mitchell, editors, Theoretical Aspects of Object-Oriented Pro-
gramming: Types, Semantics, and Language Design (MIT Press, 1994).

144 Bibliography

[Rey74] John Reynolds. Towards a theory of type structure. In B. Robinet, editor,
Colloque sur la programmation (Paris, France), volume 19 of Lecture
Notes in Computer Science, pages 408–425. Springer, 1974.

[Rey85] John C. Reynolds. Three approaches to type structure. In H. Ehrig,
C. Floyd, M. Nivat, and J. Thatcher, editors, Mathematical Foundations
of Software Development, Volume1: Colloquium on Trees in Algebra and
Programming (CAAP ’85), volume 185 of Lecture Notes in Computer
Science, pages 97–138. Springer, 1985.

[Rey96] John C. Reynolds. Design of the programming language Forsythe. Tech-
nical Report CMU-CS-96-146, Carnegie Mellon University, June 1996. A
preliminary version appeared as technical report CMU-CS-88-159.

[RIR93] N. Rodriguez, R. Ierusalimschy, and J. L. Rangel. Types in School. ACM
SIGPLAN Notices, 28, 8 1993.

[SCB+86] Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Kilian, and Carrie
Wilpolt. An introduction to Trellis/OWL. In Object Oriented Program-
ing: Systems, Languages, and Applications (OOPSLA) ’86 (Portland,
Oregon) [ACM86], pages 9–16. Special issue of SIGPLAN Notices (vol.
21 No. 11, November, 1986), a preliminary version appeared as Digital
Equipment Technical Report, DEC-TR-372, November 1985.

[Sny86] A. Snyder. Encapsulation and inheritance in object-oriented program-
ming languages. In Object Oriented Programing: Systems, Languages,
and Applications (OOPSLA) ’86 (Portland, Oregon) [ACM86], pages 38–
45. in SIGPLAN Notices 21(11).

[SP94] Martin Steffen and Benjamin Pierce. Higher-order subtyping. Interner
Bericht IMMD7-01/94, Informatik VII, Universität Erlangen-Nürnberg,
January 1994. Also as LFCS technical report ECS-LFCS-94-280, ac-
cepted for publication in Theoretical Computer Science.

[Sta88] R. Stansifer. Type inference with subtypes. In Fifteenth Annual Sym-
posium on Principles of Programming Languages (POPL) (San Diego,
CA) [ACM88b], pages 88–97.

[Str86] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,
1986.

[Tai67] William W. Tait. Intensional interpretation of functionals of finite type.
Journal of Symbolic Logic, 32, 1967.

Bibliography 145

[Tai75] William W. Tait. A realizability interpretation of the theory of species.
In R. Parikh, editor, Logic Colloquium ’75, number 453 in Lecture Notes
in Mathematics. Springer, 1975.

[Tho91] Simon Thompson. Type Theory and Functional Programming. Interna-
tional Computer Science Series. Addison-Wesley, 1991.

[TNW92] M. Tokoro, O. Nierstrasz, and P. Wegner, editors. Object-Based Concur-
rent Computing 1991, volume 612 of Lecture Notes in Computer Science.
Springer, 1992.

[US91] D. Ungar and R.B. Smith. Self: The power of simplicity. Lisp and Sym-
bolic Computation, 4(3):187–206, 1991. Preliminary version appeared
in Proc. ACM Symp. on Object-Oriented Programming: Systems, Lan-
guages, and Applications, 1987, 227-241.

[Vas94] Vasco Vasconcelos. Typed concurrent objects. In M. Tokoro and
R. Pareschi, editors, Proceedings of ECOOP ’94, volume 821 of Lecture
Notes in Computer Science, pages 100–117. Springer, 1994.

[VT93] Vasco Thudichum Vasconcelos and Mario Tokoro. A typing system for
a calculus of objects. In Shojiro Nishio and Akinori Yonezawa, edi-
tors, First JSSST International Symposion on Object Technologies for
Advances Software (Kanazawa, Japan), volume 742 of Lecture Notes in
Computer Science, pages 460–474. Springer, 1993.

[Wan87a] Mitchell Wand. Complete type inference for simple objects. In Second
Annual Symposium on Logic in Computer Science (LICS) (Ithaca, NY),
pages 37–44. IEEE, Computer Society Press, June 1987.

[Wan87b] Mitchell Wand. A simple algorithm and proof for type inference. Fun-
damenta Informaticae, 10:115–122, 1987.

[Wan88] Mitchell Wand. Corrigendum: Complete type inference for simple ob-
jects. In Third Annual Symposium on Logic in Computer Science (LICS)
(Edinburgh, Scotland). IEEE, Computer Society Press, June 1988.

[Wan91] Mitchell Wand. Type inference for record concatenation and multiple
inheritance. Information and Computation, 92:1–15, 1991. A preliminary
version appeared in the Proceedings of LICS’89, pages 92-97.

[Wan94] Mitchell Wand. Type inference for objects with instance variables and
inheritance. In Theoretical Aspects of Object-Oriented Programming,
Types, Semantics, and Language Design [GM94], pages 97–120. Also

146 Bibliography

appeared as Northeastern University Technical Report, NU-CCS-89-2,
1989.

[Wel94] J. B. Wells. Typability and type checking in the second order λ-calculus
are equivalent and undecidable. In Ninth Annual Symposium on Logic in
Computer Science (LICS) (Paris, France), pages 176–185. IEEE, Com-
puter Society Press, July 1994.

[Wra89] Gavin C. Wraith. A note on categorical datatypes. In David Pitt, David
Rydeheard, Peter Dybjer, Andrew Pitts, and Axel Poigné, editors, Cat-
egory Theory and Computer Science (Manchester, U.K.), volume 389 of
Lecture Notes in Computer Science, pages 118–127. Springer, September
1989.

[Yon90] Akinori Yonezawa. ABCL: An Object-Oriented Concurrent System. MIT
Press, 1990.

[Zwa96] Jan Zwanenburg. A type system for record concatenation and
subtyping. In Bruce [Bru96a]. Available electronically through
http://www.cs.williams.edu/∼kim/FOOL/Abstracts.html.

Part IV

German translations

Polarisierte Untertypen höherer Ordnung

Der Technischen Fakultät der
Universität Erlangen-Nürnberg

zur Erlangung des Grades

D O K T O R – I N G E N I E U R

vorgelegt von

Martin Steffen

Erlangen – 1997

150

Zusammenfassung

Der Kalkül F ω
≤ , ein polymorpher λ-Kalkül mit Untertypen und Typoperatoren, wur-

de als Basiskalkül für typisierte, objektorientierte Sprachen vorgeschlagen. Die in der
Literatur untersuchten Versionen unterstützen in der Regel nur punktweise Unter-
typisierung von Typoperatoren, das heißt, zwei Applikationen S U und T U stehen
in Untertypbeziehung, wenn S und T dies tun. Cardelli präsentiert in seiner häufig
zitierten, unveröffentlichten Note F ω

≤ in einer allgemeineren Form. Sie geht über die
punktweise Untertypisierung von Applikationen hinaus, indem sie zwischen monoto-
nen und antimonotonen Operatoren unterscheidet. Für einen monotonen Operator
T , beispielsweise, impliziert U1 ≤ U2, daß auch T U1 ein Untertyp von T U2 ist.

Meine These erweitert F ω
≤ um polarisierte Applikation, entwickelt seine Meta-

theorie, und weist die Entscheidbarkeit des polarisierten F ω
≤ nach. Die Einführung

polarisierter Applikationen führt zu wechselseitiger Abhängigkeit des Untertyp– und
des Artsystems. Dies steht im Gegensatz zum unpolarisierten Fall, bei dem Unter-
typableitungen von Artableitungen abhängen, aber nicht umgekehrt. Um die Ent-
scheidbarkeit des System nicht zu verlieren, stellt die Arbeit eine Verallgemeinerung
der bekannten Untertypregel für All-Typen vor, die auf der Identität der Oberschran-
ken der verglichenen Alltypen beharrt. Die Verallgemeinerung im polarisierten Fall
besteht darin, daß dies zu einer Forderung nach gegenseitiger Untertypbeziehung der
Oberschranken abgeschwächt wird.

152 Zusammenfassung

Kapitel 1

Einleitung

Das einleitende Kapitel dient der Begriffsklärung und dazu, relevante Forschungs-
ergebnisse auf dem Gebiet zusammenzutragen. Schließlich gebe ich Hinweise auf
weitergehende Literatur und einen Überblick über den Inhalt meiner These.

1.1 Typen und Programme . 153

1.2 Objektorientierte Programmiersprachen 154

1.3 F ω
≤ : Untertypisierung höherer Ordnung 162

1.4 Weiterführende Literatur 166

1.5 Der Beitrag der Arbeit . 167

1.6 Gliederung . 168

1.7 Veröffentlichungen . 168

1.1 Typen und Programme

Typen sind ein natürliches, programmiersprachliches Konzept. Der Typ eines Pro-
grammes beschreibt, in welchen Kontexten es verwendet werden darf. Unter starker
Typisierung versteht man, daß Laufzeitfehler durch Fehlverwendung des Program-
mes, beispielsweise die Anwendung einer Funktion auf ein unpassendes Argument
oder ein Aufruf einer nicht unterstützten Methode an einem Objekt, ausgeschlossen
sind. Eine Sprache ist typsicher, wenn derartige Fehler durch ein Typsystem ab-
gefangen werden. Statisch typisierte Sprachen überprüfen das Wohlverhalten ihrer
Programmes bevor das Programm ausgeführt wird, zur Übersetzungszeit.

Das Typsystem einer Programmiersprache bildet ein formales Deduktionssystem
und unterteilt die Mengen der syntaktisch korrekten Programme in wohltypisierte

154 Kapitel 1 Einleitung

und nicht-wohltypisierte. Dies trägt zum Schutz gegen nicht-systematische Program-
mierfehler und somit zu zuverlässigerer Software bei. Daneben erhöht die statische
Typisierung der Programme die Effizienz, indem sie das Laufzeitsystem von kost-
spieligen Überprüfungen des laufenden Programmes befreit. Indem die Typen die
beabsichtigte Verwendung eines Programmes dokumentieren, erhöhen sie die Les-
barkeit des Quellkodes. Dies trifft vor allem für große, strukturierte Programme,
die in Objekte oder Module unterteilt sind, zu, deren Schnittstellen durch ihre Ty-
pen spezifiziert werden. Typüberprüfung bedeutet hier den Nachweis der Konsistenz
der Schnittstellen. Schließlich benutzen Übersetzer Typinformation, um effizienteren
Kode zu generieren.

Nicht alle möglichen Laufzeitfehler sind statisch überprüfbar, weil die Eigenschaft
unentscheidbar sein mag oder weil der Test schlicht zu aufwendig wäre. Da ein
sicheres, statisches Typsystem, was die akzeptierten Programme betrifft, konserva-
tiv sein muß, wird es Programme zurückweisen, die ansonsten fehlerfrei liefen, und
je schwächer das Typsystem, desto mehr Programme wird es ablehnen. Der Ent-
wurf starker, doch sicherer und entscheidbarer Typsysteme ist ein Hauptthema in
der Evolution der Programmiersprachen und ein wichtiger Beitrag der theoretischen
Informatik. Für objektorientierte Sprachen ist die Entwicklung beweisbar sicherer,
ausdrucksstarker Typsysteme eine besondere Herausforderung, da diese Sprachen für
ihre Vielfalt an unterschiedlichen, mächtigen — doch nicht notwendigerweise wohl-
verstandenen — Konzepten bekannt sind.

1.2 Objektorientierte Programmiersprachen

Objekte und Klassen

Selbst wenn keine Einmütigkeit darüber besteht, durch welche Merkmalskombination
genau sich objektorientierte Sprachen auszeichnen sollten, eines ist unbestritten: Pro-
gramme sind in Objekte gegliedert. Ein Objekt enthält einen internen Zustand und
Prozeduren, die Methoden des Objektes, um auf ihn zugreifen zu können. Die Metho-
den stellen die Schnittstelle des Objektes dar und bieten die einzige Zugriffsmöglich-
keit auf seinen Zustand. In diesem Sinne kapseln und abstrahieren Objekte von ihrem
internen Zustand. Vor allem bei der Entwicklung großer Programme und Bibliothe-
ken sind saubere Schnittstellen– und Abstraktionsmechanismen wichtig. ([Coo91]
diskutiert die Unterschiede zwischen Abstrakten Datentypen und Objekten.)

Ein wesentlicher Zug objektorientierter Sprachen ist die dynamische Bindung von
Methoden, auch als späte Methodenbindung oder als dynamischer Methodenaufruf
bezeichnet. Das selbe ist gemeint, spricht man davon, einem Objekt eine Nachricht
zu senden. Wie immer man es bezeichnet, man versteht darunter, daß der Kode ei-

Section 1.2 Objektorientierte Programmiersprachen 155

ner Methode nicht statisch zur Übersetzungzeit, bei der Konstruktion des Objektes,
sondern beim Aufruf der Methode zur Laufzeit ausgewählt wird. Dies ist der Haupt-
unterschied zwischen Funktionsanwendung und Methodenaufruf. Da es möglich ist,
Methoden zu definieren, deren Definition sich auf andere Methoden des selben Ob-
jektes beziehen können (zum Beispiel in Smalltalk mittels des Schlüsselwortes self
oder durch this in C++) betrifft eine Re-Implementierung einer referenzierten Metho-
de (durch sogenanntes method override) auch die referierenden Methoden des selben
Objektes. Es sollte einleuchten, daß diese dynamische Eigenschaft der Vererbung für
die statische Typüberprüfung ein Problem darstellt.

Objekte sind die Struktureinheiten fertiger Programme, doch ob Objekte auch
im Mittelpunkt der Programmentwicklung stehen, ist eine getrennte Frage. In klas-
senbasierten Sprachen wie Simula [BDMN79], Smalltalk [GR83], C++ [Str86] [ES90],
Eiffel [Mey92], Java [AG96] [LY96], um einige zu nennen, werden zur inkrementellen
Programmentwicklung Klassen verwendet.1

Klassen als Bauplan für Objekte, enthalten die Beschreibung ihrer Implemen-
tierung, also Anfangswerte für die internen Daten und den Kode ihrer Methoden.
Klassen können auf zweierlei Weise verwendet werden: zu einen, um neuen Objekte
zu generieren. Die Objekte, die zu einer Klasse gehören und die selbe Implemen-
tierung teilen, sind die Instanzen der Klasse. Zum zweiten, um durch Vererbung
inkrementell neue Klassen zu definieren. Inkrementell, da zur Definition der neu-
en Klasse Teile der alten Oberklasse wiederverwendet, d.h. geerbt, werden können,
alte Methoden können durch neue ersetzt und neue Methoden hinzugefügt werden.
Vererbung ist also ein Mechanismus zu Programmkonstruktion, der durch Vererbung
die Wiederverwendung von Kode von Oberklassen und Unterklassen unterstützt, und
große Programme und Bibliotheken in einer Vererbungshierarchie strukturiert.

Polymorphie

Wie alle höheren Programmiersprachen, die diesen Namen verdienen, unterstützen
objektorientierte Sprachen Polymorphie in der einen oder anderen Form. Im Gegen-
satz zu einem monomorphen Programm, erlaubt ein polymorphes Eingaben unter-
schiedlichen Typs, was die Flexibilität und Ausdrucksstärke der Programmiersprache
erhöht. (Eine Diskussion verschiedener Formen von Polymorphie findet sich in Car-
delli und Wegner [CW85].)

1Die Mehrzahl objektorientierter Sprachen ist klassenbasiert. Die Alternative sind objektbasierte
Sprachen, wie beispielsweise Self [US91]. Sie kommen ohne Klassen aus, indem die Erzeugung neuer
Objekte unmittelbar an bereits bestehenden Objekte durchgeführt wird. Dies wird als Klonen
bezeichnet und tritt an die Stelle von Vererbung und Instantiierung.

156 Kapitel 1 Einleitung

Parametrische Polymorphie

Parametrische Polymorphie erlaubt Programme, welche uniform auf Eingaben unter-
schiedlichen Typs arbeiten, indem dem Programm der Typ als Parameter übergeben
werden kann.

Ein Standardbeispiel hierfür ist die Funktion, die die Komponenten eines Werte-
paares eines gegebenen Typs vertauscht. Der Typ selbst spielt für die Wirkung der
Funktion keine Rolle und die Funktion arbeitet uniform für alle Typen. Anstelle also
für jeden Typ T eine spezielle Funktion des Typs (T × T) → (T × T) zu schreiben,
für den die Funktion im Rest des Programmes gebraucht wird, ist es offensichtlich
besser, die Funktion ein für alle Mal zu definieren. Die Funktion bekommt dann den
allquantifizierten Typ ∀A.(A×A) → (A×A), um anzuzeigen, daß sie die geforderte
Funktionalität uniform für alle Typen besitzt (A ist dabei eine Typvariable).

Universelle Typen kennzeichnen Funktionen, deren erstes Argument der Typ ist
auf dem sie arbeiten. Typabstraktion zur Definition polymorpher Funktionen und
Typapplikation zu ihrer Instantiierung ist ein eleganter und mächtiger Mechanismus
zur Wiederverwendung von Kode. Darüberhinaus hilft es dem Compiler, Kodever-
doppelung zu vermeiden. Für objektorientierte Sprachen ermöglicht parametrischer
Polymorphie, sogenannte type casts zu vermeiden und zu effizienteren Kode zu er-
zeugen.

Diese Form des expliziten parametrischen Polymorphie steht im Gegensatz zu den
polymorphen Typsystemen vieler moderner Sprachen wie beispielsweise ML, Haskell
oder Miranda, deren Typinferenz system dem Programmierer die explizite Angabe
des Typparameters einer Funktion in den meisten Fällen erspart. Diese sogenannten
Hindley-Milner Typsysteme [Hin69] [Mil78] [DM82] (vgl. auch [Car87]) oder Systeme
mit

”
let-Polymorphie” sind schwächer, indem sie implizit von einer Pränexquantifizie-

rung der Typvariablen in den Typen polymorpher Funktionen ausgehen. Der Vorteil
dieser Einschränkung besteht darin, daß die Typinferenz, anders als im allgemei-
nen Fall uneingeschränkter Polymorphie höherer Ordnung [Boe85] [Pfe93a] [Wel94],
entscheidbar ist.

Untertyppolymorphie Die Untertyprelation basiert auf einem einfachen Gedan-
ken: Typen sind geordnet und Programme des kleineren Typs können anstelle von
Programmen eines größeren Typs verwendet werden. Als ein nicht speziell objektori-
entiertes Beispiel, betrachte den Typ der ganzen Zahlen und der reellen Zahlen. Auch
wenn das Typsystem die Verwendung reeller Zahlen an Stellen verhindern muß, an de-
nen ein ganzzahliger Wert erwartet wird, so liegt aus Sicht der Programmierers nichts
Verkehrtes darin, Integerwerte anstelle von reellen Werten zu verwenden, schließlich
fällt jede ganze Zahl auch unter die reellen Zahlen. Mit anderen Worten, die Menge
der reellen Zahlen subsumiert die Menge der ganzen Zahlen, man bezeichnet den Typ

Section 1.2 Objektorientierte Programmiersprachen 157

Int als einen Untertyp von Real und schreibt Int ≤ Real. Aus Sicht des Compilers
werden sich die Elemente beider Typen allerdings in ihrer Darstellung unterscheiden
und er wird beispielsweise die direkte Addition unterschiedlich dargestellter Zahlen
durch Umwandlung in eine gemeinsame Fließkommadarstellung verhindern.2

Erlaubte eine Sprache mit Untertypen nichts weiter als die gelegentliche Verwen-
dung ganzer Zahlen anstelle reeller, würde man noch kaum von einem Untertypsystem
sprechen wollen. Üblicherweise umfaßt eine Programmiersprache neben Grundtypen
wie beispielsweise den der ganzen und der reellen Zahlen auch zusammengesetzte
Typen. Eine herausragende Rolle spielen insbesondere in funktionalen Sprachen die
funktionalen Typen. Ein Pfeiltyp der Form T1 → T2 beschreibt alle Funktionen mit
Wertebereich T1 und Zielbereich T2. Entsprechend der grundlegenden Intuition für
die Untertyprelation, daß nämlich die Werte des kleineren Typs gefahrlos und oh-
ne Laufzeitfehler für Werte (hier Funktionen) des größeren Typ verwendet werden
dürfen, müssen die Elemente der Untertypen des Pfeiltyps T1 → T2 ebenfalls Funk-
tionen sein. Genauer müssen die Funktionen eines Untertyps mindestens alle Werte
aus T1 als Eingabe verarbeiten können und andererseits höchstens Ergebnisse aus
T2 zurückgeben, wenn sie an die Stelle von Funktionen aus T1 → T2 treten können
sollen. Die folgende Inferenzregel drückt diese Beziehung aus:

T1 ≤ S1 S2 ≤ T2

S1 → S2 ≤ T1 → T2

Da also die Untertyprelation für funktionale Typen ihre Richtung auf den Argu-
menttypen umkehrt, spricht man von kontravariantem Verhalten des Pfeiltyp in der
Argumentposition und von kovariantem in der Werteposition.

Der Gedanke, die Untertyprelation über die Struktur ihren Typen zu definieren,
wird als strukturelle Untertypisierung bezeichnet [Car88a] [Car88b] [Rey85] [Sta88].3

Die Untertyprelation bildet im allgemeinen eine Präordnung auf der Menge aller
Typen und ist induktiv über Deduktionsregeln, ähnlich der für Pfeiltypen, definiert.
Die Gesamtheit dieser Regeln bildet das Untertypsystem.

Der Kern der Untertyprelation, daß Elemente eines kleineren Typs auch alle größe-
ren Typen tragen und aus diesem Grund an die Stelle derer aller größeren Typen

2Allgemeiner bezeichnet man die nicht-uniforme Verwendung von Programmen als Überladen.
In dem Beispiel ist nennt man die arithmetische Operation + überladen. Da sich die Additi-
onsalgorithmen für ganze und reelle Zahlen unterscheiden, spricht man in diesem Fall auch von

”
ad-hoc“-Polymorphie, um es von den uniformen Definitionen des parametrischen Polymorphie zu

unterscheiden.
3Dies steht im Gegensatz zu deklarativer Untertypisierung, bei der der Benutzer festlegen muß,

welche Typen in Untertypbeziehung stehen. Daß daneben einige objektorientierte Sprachen wie
beispielsweise C++ oder Eiffel, nicht zischen Klassen und Typen unterscheiden, trägt zur Verwirrung
bei.

158 Kapitel 1 Einleitung

treten können, drückt die folgende Regel der Subsumption aus, die das Typsystem
im engeren Sinne mit dem Untertypsystem verbindet:

t ∈ T ′ T ′ ≤ T

t ∈ T

Untertyppolymorphie oder auch Inklusionspolymorphie ist ein Charakteristikum
objektorientierter Sprachen. Beispielsweise kann ein Objekt mit mehr Methoden
gefahrlos eines mit weniger Methoden ersetzen, ohne daß es zu Laufzeitfehlern wie
“message-not-understood” kommt, mit anderen Worten, die Typen beider Objekte
stehen in Untertypbeziehung.

Beschränkt-parametrische Polymorphie Ein wichtiger Beitrag für typisierte
objektorientierte Sprachen ist die Verknüpfung von parametrischer oder universel-
ler Polymorphie und Untertyppolymorphie. In ihrem einflußreichen Papier [CW85]
schlugen Cardelli und Wegner einen polymorphen λ-Kalkül zweiter Ordnung mit be-
schränkt-parametrischer Polymorphie und Records als funktionales Modell für objek-
torientierte Sprachen vor. Der Kalkül ist unter dem Namen “Bounded Fun” bekannt.
Nehmen wir als Standardbeispiel Point als den Typ aller Punkt-Objekte, die zum Le-
sen und Schreiben ihrer x-Koordinate die Methoden getx und setx bereitstellen. Der
Methodenaufruf der getx -Methode derartiger Objekte kann nun mit dem beschränkt-
universellen Typ ∀A≤Point .A → Int typisiert werden, wobei die Typvariable A für
alle Untertypen von Point steht. Die strukturelle Definition der Untertyprelation
stellt sicher, daß die Elemente aller Untertypen von Point bestimmte Eigenschaften
gemein haben; im Fall der Punkte wird jedes Objekt eines beliebigen Untertyps von
Point zumindest die getx - und die setx -Methode unterstützen.

Das angedeutete Typsystem zweiter Ordnung erlaubt es nicht, komplexere Me-
thoden wie das Überschreiben der x-Koordinate mittels setx mit ∀A≤Point .A →
Int → A zu typisieren. Der Unterschied zwischen getx und setx besteht darin,
daß die zweite Methode den Zustand verändert, während die erste ihn nur liest.
Um derartige zustandsverändernde Methoden typisieren zu können, wurde verschie-
dene Erweiterungen der λ-Kalküls zweiter Ordnung mit Untertypen vorgeschlagen,
beispielsweise die Erweiterung auf F-beschränkte Polymorphie, Match-beschränkte
Polymorphie oder Polymorphie höherer Ordnung. Mittlerweile gibt es eine Reihe
von Sprachen, die beschränkt-universelle Polymorphie unterstützen, unter anderem
Pizza, Rapide, Trellis/OWL [SCB+86], Eiffel,, polyTOIL . . . Daneben ist der Ver-
zicht auf parametrisch-beschränkte Polymorphie ist einer der wesentlichen Nachteile
von Java. Es gibt demzufolge eine Reihe von Vorschlägen, Java entsprechend zu
erweitern, beispielsweise in [AFM97], oder in Odersky und Wadlers Sprache Pizza
[OW97b] [OW97a]. Alle genannte Vorschläge beruhen auf F-beschränkter Polymor-
phie. Weitere Arbeiten in dieser Richtung sind [MBL97] [BLM96].

Section 1.2 Objektorientierte Programmiersprachen 159

Vererbung Vererbung gestattet es, wie erwähnt, inkrementell neue Objekte zu
konstruieren und dabei bereits definierten Kode wiederzuverwenden. Im Gegensatz
dazu drückt die Untertypbeziehung Eigenschaften der externen Verwendung von Ob-
jekten oder Termen im allgemeinen, nicht deren Implementierung, aus. Daß es sich
also um verschiedene Begriffe handelt, die nicht verwechselt gehören, ist allgemein
anerkannt, allerdings nicht so allgemein, daß nicht Sprachen wie beispielsweise C++

oder Eiffel Typen und Klassen, und damit Untertypen und Vererbung, gleichsetz-
ten. Zur Diskussion von Untertypen vs. Vererbung siehe auch neben vielen weiteren
[Sny86] [BHJ+87] [CHC90] [LP91].

Objekte als Records In einer oft verwendeten Analogie betrachtet man Objekte
als den Record ihrer Methoden [CW85], wobei der Methodenaufruf der Recordselek-
tion entspricht. In erster Annäherung paßt die Intuition der Untertypbeziehung für
Objekte auch gut mit den Untertypregeln für Records zusammen: zwei Recordtypen
stehen in Untertyprelation, wenn der kleinere alle Felder des größeren, und mögli-
cherweise mehr, enthält und darüberhinaus die Typen der gemeinsamen Felder in
kovarianter Untertyprelation stehen (die Felder li des Records sind unterschiedlich
und ihre Reihenfolge spielt keine Rolle):

Si ≤ Ti für alle 1 ≤ i ≤ n

{l1:S1, . . . , ln:Sn, ln+1:Sn+1, . . . , ln+m:Sn+m} ≤ {l1:T1, . . . , ln:Tn}

So gut wie alle typisierten Kalküle für objektorientierte Sprachen verwenden die-
se Analogie. Um das Zusammenspiel von Untertypisierung, Vererbung mit dynami-
scher Methodenbindung und Überschreiben von Methoden, sowie Kapselung geeignet
modellieren zu können, muß diese vereinfachende Gleichsetzung von Objekten und
Records allerdings verfeinert werden.

Speziell in objektbasierten Sprachen, bei denen die Records oder Objekte das
direkt, über die Recordselektion, das heißt, über den Methodenaufruf, hinaus mani-
puliert werden, endet die Analogie zischen Records und Objekten. Recorderweite-
rung, bei der einem bestehenden Record ein neues Feld hinzugefügt wird, erfordert,
eine Hälfte der oberen Untertypregel für Records aufzugeben, den Teil nämlich, der
festlegt, daß die Records des Untertyps mehr Felder als die Records des Obertyps
besitzen dürfen. (Dies wird als Untertypisierung der Breite für Records bezeichnet.)
Behielte man die volle Untertypregel bei, würde einem Subsumption gestatten, einen
Objekt eine Methode hinzuzufügen, die es bereits besitzt, was zu einem Laufzeit-
fehler führte. Um mit dem Hinzufügen von Methoden oder Recorderweiterungen
umgehen zu können, wurden eine Anzahl von sogenannten Record-Kalkülen vorge-
schlagen. Der Hauptgedanke in Zusammenhang mit Recorderweiterungen ist dabei,
in das Typsystem Information über die Abwesenheit von Methoden in einem Objekt

160 Kapitel 1 Einleitung

aufzunehmen, um sicherzustellen, daß diese Methoden gefahrlos zur Laufzeit dem
Objekt hinzugefügt werden können.

Um andererseits das Überschreiben von Methoden modellieren zu können, also die
Ersetzung einer Methode durch eine andere gleichen Namens, erzwingt die Aufgabe
der zweiten Hälfte der oberen Regel, daß nämlich die Typen der gemeinsamen Fel-
der beider Records in Untertypbeziehung stehen — dies wird als Untertypbeziehung
der Tiefe für Records bezeichnet. Anstelle dessen muß man, erlaubt man das Über-
schreiben von Methoden zu Laufzeit, auf der Identität der Typen der gemeinsamen
Methoden bestehen.

Für die angesprochenen Probleme wurden eine Reihe von Record-Kalkülen insbe-
sondere in Zusammenhang mit Typinferenz vorgeschlagen und untersucht, die unter
anderem das Überschreiben von Recordfeldern, die Erweiterung von Records oder
die Konkatenation von Records unterstützen [Wan87a] [Wan88] [Wan87b] [Car88a]
[Wan91] [CM91] [Rém89] [Rém92] [HP91] [Car92] [Wan94] [Aba94] [JM93] [Hen94]
[GJ96] [Zwa96] . . . Die Selbstreferenz dadurch, daß eine Methode weiteren Methoden
— einschließlich sich selbst — desselben Objektes aufrufen kann, kann mit rekursiven
Recordtypen modelliert werden. Beispielsweise werden Klassen in [Coo87] [Coo89]
durch Funktionen, sogenannte Objektgeneratoren, und Objekte als rekursiv definier-
te Records als Fixpunkt des Generators dargestellt. Weitere Arbeiten zu rekursi-
ven Records sind neben anderen [CP89] [Red88] [KR94] [Bru92] [CHC90] [CCHM89]
[Mit90b]. Ein komplexer Sprachentwurf mit Objekte als rekursiven Records findet
sich in [Bru94].

Überladen Anstelle als einem bestimmten Objekt zugehörig, kann man eine Me-
thode auch als eigenständige Einheit betrachten (und implementieren), wobei der
Kode, der bei Aufruf der Methode ausgeführt wird, von den Objekten abhängt, an
denen sie aufgerufen wird. Indem die Methoden eine Existenz außerhalb der Objekte
besitzen, kommt aus Sicht der Methode keinem der Objekte eine Sonderstellung zu
und der selektierte Kode kann von mehr als einem Objekt abhängen. Dies ist als
Mehrfachdispatch, zum Beispiel in CLOS [KG89] [DG87], bekannt. Der Methoden-
aufruf wird als als Funktion und die Objekte als seine Parameter betrachtet, das
heißt, der Methodenaufruf ist eine überladene Funktion. Eine Erweiterung des ein-
fach typisierten λ-Kalküls um Untertypen und überladene Funktionen (genannt λ&)
wird in [Cas93] [CGL95] präsentiert, um Mehrfachdispatch oder Multimethoden zu
modellieren. Das System F &

≤ [Cas95] stellt die entsprechende Erweiterung auf den
Fall zweiter Ordnung dar. Eine Metasprache λobject , die auf λ& basiert, wird in
[Cas93] untersucht. Vergleiche auch Castagna [Cas97] für eine umfangreiche Behand-
lung objektorientierte Sprachen mit Multimethoden.

Section 1.2 Objektorientierte Programmiersprachen 161

Matching Matching, geschrieben als S <# T , ist eine Relation auf Typen. Sie
ähnelt der Untertyprelation, ist aber allgemeiner.4 Insbesondere Subsumption, der
Kern der Untertypbeziehung, ist keine Eigenschaft des Matchings. Die Relation wur-
de von Bruce und anderen vorgeschlagen, und erlaubt die Definition von Klassen, für
deren Unterklassen man die größere Freiheit besitzt, nicht nur aus allen Untertypen
zu wählen sondern aus allen matchenden Typen. Dies ist allgemeiner, denn es erlaubt
die Konstruktion von Unterklassen, deren Instanzen nicht notwendigerweises Typen
tragen, die Untertypen der des Typs der Oberklasse sind [Bru94] [Bru96b] [BFP97]
[AC96a]. Die Form der beschränkte Polymorphie bei der der Parameter nicht durch
einen Obertyp als obere Grenze sondern durch einen matchenden Typ beschränkt ist,
nennt man match-beschränkte Polymorphie oder beschränktes Matching. Matching
läßt sich im durch Untertypen und Polymorphie höherer Ordnung repräsentieren
[AC96a]. Beispiele für Sprachenentwürfe mit Matching sind Toil [BSvG93] und po-
lyTOIL [BSvG95], statisch typisierte Sprachen mit Untertypen und Matching sowie
imperativen Anteilen. Im einem neueren Vorschlag Loom [BFP97] [Bru96b] wer-
den Untertypen vollständig zu Gunsten von Matching aufgegen. Weitere Sprachen
mit match-beschränkter Polymorphie sind Theta [LCD+94] [DGLM95] und School
[RIR93].

F-beschränkte Polymorphie F-beschränkte Polymorphie wurde in [CCHM89]
[CHC90] als eine Sonderform der Untertypisierung höherer Ordnung vorgeschlagen.
Die obere Schranke S in einem polymorphen Typ ∀A≤S.T kann dabei die Typvariable
A frei enthalten, wodurch sich das S wie eine Funktion von Typen nach Typen, also
wie ein Typoperator, verhält. Eine polymorphe Funktion diesen Typs erwartet als
Typargument ein U mit U ≤ [U/A]T . Vergleiche hierzu auch [BCGŠ91] [KLMM94].
Sprachen mit F-beschränkter Polymorphie sind unter anderem Sather [OL92] und
Pizza.

Objektkalküle

Die angesprochenen funktionalen Kalküle behandeln Objekte als einen abgeleiteten
Begriff. Alternativ wurden eine Reihe von Formalismen mit primitiven Objekten
als vorgeschlagen. Die eindrucksvollste Familie derartiger Kalküle — untypisierte
Kalküle, Kalküle erster und höherer Ordnung — findet sich in Abadis und Cardellis
Buch [AC96b]. Von einem untypisierten Objektkalkül ς-calculus [AC94] ausgehend,
der Methodenüberschreibung und dynamische Methodenbindung,5 aber keine Metho-

4Die Matching-Relation darf nicht mit dem aus einigen höheren Programmiersprachen wie bei-
spielsweise ML bekannte pattern matching verwechselt werden.

5Das Symbol ς des ς-calculus ersetzt λ als Variablenbinder um daran zu erinnern, das dynamische
Methodenbindung sich von der statischen Bindung von Funktionen unterscheidet.

162 Kapitel 1 Einleitung

denerweiterung umfaßt, wird der objektbasierte Kalkül um Typsysteme erster und
höherer Ordnung ausgebaut. Eine weitere stärkere Variante dieser Familie findet sich
in [Liq97].

Andere Kalküle formalisieren nebenläufige, objektorientierte Programmierung.
Ein Beispiel dafür ist die Sprache Pict [PT97b][PT97c], deren Fundament der π-
Kalkül [MPW92], eine Prozeßalgebra für mobile Kommunikation, ist. Statische Ty-
pisierung ist auch für Prozeßkalküle eine wichtige Fragestellung [PS96]. Während die
Typisierungsdisziplin in einem sequentiellen, funktionalen Rahmen dafür sorgt, daß
Funkionen nicht auf unpassende Argumente angewendet werden, interagieren Pro-
zesse in komplexerer Weise mit ihrer Umwelt, nämlich mittels Kommunikation und
Synchronisation. Dabei werden statische Typsystem verwendet, um sicherzustellen,
daß Kommunikationskanäle nur gemäß ihrer Deklaration verwendet werden. In Pict
beispielsweise ist eine mächtige Version von F ω

≤ implementiert, die rekursive Typen,
partielle Typinferenz, und pattern matching unterstützt. Weitere nebenläufige ob-
jektorientierte Kalküle sind [Nie92] [DF96] [HT91] [HT92] [VT93].

1.3 F ω
≤ : Untertypisierung höherer Ordnung

In den letzten zehn Jahren gab es eine beträchtliche Anzahl von Untersuchungen
und Vorschlägen für typisierte, funktionale Kalküle, d.h. typisierte λ-Kalküle, die
flexibel und ausdrucksstark genug sind, um als mathematische Grundlage für objek-
torientierter Sprachen zu dienen. Die vorliegende Arbeit beschäftigt sich mit einem
der wichtigsten Vertreter dieser Kalküle, bekannt als F ω

≤ (“F-omega-sub”). Dieser
typisierte λ-Kalkül höherer Ordnung mit Untertypen läßt sich am einfachsten als
Kombination seiner Unterkalküle verstehen: der reine polymorphe λ-Kalküle — das
System F—, den Kalkül F ω und den polymorphen λ-Kalkül mit Untertypen F≤.

Als Ausgangspunkt dient Système F oder der polymorphe λ-Kalkül von Girard
und Reynold [Gir71] [Gir72] [Rey74]. Dieses System erweitert den einfach typisierten
λ-Kalkül von Church [Chu40] um parametrische Polymorphie, indem es Typabstrakti-
on λA.t und Typapplikation t T auf Termebene erlaubt. (Dabei ist A eine Typvariable
und T ein Typ.) Fügt man weiter Typoperatoren, also Funktionen von Typen nach
Typen, hinzu, erhält man F ω [Gir72], ein System mit Polymorphie höherer Ord-
nung. Erweitert man andererseits den polymorphen λ-Kalkül um Untertypen und
beschränkte Quantifikation, erhält man F≤; Cardelli und Wegners Sprache

”
Boun-

ded Fun“ [CW85] ist eine bekannte Variante dieses Systems. Die metatheoretischen
Eigenschaften von F≤ sind in der Literatur vielfach untersucht worden, beispielsweise
in [CMMŠ94] [Ghe91] [CG92] [BCGŠ91] [Pie94].

Die Kombination schließlich von Untertypen und Typoperatoren ergibt das Sy-
stem F ω

≤ [Car90] [Mit90b], den Kalkül mit Untertypisierung höherer Ordnung. Er

Section 1.3 F ω
≤ : Untertypisierung höherer Ordnung 163

ist ausdrucksstark genug, um Klassenverwebung mit dynamischer Methodenbindung,
Kapselung von Objekten und Untertyppolymorphie zu modellieren. Er wurde als un-
terliegender Basiskalkül für klassenbasierte objektorientierte Sprachen in der Traditi-
on von Smalltalk vorgeschlagen [PT95b] [PT94] [HP95b]. Objekte werden in diesem
Kalkül als Elemente existentiellen Typs dargestellt, wodurch ihr interner Zustand und
die Implementierung ihrer Methoden nach außen unsichtbar bleibt [MP88]. Typope-
ratoren machen es möglich, nicht alleine Objekte, sondern auch Objektschnittstellen
oder Signaturen als Funktionen von Typen nach Typen eigenständig zu repräsen-
tieren, nämlich als eine Funktion, die den Repräsentierungstyp eines Objektes als
Argument nimmt und deren Schnittstelle über dieser Repräsentierung zurückliefert.

Fragen der Implementierung und von Erweiterungen von F≤, wie beispielsweise
partielle Typinferenz für Typen zweiter Ordnung, de Bruijn Indizes und ein Me-
chanismus zur Syntaxerweiterung werden in [Car93] diskutiert. [Cra97] behandelt
entsprechend den Fall höherer Ordnung. Der KML-Compiler [Cra96b] beruht auf
dem explizit typisierten Kalkül λK , der Records, rekursive Typen und Potenzarten
umfaßt. Das Modell von Pierce und Turner [PT94] kann in FCP [Jon97] repräsentiert
werden, einem Kalkül mit Polymorphie erster Ordnung, Typinferenz und abstrakten
Datentypen.

Für eine ausführlichere Darstellung des Objektmodells von F ω
≤ siehe [PT94] und

[HP95b]. Ein Vergleich verschiedener Objektmodelle und Kodierungren findet sich
in den Übersichtsartikeln [FM96] und [BCP96]. In [PT93] wird eine Verfeinerung des
Objektmodells von F ω

≤ untersucht, welches
”
freundliche“ Funktionen mittels partiell-

abstrakter Typen (siehe [MP88]) darstellt. Erweiterungen um rekursive Typen finden
sich in [AC93] [MPS86] [CC91].

Für semantische, denotationelle Modelle von Untertypkalkülen mit Polymorphie
wurden partielle Äquivalenzrelationen (PERs) verwendet. Ein wichtiges Papier über
die denotationelle Semantik von Untertypen mittels partiellen Äquivalenzrelationen
ist Bruce und Longo [BL90]. Ein PER-Modell für F ω

≤ findet sich in [BM92] [AP90],
ähnlich ein Modell für F≤ mit positiver Untertyprelation in [HP95a]. Ein Modell,
welches auf Umwandlungsfunktionen beruht, wird in [BCGŠ91] ausgearbeitet. Wei-
teres Material über Modelltheorie in diesem Zusammenhang findet sich in [Pho90]
[Ama91] [MV96] [FMRS92].

Varianten

Die Kalküle F≤, F ω
≤ und ähnliche treten in verschiedenen Varianten auf. Ein wichti-

ges Unterscheidungsmerkmal ist dabei die Version der Untertypregel für universelle
Quantifikation. Eine einfache Version der All-Regel wurde in [CW85] für die Spra-
che “Bounded Fun” oder “Kernel Fun” vorgeschlagen. Die Regel fordert, daß die
Oberschranken der verglichenen Alltypen übereinzustimmen haben:

164 Kapitel 1 Einleitung

Γ, A≤U ` S2 ≤ T2

Γ ` All(A≤U)S2 ≤ All(A≤U)T2
(S-All-Kernel)

Eine stärkere, semantisch gleichfalls sinnvolle Formulierung, hier mit S-All-Full

bezeichnet, gestattet den kontravarianten Vergleich beider Obergrenzen:

Γ, A≤T1 ` S2 ≤ T2 Γ ` T1 ≤ S1

Γ ` All(A≤S1)S2 ≤ All(A≤T1)T2
(S-All-Full)

Ghelli [Ghe95] zeigte, daß ein zuvor entwickelter Untertyp-
”
algorithmus“ in An-

wesenheit der vollen Untertypregel divergieren kann; Pierce [Pie94] bewies zusätzlich,
daß diese Regel die Untertyprelation für F≤ unentscheidbar macht. Weitere Unter-
suchungen der Implikationen dieser Regel finden sich in Ghelli [Ghe93]. In Curien
und Ghelli [CG92] wird die Metatheorie der vollen Version von F≤ mit Hilfe von
Umwandlungsfunktionen, sogenannten coercions, untersucht, die als eine explizite Re-
präsentierung der Ableitungen für Untertypurteile angesehen werden können. Mittels
Techniken der Beweisnormalisierung erhalten sie einen korrekten und vollständigen
Semialgorithmus für F≤’s Untertyprelation. Eine ähnliche Untersuchung in [BCGŠ91]
bildet F≤ in den polymorphen λ-Kalkül F mit Recordtypen ab.

Die schwächere S-All-Kernel-Regel führt zu Systemen mit wesentlich angeneh-
meren beweistheoretischen Eigenschaften als Systeme mit der komplexeren All-Regel.
Die einfachere Variante wurde beispielsweise in [Com95b] und [PS97] für Polymorphie
höherer Ordnung verwendet. Ein weiterer Vergleich beider Regeln und in Anwesen-
heit beschränkt-existentieller Quantifikation findet sich in [GP97].

Die vorliegende Arbeit schlägt eine weitere Variante der Untertypregel für Allty-
pen vor. Einerseits ist es unser Ziel, soweit es geht die positiven, beweistheoretischen
Eigenschaften der Kernvariante von F ω

≤ beizubehalten. Auf der anderen Seiten wird
sich herausstellen, daß durch die Erweiterung um Polarisierung die Forderung nach
Identität der Obergrenzen aufgegeben und durch die schwächere Bedingung einer
gegenseitigen Untertypbeziehung ersetzt werden muß:

Γ ` S1 ≷ T1 ∈ K1 Γ, A≤S1:K1 ` S2 ≤ T2 ∈ K

Γ ` All(A≤S1:K1)S2 ≤ All(A≤T1:K1)T2 ∈ ?
(S-All-Pol)

In Zusammenhang mit polarisierter Untertypisierung ist dies eine echt stärkere
Regel, denn anders als für punktweise Untertypisierung von Applikationen, impliziert
die gegenseitige Untertypbedingung nicht β-Gleichheit.

Erweiterungen

In Hofmann und Pierce [HP95a] wird eine
”
positive“ Variante von Kern-F≤ mit dem

Ziel vorgeschlagen, in funktionalem Rahmen die Semantik des Überschreibens von

Section 1.3 F ω
≤ : Untertypisierung höherer Ordnung 165

Werten zu beschreiben. Üblicherweise kann die Untertyprelation S ≤ T als das
Vorhandensein einer Extraktionsfunktion des Typs S → T interpretiert werden, die
Elemente des kleineren Typs in solche des größeren umwandelt. Hofmann und Pierce
weichen von dieser

”
orthodoxen“ Sichtweise ab indem sie für ein Untertypbeziehung

S ≤ T zwischen S und T nicht alleine die Existenz der Standardextraktionsfunkti-
on, sondern zusätzlich eine Überschreibungsfunktion des Typs S → T → S fordern.
Zu diesem Zweck führen sie für jedes Paar von Typen eine Konstante put [S, T] auf
Termebene ein. Die zusätzlichen Forderungen führen zu einer restriktiveren Interpre-
tation der Untertyprelation als gewöhnlich; beispielsweise gibt es in dieser stärkeren
Interpretation keine nichttriviale Untertypbeziehung zwischen existentiellen Typen,
also Objekttypen. Darüberhinaus ist die Untertypregel für Pfeiltypen eingeschränkt,
in dem die Argumenttypen auf beiden Seiten übereinzustimmen haben. Unter die-
sen Einschränkungen erweitert und vereinfacht das Objektmodell das entsprechende
aus [PT94], indem sich beispielsweise die Darstellung der Vererbung wesentlich ver-
einfacht, da die Überschreibfunktionen bereits Bestandteil der Untertyprelation sind
und nicht mehr explizit vom Programmierer angegeben werden müssen. Die stärkere
Interpretation erlaubt es auch, die Verifikation objektorientierte Programme entlang
ihrer Struktur zu organisieren, indem sich Eigenschaften der Objekte von den Ober-
klassen auf die Unterklassen übertragen lassen. Dieses Modell der positiven Unter-
typisierung wurde in [HNSS98] in dem typentheoretischen Beweisprüfer Lego kodiert.
Unter Ausnutzung der Korrespondenz zwischen Aussagen und Typen, bekannt als
Curry-Howard-Isomorphie [CF58] [How80] [GLT89], wird eine Beweiskomponente in
die Klassendefinition mitaufgenommen, wodurch Objekte mit Beweismethoden aus-
gerüstet werden, die in exakter Analogie zu den funktionalen Methoden durch an der
Methodenschnittstelle gekapselt sind; nach außen sichtbar sind nur die Eigenschaften
des Objekts, ihre Beweise bleiben nach außen verborgen.

Schnittypen Eine Reihe von Untersuchungen verallgemeinern F≤ oder F ω
≤ um

Schnittypen. Die entsprechenden Kalküle werden als F∧ (“F-meet”) [Pie97b] [Ma92]
im Fall zweiter Ordnung und als Fω

∧ (“F-omega-meet”) [Com95a] in Anwesenheit von
Typoperatoren bezeichnet. Begrifflich ist mit dem Schnitt von S und T (geschrieben
als S∧T für den binären Schnitt von S und T) die Menge aller Terme, die beide Typen
tragen. Verwendet man Schnittypen zur Beschränkung polymorph-parametrischer
Funktionen, so läßt sich damit ausdrücken, daß eine Unterklasse von mehr als einer
Oberklasse erbt. Diese Modell von Mehrfachvererbung durch Schnittypen wird in
[CP96] entwickelt. Das System Fω

∧ (“F-omega-meet”) ist eine echte Verallgemeine-
rung von F ω

≤ , bei der der maximale Typ Top als der leere Schnitt verstanden werden
kann. Für die Behandlung von Schnittypen zusammen mit Typoperatoren verweise
ich auf die These von Compagnoni [Com95b]. Ein Sprachentwurf, der auf Schnittypen
beruht, ist Reynolds Forsythe [Rey96].

166 Kapitel 1 Einleitung

Abhängige Typen F ω
≤ ist eine imprädikative Typentheorie, bei der Terme sowohl

von Termen als auch von Typen abhängen und bei der Typen als Parameter Ty-
pen akzeptieren (in diesem Fall werden sie als Typoperatoren bezeichnet.) Systeme,
in denen Typen von Termen abhängen können, werden als Systeme mit abhängigen
Typen bezeichnet. Dies erlaubt die Bildung von Typen die uniform für eine Menge
von Termen definiert sind, beispielsweise den Typ aller Arrays der Länge n, wobei n
eine natürliche Zahl sei. Die Stärke dieser Systeme reicht weit über das Arraybeispiel
hinaus. Sie erlauben es, logische Eigenschaften zu formulieren und bilden die Grund-
lage vieler typentheoretischer Beweisprüfer wie Lego [leg97], Coq [CCF+95], Isabelle
[Pau93], Nuprl [C+86] et. al. Für eine systematische Klassifikation der verschiede-
nen λ-Kalküle nach Art und Kombination ihrer Abhängigkeiten zwischen Termen
und Typen im sogenannten λ-Kubus sei auf Barendregts Handbuchbeitrag [Bar92]
verwiesen.

Die Kombination von abhängigen Typen und Untertypisierung hat in jüngster
Zeit steigende Aufmerksamkeit auf sich gezogen. Aspinall und Compagnoni [AC96c]
untersuchen λP≤, einen Kalkül erster Ordnung mit abhängigen Typen (bekannt als
λP oder λΠ) und erweitert um Untertypen, und weisen seine Entscheidbarkeit nach.
Chen [Che97a] behandelt eine unterschiedliche Formulierung des selben Systems, wel-
ches er als λΠ≤bezeichnet. Die Kombination von abhängigen Typen und Untertypen
führt zu einer zyklischen Abhängigkeit des Typsystems, des Untertypsystems und
des Artsystem, sodaß die beweistheoretischen Probleme denen ähneln, die bei der
Untersuchung des polarisierten F ω

≤ auftreten. Für eine genauere Diskussion der Un-
terschiede verweise ich auf den Schluß der Arbeit.

1.4 Weiterführende Literatur

Eine gewisse Vertrautheit mit typisierten, funktionalen und objektorientierten Kal-
külen wird bei der Lektüre der Arbeit hilfreich sein. Ich kann folgende Bücher oder
Artikel von breiterer Perspektive empfehlen.

Umfangreiches Material über typisierte funktionale Sprachen, das heißt, typi-
sierte λ-Kalküle, ihre operationellen und denotationellen Semantiken, findet sich in
den Büchern von Mitchell [Mit96] und Gunter [Gun92]. Obwohl beide Bücher ih-
ren Schwerpunkt auf funktionale Sprachen legen, enthalten sich auch Abschnitte
über Untertyppolymorphie. Insbesondere Mitchell diskutiert das funktionale Re-
cordmodell objektorientierter Sprachen sowie beschränkte Polymorphie, einschließ-
lich F-beschränkter Polymorphie und Polymorphie höherer Ordnung. Mit ähnlicher
Themenstellung befaßt sich Thompsons Buch [Tho91], doch mit größerem Gewicht
auf Typentheorie als eigenständige logische Disziplin und weniger in Hinblick auf
Sprachentwurf. Thompson diskutiert demzufolge auch Typsysteme mit abhängigen

Section 1.5 Der Beitrag der Arbeit 167

Typen, wie sie in Beweisprüfern Anwendung finden. Zwei lesenswerte Handbuchar-
tikel über Typsysteme für Programmiersprachen sind Mitchell [Mit90a] und, erst
jüngst erschienen, Cardelli [Car97]. Eine breite Diskussion über den Nutzen von
Typen in Programmiersprachen mit vielen Verweisen auf bestehende Programmier-
sprachen findet sich in Cardelli [Car91]. Das Papier diskutiert auch eine Reihe von
Implementierungsfragen.

Während es eine Anzahl von Standardreferenzen zu den Grundlagen funktionaler
Sprachen gibt, sind einführende theoretische Werke über objektorientierte Sprachen
rarer. Eine umfassende, wichtige Abhandlung in diesem Zusammenhang ist Abadi
und Cardellis Buch [AC96b], in dem die Autoren ihren Standpunkt, der grundlegen-
de Begriff zur Untersuchung objektorientierter Sprachen seien Objekte, nicht Funk-
tionen, anhand einer Reihe von untypisierten und typisierten Objektkalkülen un-
terschiedlicher Ausdrucksmächigkeit darstellen. Die Kalküle unterstützen das Über-
schreiben von Methoden, Untertypen und dynamische Methodenbindung; komplexere
Merkmale wie Klassen und Vererbung werden durch Kodierung in die Basiskalküle
erklärt. Castagnas soeben erschienenes Buch [Cas97] unternimmt eine ähnliche Dar-
stellung für objektorientierte Sprachen mit Multimethoden. Die mathematischen
Formalismen sind hierbei λ-Kalküle mit Überladen. Typsysteme für klassenbasierte
objektorientierte Sprachen mit Schwerpunkt auf Typinferenz werden in Palsberg und
Schwarzbachs Buch [PS94] untersucht.

Verschiedene Ansätze zur Behandlung der kontroversen Frage binärer Methoden
werden in [BCC+96] von einer Reihe von Forschern auf diesem Gebiet diskutiert. Auf
der Basis von F ω

≤ mit rekursiven Typen werden in [BCP96] verschiedene bekannte

Objektkodierungen verglichen. Im Übersichtspapier [Bru96b], stellt Bruce eine Rei-
he von typisierten Kalkülen für objektorientierte Sprachen einander gegenüber und
argumentiert zu Gunsten von match-beschränkter Polymorphie. Er illustriert seinen
Standpunkt mit einer Vielzahl von Beispielen und Verweisen auf existierende objekt-
orientierte Sprachen und Sprachentwürfe. Viele einflußreiche Originalveröffentlichun-
gen über funktionale Kalküle für objektorientierte Sprachen sind im Band [GM94]
zusammengestellt und neu veröffentlicht.

1.5 Der Beitrag der Arbeit

Der Kalkül F ω
≤ , ein polymorpher λ-Kalkül mit Untertypen und Typoperatoren, wur-

de als Basiskalkül für typisierte, objektorientierte Sprachen vorgeschlagen. Die in der
Literatur untersuchten Versionen unterstützen in der Regel nur punktweise Unter-
typisierung von Typoperatoren, das heißt, zwei Applikationen S U und T U stehen
in Untertypbeziehung, wenn S und T dies tun. Cardelli präsentiert in seiner häufig
zitierten, unveröffentlichten Note F ω

≤ in einer allgemeineren Form. Sie geht über die

168 Kapitel 1 Einleitung

punktweise Untertypisierung von Applikationen hinaus, indem sie zwischen monoto-
nen und antimonotonen Operatoren unterscheidet. Beispielsweise ist die Applikation
T U1 ein Untertyp von T U2, falls U1 ≤ U2 und T monotoner Operator ist.

Meine These erweitert F ω
≤ um polarisierte Applikation, entwickelt seine Meta-

theorie, und weist die Entscheidbarkeit des polarisierten F ω
≤ nach. Die Einführung

polarisierter Applikationen führt zu wechselseitiger Abhängigkeit des Untertyp– und
des Artsystems. Dies steht im Gegensatz zum unpolarisierten Fall, bei dem Unter-
typableitungen von Artableitungen abhängen, aber nicht umgekehrt. Um die Ent-
scheidbarkeit des System nicht zu verlieren, stellt die Arbeit eine Verallgemeinerung
der bekannten Untertypregel für All-Typen vor, die auf der Identität der Oberschran-
ken der verglichenen Alltypen beharrt. Die Verallgemeinerung im polarisierten Fall
besteht darin, daß dies zu einer Forderung nach gegenseitiger Untertypbeziehung
der Oberschranken abgeschwächt wird. Soweit mir bekannt, ist die Arbeit die erste
beweistheoretische Abhandlung einer polarisierten Erweiterung von F ω

≤ .

1.6 Gliederung

Teil I enthält das Material über F ω
≤ ohne Polarisierung. Der Hauptteil der Arbeit

findet sich in Teil II, in dem der Untertypkalkül höherer Ordnung um Polaritäts-
information erweitert und seine Beweistheorie untersucht wird. Der Aufbau beider
Teile ist streckenweise parallel und gelegentlich sind nur die Beweise für den kom-
plizierteren polarisierten Kalkül aufgeführt. Das abschließende Kapitel in Teil III
diskutiert verwandte Arbeiten und schlägt Richtungen für weitere Forschungen vor.
Die meisten Beweise wurden in Anhang in Teil V aufgenommen.

1.7 Veröffentlichungen

Das Material über F ω
≤ in Teil I wurde bereits zusammen mit Benjamin Pierce in

dem Technischen Bericht [SP94], in einer Konferenzversion und einer Journalversi-
on [PS97] veröffentlicht worden. Dieser Teil wurde mit geringeren Änderungen in
Aufbau und Darstellung, sowie einigen Vereinfachungen mit in die Arbeit aufgenom-
men. Das Material wurde aus Teil II wurde auf dem jährlichen

”
Types“-Treffen

”
Subtyping, Inheritance, and Modular Development of Proofs“ in Durham, 1997,

und auf dem Kolloquium über die
”
Grundlagen der Programmierung“ in Avendorf,

Fehmarn, vorgestellt.

Inhaltsverzeichnis

Zusammenfassung i

Inhaltsverzeichnis iii

1 Einleitung 1
1.1 Typen und Programme . 1
1.2 Objektorientierte Programmiersprachen 2
1.3 F ω

≤ : ein Kalkül mit Untertypisierung höherer Ordnung 9
1.4 Weiterfürende Literatur . 13
1.5 Der Beitrag der Arbeit . 14
1.6 Gliederung . 14
1.7 Veröffentlichungen . 14

I Untertypen Höherer Ordnung 15

2 Untertypen Höherer Ordnung 17
2.1 Syntax . 19
2.2 Kontexte . 20
2.3 Konversion . 20
2.4 Artrelation . 21
2.5 Untertypisierung . 22
2.6 Typisierung . 23

3 Entscheidbarkeit von F ω
≤ 25

3.1 Einleitung . 26
3.2 Arten . 29
3.3 Das reduzierende System . 31
3.4 Subjektreduktion für Untertypisierung 33
3.5 Schnittelimination . 34
3.6 Untertypalgorithmus für F ω

≤ . 38

170 Inhaltsverzeichnis

II Polarisierte Untertypisierung Höherer Ordnung 41

4 Polarisiertes F ω
≤ 43

4.1 Einleitung . 44
4.2 Syntax . 44
4.3 Kontexte . 45

4.4 Untertypisierung . 45
4.5 Artrelation . 49
4.6 Typisierung . 52

5 Stratifizierung von Arten und Untertypen 53
5.1 Einleitung . 54
5.2 Beweisübersicht . 56
5.3 Variablen . 60
5.4 Arten . 63
5.5 Äquivalenz von Typen . 71
5.6 Das reduzierende System . 76
5.7 Eigenschaften des reduzierenden Systems 77
5.8 Subjektreduktion für Untertypisierung 80

5.9 Starke Normalisierung . 83
5.10 Verstärkung . 86
5.11 Charakcterisierung starker, schnittfreier Ableitungen 87
5.12 Schnittelimination . 91
5.13 Elimination der Promotion . 92
5.14 Entscheidbarkeit der polarisierten Untertyprelation 93

6 Typisierung 103

III Schluß 107

7 Schluß 109
7.1 In Summa . 109
7.2 Verwandte Arbeiten und Ausblick . 109

Literatur 123

IV Deutsche Übersetzungen 145

Zusammenfassung 149

Inhaltsverzeichnis 171

1 Einleitung 151
1.1 Typen und Programme . 151
1.2 Objektorientierte Programmiersprachen 152
1.3 F ω

≤ : der Kalkül mit Untertypisierung höherer Ordnung 160
1.4 Weiterführende Literatur . 164
1.5 Der Beitrag der Arbeit . 166
1.6 Gliederung . 166
1.7 Veröffentlichungen . 166

Inhaltsverzeichnis 169

V Beweise 175

A Starke Normalisierung 177

B Beweise für F ω
≤ 187

B.1 Eigenschaften von Reduktion und Substitution 187
B.2 Artrelation . 190
B.3 Das reduzierende System . 191
B.4 Subjektreduktion für Untertypen . 191
B.5 Schnittelimination . 196
B.6 Ein Untertypalgorithmus für F ω

≤ . 196

C Beweise für Polarisiertes F ω
≤ 199

C.1 Artrelation . 199
C.2 Äquivalenz von Typen . 208
C.3 Eigenschaften des reduzierenden Systems 214
C.4 Subjektreduktion für Untertypisierung 220
C.5 Starke Normalisierung . 231
C.6 Characterisierung von starken, schnittfreien Ableitungen 233
C.7 Schnittelimination . 236
C.8 Elimination der Promotion . 238
C.9 Entscheidbarkeit der polarisierten Untertypisierung 241
C.10 Typisierung . 249

Index 255

172 Inhaltsverzeichnis

Curriculum Vitæ

Persönliche Daten

geboren: 6. Juni 1965 in Bad Honnef

Familienstand: ledig

Schulausbildung

Grundschule: August 1971 – Juli 1975
Volksschulen in Lemgo, Suttrop und Freising

Gymnasium: September 1975 – Juli 1977
Joseph-Hofmiller-Gymnasium in Freising
September 1977 – Juni 1984
Rhön-Gymnasium Bad Neustadt a.d. Saale

Abschluß: Abitur

Universitätsausbildung

Studium: WS 86/87 – WS 90/91
Friedrich-Alexander-Universität Erlangen-Nürnberg
Hauptfach Informatik, Nebenfach Physik

Vordiplom: November 1988

Ferienakademie: Teilnahme an der Ferienakademie der TU München
und der FAU Erlangen-Nürnberg im September 1990
Thema: “Anwendungen verteilter Programmierung”

Hauptdiplom: Oktober 1991

Diplomarbeit: November 1991 – März 1992

”
Ein vollständiges Beweissystem für

Hennessy-Milner-Logik mit Rekursion“

Abschluß: Ende März 1992

Dissertation:
”
Polarized Higher-Order Subtyping“

Sonstiges

Zivildienst: August 1984 – März 1986
im Kreiskrankenhaus Mellrichstadt

Sprachkenntnisse: Englisch, Französisch, Spanisch, Latinum

174 Inhaltsverzeichnis

Part V

Proofs

Appendix A

Reduction Relations

This chapter first proves some basic facts about β>-reduction. In the second more
complex section we prove strong normalization of a general reduction relation, com-
bining β>-reduction and replacement of type variables by their upper bound in a
given context (called Γ-reduction) wich will be needed for the termination of the sub-
typing algorithm. It closely resembles the corresponding section in the paper [PS97].
The argument here also benefited much from discussions with Adriana Compagnoni.
The Γ-reduction relation, wich we will define below in Definition A.10, had to be
adapted in order to work for the polarized case, as well.

A.1 Properties of β>-reduction and substitution

This section contains some easy facts about the β>-reduction relation we need a
various places throughout this work, for both the pure and the polarized case.

Definition A.1 (Parallel reduction) Parallel reduction is the smallest relation
closed under the following rules:

(>)
Top(K1 → K2) T // //

β>Top(K2)

S // //
β>S′ T // //

β>T ′

(β)
(Fun(A:K) S) T // //

β>[T ′/A]S′

S // //
β>S′ T // //

β>T ′

S T // //
β>S′ T ′

T // //
β>T ′

Fun(A:K) T // //
β>Fun(A:K) T ′

S // //
β>S′ T // //

β>T ′

S → T // //
β>S′ → T ′

S // //
β>S′ T // //

β>T ′

All(A≤S:K) T // //
β>All(A≤S′:K) T ′

T // //
β>T

178 Chapter A Reduction Relations

Fact A.2

1. //
β> ⊂ // //

β>

2. //∗
β> ⊃ // //

β>

3. //∗
β> = // //∗

β>

Lemma A.3

1. If S // //
β>S ′ and T // //

β>T ′ then [T/A]S // //
β>[T ′/A]S ′.

2. If S // //∗
β>S ′ and T // //∗

β>T ′ then [T/A]S // //∗
β>[T ′/A]S ′.

3. If S //∗
β>S ′ and T //∗

β>T ′ then [T/A]S //∗
β>[T ′/A]S ′.

In the proof of Lemma A.3 we will make use of the following property of substi-
tution.

Fact A.4 If A 6= A′ and A′ /∈ fv(S), then [S/A]([T/A′]U) = [[S/A]T/A′]([S/A]U).

A useful consequence of the third part of Lemma A.3 is that in a reduction
sequence a reduction step reducing the outermost redex can be performed at the
beginning of the sequence without changing the result.

Corollary A.5 (Outermost reduction) Assume (Fun(A:K)S)T //∗
β>U with S //∗

β>S ′

and T //∗
β>T ′. If U 6= (Fun(A:K)S ′)T ′ then [T/A]S //∗

β>U .

Lemma A.6 (Diamond property for // //
β>) For all types S, S1, and S2 with

S // //
β>S1 and S // //

β>S2, there exists a type S3, such that S1
// //
β>S3 and

S2
// //
β>S3.

S

1

β>
~~~~}}
}}

}}
}}

}}
}

1

β>
    A

AA
AA

AA
AA

AA

S1

1

β>
    

S2

1

β>
~~~~

S3

Proof: By a simple extension of the standard argument. (see Barendregt [Bar84]).
�

Section A.1 Properties of β>-reduction and substitution 179

Corollary A.7 (Church-Rosser for //∗
β>) For all types S, S1 and S2 with

S //∗
β>S1 and S //∗

β>S2 there is a type S3 with S1
//∗
β>S3 and S2

//∗
β>S3.

S

∗

β>
~~}}

}}
}}

}}
}}

}

∗

β>
 A

AA
AA

AA
AA

AA

S1

∗

β>

S2

∗

β>
~~

S3

The following property will be used in the proof of Lemma 5.62.

Lemma A.8 If S // //
β>S1 and S //∗

β>S2, then there is a type S3 such that
S1

//∗
β>S3 and S2

// //
β>S3.

S

β>
~~~~}}
}}

}}
}}

}}
}

?

β>
  A

AA
AA

AA
AA

AA

S1

?

β>
  

S2

β>
~~~~

S3

Proof of Lemma A.8: By induction on the length of the sequence S //∗
β>S2,

using Fact A.2 and the Church-Rosser property of parallel reduction.

Base step: n = 0
Trivial.

Induction step: n > 0 and S //
β>S ′

2
//n−1
β> S2

With //
β> ⊂ // //

β> we get by the Church-Rosser property for // //
β> that

there exists a type S ′
3 with S1

// //
β>S ′

3 and S ′
2

// //
β>S ′

3. The result follows from
the induction hypothesis. �

Finally we state normalization of β>-reduction.

Lemma A.9 (Strong β>-normalization) Suppose Γ ` S ∈ K. Then there is no
infinite β>-reduction from S.

180 Chapter A Reduction Relations

Proof: The result can be proven translating the kinds of F ω
≤ into kinds of F ω. The

translation F from F ω
≤ - to F ω-type is given by F (Top(?)) = All(A)A, F (Top(K1 →

K2)) = Fun(A:K1)(F (Top(K2))); types of other forms are homomorphically trans-
lated into F ω. Since Top-types of arrow kind are translated to type operators in F ω,
each β>-step of a type of F ω

≤ can be mimicked by a β-step in F ω, and the assumption
of an infinite β>-reduction sequence in F ω

≤ would contradict strong termination of
β-reduction in F ω [Gir72]. �

A.2 Γ-reduction

Next we generalize the promotion relation ↑Γ (cf. Definition 3.1 on page 30) so that
a type variable occuring inside may be replaced by its respective upper bound, either
declared in the context or given by the variable’s binding occurrence in the type
itself. The definition of Γ-reduction is very similar to the one of [PS97]. The only
rule which is different is the one for type application. Here, we are more restrictive in
that applications may only be Γ-reduced by promoting their head variable. Besides
simplifying some of the proofs a bit, this restriction is not important as far as pure
F ω
≤ is concerned. However, it will allow us to use the relation in the polarized setting,

as well.

Definition A.10 Single-step Γ-reduction is the least family of relations closed under:

A T1 . . . Tn ↑Γ Γ(A) T1 . . . Tn

A T1 . . . Tn
//
ΓΓ(A) T1 . . . Tn

S //
(Γ, A:K)S

′

Fun(A:K)S //
ΓFun(A:K)S ′

S //
ΓS′

(S → T) //
Γ(S′ → T)

T //
ΓT ′

(S → T) //
Γ(S → T ′)

S //ΓS′

All(A≤S)T //ΓAll(A≤S′)T

T //
(Γ, A≤S)T

′

All(A≤S)T //ΓAll(A≤S)T ′

Single-step β>Γ-reduction (//
β>Γ) is defined as the union //

β>∪ //
Γ. The

corresponding multi-step reductions are defined as usual.
In the polarized setting we cannot allow promotion of arbitrary type variables

to their upper bound (as would be possible for the pure case, cf [PS97]) since for
termination of polarized subtyping we will need not simply strong termination of
β>Γ-reduction, but strong normalization of the combined relation //

β>Γ ≡. Equi-
valence ≡ acts like identity (up-to renaming of bound variables) on types, except that
it ignores syntactic substructures of the type occurring constantly. This means that

Section A.2 Γ-reduction 181

the effect of a Γ-step for a type variable occurring constantly can be reversed by ≡,
rendering already the relation //

Γ ≡ cyclic. The above definition only promotes
variables occurring in head position of an application but not inside, which is an easy
way to ensure that a variable occuring constantly never gets promoted, because the
only position for a variable syntactically present in a type but occurring constantly
is in the argument of a constant operator. Alternatively, one might have defined a Γ-
reduction relation which takes polarity information into account, but Definition A.10
is simpler.

Lemma A.11 (Strong Γ-normalization) If Γ ` S ∈ K, then there is no infinite
Γ-reduction from S.

Proof: Observe that well-kinded types and contexts and also well-scoped: there is
no way for a definition to refer to itself recursively. So we can assign a weight to each
well-scoped type that is the sum of weights of its variables, where the weight of the
variable is one greater than the weight of its upper bound (either in the context or
in the binding occurance in the type). Each Γ-step reduces this measure. �

Lemma A.12 (Subject reduction) If Γ ` S ∈ K and S //∗
β>ΓS ′, then Γ `

S ′ ∈ K.

Proof of Lemma A.12: By induction on the length S //∗
β>ΓS ′, with an inner

induction on the definition of single-step β>Γ-reduction, using preservation of kinding
under β>-reduction and under promotion (Lemma 3.14 and 3.18). �

Lemma A.13

1. If (T1 → T2) //∗
ΓV , then V = (V1 → V2) where T1

//∗
ΓV1 and T2

//∗
ΓV2.

2. If All(A≤T1)T2
//∗
ΓV , then V = All(A≤V1)V2 where T2

//∗
(Γ, A≤T1)V2 and

T1
//∗
ΓV1.

3. If Fun(A:K)T2
//∗
ΓV , then V = Fun(A:K)V2 where T2

//∗
(Γ, A:K)V2.

4. If T1 T2
//∗
ΓV , then V = V1 T2 where T1

//∗
ΓV1.

Proof: We give the proof in detail for part (2); the rest is similar, but simpler. The
form of V = All(A≤V1)V2 is immediate by the definition of //

Γ. For the rest of
part (2), we prove the more refined statement

if T1
//∗
ΓU1 and T2

//∗
(Γ, A≤T1)

U2 and All(A≤U1)U2
//∗
ΓAll(A≤V1)V2,

then T1
//∗
ΓV1 and T2

//∗
(Γ, A≤T1)

V2,

by induction on the length of reduction from All(A≤U1)U2 to All(A≤V1)V2.

182 Chapter A Reduction Relations

Case: All(A≤U1)U2 = All(A≤V1)V2

Immediate.

Case: All(A≤U1)U2
//
ΓAll(A≤U1)U

′
2

//∗
ΓAll(A≤V1)V2

(I.e., the sequence consists of a single-step reduction, replacing a single variable in
U2 by its upper bound to yield U ′

2, followed by a multi-step reduction.) To apply the
induction hypothesis, we need to check that U2

//∗
(Γ, A≤T1)U

′
2, which immediately

gives T2
//∗
(Γ, A≤T1)U

′
2.

But if the first step replaces an occurrence of A by U1 in U2, i.e. if U2 =
U2[A] //

(Γ, A≤U1)U2[U1], then we can build a reduction U2[A] //
(Γ, A≤T1)U2[T1]

//∗
(Γ, A≤T1)

U2[U1] by replacing this occurrence of A with T1 and then using the

assumption that T1
//∗
ΓU1 (and hence T1

//∗
(Γ, A≤T1)

U1) to develop T1 to U1

in-place. On the other hand, if the first step replaces some other variable, then
U2

//∗
(Γ, A≤T1)U

′
2 is immediate. In both cases, the induction hypothesis then ap-

plies, directly yielding the desired result.

Case: All(A≤U1)U2
//
ΓAll(A≤U ′

1)U2
//∗
ΓAll(A≤V1)V2

In this case the induction hypothesis applies directly (since T1
//∗
ΓU1

//
ΓU ′

1 and
we have T2

//∗
(Γ, A≤T1)U2 by assumption) to yield the desired result. �

Lemma A.14 (Weak diamond property for Γ-reduction)

T
Γ //

Γ

��

U

∗ Γ

��
V

Γ

∗ // W.

Proof: By induction on the form of T .

Case: T = A T1 . . . Tn

Then V = U = Γ(A) T1 . . . Tn and we may take W = Γ(A) T1 . . . Tn.

Case: T = All(A≤T1)T2

We must find W = All(A≤W1)W2 such that the required diagram commutes; this
will follow from the commutativity of a smaller diagram for T1, U1, V1, and W1

and another diagram for T2, U2, V2, and W2. There are three subcases to consider,
depending on whether the reductions from T to U and V are both in T1, both in T2,
or one in T1 and one in T2. (Since the last case is symmetric, we may assume without
loss of generality that T1 is reduced to produce V and T2 to produce U .)

Section A.2 Γ-reduction 183

Subcase: U = All(A≤U1)T2 and V = All(A≤V1)T2

Begin by applying the induction hypothesis to T1, U1, and V1 to yield a common
reduct W1. We must then show:

T1
Γ //

Γ
��

U1

∗Γ
��

T2
Γ, A≤T1

=
//

= Γ, A≤T1��

T2

∗ Γ, A≤U1��

V1
Γ
∗

// W1

T2
Γ, A≤V1

∗
// W2.

Set W2 = T2 and we are done.

Subcase: U = All(A≤T1)U2 and V = All(A≤T1)V2

We must find a W2 such that

T1
Γ
=

//

Γ =

��

T1

=Γ
��

T2
Γ, A≤T1 //

Γ, A≤T1��

U2

∗ Γ, A≤T1��

T1
Γ
=

// T1

V2
Γ, A≤T1

∗
// W2.

The existence of such a W2 is given by the induction hypothesis.

Subcase: U = All(A≤T1)U2 and V = All(A ≤ V1)T2

Set W1 = V1. Then we must show:

T1
Γ
=

//

Γ
��

T1

Γ
��

T2
Γ, A≤T1 //

= Γ, A≤T1��

U2

∗ Γ, A≤T1��

V1
Γ
=

// V1

T2
Γ, A≤V1

∗
// W2.

184 Chapter A Reduction Relations

If T2
//
(Γ, A≤T1)U2 by a Γ-reduction on some occurrence of A in T2, then we have

T2 = T2[A] and U2 = T2[T1]; set W2 = T2[V1]. If T2
//
(Γ, A≤T1)U2 by a Γ-reduction

on some occurrence of a variable other than A in T2, then we can set W2 = U2, since
T2

//∗
(Γ, A≤V1)U2 follows directly from T2

//∗
(Γ, A≤T1)U2 in this case.

Other cases:
Straightforward. �

Lemma A.15 (Church-Rosser for Γ-reduction) If Γ ` T ∈ K, then

T
Γ
∗

//

Γ ∗

��

U

∗ Γ

��
V

Γ

∗ // W.

Proof: By Newman’s Lemma, which states that the weak diamond property and
strong normalization together imply Church-Rosser (cf. [Bar84]). �

At this point, we can start proving properties relating Γ-reduction and β>-
reduction. First, a technical property that handles a key step of the following lemma.

Lemma A.16 If T1
//∗
β>U1 and T2

//∗
(Γ, A≤T1)

V2, then there is some W2 such
that:

T2

Γ, A≤U1

∗

∗Γ, A≤T1

��
V2

∗

β>
// W2.

Proof: By induction on the length of the reduction sequence from T2 to V2.

Case: T2 = V2

Then set W2 = T2 and we are done.

Case: T2
//∗
(Γ, A≤T1)

V ′
2

//
(Γ, A≤T1)V2

Apply the induction hypothesis to find a W ′
2 satisfying the desired property. We must

now show:

Section A.2 Γ-reduction 185

T2

Γ, A≤U1

∗

 A
AA

AA
AA

AA
AA

AA
AA

A

∗Γ, A≤T1

��
V ′

2
∗

β>
//

Γ, A≤T1

��

W ′
2

∗ Γ, A≤U1

��
V2

∗

β>
// W2.

If V ′
2

//
(Γ, A≤T1)V2 by contracting a redex other than A, then V ′

2 = V ′
2 [B] and

V2 = V ′
2 [Γ(B)]. In reducing from V ′

2 to W ′
2, the variable B can neither vanish nor

be copied, as we do not Γ-reduce type variables other than in head position of an
application. Hence W ′

2 = W ′
2[B] and we can choose W2 as W ′

2[Γ(B)].
Similarly, if V ′

2 = V ′
2 [A] with V2 = V ′

2 [T1] and W ′
2 = W ′

2[A], take W2 = W ′
2[U1].

The sequence V2 = V ′
2 [T1] //∗

β>W ′
2[U1] follows by the assumption T1

//∗
β>U2, and

W ′
2[A] //

(Γ, A≤U1)W
′
2[U1] by definition of Γ-reduction. Since β>-reduction cannot

affect type variables occuring in head position of an application, the last Γ-step is
still possible. �

The next lemma establishes a confluence property for Γ- and β>-reductions. The
proof is similar to that of Lemma A.14. This lemma and Lemma A.15 jointly handle
the crucial step in the strong normalization argument that follows.

Lemma A.17 (β>-reduction and Γ-reduction)

T
β>

//

Γ ∗

��

U

∗ Γ

��
V

+

β>
// W.

Proof of Lemma A.17: By induction on the definition of T //
β>U .

Case: T = Top(K1 →K2) T1 //
>Top(K2) = U

The type T is in Γ-normal-form and, choosing W = U , the case is immediate.

Case: T = (Fun(A:K) T1) T2 //
β[T2/A]T1 = U

Again, T is in Γ-normal-form, and the case is analogue to the previous one.

186 Chapter A Reduction Relations

Case: T = All(A≤T1)T2
//
β>All(A≤U1)T2 = U

T1 //
β>U1

By Lemma A.13, type V has the form All(A≤V1)V2, with T1
//∗
ΓV1 and with

T2
//∗
(Γ, A≤T1)V2. Apply the induction hypothesis to find a W1 with

T1 β>
//

Γ ∗

��

U1

∗ Γ

��
V1

+

β>
// W1.

By Lemma A.16, there is some W2 such that:

T2
=

β>
//

Γ, A≤T1 ∗

��

T2

∗ Γ, A≤U1

��
V2

∗

β>
// W2.

So W = All(A≤W1)W2 has the required property.

Case: T = All(A≤T1)T2
//
β>All(A≤T1)U2 = U

T2
//
β>U2

By Lemma A.13, type V has the form All(A≤V1)V2, with T1
//
ΓV1 and with

T2
//
(Γ, A≤T1)V2. We must show

T1
β>

=
//

Γ ∗

��

T1

∗Γ
��

T2
β> //

∗ Γ, A≤T1��

U2

∗ Γ, A≤T1��

V1
β>

=
// V1

V2
β>

∗
// W2,

which follows directly from the induction hypothesis.

Section A.2 Γ-reduction 187

Other cases:
Similarly, using parts (2) to (4) of Lemma A.13. �

With this in hand, we can proceed to the main body of the strong normalization
argument. Its two main steps are captured by this lemma and the next one.

Lemma A.18 (β>-postponement) Assume Γ ` T ∈ K. If T //
β>U //

Γ

X //∞
β>Γ . . . , then there is some V0 such that T //

ΓV0
//∞
β>Γ

For the proof, we need a simple fact:

Fact A.19 If S //
β>T //

ΓU , then S //
ΓU ′ for some U ′. (That is, the redex

that is contracted between T and U is a residual of a redex already present in S.)

Proof: Since β>-reduction cannot create a Γ-redex, the Γ-redex appearing in T
must be a residual of a Γ-redex already appearing in S. �

Proof of Lemma A.18: By Fact A.19, there is some V0 such that:

T
Γ

//

β>

��

V0

U

β>Γ ∞
��
...

By Lemma A.17, there is some V1 such that

T
Γ

//

β>

��

V0

β> +
��

U
Γ

∗ //

β>Γ ∞
��

V1

...

Since U //
ΓX, we can now use Church-Rosser for Γ-reduction (Lemma A.15):

188 Chapter A Reduction Relations

T
Γ

//

β>

��

V0

β> +
��

U
Γ

∗ //

Γ

��

V1

Γ ∗

��
X

Γ

∗ //

β>Γ ∞
��

V2

...

We can continue in this way, applying either A.15 or A.17 to successive elements of
the infinite reduction beginning from X to obtain an infinite sequence of multi-step
β>Γ-reductions on the right:

T
Γ

//

β>

��

V0

β> +
��

U
Γ

∗ //

Γ

��

V1

Γ ∗

��
X

Γ

∗ //

β>Γ
��

V2

β>Γ ∗

��
U3 Γ

∗ //

β>Γ ∞
��

V3

β>Γ ∞
��

...
...

But the sequence of reductions on the left must contain infinitely many β>-steps
(otherwise it would have an infinite Γ-tail), so Lemma A.17 also tells us that in-
finitely many of the individual multi-step reductions on the right are nonempty. The
reduction T //

ΓV0
//∗
β>ΓV1 · · · //∗

β>Γ∗ is the desired one. �

Proposition A.20 (Strong β>Γ-normalization) If the type S is well-kinded in
Γ, then there is no infinite β>Γ-reduction from S.

Proof: Assume, for a contradiction, that R is an infinite β>Γ-reduction beginning
from S. Let R0 = R. Now repeat the following process as long as possible to
construct a sequence R1, R2, . . . of infinite β>-reductions, all starting from S:

If Ri contains no Γ-reduction that is immediately preceded by a β>-
reduction, then stop. Otherwise, form Ri+1 from Ri by using Lemma A.18
repeatedly to move the first such Γ-reduction before any β>-reduction.

Section A.2 Γ-reduction 189

Note that all of the Ri are infinite and that the first i steps in each Ri are all
Γ-reductions. Now, there are two possibilities:

• The sequence of R’s eventually terminates, having reached some Rn in which all
Γ-reductions precede the first β>-reduction. But this means that Rn contains
only Γ-reductions, contradicting Lemma A.11, or has an infinite tail consisting
only of β>-reductions, contradicting Lemma A.9.

• The sequence of R’s is infinite. But since each Ri begins with at least i Γ-
reductions, we can use this to exhibit an infinite Γ-reduction beginning from S,
contradicting Lemma A.11. �

190 Chapter A Reduction Relations

Appendix B

Proofs for F ω
≤

B.1 Kinding . 191

B.2 The reducing system . 192

B.3 Subject reduction for subtyping 192

B.4 Cut elimination . 197

B.5 A subtyping algorithm for F ω
≤ 198

This chapter contains the proof for the pure calculus of F ω
≤ We elide proofs which

are straightforward.

B.1 Kinding

Proof of decidability of kinding (Lemma 3.10 on page 32): By straightfor-
ward induction we can prove that the two kinding systems and the two definitions of
context well-formedness are equivalent. In each direction, we only have to consider
the rule for variables, since all other rules coincide.

Case K-Tvar: Γ ` Γ(A) ∈ K
By Lemma 3.4(2) ` Γ1, A≤T , Γ2 ok as subderivation. So by the induction hypothesis,
`A Γ1, A≤T , Γ2 ok and Γ1, A≤T , Γ2 `A T ∈ K. Repeated application of Lemma 3.9
yields Γ1 `A T ∈ K.

Case K-Tvar-A: Γ1 `A T ∈ K and Γ `A Γ1, A≤T , Γ2 ok
By the induction hypothesis, Γ1 ` T ∈ K and ` Γ1, A≤T , Γ2 ok , so the result follows
by K-Tvar and weakening.

Now, the algorithm obtained by reading the algorithmic kinding rules from bottom
to top always terminates, since in each step the total number of characters in the

192 Chapter B Proofs for F ω
≤

conclusion is greater than the number of characters in any of the premises. Since the
systems are equivalent, Γ ` S:K is also decidable. �

Proof of Lemma 3.11 on page 32: By straightforward induction. �

Proof of Lemma 3.13 on page 32: Both parts are proved simultaneously by in-
duction on derivations. �

Proof of Lemma 3.14 on page 33: We prove the lemma not for arbitrary se-
quences of reduction steps but for one parallel step. Proceed by induction on the
length of derivation in both parts of the lemma. �

Proof of Corollary 3.15 on page 33: By the Church-Rosser property (A.7 on
page 179), uniqueness of kinding (3.6 on page 31), and subject reduction for kinds
(3.14 on page 33). �

B.2 The reducing system

Proof of Lemma 3.18 on page 34: By straightforward induction on the length
of derivation. �

Proof of Lemma 3.19 on page 34: By inspection of the rules of the reducing
system (Definition 3.16) and uniqueness of kinding. �

Proof of Lemma 3.20 on page 34: By induction over the length of derivations,
using preservation of kinding under reduction and under promotion (Lemma 3.14 and
Lemma 3.18), and the generation Lemma 3.5 for kinds at various places. �

Proof of Lemma 3.21 on page 34: By induction on the length of derivation, us-
ing well-kindedness of subderivations. In the cut-free system, only the rules for re-
flexivity, for maximal types, or for application are applicable. Reflexivity and the
Top-rule are immediate, the application rule by induction. �

B.3 Subject reduction for subtyping

Proof of Lemma 3.22 on page 35: By induction on the length of derivation of
Γ ` S ≤ T . �

Proof of Lemma 3.23 on page 35: Part 1 by induction on the derivation of Γ `C

S ≤ Fun(A:K)T .

Section B.3 Subject reduction for subtyping 193

Case R-Refl: S //∗
β>Fun(A:K)T ′ Fun(A:K)T //∗

β>Fun(A:K)T ′

Γ ` Fun(A:K)T ′ ∈ K ′

Γ `C S ≤ Fun(A:K)T

We know that

S U //∗
β>(Fun(A:K)T ′) U //

β[U/A]T ′ and
T U //∗

β>(Fun(A:K)T ′) U //
β[U/A]T ′.

By preservation of kinding under reduction and generation for kinds Γ ` U ∈ K.
By well-kindedness of subderivations and the generation lemma for kinds further
Γ, A:K ` T ′ ∈ K2. Since by Lemma A.3 [U/A]T //∗

β>[U/A]T ′, the case follows
with the expansion lemma.

Case R-Promote: S //∗
β>U ↑Γ S′ Γ `C S′ ≤ Fun(A:K)T

Γ `C S ≤ Fun(A:K)T

By definition of promotion, S //∗
β>A′ V1 . . . Vn ↑Γ Γ(A′) V1 . . . Vn = S ′. By preser-

vation of kinding under reduction and promotion, the induction hypothesis applies,
yielding Γ `C Γ(A′) V1 . . . Vn U ≤ [U/A]T ′, so the result follows with R-Promote.

Case R-Abs: S //∗
β>Fun(A:K)S ′ Fun(A:K)T //∗

β>Fun(A:K)T ′

Γ, A:K `C S′ ≤ T ′

Γ `C S ≤ Fun(A:K)T

The remaining cases are solved similarly.

In the second part of the lemma, R-Refl and R-Abs are solved analogously to
the corresponding cases in the first part.

Case R-Top: T //∗
β>Top(K ′) Γ ` Fun(A:K)S ∈ K ′

Γ `C Fun(A:K)S ≤ T

By preservation of kinding under reduction, uniqueness of kinding, and twice the
generation lemma for kinds K ′ = K → K2. Since also T U is well-kinded, we
get T U //∗

β>Top(K → K2) U //
>Top(K2). So the case follows from Γ `

(Fun(A:K)S) U ∈ K2 using R-Top. �

Proof of Lemma 3.24 on page 35: By induction on the depth of inference, sim-
ilar to the proof of 3.23. �

Proof of Lemma 3.25 on page 35: The first part for the reduction step on the
right hand side by induction over the derivation of Γ `C S ≤ (Fun(A:K)T) U .

Most cases are straightforward. With the exception of application rule, we get by
Corollary A.5 that (Fun(A:K)T) U //∗

β>W implies [U/A]T //∗
β>W . Hence in

194 Chapter B Proofs for F ω
≤

order to derive Γ `C S ≤ [U/A]T , we can directly use the derivation of the original
statement Γ `C S ≤ (Fun(A:K)T) U .

The case for application is more difficult, since by contracting the outermost redex,
the use of the application rule, that might have led in a last derivation step to the
statement Γ `C S ≤ [U/A]T , can be rendered impossible.

Case R-App: S //∗
β>S1 V (Fun(A:K)T) U //∗

β>T1 V Γ `C S1 ≤ T1

Γ `C S ≤ (Fun(A:K)T) U

We distinguish, whether the outermost redex (Fun(A:K)T) U gets contracted in the
reduction sequence or not. If it is, the case is easy and similar to the ones for the
other rules:

Subcase: (Fun(A:K)T) U //∗
β>(Fun(A:K)T ′) U ′ //

β[U ′/A]T ′ //∗
β>T1 V

By Lemma A.2 also [U/A]T //∗
β>[U ′/A]T ′ //∗

β>T1 V , the case is immediate by
the application rule and preservation of kinding under reduction.

Subcase: (Fun(A:K)T) U //∗
β>(Fun(A:K)T ′

1) V

where Fun(A:K)T //∗
β>Fun(A:K)T ′

1 = T1 and U //∗
β>V . So we are given Γ `C

S1 ≤ Fun(A:K)T ′
1. By well-kindedness of subderivations and part of 1 Lemma 3.23

Γ `C S1 V ≤ [V/A]T ′
1. Since [U/A]T //∗

β>[V/A]T ′
1 (Lemma A.2), the case follows

with the expansion lemma.

The second part of the lemma, dealing with an outer reduction step on the left-
hand side, is shown by induction on the derivation of Γ `C (Fun(A:K)S) U ≤ T .

The cases for R-Refl, R-Arrow, R-All, and R-Abs are symmetric to the
corresponding cases in the first part of the Lemma; R-Top and R-Promote are
solved by simple induction. The case for application is solved analogously to the
respective ones in the first part, using part 2 of Lemma 3.23. �

Proof of Lemma 3.26 on page 35: Both parts of the lemma by induction on
the length of derivation. The properties of the parallel reduction relation allows
(Lemma A.5) to use induction in all cases, especially in the case of R-Promote.

Case R-Refl: S //∗
β>U T //∗

β>U

Γ `C S ≤ T

By Lemma A.6 there exists a type U ′ such that U // //
β>U ′, S ′ //∗

β>U ′, and
T //∗

β>U ′, so the case follows by reflexivity.

Case R-Top: T //∗
β>Top(K) Γ ` S ∈ K

Γ `C S ≤ T

The case is immediate by R-Top and by subject reduction for kinding.

Section B.3 Subject reduction for subtyping 195

Case R-Promote: S //∗
β>W W ↑Γ U Γ `C U ≤ T

Γ `C S ≤ T

By definition of promotion W = A S1 . . . Sn ↑Γ Γ(A) S1 . . . Sn = U . By Lemma A.6
there are types S ′

1, . . . , S ′
n with Si

// //
β>S ′

i such that:

S
β>

// //

∗ β>

��

S ′

∗ β>

��
A S1 . . . Sn β>

// // A S ′
1 . . . S ′

n.

The case follows by induction, the fact that Γ(A) S1 . . . Sn
// //
β>Γ′(A) S ′

1 . . . S ′
n,

and R-Promote.

Case R-All: S //∗
β>All(A≤U)S2 T //∗

β>All(A≤U)T2

Γ, A≤U `C S2 ≤ T2

Γ `C S ≤ T

By Lemma A.6 and the definition of parallel reduction there are two types U ′ and S ′
2

such that:

S
β>

// //

∗ β>

��

S ′

∗ β>

��
All(A≤U)S2

β>
// // All(A≤U ′)S ′

2.

By induction Γ′, A≤U ′ `C S ′
2 ≤ T2. As T //∗

β>All(A≤U)T2
// //
β>All(A≤U ′)T2,

the case follows with Lemma A.2 and R-All.

Case R-Abs, R-Arrow:

Similar.

Case R-App: S //∗
β>S1 U T //∗

β>T1 U Γ `C S1 ≤ T1

Γ `C S ≤ T

By Lemma A.6 there exists a type R such that:

196 Chapter B Proofs for F ω
≤

S
β>

// //

∗ β>

��

S ′

∗ β>

��
S1 U

β>
// // R

By well-kindedness of subderivations, S1 and T1 are well-kinded in Γ. We have to
distinguish according to the form of S1; the interesting case is, where S1 is a type
operator.

Subcase: S1 = A or S1 = V1 V2

By definition of parallel reduction, R = S ′
1 U ′ with S1

// //
β>S ′

1 and U // //
β>U ′.

Thus the case follows by induction, R-App, using T //∗
β>T1 U ′ (Lemma A.2).

Subcase: S1 = Top(K)

By well-kindedness of subderivations and generation for kinds K = K1 → K2. By
Lemma A.6 there exists a type R such that:

S
β>

// //

∗ β>

��

S ′

∗ β>

��
Top(K1 →K2) U

β>
// // R

We distinguish whether the parallel step from Top(K1 →K2) U to R contracts the >-
redex or not. If Top(K) S2

// //
β>Top(K1 →K2) S ′, the case follows by induction.

If Top(K1 →K2) S2
//
>Top(K2), the case follows by Lemma 3.24.

Subcase: S1 = Fun(A:K)S ′
1

We are given (Fun(A:K)S1) S2
// //
β>R. By definition of parallel reduction we

can distinguish the following two subcases: one, where the outer redex does not get
contracted in the parallel step Fun(A:K)S ′

1 S2
// //
β>R, the second one, where the

outer redex disappears.

Subsubcase: R = (Fun(A:K)S ′′
1) U ′

S1 = Fun(A:K)S ′
1

// //
β>Fun(A:K)S ′′

1

U // //
β>U ′

This easier subcase is solved by induction and R-App, using subject reduction for
kinds and the generation lemma.

Section B.4 Cut elimination 197

Subsubcase: R = [U ′/A]S′′
1

S′
1

// //
β>S′′

1

U // //
β>U ′

We are given Γ `C Fun(A:K)S ′
1 ≤ T1. By induction Γ′ `C Fun(A:K)S ′′

1 ≤ T1 and
hence with R-App:

Γ′ `C Fun(A:K)S ′′
1 ≤ T1

Γ′ `C (Fun(A:K)S ′′
1) U ′ ≤ T1 U ′

By Lemma 3.25, we can perform one outer reduction step on the left-hand side,
obtaining Γ′ `C [U ′/A]S ′′

1 ≤ T1 U . Since S ′ //∗
β>(Fun(A:K)S ′′

1) U ′ //
β[U ′/A]S ′′

1

and T //∗
β>T1 U ′, we conclude with the expansion lemma Γ′ `C S ′ ≤ T .

The second part of the lemma, dealing with a parallel reduction step on the right-
hand side, is analogous. The critical cases are again handled by Lemma 3.25. The
case for R-Promote is easier. �

Proof of Corollary 3.27 on page 36: If we can do one // //
β>-step, we can do

many. By Fact A.2, // //∗
β> equals //∗

β>. �

Proof of Corollary 3.28 on page 36: By Corollary 3.27 and Lemma 3.19. �

B.4 Cut elimination

Proof of Lemma 3.31 on page 38: By induction on the length of the reduction
relation↗∗

Γ = (//!
β> ↑Γ)n.

For n = 0 we have S = A S1 . . . Sn, since S must be in normal form, and the case is
immediate. Since for a type U with U //

β>U ′ or U ↑Γ U ′ we know U T //
β>U ′ T

respectively U T ↑Γ U ′ T , the induction step can be proven by an inner induction on
the number of β>-steps resp. the ↑Γ-step. �

Proof of Lemma 3.32 on page 38: By definition, ↗∗
Γ consists of a sequence of

//
β>– and ↑Γ–steps and the result follows by a sequence of instances of the pro-

motion rule, well-kindedness of subderivations and the expansion lemma. �

Proof of Lemma 3.33 on page 39: By induction on the derivation of Γ `CS S ≤
T ; with strong derivations and in absence of transitivity, only the rules of reflexivity,
of promotion, or of application are available. �

198 Chapter B Proofs for F ω
≤

B.5 A subtyping algorithm for F ω
≤

Before we prove soundness and completeness, first some auxiliary lemmas.

Lemma B.1 Assume the types S, S ′, T , and T ′ well-kinded in Γ. If Γ `O S ≤ T ,
then Γ `O S ′ ≤ T ′

Proof: By induction on the length of derivation, using well-kindedness of subderiva-
tions (Lemma 3.20), S-Conv, and S-Trans. �

Lemma B.2 Assume S well-kinded in Γ. If S ↑Γ S ′, then Γ `O S ≤ S ′.

Proof: By definition of promotion, S must be of the form A S1 . . . Sn. Proceed by
induction on the length of the kinding derivation Γ ` A S1 . . . Sn ∈ K. The case for
K-TVar is immediate with S-TVar. The one for K-Arrow-E follows by induction
and S-App. �

Lemma B.3 Assume S and T well-kinded in Γ. Then Γ `CS S ≤ T , iff. Γ `A S ! ≤
T !.

Proof: The “only-if”-direction is obvious. So assume Γ `CS S ≤ T and proceed
by induction on the length of derivation. The only interesting case is the one for
application.

Case R-App: S //!
β>S1 U T //!

β>T1 U Γ `CS S1 ≤ T1

Γ `CS S ≤ T

T1 U must be of the form A U1 . . . Un U for some n ≥ 0. By Lemma 3.33 S ↗∗
Γ

//!
β>A U1 . . . Un U . This means, Γ `A S ! ≤ A U1 . . . Un U follows by an appropri-

ate number of instances of A-Promote, preceded by A-Refl. �

Proof of soundness and completeness (Proposition 3.36): As the system of
strong, cut-free derivations and the subtyping algorithm and the coincide by the
previous lemma, it suffices to show soundness and completeness of the `CS-system.
Soundness is proved by straightforward induction on the length of derivation, using
well-kindedness of subderivations, Lemma B.1, and in the case of promotion, also
Lemma B.2.

For completeness, proceed once again by induction on the depth of inference.

Case S-Conv: S =β> T Γ ` S, T ∈ K

Γ `O S ≤ T

By Church-Rosser and strong normalization of β>-reduction, we have S //!
β>U

and T //!
β>U for some type U , and the result follows by R-Refl.

Section B.5 A subtyping algorithm for F ω
≤ 199

Case S-Trans: Γ `O S ≤ U Γ `O U ≤ T Γ `O U ∈ K

Γ `O S ≤ T

By induction Γ `CS S ! ≤ U !, and Γ `CS U ! ≤ T !. Thus by cut-elimination (Proposi-
tion 3.34) Γ `CS S ! ≤ T !.

Case S-Top: Γ ` S ∈ K

Γ `O S ≤ Top(K)

By preservation of kinding under reduction an R-Top.

Case S-TVar:

Γ `O A ≤ Γ(A)

By R-Promote and R-Refl.

Case S-App: Γ `O S ≤ T

Γ `O S U ≤ T U

By well-kindedness of subderivations and induction Γ `CS S ! ≤ T !. Using the ap-
plication rule R-App we get a cut-free, but not necessarily strong derivation for
Γ `C S ! U ≤ T ! U . Finally by Lemma 3.29 Γ `CS (S U)! ≤ (T U)!.

The remaining cases by simple induction. �

200 Chapter B Proofs for F ω
≤

Appendix C

Proofs for Polarized F ω
≤

C.1 Kinding . 201

C.2 Equivalence of types . 210

C.3 Properties of the reducing system 216

C.4 Subject reduction for subtyping 222

C.5 Strong normalization . 233

C.6 Characterization of strong, cut-free derivations 235

C.7 Cut elimination . 238

C.8 Elimination of promotion 240

C.9 Decidability of polarized subtyping 243

C.10 Typing . 250

C.1 Kinding

Proof of Lemma 5.1 on page 65: By rule K-Refl, the subkind-relation is re-
flexive. The relation ≤ on polarities is a partial order by definition. That transitivity
and antisymmetry are inherited by the subkinding relation can be proven by induc-
tion over the length of derivation. �

Proof of Lemma 5.2 on page 66: By straightforward induction. �

Proof of Lemma 5.4 on page 66: The first part by inspection of the context
rules, the second and third part by straightforward induction. �

202 Chapter C Proofs for Polarized F ω
≤

Proof of Lemma 5.5 on page 67: In the first part we are given Γ ` T ?A, as-
suming a derivation in the system of Definition 5.3. We assume further ? ≤ ?′ and
show by induction that also Γ ` T ?′A by a derivation in the new system. The cases
where ? = ?′ are trivial, so assume in the following ? < ?′.

The rules for variables are immediate, also the rule dealing with the free occurrence
of type variables. The remaining rules are solved by induction, using monotonicity
of ¬ and × on the domain of polarities.

In the second part of the lemma we are given Γ ` T ∈ K in the system of
Definition 5.3 on page 66 and a kind K ′ with K ≤ K ′.

Case K-TVar-Sub: kindΓA ≤ K ` Γ ok

Γ ` A ∈ K

By transitivity of ≤ on kinds (Lemma 5.1).

Case K-Top-Sub: K ′
1 ≤ K1 Γ ` Top(K2) ∈ K ′

2

Γ ` Top(K1 →? K2) ∈ K ′
1 →?′ K ′

2

From the assumption K ′
1 →?′ K ′

2 ≤ K ′ we get K ′ = K ′′
1 →?′′ K ′′

2 with K ′′
1 ≤ K ′

1 and
K ′

2 ≤ K ′′
2 . By induction thus Γ ` Top(K2) ∈ K ′′

2 . Further by transitivity of ≤ on
kinds K ′′

1 ≤ K1, so the case follows by K-Top-Sub.
The cases for arrow types and universally quantified types are trivial since they

posses ? as unique kind.

Case K-Arrow-I-Sub: K1 ≤ K ′′
1

Γ, A:K ′′
1 ` T ?A Γ, A:K ′′

1 ` T ∈ K2

Γ ` Fun(A:K ′′
1)T ∈ K1 →? K2

and we are given K1 →? K2 ≤ K ′. By definition of subkinding, we get K ′ =
K ′

1 →?′ K ′
2, with K ′

1 ≤ K1 and K2 ≤ K ′
2 and ? ≤ ?′. By transitivity of subkinding

(Lemma 5.1) K ′
1 ≤ K ′′

1 . By induction Γ, A:K ′′
1 ` T ?′A and Γ, A:K ′′

1 ` T ∈ K ′
2, and

we conclude by K-Arrow-I-Sub:

K ′
1 ≤ K ′′

1

Γ, A:K ′′
1 ` T ?′A Γ, A:K ′′

1 ` T ∈ K ′
2

Γ ` Fun(A:K ′′
1)T ∈ K ′

1 →?′ K ′
2

Case K-Arrow-E: Γ ` S ∈ K1 →? K2 Γ ` T ∈ K1

Γ ` S T ∈ K2

Assume K2 ≤ K ′
2. Thus K1 →? K2 ≤ K1 →? K ′

2, by induction Γ ` S ∈ K1 →? K ′
2,

and we can finish by K-Arrow-E. �

Section C.1 Kinding 203

Proof of Lemma 5.7 on page 67: We have to two directions to show, both by
induction over the length of derivations.

We start with the proof of correctness of the rules of Definition 5.3, i.e., the new
presentation does not derive more statements than the original system. The rules of
the form ` Γ ok and Γ ` S ?A are solved inspection or by straightforward induction.
For the statements of the form Γ ` S ∈ K we can use K-Subsumption to prove the
correctness. We only show the rule for arrow introduction:

Case K-Arrow-I-Sub: K1 ≤ K ′
1

Γ, A:K ′
1 ` T ?A Γ, A:K ′

1 ` T ∈ K2

Γ ` Fun(A:K ′
1)T ∈ K1 →? K2

By induction Γ, A:K ′
1 ` T ?A and Γ, A:K ′

1 ` T ∈ K2 in the original system. By
K-Arrow-I therefore Γ ` Fun(A:K ′

1)T ∈ K ′
1 →? K2. Since K ′

1 →
? K2 ≤ K1 →

? K2,
we get a derivation for Γ ` Fun(A:K ′

1)T ∈ K1 →
? K2 by K-Subsumption.

For completeness we once again proceed by induction on the depth of inference,
using Lemma 5.5. The subsumption rule for the occurrence of type variables is solved
by induction and part 1 of Lemma 5.5. The case for Γ ` A +A is immediate by the
corresponding rule of Definition 5.3; likewise the one for Γ ` T ◦A where A does not
occur freely in T . The rules for arrow-types, universally quantified types, and type
application by straightforward induction.

For statements of the form Γ ` T ∈ K most cases are solved by induction.
For instance K-Arrow-I is covered by induction, reflexivity of ≤ on kinds, and
K-Arrow-I-Sub. K-Top-Sub is analogous.

Case K-Subsumption: K ′ ≤ K Γ ` T ∈ K ′

Γ ` T ∈ K

By induction we get Γ ` T ∈ K ′ in the new system and by part 2 of Lemma 5.5 on
page 67 also Γ ` T ∈ K. �

Proof of the generation Lemma 5.8 on page 67: By inspection of the rules of
the kinding system from Definition 5.3. �

Proof of Lemma 5.10 on page 68: By induction on the definition of subkind-
ing. �

Proof of Lemma 5.11 on page 68: By induction on the combined length of de-
rivation for Γ ` T ∈ K1 and Γ ` T ∈ K2, using Lemma 5.10. �

Proof of Lemma 5.12 on page 68: Assume two kinds K ′ and K ′′ with K =
erase(K ′) = erase(K ′′). Proceed by induction on the syntactic structure of kind K.

204 Chapter C Proofs for Polarized F ω
≤

Case: K = ?

Thus also K ′ and K ′′ equal ? and the result is trivial.

Case: K = K1 → K2

K ′ is of the form K ′
1 →?′ K ′

2 with erase(K ′
1) = K1 and erase(K ′

2) = K2. For the
second kind likewise K ′′ = K ′′

1 →?′′ K ′′
2 where erase(K ′′

1) = K1 and erase(K ′′
2) = K2.

By induction, we get two greatest lower bounds (K∧
1 = K ′

1 ∧K ′′
1 and K∧

2 = K ′
2 ∧K ′′

2)
and two least upper bounds (K∨

1 = K ′
1∨K ′′

1 and K∨
2 = K ′

2∨K ′′
2). By definition of the

subkind relation K∨
1 →?′ ∧ ?′′ K∧

2 is then the greatest lower bound and K∧
1 →?′ ∨ ?′′ K∨

2

the least upper bound. �

Proof of Lemma 5.13 on page 68: By induction on the combined length of de-
rivation. The two parts for supremum are already covered by Lemma 5.5.

In the first part of the lemma, the only non-trivial case is where Γ ` T +A and
Γ ` T −A. The case for type variables is immediate, since Γ ` A +A′ and Γ ` A −A′

is derivable only if A 6= A′, and in this case we have Γ ` A ◦A′. Likewise the cases
where A′ /∈ fv(T). The cases for Fun-types and All-types as the cases for arrow types
are solved by straightforward induction and some calculation on the polarities.

For Γ ` T1 T2 +A and Γ ` T1 T2 −A we are given six polarities: p, q, and r on the
one hand and p′, q′, and s′ on the other, with + = p ∨ q × r and − = p′ ∨ q′ × r′:

+ = p ∨ (q × r)
Γ ` T1 pA Γ ` T1 q Γ ` T2 rA

Γ ` T1 T2 +A

?′ = p′ ∨ (q′ × r′)
Γ ` T1 p′A Γ ` T1 q′ Γ ` T2 r′A

Γ ` T1 T2 −A

By definition of ∨ we have p ≤ + and p′ ≤ −, so by induction Γ ` T1 ◦A′ . Further
we know q × r ≤ + and q × r ≤ −. Assuming (q, q′) = (+, +), we get r ≤ + and
r′ ≤ −, hence by induction Γ ` T2 ◦A which implies Γ ` T1 T2 ◦A. If (q, q′) = (+,−),
we get by induction on part 2 of the lemma Γ ` T1 ◦, and again we can conclude
Γ ` T1 T2 ◦A. The other combinations by similar calculations.

In the second part of the lemma, we proceed by induction on the combined length
of derivation for Γ ` T ∈ K1 and Γ ` T ∈ K2. The case for T = Top(?) is immediate.
For T = A, the case follows by Lemma 5.10 and Lemma 5.12. The cases for arrow
types and universally quantified types are trivial, since they possess ? as unique kind.
The case for T = Fun(A:K1)T follows by induction.

Case: T = U V

Assume two kinds K2 and K4 with Γ ` U V ∈ K2 and Γ ` U V ∈ K4. We have
to show that Γ ` U V ∈ K when K is the infimum of K2 and K4. By the
generation Lemma 5.8 Γ ` U ∈ K1 →? K2 and Γ ` V ∈ K1 on the one hand, and
Γ ` U ∈ K3 →

?′ K4 with Γ ` V ∈ K3 on the other, each by subderivation.

Section C.1 Kinding 205

By induction, we know Γ ` U ∈ K ′ where K ′ is the infimum of K1 →? K2 and
K3 →?′ K4. By the properties of the subkind relation K ′ must also be an arrow-
kind, say K5 →?′′ K6. By definition of infimum K5 →?′′ K6 ≤ K1 →? K2 and
K5 →?′′ K6 ≤ K3 →?′ K4; hence K1 ≤ K5 and K3 ≤ K5 and also K6 ≤ K2 and
K6 ≤ K4. So by subsumption (Lemma 5.5) and K-Arrow-E we get Γ ` U V ∈ K6.
It is easy to check that K6 must be the infimum of K2 and K4. The case for
Top(K ′ →? K ′′) is similar. �

Proof of soundness and completeness (Lemma 5.17 on page 70):
The algorithm’s soundness is straightforward. For completeness we proceed by in-
duction, using that all operations on polarities, including negation, are monotone.

For Γ ` T ∈ K most cases are immediate. We show the one for arrow-elimination.

Case K-Arrow-E: Γ ` S ∈ K1 →? K2 Γ ` T ∈ K1

Γ ` S T ∈ K2

By induction Γ `A S ∈ K and Γ `A T ∈ K ′′
1 , where K ≤ K1 →? K2 and K ′′

1 ≤ K1.
By definition of subkinds (rule K-Sub) K is of the form K ′

1 →?′ K ′
2 with K1 ≤ K ′

1

and K ′
2 ≤ K2, as well as ?′ ≤ ?. By transitivity of ≤ we get K ′′

1 ≤ K ′
1, and we can

conclude by the arrow elimination rule of the algorithm:

Γ `A S ∈ K ′
1 →?′ K ′

2 Γ `A T ∈ K ′′
1 K ′′

1 ≤ K ′
1

Γ `A S T ∈ K ′
2

�

Proof of Corollary 5.18 on page 71: Assume Γ ` T ?A respectively Γ ` T ∈
K. By the completeness part of Lemma 5.17 the algorithm gives back a statement
Γ `A T ?′A respectively Γ ` T ∈ K ′ at least as good. This holds for all such
statements. Thus by definition the algorithms gives back the minimal statement. �

Proof of Lemma 5.21 on page 72: All four parts by simple calculations using
the properties of ∨, ×, and ¬. �

Proof of Lemma 5.22 on page 72: By simple calculations, using the properties
of ∨ and ×, and ¬. �

Proof of weakening Lemma 5.23 on page 72: By induction on the depth of
inference. �

Proof of the substitution Lemma 5.24 on page 72: The first part straightfor-
wardly by induction. The second part by induction on the combined length of deri-
vation of Γ `A T pA and Γ `A T qA′ . If A 6∈ fv(T), the case follows by induction on
the first part of the lemma. Since the algorithmic system is syntax directed, we list
the remaining cases according to the syntactic structure of T .

206 Chapter C Proofs for Polarized F ω
≤

Case: T = A

This means p = + and q = ◦, and thus s = +. The statement Γ′ `A A +A is
immediate.

Case: T = A′

Hence p = ◦ and q = + (i.e. s = r). By assumption Γ1 `A U rA and by weakening
Γ′ `A U rA.

Case: T = A′′

with A 6= A′′ 6= A′. So p = ◦ and q = ◦, and we obtain immediately Γ′ `A A′′ ◦A.

Case: T = Top(K)

By induction on the first or the second part of the lemma, depending of n the form
of K.

Case: T = T1 → T2

The algorithm generates as subgoals Γ `A T1 p′A and Γ `A T1 q′A′ for the contravari-
ant side, and Γ `A T2 p′′A and Γ `A T2 q′′A′ for the co-variant, with p = ¬p′ ∨ p′′

and q = ¬q′ ∨ q′′. By induction Γ′ `A [U/A]T1 s′A and Γ′ `A [U/A]T2 s′′A′ with s′ =
p′∨(q′×r) and s′′ = p′′∨(q′′×r). The algorithm gives back Γ′ `A [U/A′](T1 → T2) sA

with s = ¬s′ ∨ s′′ and we can calculate, using the equations of Lemma 5.22:

s = ¬s′ ∨ s′′

= ¬(p′ ∨ (q′ × r)) ∨ (p′′ ∨ (q′′ × r))

= ¬p′ ∨ ¬(q′ × r) ∨ p′′ ∨ (q′′ × r)

= (¬p′ ∨ p′′) ∨ ¬(q′ × r) ∨ (q′′ × r)

= (¬p′ ∨ p′′) ∨ (¬q × r) ∨ (q′′ × r)

= p ∨ ((¬q′ ∨ q′′) × r)

= p ∨ (q × r).

Case: T = All(A′′≤T1:K1)T2

For both sides we have to distinguish according to the occurrence of the respective
type variable in the upper bound of the All-type.

Subcase:

Γ `A T1 ◦A Γ, A′′≤T1:K1 `A T2 pA

Γ `A All(A′′≤T1:K1)T2 pA

Γ `A T1 ◦A′ Γ, A′′≤T1:K1 `A T2 qA′

Γ `A All(A′′≤T1:K1)T2 qA′

By induction Γ′ `A [U/A′]T1 ◦A (since ◦ = ◦ ∨ ◦ × r). By induction on the second
subgoals Γ′, A′′≤[U/A′]T1:K1 `A [U/A′]T2 sA, where s = p ∨ (q × r). Thus we can
conclude the case with the corresponding rule for All-types.

Section C.1 Kinding 207

Subcase:

Γ `A T1 ◦A Γ, A′′≤T1:K1 `A T2 pA

Γ `A All(A′′≤T1:K1)T2 pA

Γ `A T1 q′A′ q′ 6= ◦ Γ, A′′≤T1:K1 `A T2 q′′A′

Γ `A All(A′′≤T1:K1)T2 ±A′

So the goal in this subcase is to derive Γ′ `A ([U/A′](All(A′′≤T1:K1)T2) sA where
s = p ∨ (±× r).

If r = ◦, then s = p, and we get by induction on the first subgoal Γ′ `A

[U/A′]T1 ◦A, since ◦ ∨ (s′ × ◦) = ◦. Induction on the second subgoal and using
p ∨ (q′ × ◦) = p yields Γ′, A′′≤[U/A′]T1:K1 `A [U/A′]T2 pA .

If r 6= ◦ we have s = p ∨ (± × r) = ±. By induction on the first subgoal Γ′ `A

[U/A′]T1 s′A, where s′ = ◦∨(q′×r) = q′×r 6= ◦, since neither q′ nor r are constant. By
induction on the second subgoal Γ′, A′′≤[U/A′]T1:K1 `A [U/A′]T2 s′′A. Irrespective of
s′′, the corresponding rule for All-types derives Γ′, A′′≤[U/A′]T1:K1 `A [U/A′]T2 ±A.

Subcase:

Γ `A T1 p′A p′ 6= ◦ Γ, A′′≤T1:K1 `A T2 p′′A

Γ `A All(A′′≤T1:K1)T2 ±A

Γ `A T1 ◦A′ Γ, A′′≤T1:K1 `A T2 qA′

Γ `A All(A′′≤T1:K1)T2 qA′

We are to show Γ′ `A ([U/A′](All(A′′≤T1:K1)T2) ±A. By induction on the first
subgoal Γ′ `A [U/A]T1 s′A with s′ = p′ ∨ (◦ × r) = p′ 6= ◦, from which the case
follows.

Subcase:

p′ 6= ◦
Γ `A T1 p′A Γ, A′′≤T1:K1 `A T2 p′′A

Γ `A All(A′′≤T1:K1)T2 ±A

q′ 6= ◦
Γ `A T1 q′A′ Γ, A′′≤T1:K1 `A T2 q′′A′

Γ `A All(A′′≤T1:K1)T2 ±A′

We have to show Γ′ `A ([U/A′](All(A′′≤T1:K1)T2) ±A. By induction on the first
subgoal Γ′ `A [U/A]T1 s′A with s′ = p′ ∨ (q′ × r) 6= ◦, from which the case follows.

Case: T = Top(K)

Immediate.

Case: T = Fun(A′′:K)T ′

By induction.

Case: T = T1 T2

The aim is to show Γ′ `A [U/A′](T1 T2) sA with s = p ∨ (q × r). The corresponding
rule of the algorithm generates Γ `A T1 p′A and Γ `A T1 t, and Γ `A T2 p′′A; likewise

208 Chapter C Proofs for Polarized F ω
≤

the subgoals Γ `A T1 q′A′ and Γ `A T2 q′′′A′ . Furthermore p = p′ ∨ (t × p′′′) and
q = q′ ∨ (t× q′′′). By induction, we get Γ′ `A [U/A′]T1 s′A, and Γ′ `A [U/A′]T1 t, and
Γ′ `A [U/A′]T2 s′′′A′, with s′ = p′ ∨ (q′ × r) and s′′′ = p′′′ ∨ (q′′′ × r).

By the rule for application we get Γ′ `A [U/A′](T1 T2) sA, where s = s′ ∨ (t× s′′′).
Thus we can calculate, using the properties of Lemma 5.22:

s′ ∨ (t × s′′′) = p′ ∨ (q′ × r) ∨ (t × (p′′′ ∨ (q′′′ × r)))

= p′ ∨ (q′ × r) ∨ (t × p′′′) ∨ (t × q′′′ × r)

= p′ ∨ (t × p′′′) ∨ (q′ × r) ∨ ((t × q′′′) × r)

= (p′ ∨ (t × p′′′)) ∨ ((q′ ∨ (t × q′′′)) × r)

= p ∨ (q × r)

= s.

Finally the third part of the lemma, treating the rules for the kinding relation

Case K-TVar: `A Γ ok

Γ `A A ∈ kindΓA

The context Γ must be of the form Γ1, A≤T :K ′, Γ2, i.e. kindΓA = K ′. We distinguish,
whether the two variables A and A′ coincide or not.

If they do, we have by assumption Γ1 `A U ∈ K ′ (i.e. K = K ′). By induction on
part 1 ` Γ′ ok , thus by weakening (Lemma 5.23) also Γ′ `A U ∈ K ′.

If A 6= A′, then kindΓ′A = kindΓA, and the case follows by induction on part 1
and K-TVar.

Case K-Top: Γ `A Top(K2) ∈ K ′
2

Γ `A Top(K1 →? K2) ∈ K1 →◦K ′
2

By induction and K-Top. The case for Top(?) by induction on the first part of the
lemma.

Case K-Arrow-I?: Γ, A′′:K1 `A T ?′A′′ Γ, A′′:K1 `A T ∈ K ′
2

Γ `A Fun(A′′:K1)T ∈ K1 →?′ K2

By induction Γ′, A′′:K1 `A [U/A′]T ∈ K ′
2 and, by induction on the second part of

the lemma, Γ′, A′′:K1 `A [U/A′]T ?A′′ . Note that the fresh variable A′′ cannot occur
free in U , which means Γ1 `A U ◦A′′ . Thus we can conclude by rule K-Arrow-I?:

Γ′, A′′:K1 `A [U/A′]T ?A′′ Γ′, A′′:K1 `A [U/A′]T ∈ K ′
2

Γ′ `A Fun(A′′:K1)[U/A′]T ∈ K ′
1 →?′ K ′

2

Section C.1 Kinding 209

Case K-Arrow-E-A: Γ `A S ∈ K1 →? K2 Γ `A T ∈ K ′
1 K ′

1 ≤ K1

Γ `A S T ∈ K2

By induction we get Γ′ `A [U/A′]S ∈ K1 →? K2 and Γ′ `A [U/A′]T ∈ K1. By
K-Arrow-E-A we obtain Γ′ `A [U/A′](S T) ∈ K2.

Case K-Arrow, K-All:

By induction.

That the same properties holds for non-algorithmic kinding, as well, is a direct
consequence of soundness and completeness of the algorithm and monotonicity of the
operations on polarities. �

Proof of subject reduction (Lemma 5.25 on page 73): We show the property
not for arbitrary sequences of reduction steps but for one parallel step. Proceed by
induction on the length of derivation in all three parts of the lemma.

The first part of the lemma by straightforward induction.

In the second part the rules for type variables and for Top-types are solved by
induction over the first part of the lemma. The rules for type operators are also
solved by induction. Likewise the ones for arrow-types and universally quantified
types. We show one representative case:

Case : Γ ` S1 ◦A Γ, A′≤S1:K1 ` S2 ?A

Γ ` All(A′≤S1:K1)S2 ?A

We are given Γ // //
β>Γ′ and All(A′≤S1:K1)S2

// //
β>All(A′≤S ′

1:K1)S
′
2. By induc-

tion Γ′ ` S ′
1 ◦A and, since Γ, A′≤S ′

1:K1
// //
β>Γ, A′≤S1:K1, also Γ′, A′≤S ′

1:K1 `
S ′

2 ?A, so the result follows by the appropriate All-rule.

Finally the rules for application on the level of types. We distinguish according
to the form of the outermost redex. (The case, where the outermost redex is not
contracted, is solved by straightforward induction.)

Case : Γ ` T ?′A ? = ◦ ∨ (◦ × ?′)
Γ ` Top(K1 →? K2) ◦A Γ ` Top(K1 →? K2) ◦

Γ ` Top(K1 →? K2) T ?A

We immediately get ? = ◦, and after one step Γ′ ` Top(K2) ◦A holds: If K2 = ?, this
follows by induction on the first part of the lemma and K-Top; If K2 6= ?, then by
induction on the first part.

Case : ? = ?1 ∨(?2 × ?3)
Γ ` (Fun(A′:K ′

1)S
′) ?1

A Γ ` (Fun(A′:K ′
1)S

′) ?2 Γ ` T ?3
A

Γ ` (Fun(A′:K ′
1)S

′) T ?A

So assume Fun(A′:K ′
1)S

′ // //
β>Fun(A′:K ′

1)S
′′ and T // //

β>T ′′. By induction we

210 Chapter C Proofs for Polarized F ω
≤

get Γ′ ` (Fun(A′:K ′
1)S

′′) ?1
A and Γ′ ` Fun(A′:K ′

1)S
′′ ?2 and Γ′ ` T ′ ?3

A. From the
second statement we get from the generation Lemma 5.8 Γ, A′:K ′

1 ` S ′ ?2
A′ . From the

kinding part of the generation lemma we further get Γ ` Fun(A′:K1)S
′ ∈ K ′

1 →?2

K
for some kinds K ′

1 and K, as well as Γ ` T ∈ K1 with K1 ≤ K ′
1. Subsumption yields

Γ ` T ∈ K ′
1, so applying the substitution Lemma 5.24 gives Γ′ ` [T ′/A′]S ′′ ?A.

Part three of the lemma by straightforward induction, using the generation lemma
for kinding and preservation of kinding under reduction. �

C.2 Equivalence of types

Proof of Lemma 5.29 on page 74: By straightforward induction, using the for-
mulation of the kinding system from Definition 5.3. �

Proof of Lemma 5.30 on page 74: By straightforward induction on the deriva-
tion of Γ ` S ≡ T ∈ K. The cases for E-Refl and E-Top follows by subsumption
for kinds (Lemma 5.5). The cases for arrow- and for All-types are trivial as their
kinds are unique. The case E-Abs by straightforward induction, likewise the ones
for application, with the help of Lemma 5.5 for constant application. �

Proof of Lemma 5.32 on page 75: By induction on the depth of inference. The
first part of the lemma by induction on the derivation of ` Γ ok . The case for the
empty context is immediate, the one for term variables by straightforward induction.
If Γ = Γ1, A≤T :K we get by the generation lemma for contexts ` Γ1 ok and Γ1 `
T ∈ K by subderivations. By definition of equivalence ` Γ1, A≤T :K ≡ Γ′ implies
Γ′ = Γ′

1, A≤T ′:K with ` Γ1 ≡ Γ′
1 and Γ1 ` T ≡ T ′ ∈ K, both by subderivation. Note

that A /∈ dom(Γ) implies A /∈ dom(Γ′). By induction we get ` Γ′
1 ok , and induction

on part 2 yields Γ′
1 ` T ′ ∈ K. Hence ` Γ′

1, A≤T ′:K ok .

Part 2 of the lemma by induction on the depth of inference of Γ ` T ∈ K.

Case K-TVar-Sub: kindΓA ≤ K ` Γ ok

Γ ` A ∈ K

The only equivalence rule applicable for type variables is reflexivity, i.e., by the
kinding subgoal of E-Refl we are given Γ ` A ∈ K ′. From this we get by the
generation lemma for kinding kindΓ′A ≤ K ′. Thus the case follows by induction on
part 1 of the lemma and the observation that kindΓ′A = kindΓA.

Case K-Top?: ` Γ ok

Γ ` Top(?) ∈ ?

We get T ′ = T = Top(?), so the case follows by induction on part 1 of the lemma.

Section C.2 Equivalence of types 211

Case K-Top-Sub: K1 ≤ K ′′
1 Γ ` Top(K ′′

2) ∈ K2

Γ ` Top(K ′′
1 →?′′ K ′′

2) ∈ K1 →? K2

From Γ ` Top(K ′′
1 →?′′ K ′′

2) ≡ T ′ ∈ K ′
1 →?′ K ′

2 we obtain by rule E-Top T ′ =
Top(K ′′′

1 →?′′′ K ′′′
2), where Γ ` Top(K ′′

1 →?′′ K ′′
2) ∈ K ′

1 →?′ K ′
2 and Top(K ′′′

1 →?′′′

K ′′′
2) ∈ K ′

1 →?′ K ′
2. By the generation Lemma 5.8 for kinds Γ ` Top(K ′′

2) ∈ K ′
2

and Γ ` Top(K ′′′
2) ∈ K ′

2 with K ′
1 ≤ K ′′

1 and K ′
1 ≤ K ′′′

1 . By E-Top we thus know
Γ ` Top(K ′′

2) ≡ Top(K ′′′
2) ∈ K ′

2. Hence by induction Γ′ ` Top(K ′′′
2) ∈ K ′

2, and the
result follows by K-Top-Sub:

K ′
1 ≤ K ′′′

1 Γ′ ` Top(K ′′′
2) ∈ K ′

2

Γ′ ` Top(K ′′′
1 →?′′′ K ′′′

2) ∈ K ′
1 →?′ K ′

2

Case K-Arrow-I-Sub: K1 ≤ K ′
1

Γ, A:K ′
1 ` T ?A Γ, A:K ′

1 ` T ∈ K2

Γ ` Fun(A:K ′
1)T ∈ K1 →? K2

By induction on part 2 and 4 of the lemma.

Case K-Arrow-E: Γ ` T1 ∈ K1 →? K2 Γ ` T2 ∈ K1

Γ ` T1 T2 ∈ K2

By definition of equivalence, Γ ` T1 T2 ≡ T ′ ∈ K ′
2 implies T = T ′

1 T ′
2 with Γ `

T1 ≡ T ′
1 ∈ K ′

1 →?′ K ′
2 and Γ ` T2 ≡ T ′

2 ∈ K ′
1. By induction Γ′ ` T ′

2 ∈ K ′
1 and

Γ′ ` T ′
1 ∈ K ′

1 →
?′ K ′

2, and the case follows by K-Arrow-E.

Case K-Arrow: Γ ` T1 ∈ ? Γ ` T2 ∈ ?

Γ ` T1 → T2 ∈ ?

By E-Arrow, T ′ = T ′
1 → T ′

2 with Γ ` T1 ≡ T ′
1 ∈ ? and Γ ` T2 ≡ T ′

2 ∈ ? and the
result follows by induction.

Case K-All: Γ, A≤T1:K1 ` T2 ∈ ?

Γ ` All(A≤T1:K1)T2 ∈ ?

We are given T ′ = All(A≤T ′
1:K1)T

′
2 with Γ ` T1 ≡ T ′

1 ∈ K1 and Γ, A≤T1:K1 ` T2 ≡
T ′

2 ∈ ?. By the definition of equivalence for contexts and using ` Γ ≡ Γ′ we get
` Γ, A≤T1:K1 ≡ Γ′, A≤T ′

1:K1, so by induction and K-All we conclude:

Γ′, A≤T ′
1:K1 ` T ′

2 ∈ ?

Γ′ ` All(A≤T ′
1:K1)T

′
2 ∈ ?

The cases for Γ ` T ? and for variable occurrence Γ ` T ?A also by straightforward
induction. �

212 Chapter C Proofs for Polarized F ω
≤

Proof of Lemma 5.33 on page 75: By induction on the length of derivation, us-
ing the corresponding weakening Lemma 5.2 for kinding. �

Proof of symmetry and transitivity (Lemma 5.34 on page 75): By induction
on the length of derivation. The only interesting case is the one for All -types:

Case E-All: Γ, A≤S1:K1 ` S2 ≡ T2 ∈ ? Γ ` S1 ≡ T1 ∈ K1

Γ ` All(A≤S1:K1)S2 ≡ All(A≤T1:K1)T2 ∈ ?

Since S1 and T1 are well-kinded in Γ, the induction hypothesis applies, yielding
Γ′ ` T1 ≡ S1 ∈ K1. Thus ` Γ, A≤S1:K1 ≡ Γ′, A≤T1:K1. Again by induction
Γ′, A≤T1:K1 ` T2 ≡ S2 ∈ ?, and the case finishes with rule E-All.

In the part for transitivity also by induction. I only show the case where both
derivations end with an instance of E-All, the only rule which is not symmetric.

Case E-All:

Γ ` S1 ≡ U1 ∈ K1

Γ, A≤S1:K1 ` S2 ≡ U2 ∈ ?

Γ ` All(A≤S1:K1)S2 ≡ All(A≤U1:K1)U2 ∈ ?

Γ′ ` U1 ≡ T1 ∈ K1

Γ′, A≤U1:K1 ` U2 ≡ T2 ∈ ?

Γ′ ` All(A≤U1:K1)U2 ≡ All(A≤T1:K1)T2 ∈ ?

By induction Γ ` S1 ≡ T1 ∈ K1. Since by definition of equivalence for contexts
` Γ, A≤S1:K1 ≡ Γ′, A≤U1:K1, by induction Γ′, A≤S1:K1 ` S2 ≡ T2 ∈ ?, and the case
follows with E-All. �

Proof of Corollary 5.35 on page 75: In the first part, assume Γ′ `A T ′ ?′ , with
?′ ≤ ?. By symmetry, the corresponding lemma for non-minimal kinding (part 3 of
Lemma 5.32), and soundness of the kinding algorithm (Lemma 5.17) Γ′ ` T ∈ ?′.
Since ? was assumed minimal for T in Γ, we get ? ≤ ?′, and thus ? = ?′. The second
part is similar. �

Proof of the substitution Lemma 5.36 on page 76: Let Γ stand for the con-
text Γ1, A:K ′, Γ2 and Γ′ abbreviate Γ1, [U1/A]Γ2. Proceed by induction on the length
of derivation of Γ ` S ∈ K.

Case: S = A′

If A = A′, we have by assumption Γ1 ` U1 ≡ U2 ∈ K. By the generation lemma
for kinds, kindΓA = K ′ ≤ K, thus the case follows by weakening for equivalence
(Lemma 5.33) and Lemma 5.30. If A 6= A′ the case is immediate by reflexivity, the
generation lemma for kinds, and subsumption for kinding.

Section C.2 Equivalence of types 213

Case: Γ ` All(A′≤S1:K1)S2 ∈ ?

By the generation lemma for kinds Γ, A′≤S1:K1 ` S2 ∈ ? and further Γ ` S1 ∈
K1, both by subderivations. By induction Γ′ ` [U1/A]S1 ≡ [U2/A]S1 ∈ K1 and
Γ′, A′≤[U1/A]S1:K1 ` [U1/A]S2 ≡ [U2/A]S2 ∈ ?. Thus we conclude:

Γ′ ` [U1/A]S1 ≡ [U2/A]S1 ∈ K1 Γ′, A′≤[U1/A]S1:K1 ` [U1/A]S2 ≡ [U2/A]S2 ∈ ?

Γ′ ` [U1/A](All(A′≤S1:K1)S2) ≡ [U2/A](All(A′≤S1:K1)T2) ∈ ?

�

Proof of the substitution Lemma 5.37 on page 76: By induction over the length
of derivation, using the generation lemma for kinds, the preservation of kinding under
substitution, and the above substitution Lemma 5.36 in the case for E-Refl. �

Proof of the constant substitution Lemma 5.39 on page 77: By structural
induction on the structure of type S. For S = A′, the assumption Γ ` S ◦A im-
plies A′ 6= A. Thus the substitution has no effect and the case is immediate by
reflexivity of equivalence, and preservation of kinding under substitution. The cases
for arrow-types, All-types, and type operators follow by the generation lemma for
kinds, induction, and the corresponding rules for equivalence. We only show the one
for type applications:

Case: S = S1 S2

By definition of equivalence, T = T1 T2 with Γ ` S1 ≡ T1 ∈ K1 →? K for some kind
K1 and some polarity ?. By Lemma 5.29 and the generation lemma for kinds we get
Γ ` S ◦A. Hence by induction Γ′ ` [U1/A]S1 ≡ [U2/A]T1 ∈ K1 →

? K.
To treat the arguments S2 and T2, we distinguish according to the minimal polarity

of S1 as type operator. If Γ `A S1 ◦, we know by the subgoals of rule E-App◦ that
Γ ` S2 ∈ K1 and Γ ` T2 ∈ K1. By preservation of kinding under substitution
(Lemma 5.24) Γ′ ` [U1/A]S2 ∈ K1 and Γ′ ` [U2/A]T2 ∈ K1, and the result follows by
E-App◦:

Γ′ ` [U1/A]S2 ∈ K1 Γ′ ` [U2/A]T2 ∈ K1

Γ′ ` [U1/A]S1 ≡ [U2/A]T1 ∈ K1 → K Γ′ `A [U1/A]S1 ◦

Γ′ ` [U1/A](S1 S2) ≡ [U2/A](T1 T2) ∈ K

If Γ `A S1 ? with ? 6= ◦, we get by the generation Lemma 5.21 for minimal
kinds that Γ ` S2 ◦A. By the appropriate application rule for equivalence we know
Γ ` S2 ≡ T2 ∈ K1, hence by induction Γ′ ` [U1/A]S2 ≡ [U2/A]T2, and the case
follows by the corresponding application rule. �

214 Chapter C Proofs for Polarized F ω
≤

Proof of Lemma 5.40 on page 77: Part 1 by induction on the length of deriva-
tion, using the previous lemmas. The case for E-Refl follows from preservation of
kinding under reduction and E-Refl, the one for E-Top vacuously true. The case
for E-Abs is solved by straightforward induction and preservation of kinding under
reduction.

Case E-Arrow: Γ ` T1 ≡ S1 ∈ ? Γ ` S2 ≡ T2 ∈ ?

Γ ` S1 → S2 ≡ T1 → T2 ∈ ?

If S1 → S2
//
β>S ′

1 → S2 with S1
//
β>S ′

1, we get by subject reduction and
induction a type T ′

1 with T1
//
β>T ′

1 and Γ ` S1 ≡ T1 ∈ ? and we conclude:

Γ ` S′
1 ≡ T1 ∈ ? Γ ` S2 ≡ T2 ∈ ?

Γ ` S′
1 → S2 ≡ T ′

1 → T2 ∈ ?

The case where S1 → S2
//
β>S1 → S ′

2 is symmetric.

Case E-All: Γ, A≤S1:K1 ` S2 ≡ T2 ∈ ? Γ ` S1 ≡ T1 ∈ K1

Γ ` All(A≤S1:K1)S2 ≡ All(A≤T1:K1)T2 ∈ ?

We have to distinguish where the reduction step takes place:

Subcase: S′ = All(A≤S′
1:K1)S2

with S1
//
β>S ′

1. By well-kinded subderivations Γ ` S1 ∈ K1, by subject reduction
for kinding also Γ ` S ′

1 ∈ K1. Thus the induction hypothesis applies, yielding a type
T ′

1 with

S1
Γ

K1

β>

��

T1

β> ∗

��
S ′

1
Γ

K1

T ′
1.

With the help of Lemma 5.32 we get Γ, A≤S ′
1:K1 ` S2 ≡ T2 ∈ ? and the case follows

by the equality rule for All -types.

Subcase: S′ = All(A≤S1:K1)S
′
2

with S2
//
β>S ′

2. By well-kindedness of subderivation and induction we get a type
T ′

2 such that

Section C.2 Equivalence of types 215

S2
Γ, A≤S1:K1

?

β>

��

T2

β> ∗

��
S ′

2

Γ, A≤S1:K1

?
T ′

2,

and the case follows again by the rule for universally quantified types.

Case E-App+: Γ `A S1 + Γ ` S1 ≡ T1 ∈ K1 →K2 Γ ` S2 ≡ T2 ∈ K1

Γ ` S1 S2 ≡ T1 T2 ∈ K2

We have to distinguish where the reduction step takes place.

Subcase: S1 S2
//
β>S′

1 S2

By induction, using subject reduction for minimal kinds. In case the minimal kind of
S ′

1 is constant, we can use Lemma 5.29 and E-App◦ to obtain the result. The case
where S1 S2

//
β>S1 S ′

2 is symmetric.

Subcase: (Fun(A:K ′
1)S

′
1) S2 //

β[S2/A]S′
1

Γ ` Fun(A:K ′
1)S

′
1 ≡ T1 ∈ K1 → K2 implies T1 = Fun(A:K ′

1)T
′
1 where Γ, A:K ′

1 `
S ′

1 ≡ T ′
1 ∈ K2 and K1 ≤ K ′

1. From Γ ` S2 ≡ T2 ∈ K1 we get by Lemma 5.30
Γ ` S2 ≡ T2 ∈ K ′

1, so the result follows with the substitution Lemma 5.37:

(Fun(A:K ′
1)S

′
1)S2

Γ

K2

β

��

(Fun(A:K ′
1)T

′
1)T2

β

��
[S2/A]S ′

1
Γ

K2

[T2/A]T ′
1.

Subcase: Top(K ′
1 →?′ K ′

2) S2 //
>Top(K ′

2)

Γ ` Top(K ′
1 →?′ K ′

2) ≡ T1 implies T1 = Top(K ′′
1 →?′′ K ′′

2) with Γ ` Top(K ′
1 →?′

K ′
2) ≡ Top(K ′′

1 →?′′ K ′′
2) ∈ K1 →? K2 and Γ ` S2 ≡ T2 ∈ K1. But now Γ `A

Top(K ′
1 →?′ K ′

2) ◦ and Γ `A Top(K ′
1 →?′ K ′

2) ◦, which means that this case cannot
occur as subcase of the monotone application rule.

Case E-App◦: Γ `A S1 ◦ Γ ` S1 ≡ T1 ∈ K1 →K2 Γ ` S2, T2 ∈ K1

Γ ` S1 S2 ≡ T1 T2 ∈ K2

Similar. In case the reduction step takes place inside S2, i.e., S1 S2
//
β>S1 S ′

2, we
choose T ′ = T , since Γ ` S1 S ′

2 ≡ T1 T2 ∈ K2.
1 Unlike in the case for E-App+, we

have to consider Top as constant type operator:

1This case is the reason, why we cannot have the stronger property that T //
β>T ′ in exactly

one step.

216 Chapter C Proofs for Polarized F ω
≤

Subcase: Top(K ′
1 →?′ K ′

2) S2 //
>Top(K ′

2)

So we are given T1 = Top(K ′′
1 →?′′ K ′′

2) with Γ ` Top(K ′
1 →?′ K ′

2) ≡ Top(K ′′
1 →?′′

K ′′
2) ∈ K1 →? K2. Thus by Lemma 5.29 and the generation lemma for kinding

(Lemma 5.8) Γ ` Top(K ′
2) ∈ K2 and likewise Γ ` Top(K ′′

2) ∈ K2. Rule E-Top hence
justifies Γ ` Top(K ′

2) ≡ Top(K ′′
2) ∈ K2 and we can conclude:

Top(K ′
1 →

?′ K ′
2) S2

Γ

K2

>

��

Top(K ′′
1 →?′′ K ′′

2) T2

>

��
Top(K ′

2)
Γ

K2

Top(K ′′
2).

For normalization we use part 1 to obtain from Γ ` S ≡ T ∈ K and S //!
β>S !

a type T ′ such that T //∗
β>T ′ and Γ ` S ! ≡ T ′ ∈ K ′. Type T ′ is not necessarily in

normal form, but we have Γ ` S ! ≡ T ′! ∈ K, from which the result follows.
The last implication is a consequence of the following lemma:

If Γ ` S ! ≡ T ′ ∈ K with S ! in normal form and T ′ //
β>T ′′, then

Γ ` S ! ≡ T ′′ ∈ K.

This can be proven by induction on the syntactic structure of S !, using symmetry of
equivalence for E-Arrow and E-App−. �

Proof of Lemma 5.41 on page 77: The definition of promotion implies S = A S1 . . . Sn

and S ′ = Γ(A) S1 . . . Sn. Proceed by induction on Γ ` A S1 . . . Sn ≡ T ∈ K. �

C.3 Properties of the reducing system

Proof of Lemma 5.45 on page 79: By the definition of promotion, only types
of the form A T1 . . . Tn can be promoted. Proceed by induction on n.

For n = 0, we are given Γ ` A ∈ K. By the generation Lemma for kinds
(Lemma 5.8) kindΓA ≤ K, and by generation for contexts (Lemma 5.4) ` Γ ok . The
context must be of the form Γ1, A≤S:K ′, Γ2 (i.e. K ′ = kindΓA), from which by the
same generation lemma Γ1 ` S ∈ K ′. Using weakening for kinds (Lemma 5.2) we
arrive at Γ ` S ∈ K ′, and finally by subsumption (Lemma 5.5) Γ ` S ∈ K.

For n > 0 by the generation Lemma 5.8 Γ ` A T1 . . . Tn−1 ∈ K1 →? K and
Γ ` Tn ∈ K1 for some kind K1. By induction Γ ` Γ(A) T1 . . . Tn−1 ∈ K1 →? K2, and
the result follows with K-Arrow-E. �

Section C.3 Properties of the reducing system 217

Proof of Lemma 5.47 on page 79: The assumption Γ ` T ∈ K implies with
Lemma 5.4 that ` Γ ok . By definition of promotion, only types of the form A′ T1 . . . Tn

can be promoted. Proceed by induction on n.

For n = 0 we have T ′ = Γ(A′), with A′ not necessarily different from A. The
context Γ must be of the form Γ1, A′≤T ′:K ′, Γ2. By Definition 5.38 Γ1 ` T ′ ◦A

which, by weakening for kinding (Lemma 5.2) and subsumption (Lemma 5.5) means
that all polarities are derivable for A.

For n > 0 we get by the generation Lemma 5.8 Γ ` A′ T1 . . . Tn−1 ∈ K1 →? K
for some kind K1. By induction, the statement Γ ` A′ T1 . . . Tn−1 ?′A entails Γ `
Γ(A′) T1 . . . Tn−1 ?′A for all polarities ?′. Thus the result follows by the preservation
of kinding under promotion (Lemma 5.45) and the polarity-rule for applications. �

Proof of the expansion Lemma 5.48 on page 79: By straightforward induc-
tion and inspection of the rules of the reducing system from Definition 5.43.
�

Proof of Lemma 5.49 on page 81: By induction over the length of derivations,
using preservation of kinding under reduction and under promotion (Lemma 5.25 and
Lemma 5.45), and the generation Lemma 5.8 for kinds at various places. We show
some illustrative cases.

Case R-Refl: S //∗
β>U T //∗

β>U Γ ` U ∈ K

Γ `R S ≤ T ∈ K

Since S and T are well-kinded in Γ, so is U by subject reduction for kinding. By the
same lemma further Γ ` U ! ∈ K.

Case R-Promote: S //∗
β>U ↑Γ U ′ Γ ` U ∈ K Γ `R U ′ ≤ T ∈ K

Γ `R S ≤ T ∈ K

By preservation of kinding under reduction and uniqueness of normal forms Γ ` S ! ∈
K. For the type on the right-hand side by induction Γ ` T ! ∈ K.

Case R-Abs: S //∗
β>Fun(A:K ′

1)S
′ T //∗

β>Fun(A:K ′
1)T

′

K1 ≤ K ′
1 Γ, A:K ′

1 `R S′ ≤ T ′ ∈ K2 Γ, A:K ′
1 ` S′, T ′ ?A

Γ `R S ≤ T ∈ K1 →? K2

Since S and T are well-kinded in Γ, so are by subject reduction Fun(A:K ′
1)S

′ and
Fun(A:K ′

1)T
′. By the generation Lemma 5.8 S ′ and T ′ are well-kinded in Γ, A:K ′

1.
By induction Γ, A:K ′

1 ` S ′! ∈ K2 and Γ, A:K ′
1 ` T ′! ∈ K2. Further by rule

K-Arrow-I-Sub and the preservation of variable occurrence under reduction from

218 Chapter C Proofs for Polarized F ω
≤

Lemma 5.25:

K1 ≤ K ′
1

Γ, A:K ′
1 ` S′! ?A Γ, A:K ′

1 ` S′! ∈ K2

Γ ` Fun(A:K ′
1)S

′! ∈ K1 →? K2

Similarly for Fun(A:K ′
1)T

′!. �

Proof of Lemma 5.50 on page 81: By induction on the length of derivation, us-
ing well-kindedness of subderivations and the corresponding weakening lemmas for
kinding and equivalence (Lemma 5.2 and 5.33). �

Proof of maximality of Top (Lemma 5.51 on page 81): By induction on the
length of derivation, using well-kindedness of subderivations. In the cut-free system,
only the rules R-Refl, R-Top, or one of the application rules are applicable. Reflex-
ivity and the Top-rule are immediate. As we choose the application rule according
to the best polarity of one of the operators, only one of the two rules for constant
application applies, for example:

Case R-App◦l:

Top(K) S1 . . . Sn
//∗
β>Top(K ′

1 →?′ K ′
2) U1 . . . Um T //∗

β>T1 T2

Γ `A Top(K ′
1 →?′ K ′

2) U1 . . . Um−1 ◦

Γ `C Top(K ′
1 →?′ K ′

2) U1 . . . Um−1 ≤ T1 ∈ K ′′
1 → K2

Γ `C Top(K) S1 . . . Sn ≤ T ∈ K2

with m > 0. The form of the left-hand side after reduction is justified by the
properties of the reduction relation, preservation of kinding under reduction and the
generation lemma for kinds. That type Top(K ′

1 →
?′ K ′

2) U1 . . . Um−1 is a constant op-
erator follows also by preservation of kinding under reduction and the kinding rule for
maximal types. Hence by induction T1

//∗
β>Top(K ′′), i.e., T1

//!
β>Top(K ′′), for

some kind K ′′. By well-kindedness of subderivations (Lemma 5.49) Γ ` Top(K ′′) ∈
K ′′

1 →?′′ K2, with K ′′ being an arrow-kind K3 →?′′′ K4 and Top(K3 →?′′′ K4) Um

well-kinded in Γ. So by one last >-step Top(K3 →
?′′ K4)Um

//
>Top(K4). �

Proof of Lemma 5.52 on page 81: By induction on the length of derivation,
preservation of kinding under reduction, and subsumption on the level of kinds.

The cases for reflexivity and for the Top-types follow from subsumption on the
level of kinds. R-Trans by straightforward induction. The rule R-Promote by
induction, using preservation of kinding under reduction and the promotion rule.
The rules for arrow types and for universally quantified types are trivial, as their
kind is unique by Lemma 5.8.

Section C.3 Properties of the reducing system 219

Case R-App±l: S //∗
β>S1 S2 T //∗

β>T1 T2

Γ `A S1 ± Γ `R S1 ≤ T1 ∈ K1 → K2 Γ ` S2 ≡ T2 ∈ K1

Γ `R S ≤ T ∈ K2

Assume a kind K ′
2 with K2 ≤ K ′

2. By K-Sub, K1 → K2 ≤ K1 → K ′
2, and the case

follows by well-kindedness of subderivations and induction.

Case R-App+l: S //∗
β>S1 S2 T //∗

β>T1 T2

Γ `A S1 + Γ `R S1 ≤ T1 ∈ K1 → K2 Γ `R S2 ≤ T2 ∈ K1

Γ `R S ≤ T ∈ K2

Assume again a kind K ′
2 with K2 ≤ K ′

2. Hence K1 → K2 ≤ K1 → K ′
2 and the case

follows by induction and by R-App+l.

Case R-Abs: S //∗
β>Fun(A:K ′

1)S
′ T //∗

β>Fun(A:K ′
1)T

′

K1 ≤ K ′
1 Γ, A:K ′

1 `R S′ ≤ T ′ ∈ K2 Γ, A:K ′
1 ` S′, T ′ ?A

Γ `R S ≤ T ∈ K1 →? K2

Assume a kind K ′′ with K1 →? K2 ≤ K ′′, i.e., K ′′ = K ′′
1 →?′′ K ′′

2 where K ′′
1 ≤ K1

and K2 ≤ K ′′
2 . By induction Γ, A:K ′

1 `R S ′ ≤ T ′ ∈ K ′′
2 ; by transitivity of subkinding

K ′′
1 ≤ K ′

1, and the case follows by R-Abs. �

Lemma C.1 If Γ ` T ∈ K1 →
? K2 and Γ ` T ∈ K ′

1 →
?′ K ′

2, then Γ ` T ∈ K ′
1 →

? K2.

Proof of Lemma C.1: By induction on the length of derivation. The cases K-Top?
, K-Arrow, and K-All cannot occur. The case for T = Top(K ′′

1 →?′′ K ′′
2 , by

the generation lemma for kinds and K-Top. Similarly for T = Fun(A:K ′′
1)T ′ with

K-Arrow-I-Sub. The case for application finally by induction and K-Arrow-E.
�

Proof of Lemma 5.53 on page 81: By induction on the length of derivation.
R-Refl and R-Top by preservation of kinding under reduction. R-Promote by
preservation of kinding under reduction and promotion, and by induction. R-Arrow

and R-All are trivial, as their kind ? is unique.

Case R-Abs: S //∗
β>Fun(A:K ′′

1)S′ T //∗
β>Fun(A:K ′′

1)T ′

K1 ≤ K ′′
1 Γ, A:K ′′

1 `C S′ ≤ T ′ ∈ K2 Γ, A:K ′′
1 ` S′, T ′ ?A

Γ `C S ≤ T ∈ K1 →? K2

By preservation of kinding under reduction, Γ ` Fun(A:K ′′
1)S ′ ∈ K ′ and Γ `

Fun(A:K ′′
1)T ′ ∈ K ′. By the generation lemma for kinding K ′ = K ′

1 →?′ K ′
2, with

K ′
1 ≤ K ′′

1 , with Γ, A:K ′′
1 ` S ′ ∈ K ′

2 and Γ, A:K ′′
1 ` T ′ ∈ K ′

2, and with Γ, A:K ′′
1 `

S ′ ?′A and Γ, A:K ′′
1 ` T ′ ?′A. Thus, by induction Γ, A:K ′′

1 `C S ′ ≤ T ′ ∈ K ′
2, and the

result follows by R-Abs and the expansion lemma.

220 Chapter C Proofs for Polarized F ω
≤

Case R-App+l: S //∗
β>S1 S2 T //∗

β>T1 T2

Γ `A S1 +
Γ `C S1 ≤ T1 ∈ K1 →K2 Γ `C S2 ≤ T2 ∈ K1

Γ `C S ≤ T ∈ K2

So, assume Γ ` S ∈ K ′
2 and Γ ` T ∈ K ′

2. By preservation of kinding under reduction,
Γ ` S1 S2 ∈ K ′

2 and Γ ` T1 T2 ∈ K ′
2. By the generation lemma for kinding,

Γ ` S1 ∈ K ′
1 →

?′ K ′
2 and Γ ` S1 ∈ K ′

1 for some kind K ′
1; likewise Γ ` K1 ∈ K ′′

1 →?′ K ′
2

and Γ ` T1 ∈ K ′′
1 for some kind K ′′

1 . By Lemma C.1, Γ ` S1 ∈ K1 → K ′
2 and

Γ ` T1 ∈ K1 →K ′
2, so the case follows with R-App+l.

The other application cases are similar. �

Proof of Lemma 5.54 on page 81: By induction on the length of derivation of
Γ `R S ≤ T ∈ K. Transitivity is solved by induction.

Case R-Refl: S //∗
β>U T //∗

β>U Γ ` U ∈ K

Γ `R S ≤ T ∈ K

From Γ ` S ≡ S ′ ∈ K we get by Lemma 5.40 a type U1 with S ′ //∗
β>U1 and

Γ ` U ≡ U1 ∈ K. Likewise there exists a type U2 with T ′ //∗
β>U2 and Γ ` U ≡

U2 ∈ K. By transitivity of equivalence (Lemma 5.34) Γ ` U1 ≡ U2 ∈ K, thus
Γ′ `R U1 ≤ U2 ∈ K (Lemma 5.34 and Lemma 5.55), and the result follows by the
expansion Lemma 5.48.

Case R-All: S //∗
β>All(A≤S1:K1)S2 T //∗

β>All(A≤T1:K1)T2

Γ ` S1 ≡ T1 ∈ K1 Γ, A≤S1:K1 `R S2 ≤ T2 ∈ ?

Γ `R S ≤ T ∈ ?

By Lemma 5.40 we get S ′ //∗
β>All(A≤S ′

1:K1)S
′
2 and Γ ` All(A≤S1:K1)S2 ≡ All(A≤S ′

1:K1)S
′
2 ∈

? for some type All(A≤S ′
1:K1)S

′
2. Likewise for T . Since by definition of equivalence on

contexts, ` Γ, A≤S1:K1 ≡ Γ′, A≤S ′
1:K1, again by induction Γ′, S ′

1:K1 `R S ′
2 ≤ T ′

2 ∈ ?.
The result follows by R-All and the expansion lemma.

Case R-Promote: S //∗
β>U ↑Γ V Γ ` U ∈ K Γ `R V ≤ T ∈ K

Γ `R S ≤ T ∈ K

By Lemma 5.40 and 5.41, there exists a type V ′ with S ′ //∗
β> ↑Γ V ′ and Γ `

V ≡ V ′′ ∈ K. Hence by induction Γ′ `R V ′ ≤ T ′ ∈ K, and the case follows with
R-Promote. �

Proof of Lemma 5.55 on page 82: By Lemma 5.29, Γ ` S ∈ K and Γ ` T ∈ K.
Proceed by straightforward induction on the structure of S and the generation lemma
for kinds. �

Section C.3 Properties of the reducing system 221

Proof of Lemma 5.56 on page 82: By induction on the syntactic structure of
S and T (since we use neither reduction, nor promotion, nor transitivity, which
could destroy the syntactic form of the types involved, we can do so). So assume
Γ `C S ≤ T ∈ K and Γ `C T ≤ S ∈ K by two cut-free derivations of this restricted
form.

If one of the derivations ends with R-Refl, i.e., if S = T , the case is immediate
by E-Refl. In the absence of promotion and reduction, the choice of rule for both
derivations — besides reflexivity — is determined by the structure of S and T .

If S = Top(KS) and T = Top(KT), the case follows well-kindedness of subderiva-
tions — S and T are in normal form — and E-Top. The case for type variables
is immediate, as R-Refl is the only rule applicable. The case of arrow-types and
type operators by straightforward induction. We show the cases for All-types and
one application case.

Case: S = All(A≤S1:K1)S2 and All(A≤T1:K1)T2

We are given:

Γ ` S1 ≡ T1 ∈ K1

Γ, A≤S1:K1`C S2 ≤ T2 ∈ ?

Γ `C All(A≤S1:K1)S2 ≤ All(A≤T1:K1)T2 ∈ ?

Γ ` T1 ≡ S1 ∈ K1

Γ, A≤T1:K1`C T2 ≤ S2 ∈ ?

Γ `C All(A≤T1:K1)T2 ≤ All(A≤S1:K1)S2 ∈ ?

The derivation of neither Γ, A≤S1:K1 `C S2 ≤ T2 ∈ ? nor Γ, A≤T1:K1 `C T2 ≤ S2 ∈ ?
contains an instance of R-Promote by assumption. By definition of equivalence of
contexts ` Γ, A≤S1:K1 ≡ Γ, A≤T1:K1, so by Lemma 5.54, Γ, A≤S1:K1 `C T2 ≤ S2 ∈
?. Moreover, S2 and T2 are well-kinded also in context Γ, A≤S1:K1 (Lemma 5.32).
By induction we thus get Γ, A≤S1:K1 `C S2 ≡ T2 ∈ ? and hence with E-All

Γ `C All(A≤S1:K1)S2 ≡ All(A≤T1:K1)T2 ∈ ?.

Case: S = S1 S2 and T = T1 T2

From the two derivations Γ `C S1 S2 ≷ T1 T2 ∈ K2 without promotion we get
independently from the special instance of the application rule that Γ `C S1 ≷ T1 ∈
K1 →? K for some kind K1. Thus by induction Γ `C S1 ≡ T1 ∈ K1 →? K. By
Corollary 5.35, the two equivalent types S1 and T1 bear the same minimal polarity
as type operator. If, for instance, Γ `A S1 + we get:

Γ `A S1 +
Γ `C S1 ≤ T1 ∈ K1 → K

Γ `C S2 ≤ T2 ∈ K1

Γ `C S1 S2 ≤ T1 T2 ∈ K

Γ `A S1 +
Γ `C T1 ≤ S1 ∈ K1 → K

Γ `C T2 ≤ S2 ∈ K1

Γ `C T1 T2 ≤ S1 S2 ∈ K

and the result follows by induction and E-App+. The remaining cases are similar.
�

222 Chapter C Proofs for Polarized F ω
≤

C.4 Subject reduction for subtyping

Proof of the substitution Lemma 5.57 on page 83: By induction on the syn-
tactic structure of type S. Case 1 and 4 are already covered by Lemma 5.36,
Lemma 5.39, and Lemma 5.55.

Case: S = A′

We distinguish, whether A and A′ coincide. For A = A′ neither case 1 nor case 3 can
hold. The type variable A is in normal form, so by well-kindedness of subderivations
(Lemma 5.49) Γ ` A ∈ K, and thus by the generation Lemma 5.8 for kinds kindΓA =
K ′ ≤ K. Since we assumed at least one of the four cases to be true, by assumption
— in case 4 using additionally Lemma 5.55 — Γ1 `C T1 ≤ T2 ∈ K ′. Hence by
Lemma 5.52 Γ1 `C T1 ≤ T2 ∈ K for the weaker kind K. The result Γ′ `C T1 ≤ T2 ∈ K
follows by the weakening lemma for subtyping (Lemma 5.50).

In case A′ 6= A, the substitution has no effect and the result is immediate by
reflexivity of subtyping, using the substitution property for kinds and contexts of
Lemma 5.24.

Case: S = Top(K ′′)

Immediate with Lemma 5.24 and R-Top, as the substitution has no effect.

Case: S = S1 → S2

In the first part we are given Γ ` S1 → S2 ◦A. Thus by the generation Lemma 5.8
Γ ` S1 ◦A and Γ ` S2 ◦A. Again with the same generation lemma we get Γ ` S1 ∈ ?
and Γ ` S2 ∈ ?. By induction on part 1 of the lemma we can infer Γ′ `C [T2/A]S1 ≤
[T1/A]S1 ∈ ? and also Γ′ `C [T1/A]S2 ≤ [T2/A]S2 ∈ ?, so that with R-Arrow we
obtain Γ `C [T1/A](S1 → S2) ≤ [T2/A](S1 → S2).

For part 2 we infer from Γ ` S1 → S2 +A with the generation lemma Γ ` S1 +A

and Γ ` S2 −A. By induction on part 3 and 2 we get for the contravariant side of the
arrow Γ′ `C [T2/A]S1 ≤ [T1/A]S1 ∈ ? and for the co-variant side Γ′ `C [T1/A]S2 ≤
[T2/A]S2 ∈ ?. R-Arrow then gives:

Γ′ `C [T2/A]S1 ≤ [T1/A]S1 ∈ ? Γ′ `C [T1/A]S2 ≤ [T2/A]S2 ∈ ?

Γ `C [T1/A](S1 → S2) ≤ [T2/A](S1 → S2) ∈ ?

The third case is symmetric.

Case: S = All(A′≤S1:K1)S2

If one of the cases 1 – 3 holds, the statement Γ ` All(A′≤S1:K1)S2 ? A implies
Γ, A′≤S1:K1 ` S2 ? A with Γ ` S1 ◦A and Γ, A′≤S1:K1 ` S2 ∈ ? (by the generation
Lemma 5.8). Therefore ` Γ, A′≤S1:K1 ◦A and the induction hypothesis applies,
yielding Γ′, A′≤[T1/A]S1:K1 `C [T1/A]S2 ≤ [T2/A]S2 ∈ ?. By the lemma for constant

Section C.4 Subject reduction for subtyping 223

substitution (Lemma 5.39) Γ′ `C [T1/A]S1 ≡ [T2/A]S1 ∈ K1, so with R-All we
conclude:

Γ′ `C [T1/A]S1 ≡ [T2/A]S1 ∈ K1 Γ′, A′≤[T1/A]S1:K1 `C [T1/A]S2 ≤ [T2/A]S2 ∈ ?

Γ′ `C [T1/A](All(A′≤S1:K1)S2) ≤ [T2/A](All(A′≤S1:K1)S2) ∈ ?

If case 4 holds, we get by generation Γ, A′≤S1:K1 ` S2 ±A and the result follows
again by induction.

Case: S = Fun(A′:K ′′)S′

Similar, using the generation lemma and by induction.

Case: S = S1 S2

We are given Γ ` S1 S2 ∈ K. Again by the generation lemma Γ ` K1 → K and
Γ ` S2 ∈ K1 for some kind K1.

We have to distinguish according to the polarity of the variables for the respective
parts of the lemma. In all cases the following implication holds with the generation
Lemma 5.8: if Γ ` S1 S2 ?A, then also Γ ` S1 ?A. By the generation Lemma 5.8,
the subterm S1 is well-kinded in Γ; thus by induction Γ′ `C [T1/A]S1 ≤ [T2/A]S1 ∈
K1 →

? K.

For the argument S2, we use the generation Lemma 5.21 for minimal kinds to
infer in each case from the minimal polarity of S1 as type operator the polarity of A
in S2.

Subcase: Γ ` S1 S2 +A

for the second part of the lemma. We have further to distinguish according to the
minimal polarity of S1 as type operator. If, for instance, Γ `A S1 ± is minimal,
then Γ ` S2 ◦A, so we the result follows by induction, preservation of kinding under
substitution, and R-App+l. The remaining cases are similar. �

Proof of the substitution Lemma 5.58 on page 83: Inducing on the length of
derivation, we treat all cases of the lemma at the same time.

Case R-Refl: S //∗
β>U T //∗

β>U Γ ` U ∈ K

Γ `C S ≤ T ∈ K

In the first part we are given Γ ` S ◦A. By subject reduction (Lemma 5.25) U is
well-kinded with Γ ` U ◦A. Using the substitution Lemma 5.57 Γ′ `C [V1/A]U ≤
[V2/A]U ∈ K, so the result follows by expansion lemma.

The other parts are solved analogously by the respective parts of Lemma 5.57.
The cases for Γ ` T ?A on the right-hand side are identical.

224 Chapter C Proofs for Polarized F ω
≤

Case R-Promote: S //∗
β>U ↑Γ S′ Γ ` U ∈ K Γ `C S′ ≤ T ∈ K

Γ `C S ≤ T ∈ K

We are given Γ ` S ?A with the polarity of A according to the four parts of the lemma.
By definition of promotion, we know S //∗

β>A′ S1 . . . Sn ↑Γ Γ(A′) S1 . . . Sn = S ′.
We distinguish the following two subcases:

Subcase: A 6= A′

By preservation of polarity under reduction (Lemma 5.25) we get Γ ` U ?A. In part
1 – 3 of the lemma we further get by the preservation of polarity under promotion
(Lemma 5.47) Γ′ ` S ′ ?A. The side condition of Lemma 5.47 is satisfied by the
form of the context Γ = Γ1, A:K ′, Γ2 with ` Γ ◦A. By induction we get Γ′ `C

[V1/A](Γ(A′)S1 . . . Sn) ≤ [V2/A]T ∈ K. Now,

[V1/A](Γ(A′) S1 . . . Sn) = [V1/A](Γ(A′)) [V1/A]S1 . . . [V1/A]Sn

= Γ′(A′) [V1/A]U1 . . . [V1/A]Un,

and by Lemma A.3, [V1/A]S //∗
β>A′ [V1/A]S1 . . . [V1/A]Sn. So we can use the

rule of promotion to conclude (the kinding premise follows by subject reduction for
kinding and preservation of kinding under substitution):

[V1/A]S //∗
β> ↑Γ′ Γ′(A′) [V1/A]S1 . . . [V1/A]Sn

Γ ` A′ [V1/A]S1 . . . [V1/A]Sn ∈ K Γ′ `C Γ′(A′) [V1/A]S1 . . . [V1/A]Sn ≤ [V2/A]T ∈ K

Γ′ `C [V1/A]S ≤ [V2/A]T ∈ K

Part 4 is simpler.
The cases for T instead of S are solved straightforwardly by induction.

Subcase: A = A′

In this case S ′ = Γ(A) S1 . . . Sn = Top(K ′) S1 . . . Sn (Remember that Γ1, A:K ′, Γ2

abbreviates Γ1, A≤Top(K ′):K ′, Γ2). By well-kindedness of subderivations and max-
imality of Top (Lemma 5.51) there exists a kind K ′ with T //∗

β>Top(K ′′) and
Γ ` Top(K ′′) ∈ K, so the case follows directly with R-Top.

Case R-Top: S //∗
β>S′ T //∗

β>Top(K ′′′)

Γ ` S′ ∈ K Γ `C Top(K ′′′) ∈ K

Γ `C S ≤ T ∈ K

By preservation of kinding under substitution, Lemma A.3, and R-Top.

Case R-Arrow: S //∗
β>S1 → S2 T //∗

β>T1 → T2

Γ `C T1 ≤ S1 ∈ ? Γ `C S2 ≤ T2 ∈ ?

Γ `C S ≤ T ∈ ?

In the first part we obtain by subject reduction for kinds (Lemma 5.25) Γ ` S1 →

Section C.4 Subject reduction for subtyping 225

S2 ◦A. By the generation Lemma 5.8 further Γ ` S1 ◦A and Γ ` S2 ◦A. The case
follows by induction, rule R-Arrow and Lemma A.3.

The other cases are solved similarly.

Case R-All: S //∗
β>All(A′≤S1:K1)S2 T //∗

β>All(A′≤T1:K1)T2

Γ ` S1 ≡ T1 ∈ K1 Γ, A′≤S1:K1 `C S2 ≤ T2 ∈ ?

Γ `C S ≤ T ∈ ?

We are given Γ ` S ?A with the polarity of A according to the four parts of the lemma.
By preservation of polarity under reduction (Lemma 5.25) and the generation lemma
Γ, A′≤S1:K1 ` S2 ?A. Also by generation we get in part 1 – 3 Γ ` S1 ◦A. By
Lemma 5.39 we obtain Γ′ ` [V1/A]S1 ≡ [V2/A]T1 ∈ K1 and we can conclude with
R-All:

Γ′ ` [V1/A]S1 ≡ [V2/A]T1 ∈ K1 Γ′, A′≤[V1/A]S1:K1 `C [V1/A]S2 ≤ [V2/A]T2 ∈ ?

Γ′ `C [V1/A](All(A′≤S1:K1)S2 ≤ [V2/A](All(A′≤T1:K1)T2 ∈ ?

So the case follows with the expansion lemma. Part 4 of the lemma is similar.

Case R-Abs:

Similarly.

Case R-App+l: S //∗
β>S1 S2 T //∗

β>T1 T2 Γ `A S1 +

Γ `C S1 ≤ T1 ∈ K1 →K2 Γ `C S2 ≤ T2 ∈ K1

Γ `C S ≤ T ∈ K2

We are given Γ ` S ?A according to the part of the lemma; by preservation of polarity
under reduction Γ ` S1 S2 ?A, by the generation Lemma 5.8, and by induction
Γ′ `C [V1/A]S1 ≤ [V2/A]T1 ∈ K1 →K2.

Since the system always chooses the application rule according to the minimal
polarity of one of the two applicators, we can use Lemma 5.21 to gain information
about the polarity of A in S2. By the choice of rule, the minimal polarity of S1 here
is Γ `A S1 +.

In the first part of the lemma we get from Γ ` S1 S2 ◦A by the generation
Lemma 5.21 for minimal kinds Γ ` S2 ◦A. Hence by induction on the first part
Γ′ `C [V1/A]S2 ≤ [V2/A]T2 ∈ K1. So by preservation of kinding under substitution
we get as kinding statement Γ′ ` [V1/A]S1 +. Note that we cannot guarantee Γ′ `A

[V1/A]S1 +, i.e. we cannot guarantee that after substitution the minimal polarity
of [V1/A]S1 as type operator is not better than monotone (i.e. constant) since we
have made no assumption about the minimal polarity of V1 in Γ1, as required for
preservation of minimal kinds in Lemma 5.24. Nevertheless, the minimal polarity
of [V1/A]S1 must be at least monotone. If it is, by Lemma A.3 and R-App+l we

226 Chapter C Proofs for Polarized F ω
≤

conclude:

[V1/A]S //∗
β>[V1/A](S1 S2) [V2/A]T //∗

β>[V2/A](T1 T2)

Γ′ `A [V1/A]S1 +
Γ′ `C [V1/A]S1 ≤ [V2/A]T1 ∈ K1 →K2 Γ′ `C [V1/A]S2 ≤ [V2/A]T2 ∈ K1

Γ′ `C [V1/A]S ≤ [V2/A]T ∈ K2

If the substitution happens to result in [V1/A]S1 or [V2/A]T1 being a constant oper-
ator, the case follows by one of the constant application rules.

In part 3 we can use the same lemma to get from Γ `A S1 + as minimal polarity
that Γ ` S2 −A. Hence by induction on part 3 Γ′ `C [V2/A]S2 ≤ [V1/A]T2 ∈ K1

and the case follows by as in the case above by R-App+l or one of the constant
application cases.

Part 2 is similar.

Case R-App+r: S //∗
β>S1 S2 T //∗

β>T1 T2 Γ `A T1 +

Γ `C S1 ≤ T1 ∈ K1 →K2 Γ `C S2 ≤ T2 ∈ K1

Γ `C S ≤ T ∈ K2

Similar, but not symmetric, to the previous case. Since now T1 determines the choice
of rule, we have to check some more cases for the polarity of A in S.

For S1 we can argue in the same way as in the case of R-App+l to infer Γ′ `C

[V1/A]S1 ≤ [V2/A]S2 ∈ K1 → K2.
Here we do not know the minimal polarity of S1, we only know that it cannot

be better than monotone. By Lemma 5.21 we can again check in all parts, that A
occurs appropriately in S2. If, e.g. in the second part only Γ ` S ±A as minimal
polarity, we get Γ ` S2 ◦A. So we can use induction in the first part to obtain
Γ′ ` [V1/A]S1 ≤ [V2/A]T1 ∈ K. By preservation of kinding under substitution,
Lemma A.3, and R-App+r or one of the constant application rules we can conclude
also this case.

Case R-App±: S //∗
β>S1 S2 T //∗

β>T1 T2

Γ `C S1 ≤ T1 ∈ K1 →K2 Γ ` S2 ≡ T2 ∈ K1

Γ `C S ≤ T ∈ K2

As in the cases for monotone polarity of A, we get in all four parts by preservation
of polarity under reduction, the generation lemma, and induction Γ′ `C [V1/A]S1 ≤
[V2/A]T1 ∈ K1 →K2.

We know that the minimal polarity of S1 as type operator cannot be better than
±. Hence by Lemma 5.21 we get in parts 1 – 3 of the lemma Γ ` S1 ◦A, and in part
4 Γ ` S2 ±A.

By preservation of equivalence under constant substitution (Lemma 5.39) we get
Γ′ ` [V1/A]S2 ≡ [V2/A]T2 ∈ K1. For part 4 we obtain this statement from the

Section C.4 Subject reduction for subtyping 227

assumption Γ1 ` V1 ≡ V2 ∈ K ′ using Lemma 5.37. Thus we conclude the case by
R-App± or, if the substitution results in a better polarity, by the corresponding
application rule, with the help of Lemma 5.55 in the monotone or antimonotone
case.

The cases for T instead of S are treated similarly. The interesting case is the one
for universally quantified types.

Case R-All: S //∗
β>All(A′≤S1:K1)S2 T //∗

β>All(A′≤T1:K1)T2

Γ ` S1 ≡ T1 ∈ K1 Γ, A′≤S1:K1 `C S2 ≤ T2 ∈ ?

Γ `C S ≤ T ∈ ?

The case is treated analogously to the one where the type, whose polarity in A
determined the case, was on the left-hand side.

The only part missing here is to derive that (in the cases 1 – 3) Γ ` S1 ◦A. This
follows from Γ ` T1 ◦A and Lemma 5.32.2 �

Proof of Lemma 5.59 on page 84: Part 1 by induction on the derivation of Γ `C

S ≤ Fun(A:K ′
1)T ∈ K1 → K2.

Case R-Refl: S //∗
β>Fun(A:K ′

1)T
′ Fun(A:K ′

1)T //∗
β>Fun(A:K ′

1)T
′

Γ ` Fun(A:K ′
1)T

′ ∈ K1 → K2

Γ `C S ≤ Fun(A:K ′
1)T ∈ K1 → K2

We know that

S U1
//∗
β>(Fun(A:K ′

1)T
′)U1

//
β[U1/A]T ′ and

T U2
//∗
β>(Fun(A:K ′

1)T
′)U2

//
β[U2/A]T ′.

By preservation of kinding under reduction and generation for kinds we get Γ `
U1, U2 ∈ K ′

1. By well-kindedness of subderivations and the generation lemma for
kinds Γ′, A:K ′

1 ` T ′! ∈ K2. Thus by the substitution Lemma 5.57 Γ `C [U1/A]T ′! ≤
[U2/A]T ′! ∈ K2. By Lemma A.3 [U2/A]T //∗

β>[U2/A]T ′ and the case follows by
the expansion lemma.

Case R-Promote: S //∗
β>U ↑Γ S′ Γ ` U ∈ K1 → K2

Γ `C S′ ≤ Fun(A:K ′
1)T ∈ K1 → K2

Γ `C S ≤ Fun(A:K ′
1)T ∈ K1 → K2

By definition of promotion S //∗
β>A′ V1 . . . Vn ↑Γ Γ(A′) V1 . . . Vn = S ′. By preser-

vation of kinding under reduction and promotion, the induction hypothesis applies,

2Note that at this place we can rely on the stricter relation Γ ` S1 ≡ T1 ∈ K1, as opposed to
Γ ` S1 ≷ T1 ∈ K. Unlike the latter, the equivalence relation allows to infer from Γ ` T ◦A that also
Γ ` S1 ◦A. Thus by the stricter relation of equivalence we can deal deal with the asymmetric case
of All-types here, which was the main motivation for using equivalence.

228 Chapter C Proofs for Polarized F ω
≤

yielding Γ `C Γ(A′) V1 . . . Vn U1 ≤ [U2/A]T ′ ∈ K2, and the result follows with
R-Promote.

Case R-Abs: S //∗
β>Fun(A:K ′

1)S
′ Fun(A:K ′

1)T //∗
β>Fun(A:K ′

1)T
′

K1 ≤ K ′
1 Γ, A:K ′

1 `C S′ ≤ T ′ ∈ K2

Γ `C S ≤ Fun(A:K ′
1)T ∈ K1 → K2

The assumption Γ ` Fun(A:K ′
1)T ◦ implies Γ, A:K ′

1 ` T ′ ◦A (using preservation of
polarity under reduction and the generation Lemma 5.8). By preservation of kinding
under reduction and the generation lemma for kinds Γ ` U1 ∈ K ′

1 and Γ ` U2 ∈ K ′
1,

hence by the substitution Lemma 5.58 Γ `C [U1/A]S ′ ≤ [U2/A]T ′ ∈ K2, and with
the expansion lemma Γ `C S U1 ≤ [U2/A]T ∈ K2. The remaining cases are solved
similarly.

In the second part of the lemma, R-Refl and R-Abs are solved analogously the
corresponding cases in the first part.

Case R-Top: T //∗
β>Top(K ′)

Γ ` Fun(A:K ′
1)S ∈ K1 → K2 Γ ` Top(K ′) ∈ K1 → K2

Γ `C Fun(A:K ′
1)S ≤ T ∈ K1 → K2

Since T U2 is well-kinded, we get T U2
//∗
β>Top(K ′′) with Γ ` Top(K ′′) ∈ K2,

and the case follows by R-Top. �

Proof of Lemma 5.60 on page 84: By induction on the depth of inference, sim-
ilar to the proof of Lemma 5.59. �

Proof of Lemma 5.61 on page 84: The part for the reduction step on the right
is proven by induction over the derivation of Γ `C S ≤ (Fun(A:K ′

1)T) U ∈ K.
Most cases are straightforward. With the exception of the rules for application,

we get by Corollary A.5 that (Fun(A:K ′
1)T) U //∗

β>W implies [U/A]T //∗
β>W .

Hence in order to derive Γ `C S ≤ [U/A]T ∈ K ′, one can directly use the derivation
of the original statement Γ `C S ≤ (Fun(A:K ′

1)T) U ∈ K ′.

The cases for application are more difficult, since by contracting the outermost
redex, the use of an application rule, that might have led in a last derivation step to
the statement Γ `C S ≤ [U/A]T ∈ K, can be rendered impossible.

Case R-App+l: S //∗
β>V1 V2 (Fun(A:K ′

1)T) U //∗
β>T1 T2

Γ `A V1 + Γ `C V1 ≤ T1 ∈ K1 →K2 Γ `C V2 ≤ T2 ∈ K1

Γ `C S ≤ (Fun(A:K ′
1)T) U ∈ K2

We distinguish, whether the outermost redex (Fun(A:K ′
1)T) U gets contracted in the

reduction sequence or not. If it is, the case is easy and similar to the ones for the
other rules:

Section C.4 Subject reduction for subtyping 229

Subcase: (Fun(A:K ′
1)T) U //∗

β>(Fun(A:K ′
1)T

′) U ′ //
β>[U ′/A]T ′ //∗

β>T1 T2

By Lemma A.2 also [U/A]T //∗
β>[U ′/A]T ′ //∗

β>T1 T2, the case is immediate by
rule R-App+l and preservation of kinding under reduction.

Subcase: (Fun(A:K ′
1)T) U //∗

β>(Fun(A:K ′
1)T

′
1) T2

where Fun(A:K ′
1)T //∗

β>Fun(A:K ′
1)T

′
1 = T1 and U //∗

β>T2. So we are given
Γ `C V1 ≤ Fun(A:K ′

1)T
′
1 ∈ K1 → K2. By well-kindedness of subderivations this

statement implies Γ ` Fun(A:K ′
1)T

′
1
! ∈ K1 → K2 and thus by the generation lemma

for kinds K1 ≤ K ′
1. Again using well-kindedness of subderivations and Lemma 5.52,

the statement Γ `C V2 ≤ T2 ∈ K1 implies that also Γ `C V2 ≤ T2 ∈ K ′
1 for the

weaker kind K ′
1. So by part of 1 Lemma 5.59 Γ `C V1 V2 ≤ [T2/A]T ′

1 ∈ K1. Since
[U/A]T //∗

β>[T2/A]T ′
1 (Lemma A.2), the case follows with the expansion lemma.

The remaining application cases are are similar.

The second part of the lemma, dealing with an outer reduction step on the left-
hand side, is shown by induction on the derivation of Γ `C (Fun(A:K ′

1)S) U ≤ T ∈ K.

The cases for R-Refl, R-Arrow, R-All, and R-Abs are symmetric to the
corresponding cases in the first part of the Lemma; R-Top and R-Promote are
solved by simple induction. The cases for application are solved analogously to the
respective ones in the first part, using part 2 of Lemma 5.59. �

Proof of parallel reduction Lemma 5.62 on page 84: Both parts by induction
on the length of derivation. The properties of the parallel reduction relation (Lemma A.6)
allow to use induction in all cases, especially in the case of R-Promote.

Case R-Refl: S //∗
β>U T //∗

β>U Γ ` U ∈ K

Γ `C S ≤ T ∈ K

By Lemma A.6 U // //
β>U ′, S ′ //∗

β>U ′ and T //∗
β>U ′ for some type U ′. Thus

the case follows by R-Refl and preservation of kinding under reduction.

Case R-Top: T //∗
β>Top(K ′) Γ ` S ∈ K Γ ` Top(K ′) ∈ K

Γ `C S ≤ T ∈ K

By subject reduction for kinding (Lemma 5.25), Γ′ ` S ′ ∈ K and Γ′ ` Top(K ′) ∈ K,
and the case follows with R-Top.

Case R-Promote: S //∗
β>W ↑Γ U Γ ` W ∈ K Γ `C U ≤ T ∈ K

Γ `C S ≤ T ∈ K

By the definition of promotion W = A S1 . . . Sn ↑Γ Γ(A) S1 . . . Sn = U . By
Lemma A.6 there are types S ′

1, . . . , S ′
n with Si

// //
β>S ′

i such that:

230 Chapter C Proofs for Polarized F ω
≤

S
β>

// //

∗ β>

��

S ′

∗ β>

��
A S1 . . . Sn β>

// // A S ′
1 . . . S ′

n.

The case follows by induction, the fact that Γ(A) S1 . . . Sn
// //
β>Γ′(A) S ′

1 . . . S ′
n,

and R-Promote.

Case R-Arrow: S //∗
β>S1 → S2 T //∗

β>T1 → T2

Γ `C T1 ≤ S1 ∈ ? Γ `C S2 ≤ T2 ∈ ?

Γ `C S ≤ T ∈ ?

By Lemma A.6 and the definition of parallel reduction there are two types S ′
1 and S ′

2

with S1
// //
β>S ′

1 and S2
// //
β>S ′

2 such that:

S
β>

// //

∗ β>

��

S ′

∗ β>

��
S1 → S2 β>

// // S ′
1 → S ′

2.

By well-kindedness of subderivations (Lemma 5.49) the types Si and Ti are well-
kinded in context Γ. So by induction Γ′ `C T1 ≤ S ′

1 ∈ ? and Γ′ `C S ′
2 ≤ T2 ∈ ?. By

R-Arrow we obtain Γ `C S ′ ≤ T1 → T ∈ ?.

Case R-All: S //∗
β>All(A≤S1:K1)S2 T //∗

β>All(A≤T1:K1)T2

Γ ` S1 ≡ T1 ∈ K1 Γ, A≤S1:K1 `C S2 ≤ T2 ∈ ?

Γ `C S ≤ T ∈ ?

By Lemma A.6 and the definition of parallel reduction there are two types S ′
1 and S ′

2

such that:

S
β>

// //

∗ β>

��

S ′

∗ β>

��
All(A≤S1:K1)S2

β>
// // All(A≤S ′

1:K1)S
′
2.

Section C.4 Subject reduction for subtyping 231

By induction Γ′, A≤S ′
1:K1 `C S ′

2 ≤ T2 ∈ ?. From Γ ` S1 ≡ T1 ∈ K1 and S1
// //
β>S ′

1,
we get by Lemma 5.40 some type T ′

1 with

S1
Γ

K1

β> ∗

��

T1

β> ∗

��
S ′

1
Γ

K1

T ′
1,

so by Lemma 5.32 Γ′ ` S ′
1 ≡ T ′

1 ∈ K1, and by R-All:

S′ //∗
β>All(A≤S′

1:K1)S
′
2 T //∗

β>All(A≤T ′
1:K1)T

′
2

Γ′ ` S′
1 ≡ T ′

1 ∈ K1 Γ′, A≤S′
1:K1 `C S′

2 ≤ T ′
2 ∈ ?

Γ′ `C S′ ≤ T ∈ ?

Case R-Abs:

Analogous.

Case R-App+l: S //∗
β>S1 S2 T //∗

β>T1 T2

Γ `C S1 ≤ T1 ∈ K1 →K2 Γ `A S1 + Γ `C S2 ≤ T2 ∈ K1

Γ `C S ≤ T ∈ K2

By Lemma A.6 there exists a type R such that:

S
β>

// //

∗ β>

��

S ′

∗ β>

��
S1 S2 β>

// // R

By well-kindedness of subderivations S1 and T1 are well-kinded in Γ. We have to
distinguish according to the form of S1; the interesting case is, where it is a type
operator.

Subcase: S1 = A or S1 = V1 V2

By definition of parallel reduction, R = S ′
1 S ′

2 with S1
// //
β>S ′

1 and S2
// //
β>S ′

2.
By preservation of kinding under reduction, Lemma 5.32, and reflexivity for equiva-
lence Γ′ `A S ′

1 + or Γ′ `A S ′
1 ◦. In the monotone case we can conclude by induction

and R-App+l:

232 Chapter C Proofs for Polarized F ω
≤

S′ //∗
β>S′

1 S′
1 T //∗

β>T1 T2

Γ′ `C S′
1 ≤ T1 ∈ K1 →K2 Γ′ `A S′

1 + Γ′ `C S′
2 ≤ T2 ∈ K1

Γ′ `C S′ ≤ T ∈ K2

If S ′
1 is a constant operators we can finish with R-App◦l instead.

Subcase: S1 = Top(K ′)

This case cannot occur a subcase for monotone application, since maximal types are
constant operators.

Subcase: S1 = Fun(A:K ′
1)S

′
1

We are given (Fun(A:K ′
1)S1) S2

// //
β>R. By the definition of parallel reduction we

can distinguish the following two subcases: one, where the outer redex does not get
contracted in the parallel step (Fun(A:K ′

1)S
′
1) S2

// //
β>R, the second one, where

the outer redex disappears.

Subsubcase: R = (Fun(A:K ′
1)S

′′
1) S2

S1 = Fun(A:K ′
1)S

′
1

// //
β>Fun(A:K ′

1)S
′′
1

S2
// //
β>S′

2

This easier subcase is solved by induction and rule R-App+l, using subject re-
duction for kinding and the generation lemma (once again the case where Γ′ `A

Fun(A:K ′
1)S

′′
1 ◦ is easier):

S′ //∗
β>(Fun(A:K ′

1)S
′′
1) S′

2 T //∗
β>T1 T2

Γ′ `C Fun(A:K ′
1)S

′′
1 ≤ T1 ∈ K1 →K2 Γ′ `A Fun(A:K ′

1)S
′′
1 + Γ′ `C S′

1 ≤ T2 ∈ K1

Γ′ `C S′ ≤ T ∈ K2

Subsubcase: R = [S ′
2/A]S′′

1

S′
1

// //
β>S′′

1

S2 // //
β>S′

2

We are given Γ `C Fun(A:K ′
1)S

′
1 ≤ T1 ∈ K1 → K2. By induction we get Γ′ `C

Fun(A:K ′
1)S

′′
1 ≤ T1 ∈ K1 →K2. Hence by R-App+l:

Γ′ `C Fun(A:K ′
1)S

′′
1 ≤ T1 ∈ K1 →K2 Γ′ `A Fun(A:K ′

1)S
′′
1 + Γ′ `C S′

2 ≤ T2 ∈ K1

Γ′ `C (Fun(A:K ′
1)S

′′
1) S′

2 ≤ T1 T2 ∈ K2

Further by Lemma 5.61, we can perform one outer reduction step on the left-hand
side, yielding Γ′ `C [S ′

2/A]S ′′
1 ≤ T1 T2 ∈ K2. As S ′ //∗

β>(Fun(A:K ′
1)S

′′
1) S ′

2
//
β

[S ′
2/A]S ′′

1 and T //∗
β>T1 T2 we conclude with the expansion lemma Γ′ `C S ′ ≤ T ∈

K2.

Section C.5 Strong normalization 233

Case R-App◦: S //∗
β>S1 S2 T //∗

β>T1 T2

Γ `C S1 ≤ T1 ∈ K1 →K2 Γ ` S1 ◦

Γ `C S ≤ T ∈ K2

Similar. The only difference is, that now additionally the following case is possible:
S //∗

β>S1 S2 = Top(K ′) S2. By preservation of kinding under reduction and the

generation lemma for kinds K ′ = K ′
1 →?′ K ′

2. By Lemma A.6 there exists a type R
such that:

S
β>

// //

∗ β>

��

S ′

∗ β>

��
Top(K ′

1 →
?′ K ′

2) S2 β>
// // R

We distinguish whether the parallel step from Top(K ′
1 →?′ K ′

2) S2 to R contracts
the >-redex or not. If Top(K ′) S2

// //
β>Top(K ′

1 →?′ K ′
2) S ′, the case follows by

induction. If Top(K ′
1 →

?′ K ′
2) S2

//
>Top(K ′

2), the case follows by Lemma 5.60.

The other cases are similar.

The second part of the lemma, dealing with a parallel reduction step on the right-
hand side, is analogous. The critical cases are again handled by Lemma 5.61. The
case for R-Promote is easier. �

Proof of Corollary 5.63 on page 85: If we can do one // //
β>-step we can do

many. By Fact A.2, // //∗
β> equals //∗

β>. �

Proof of Lemma 5.64 on page 85: By Corollary 5.63 and Lemma 5.48. �

C.5 Strong normalization

Proof of Lemma 5.66 on page 86: By induction on the length of derivation of
Γ1 ` T ∈ K. We show the case for universally quantified types.

Case K-All: Γ1, A≤T1:K1 ` T2 ∈ ?

Γ1 ` All(A≤T1:K1)T2 ∈ ?

We distinguish where the reduction step takes place.

234 Chapter C Proofs for Polarized F ω
≤

Subcase: All(A≤T1:K1)T2 //Γ1
All(A≤T1:K1)T

′
2

where T2
//
Γ1, A≤T1:K1

T ′
2. We know that ` Γ1, A≤T1:K1 ≡ Γ2, A≤T1:K1. Hence by

induction

T ′
2

Γ1, A≤T1:K1

?
T ′′

2

T2,

Γ1, A≤T1:K1

OO

Γ2, A≤T1:K1

>>

so All(A≤T1:K1)T2
//
Γ2

All(A≤T1:K1)T
′′
2 . The result Γ2 ` All(A≤T1:K1)T

′
2 ≡

All(A≤T1:K1)T
′′
2 ∈ ? follows with E-All.

Subcase: All(A≤T1:K1)T2 //Γ1
All(A≤T ′

1:K1)T2

where T1
//
Γ1

T ′
1. With the generation Lemmas 5.4 and 5.8 Γ1 ` T1 ∈ K1 by

subderivation, so by induction the exists a type T ′′
1 such that the following diagram

commutes:

T ′
1

Γ1

K1

T ′′
1

T1.

Γ1

OO

Γ2

>>

This implies All(A≤T1:K1)T2
//
Γ2

All(A≤T ′′
1 :K1)T2, and we conclude with E-All,

E-Refl, and Lemma 5.32:

Γ1 ` T ′
1 ≡ T ′′

1 ∈ K1

Γ1, A≤T ′
1:K

′
1 ` T2 ∈ ?

Γ1, A≤T ′
1:K

′
1 ` T2 ≡ T2 ∈ ?

Γ1 ` All(A≤T ′
1:K1)T2 ≡ All(A≤T ′′

1 :K1)T2 ∈ ?

�

Proof of Lemma 5.67 on page 86: By induction on the length of derivation of
Γ ` S ≡ T ∈ K. The case for E-Refl is immediate, the one for R-Top vacuously
true. We show the ones for arrow-types, for All-types, and for application.

Case E-App+: Γ `A S1 + Γ ` S1 ≡ T1 ∈ K1 → K2 Γ ` S2 ≡ T2 ∈ K1

Γ ` S1 S2 ≡ T1 T2 ∈ K2

By Definition A.10 of //
Γ we know S1 S2 must be of the form A U1 . . . Un for some

Section C.6 Characterization of strong, cut-free derivations 235

n ≥ 1 and S ′ = Γ(A) U1 . . . Un; hence T = A V1 . . . Vn where Γ ` A U1 . . . Un−1 ≡
A V1 . . . Vn−1 ∈ K1 → K2 and Γ ` Un ≡ Vn ∈ K1. Thus we can choose T ′ =
Γ(A) V1 . . . Vn (using preservation of kinding under reduction). The other application
cases are analogous.

Case E-Arrow: Γ ` T1 ≡ S1 ∈ ? Γ ` S2 ≡ T2 ∈ ?

Γ ` S1 → S2 ≡ T1 → T2 ∈ ?

The //
Γ-step can take two directions. For example (S1 → S2) //

ΓS ′
1 with

S1
//
ΓS ′

1, and the case follows by generation for kinds, induction, and E-Arrow.

Case E-All: Γ, A≤S1:K1 ` S2 ≡ T2 ∈ ? Γ ` S1 ≡ T1 ∈ K1

Γ ` All(A≤S1:K1)S2 ≡ All(A≤T1:K1)T2 ∈ ?

We have further to distinguish, where the reduction step takes place:

Subcase: All(A≤S1:K1)S2
//
ΓAll(A≤S′

1:K1)S2

with S1
//
ΓS ′

1. By induction we get a type T ′
1 with T1

//
ΓT ′′

1 and Γ ` T1 ≡ T ′
1 ∈

K1. Thus All(A≤T1:K1)T2
//
ΓAll(A≤T ′

1:K1)T2 and the case follows with E-All.

Subcase: All(A≤S1:K1)S2 //ΓAll(A≤S1:K1)S
′
2

with S2
//
(Γ, A≤S1:K1)S

′
2. By induction we T2

//
(Γ, A≤S1:K1)U

′
2 and Γ, A≤S1:K1 `

S ′
2 ≡ U ′

2 ∈ K for some type U ′. From Γ, A≤S1:K1 ≡ Γ, A≤T1:K1 we can use
Lemma 5.66 to exchange the context in the step to get T2

//
(Γ, A≤S1:K1)T

′′
2 for

some type T ′′, with Γ, A≤S1:K ` U ′′
2 ≡ T ′′

2 ∈ ?, so by transitivity of equivalence and
E-All the result follows. �

Proof of Lemma 5.68 on page 87: By induction on Γ ` T ∈ K, using the def-
inition of //

Γ, preservation of kinding under promotion, and Lemma 5.32.
�

Proof of Lemma 5.70 on page 88: By the previous Lemmas 5.69 and 5.68. �

C.6 Characterization of strong, cut-free derivations

Proof of Corollary 5.73 on page 89: With Lemma 5.40 for normalization with
respect to β>-reduction, Lemma 5.66 for the change of context, and for the Γ-steps
Lemma 5.67 . �

Proof of Lemma 5.74 on page 90: By induction on the length of the reduction
sequence↗∗

Γ = (//!
β> ↑Γ)n.

For n = 0, we have S = A S1 . . . Sn, since S must be in normal form, and
the case is immediate. Since for a type U with U //

β>U ′ or U ↑Γ U ′ we know
U T //

β>U ′ T respectively U T ↑Γ U ′ T , the induction step can be proven by an
inner induction on the number of β>-steps resp. the ↑Γ-step. �

236 Chapter C Proofs for Polarized F ω
≤

Proof of Lemma 5.75 on page 90: By definition, ↗∗
Γ consists of a sequence of

//
β>– and ↑Γ–steps and the result follows by a sequence of instances of the pro-

motion rule, well-kindedness of subderivations, and the expansion lemma. �

Proof of Lemma 5.76 on page 90: By induction on the length of derivation, us-
ing the generation Lemma 5.8, and the subtyping rules for application. �

Proof of Lemma 5.77 on page 90: By induction on the derivation of Γ `CS S ≤
T ∈ K.

Using strong derivations and in absence of transitivity, only the rules of reflexivity,
of promotion, or one of the application rules are usable.

Case R-Refl: S //!
β>A U1 . . . Un T //!

β>A U1 . . . Un Γ ` A U1 . . . Un ∈ K

Γ `CS S ≤ T ∈ K

By reflexivity of equivalence or reflexivity of subtyping, depending on the minimal
polarity of the type A U1 . . . Ui in Γ.

Case R-Promote: S //!
β>U ↑Γ S′ Γ ` U ∈ K Γ `CS S′ ≤ T ∈ K

Γ `CS S ≤ T ∈ K

By preservation of kinding under reduction (Lemma 5.25) and under promotion
(Lemma 5.45), S ′ is well-kinded in context Γ, and the case follows by induction.

Case R-App◦r: S //!
β>S′

1 S′
2 T //!

β>A T1 . . . Tn

Γ `CS S′
1 ≤ A T1 . . . Tn−1 ∈ K1 →K2 Γ `A A T1 . . . Tn−1 ◦

Γ `CS S ≤ T ∈ K2

By well-kinded subderivations, S ′
1 is well-kinded in Γ. So by induction S ′

1 ↗∗
Γ

//!
β>A S1 . . . Sn−1 and additionally for all 0 ≤ i ≤ n − 1, one of the four

listed cases holds. Now since Γ `A T1 . . . Tn−1 ◦, we get with Lemma 5.76 also
Γ ` A S1 . . . Sn−1 ◦, which solves the case for i = n. Finally with Lemma 5.74
S //!

β>S ′
1 S ′

2↗
∗
Γ

//!
β>A S1 . . . Sn−1 S ′

2.

The other application cases are similar. The additional requirements in the cases
2 and 3 concerning the subderivation hold in these cases by induction and (for Sn in
relation to Tn) by the unique choice of the application rule. �

Proof of Lemma 5.78 on page 91: Similar to the proof for applications in Lemma 5.77.
The first part by induction over the derivation of Γ `CS S ≤ T ∈ ?. Only the rules
R-Refl, R-Promote, and R-Arrow are applicable. For reflexivity the case is
immediate. The case for promotion follows by induction. Rule R-Arrow finally
expresses directly the content of part 1 of the lemma. The second and the third part
are similar, with rules R-Refl, R-Promote and R-All, resp. R-Abs. �

Section C.6 Characterization of strong, cut-free derivations 237

Proof of Lemma 5.79 on page 91: We know S↗∗
Γ

//!
β>A S1 . . . Sn by Lemma 5.77.

By well-kindedness of subderivation, preservation of kinding under promotion and un-
der reduction (Lemma 5.45 and Lemma 5.25) Γ ` A S1 . . . Sn ∈ K ′. With the help
of Lemma 5.76 also Γ ` A U1 . . . Un ∈ K ′. �

Proof of Lemma 5.80 on page 91: By induction on n, using Lemma 5.72, gen-
eration for kinds, and preservation of kinding under promotion. For n = 0 the
case is immediate by the generation lemma, preservation of kinding under promo-
tion and reflexivity. For n > 0, we get by induction Γ `CS Γ(A) S1 . . . Sn−1 ≤
Γ(A) T1 . . . Tn−1 ∈ K1 → K2. In case 2, for example, we get by preservation of
kinding under promotion Γ `A Γ(A) S1 . . . Sn−1 + or Γ `A Γ(A) S1 . . . Sn−1 ◦. Since
Γ `CS Sn ≤ Tn ∈ Kn, we get using R-App+l or R-App+r, or one of the rules for con-
stant application that Γ `C Γ(A) S1 . . . Sn−1 Sn ≤ Γ(A) T1 . . . Tn−1 Tn ∈ K and the
result Γ `CS Γ(A) S1 . . . Sn−1 Sn ≤ Γ(A) T1 . . . Tn−1 Tn ∈ K follows by strengthening
for cut-free derivations (Lemma 5.72). �

Proof of Lemma 5.81 on page 92: By induction on the length of the sequence
T ↗∗

Γ
//!
β> A T1 . . . Tm, i.e., on the length of

T (//!
β> ↑Γ)n //!

β>A T1 . . . Tm,

using the characterization of subtypes of an application (Lemma 5.77).
If n = 0, we are given T //!

β>A T1 . . . Tm. So Lemma 5.77 applies, yielding
directly the result. For n ≥ 1 are given

T //!
β> ↑Γ U (//!

β> ↑Γ)n−1 //!
β>A T1 . . . Tm.

By definition of promotion T //!
β>A′ U1 . . . Uk ↑Γ Γ(A′) U1 . . . Uk = U . By preser-

vation of kinding under reduction and promotion, U is well-kinded. From Γ `CS S ≤
T ∈ K and T //!

β>A′ U1 . . . Uk, we get by the characterization of subtypes of an
application (Lemma 5.77):

S↗∗
Γ

//!
β>A′ V1 . . . Vk and Γ `CS A′ V1 . . . Vk ≤ A′ U1 . . . Uk ∈ K ′

Moreover, all Vi and Ui are related according to the kind of A as given by the
lemma, which means that Lemma 5.80 applies, yielding Γ `CS Γ(A′) V1 . . . Vk ≤
Γ(A′) U1 . . . Uk ∈ K, i.e. Γ `CS Γ(A′) V1 . . . Vk ≤ U ∈ K. Thus by induction
Γ(A′) V1 . . . Vk ↗∗

Γ
//!
β>A S1 . . . Sm with the postulated connection for the Si

and Ti. Note that by construction S ↗∗
Γ

//!
β>A S1 . . . Sm, contains at least one

promotion step. �

Proof of Lemma 5.82 on page 92: Similar to the proof for applications in Lemma 5.81,
using Lemma 5.78. �

238 Chapter C Proofs for Polarized F ω
≤

C.7 Cut elimination

Proof of cut elimination (Proposition 5.83 on page 94): By induction on the
combined length of derivation. We have to generalize the induction hypothesis slightly
to cope with a pair of two All-rules, which extend the context by two different, albeit
equivalent, upper bounds:

Suppose ` Γ1 ≡ Γ2 and the types S, T , U and V well-kinded in context
Γ1 (and thus by Lemma 5.32 also in Γ2). Furthermore assume U and V
in normal form. If Γ1 `CS S ≤ U ∈ K and Γ2 `CS V ≤ T ∈ K with
Γ1 ` U ≡ V ∈ K, then Γ1 `CS S ≤ T ∈ K (and Γ2 `CS S ≤ T ∈ K).

The proposition follows from this generalization because of reflexivity of equivalence
and since Γ `CS T1 ≤ T2 ∈ K iff. Γ `CS T !

1 ≤ T !
2 ∈ K. We proceed by case analysis

on the syntactic structure of T ’s normal form.

Case: T //!
β>Top(K ′)

By well-kindedness of subderivations (Lemma 5.49) we get Γ ` Top(K ′) ∈ K, Γ `
U ∈ K, and Γ ` S ! ∈ K; thus the case follows by S-Top.

Case: T //!
β>T1 → T2

By the characterization of subtypes in Lemma 5.78 we get V ↗∗
Γ2

//!
β>V1 → V2

with Γ2 `CS T1 ≤ V1 ∈ ? and Γ2 `CS T2 ≤ V2 ∈ ?, both by subderivation of
Γ2 `CS V ≤ T ∈ ?. From the equivalences Γ1 ` U ≡ V ∈ ? and ` Γ1 ≡ Γ2 we get by
Corollary 5.73 a type U1 → U2 with U ↗∗

Γ1

//!
β>U1 → U2 and Γ1 ` U1 → U2 ≡

V1 → V2 ∈ ?. Now by Lemma 5.82 S↗∗
Γ1

//!
β>S1 → S2 with Γ1 `CS U1 ≤ S1 ∈ ?

and Γ1 `CS S2 ≤ U2 ∈ ?, justified by subderivation of Γ1 `CS S ≤ U ∈ ?. Hence by
induction Γ1 `CS T1 ≤ S1 ∈ ? and Γ1 `CS S2 ≤ T2 ∈ ?, yielding Γ1 `CS S1 → S2 ≤
T1 → T2 ∈ ? by R-Arrow. By Lemma 5.75 we get Γ1 `CS S ≤ T ∈ ?.

Case: T //!
β>All(A≤T1:K1)T2

Analogously to the previous case V ↗∗
Γ2

//!
β>All(A≤V1:K1)V2 such that

T //!
β>All(A≤T1:K)T2 Γ2 ` V1 ≡ T1 ∈ K1

Γ2, A≤V1:K1 `CS V2 ≤ T2 ∈ ?

Γ2 `CS All(A≤V1:K1)V2 ≤ T ∈ ?

and where Γ2, A≤V1:K1 `CS V2 ≤ T2 ∈ ? is justified by a subderivation of Γ2 `CS V ≤
T ∈ ?. By Corollary 5.73, the two equivalences Γ2 ` U ≡ V ∈ ? and ` Γ1 ≡ Γ2 entail
U ↗∗

Γ1

//!
β>All(A≤U1:K1)U2 with Γ1 ` All(A≤U1:K1)U2 ≡ All(A≤V1:K1)V2 ∈ ?,

which also means Γ1 ` U1 ≡ V1 ∈ K1 and Γ1, A≤U1:K1 ` U2 ≤ V2 ∈ ?. Now
Lemma 5.82 yields S↗∗

Γ1

//!
β>All(A≤S1:K1)S2 with

Γ1 ` S1 ≡ U1 ∈ K1 and Γ1, A≤S1:K1 `CS S2 ≤ U2 ∈ ?,

Section C.7 Cut elimination 239

where the subtype statement is justified by a subderivation of Γ1 `CS S ≤ U ∈ ?.

By transitivity of equivalence Γ1 `CS S1 ≡ T1 ∈ ? and Γ1, A≤S1:K1 ` U2 ≡ V2 ∈ ?,
and by the definition of equivalence on contexts ` Γ1, A≤S1:K1 ≡ Γ2, A≤V1:K1.
Thus by induction Γ1, A≤S1:K1 `CS S2 ≤ T2 ∈ ?, yielding Γ1 `CS All(A≤S1:K1)S1 ≤
All(A≤T1:K1)T2 ∈ ? by R-All. Finally by Lemma 5.75, we get Γ1 `CS S ≤ T ∈ ?.

Case: T //!
β>Fun(A:K)T ′

Similar.

Case: T //!
β>A′ T1 . . . Tm

for some m ≥ 1. By Lemma 5.77 we obtain V ↗∗
Γ2

//!
β>A′ V1 . . . Vm. Additionally,

for all i ∈ {0, . . .m}, one of the following cases holds (where V0 and T0 stand for A′):

1. Γ2 ` A′ V1 . . . Vi−1 ◦ and Γ2 `A A′ T1 . . . Ti−1 ◦.

2. Γ2 `A A′ V1 . . . Vi−1 + and Γ2 ` A′ T1 . . . Ti−1 +, with Γ2 `CS Vi ≤ Ti ∈ Ki.

3. Γ2 `A A′ V1 . . . Vi−1 − and Γ2 ` A′ T1 . . . Ti−1 −, with Γ2 `CS Ti ≤ Vi ∈ Ki.

4. Γ2 ` Vi ≡ Ti ∈ Ki.

As in the previous subcases we use Corollary 5.73 to obtain U ↗∗
Γ1

A′ U1 . . . Um

with Γ1 ` A′ U1 . . . Um ≡ A′ V1 . . . Vm ∈ K. By Lemma 5.81, we get S ↗∗
Γ1

//!
β>A′ S1 . . . Sm with the Si in appropriate connection with the corresponding

Ui, i.e. for all i ∈ {0, . . .m}, one of the following cases holds:

a) Γ1 `A A′ S1 . . . Si−1 ◦ and Γ1 ` A′ S1 . . . Si−1 ◦.

b) Γ1 `A A′ S1 . . . Si−1 + and Γ1 ` A′ U1 . . . Ui−1 +, with Γ1 `CS Si ≤ Ui ∈ Ki.

c) Γ1 `A A′ S1 . . . Si−1 − and Γ1 ` A′ U1 . . . Ui−1 −, with Γ1 `CS Ui ≤ Si ∈ Ki.

d) Γ1 `A Si ≡ Ui ∈ Ki.

Since the choice of case is determined by the minimal polarity of the corresponding
type operator, we can use Lemma 5.76 and Lemma 5.55 to infer that the cases 1 –
4 correspond to the cases a) – d) in such a way that if case 1) holds for Ui and Ti,
then correspondingly case a) holds for Si and Ui. Hence we can use induction in case
2 in combination with b), and case 3 in combination with c) to obtain Γ `CS Si ≤
Ti ∈ Ki respectively Γ `CS Ti ≤ Si ∈ Ki. Case 4/d) can be treated by transitivity
of equivalence. The constant case is immediate. We thus get Γ1 `CS A′ S1 . . . Sm ≤
A′ U1 . . . Um ∈ K. By Lemma 5.75 finally Γ1 `CS S ≤ T ∈ K. �

240 Chapter C Proofs for Polarized F ω
≤

C.8 Elimination of promotion

Proof of Proposition 5.84 on page 95: For the proof, we assume, that the types
S and T are in normal form. Since Γ `CS U1 ≤ U2 ∈ K iff. Γ `CS U !

1 ≤ U !
2 ∈ K, this

is not a restriction. For types in normal form, the fact that Γ `CS S ≷ T ∈ K has
derivations without using promotion means Γ ` S ≡ T ∈ K. Thus, the implication
we are to show reads

If Γ `CS S ≤ T ∈ K and Γ `CS T ≤ S ∈ K with S and T in normal
form, then Γ ` S ≡ T ∈ K.

The proof will proceed by induction on the sum of ranks (Definition 5.71) of both
statements.

If one of the two subtyping derivation ends with an instance of R-Refl, we
have by uniqueness of normal forms S = T and the case follows by reflexivity of
equivalence. So let us assume, none of the derivations ends with an instance of
reflexivity.

Case: Γ `CS S1 → S2 ≤ T1 → T2 ∈ ? and Γ `CS T1 → T2 ≤ S1 → S2 ∈ ?

We get Γ `CS T1 ≤ S1 ∈ ? and Γ `CS S1 ≤ T1 ∈ ?, two statements whose sum of
ranks is strictly smaller than the sum of ranks of the two original statements. Hence
by induction Γ ` T1 ≡ S1 ∈ ?. Symmetrically Γ ` S2 ≡ T2 ∈ ?, so by E-Arrow

Γ ` S1 → S2 ≡ T1 → T2 ∈ ?.

Case: Γ `CS All(A≤S1:K1)S2 ≤ All(A≤T1:K1)T2 ∈ ? and
Γ `CS All(A≤T1:K1)T2 ≤ All(A≤S1:K1)S2 ∈ ?

We get by subderivation Γ `CS T1 ≤ S1 ∈ K1 and Γ `CS S1 ≤ T1 ∈ K1 as well as
Γ, A≤S1:K1 `CS S2 ≤ T2 ∈ ? and Γ, A≤T1:K1 `CS T2 ≤ S2 ∈ ?. By induction further
Γ ` S1 ≡ T1 ∈ K1.

The rank of Γ, A≤S1:K1 `CS S2 ≤ T2 ∈ ? is strictly less than the rank of Γ `CS

All(A≤S1:K1)S2 ≤ All(A≤T1:K1)T2 ∈ ?. Likewise the rank of Γ, A≤T1:K1 `CS T2 ≤
S2 ∈ ? compared to the one of Γ `CS All(A≤T1:K1)T2 ≤ All(A≤S ′

1:K1)S
′
2 ∈ ? (note

that ` Γ, A≤S1:K1 ≡ Γ, A≤T1:K1). Hence again by induction Γ1, A≤S1:K1 ` S2 ≡
T2 ∈ ? which, together with Γ ` S1 ≡ T1 ∈ K1, implies the result using E-All.

Case: Γ `CS A1 S1 . . . Sn ≤ A2 T1 . . . Tm ∈ K and Γ `CS A2 T1 . . . Tm ≤ A1 S1 . . . Sn ∈ K

(The form of the applications with a leading type variable on each side is justified by
the assumption that S and T are in normal form.) By Lemma 5.77 we get two types
A2 S ′

1 . . . S ′
m and A1 T ′

1 . . . T ′
n with

A1 S1 . . . Sn↗
∗
Γ

//!
β>A2 S ′

1 . . . S ′
m and A2 T1 . . . Tm↗∗

Γ
//!
β>A1 T ′

1 . . . T ′
n.

Section C.8 Elimination of promotion 241

Moreover, the lemma implies that for all i ∈ {1 . . .m} at least one of the following
cases holds:

Γ `A A2 S ′
1 . . . S ′

i−1 ◦ (C.1)

Γ `A A2 S ′
1 . . . S ′

i−1 + and Γ `CS S ′
i ≤ Ti ∈ Ki (C.2)

Γ `A A2 S ′
1 . . . S ′

i−1 − and Γ `CS Ti ≤ S ′
i ∈ K ′

i (C.3)

Γ ` S ′
i ≡ Ti ∈ K ′

i (C.4)

A dual condition holds for all T ′
j in relation with Sj where j ∈ {1, . . . n}.

By Lemma 5.75, the sequence A1 S1 . . . Sn↗
∗
Γ

//!
β>A2 S ′

1 . . . S ′
m entails Γ `CS

A1 S1 . . . Sn ≤ A2 S ′
1 . . . S ′

m ∈ K ′ for some kind K ′. Since A1 S1 . . . Sn is well-kinded
and in normal form, we get from Γ `CS A1 S1 . . . Sn ≤ A2 T1 . . . Tm ∈ K by well-
kindedness of subderivations Γ ` A1 S1 . . . Sn ∈ K and further by preservation of
kinding under promotion and reduction Γ ` A2 S ′

1 . . . S ′
m ∈ K; thus by Lemma 5.53

Γ `CS A1 S1 . . . Sn ≤ A2 S ′
1 . . . S ′

m ∈ K. Since A2 S ′
1 . . . S ′

n is well-kinded, we get by
cut-elimination (Proposition 5.83) Γ `CS A2 T1 . . . Tm ≤ A2 S ′

1 . . . S ′
m ∈ K. Dually,

we have Γ `CS A2 T1 . . . Tm ≤ A1 T ′
1 . . . T ′

n ∈ K and again by cut-elimination Γ `CS

A1 S1 . . . Sn ≤ A1 T ′
1 . . . T ′

n ∈ K.
We now distinguish, whether the sequences A1 S1 . . . Sn↗

∗
Γ

//!
β>A2 S ′

1 . . . S ′
m

and A2 T1 . . . Tm↗∗
Γ

//!
β>A1 T ′

1 . . . T ′
n are empty or not.

Subcase: A1 S1 . . . Sn↗
+
Γ

//!
β>A2 S′

1 . . . S′
m and A2 T1 . . . Tm↗+

Γ
//!
β>A1 T ′

1 . . . T ′
n

where both sequences are non-empty. Now the rank of Γ `CS A2 S ′
1 . . . S ′

m ≤
A2 T1 . . . Tm ∈ K is strictly smaller that the one of Γ `CS A1 S1 . . . Sn ≤ A2 T1 . . . Tm ∈
K.

Likewise the rank of Γ `CS A1 T ′
1 . . . T ′

n ≤ A1 S1 . . . Sn ∈ K has properly decreased
compared to Γ `CS A2 T1 . . . Tm ≤ A1 S1 . . . Sn ∈ K.

So we have arrived at the situation (the following abbreviates four subtyping
statements):

Γ `CS A1 S1 . . . Sn ≤ A2 S ′
1 . . . S ′

m ≤ A2 T1 . . . Tm ≤ A1 T ′
1 . . . T ′

n ≤ A1 S1 . . . Sn ∈ K

Projecting out the pair Γ `CS A2 S ′
1 . . . S ′

m ≤ A2 T1 . . . Tm ∈ K and Γ `CS

A2 T1 . . . Tn ≤ A2 S ′
1 . . . S ′

m ∈ K (using cut-elimination and the fact that all types
involved are well-kinded), we observe that the sum of ranks of this pair of statements
has properly decreased, hence by induction Γ ` A2 S ′

1 . . . S ′
m ≡ A2 T1 . . . Tm ∈ K.

By a dual argument Γ ` A1 S1 . . . Sn ≡ A1 T ′
1 . . . T ′

m ∈ K. Finally also the sum
of ranks of the pair Γ `CS A1 T ′

1 . . . T ′
n ≷ A2 S ′

1 . . . S ′
n ∈ K has properly de-

creased in comparison to the original pair of statements, hence once more by in-
duction Γ ` A1 T ′

1 . . . T ′
n ≡ A2 S ′

1 . . . S ′
n ∈ K. By transitivity of equivalence thus

242 Chapter C Proofs for Polarized F ω
≤

Γ ` A1 S1 . . . Sn ≡ A2 T1 . . . Tm ∈ K (which additionally implies A1 = A2 and
n = m). This means

A1 S1 . . . Sn↗
+
Γ

//!
β>A1 S ′

1 . . . S ′
m ≡K

Γ

≡K
Γ A1 T1 . . . Tm↗+

Γ
//!
β>A1 T ′

1 . . . T ′
n ≡K

Γ A1 S1 . . . Sn.

This contradicts strong termination of //
β>Γ≡ ≡ (Lemma 5.69), and the subcase

cannot occur.

Subcase: A1 S1 . . . Sn = A2 S′
1 . . . S′

m and A2 T1 . . . Tm↗+
Γ

//!
β>A1 T ′

1 . . . T ′
n

(i.e. A1 = A2 and n = m) where A1 T1 . . . Tn ↗+
Γ A1 T ′

1 . . . T ′
n by a non-empty

sequence. We are thus given the following three subtyping statements:

Γ `CS A1 S1 . . . Sn ≤ A1 T1 . . . Tn ≤ A1 T ′
1 . . . T ′

n ≤ A1 S1 . . . Sn ∈ K.

Arguing in the same way as in the previous subcase we get by induction Γ `
A1 S1 . . . Sn ≡ A1 T ′

1 . . . T ′
n ∈ K. We are not done, though, since we cannot compare

the pair of statements Γ `CS A1 T1 . . . Tn ≷ A1 S ′
1 . . . S ′

n ∈ K to the original pair
Γ `CS A1 S1 . . . Sn ≷ A1 T1 . . . Tn ∈ K with respect to their sum of ranks.

But now A1 T1 . . . T1↗
+
Γ

//!
β>A1 T ′

1 . . . T ′
n together with the four the conditions

(C.1) – (C.4) from above imply A1 S1 . . . Sn ↗
+
Γ

//!
β>A1 S ′′

1 . . . S ′′
n (Lemma 5.81)

for some kind A1 S ′′
1 . . . S ′′

n by a non-empty sequence. Moreover, this lemma entails
Γ `CS A1 S ′′

1 . . . S ′′
n ≤ A1 T ′

1 . . . T ′
n ∈ K. Putting it all together we get the following

chain of subtyping statements:

Γ `CS A1 T1 . . . Tn ≤ A1 S1 . . . Sn ≤ A1 S ′′
1 . . . S ′′

n

≤ A1 T ′
1 . . . T ′

n ≤ A1 S1 . . . Sn ≤ A1 T1 . . . Tn ∈ K.

Cut-elimination yields the two statements Γ `CS A1 T1 . . . Tn ≷ A1 S ′′
1 . . . S ′′

n ∈
K and Γ `CS A1 T ′

1 . . . T ′
n ≷ A1 S ′′

1 . . . S ′′
n ∈ K. By induction and transitivity of

equivalence Γ `CS A1 S1 . . . Sn ≡ A1 T1 . . . Tn ∈ K.
This means we are given

A1 T1 . . . Tn ≡K
Γ A1 S1 . . . Sn↗

+
Γ A1 S ′

1 . . . S ′
n ≡K

Γ

≡K
Γ A1 T ′

1 . . . T ′
n ≡K

Γ A1 S1 . . . Sn ≡K
Γ A1 T1 . . . Tn,

which again contradicts Lemma 5.69, and neither this subcase can occur.

Subcase: A1 S1 . . . Sn = A2 S′
1 . . . S′

m and A2 T1 . . . Tm = A1 T ′
1 . . . T ′

n

Thus we assume both sequences empty. Again, A1 = A2 and n = m. So we are given
Γ `CS A1 S1 . . . Sn ≤ A1 T1 . . . Tn ∈ K and Γ `CS A1 S1 . . . Sn ≤ A1 T1 . . . Tn ∈ K.
Now that for all i ∈ {1, . . . , n} we know Si = S ′

i and Ti = T ′
i , we get by the four

conditions (C.1) – (C.4) from above that for all i at least one of the following cases
holds:

Section C.9 Decidability of polarized subtyping 243

1. Γ `A A1 S1 . . . Si−1 ◦.

2. Γ `A A1 S1 . . . Si−1 + and Γ `CS Si ≷ Ti ∈ Ki.

3. Γ `A A1 S1 . . . Si−1 − and Γ `CS Ti ≷ Si ∈ Ki.

4. Γ ` Ti ≡ Si ∈ Ki.

Thus, in the cases 2 and 3 we get by induction Γ ` Si ≡ Ti ∈ Ki, and the result
follows by the appropriate number of instances of application rules for equivalence.

�

C.9 Decidability of polarized subtyping

C.9.1 Completeness

We first prove that derivability in the subtyping system implies well-kindedness of
the types involved. The two parts of the lemma are analogous to Lemma 5.49, to
Lemma 5.52, and to Lemma 5.53 for the stratified versions of the subtyping system.
The first part is stronger than Lemma 5.49, since for the stratified subtyping system
we could prove only that well-kindedness of types in a subtyping statement is propa-
gated to all subtyping statements justified by a subderivation. The extra assumption
of well-kindedness was needed there, since expansion may destroy well-kindedness.
The lemma will be needed for the proof of completeness and soundness.

Lemma C.2

1. If Γ `O S ≤ T ∈ K, then Γ `O S ∈ K and Γ `O∈ K.

2. If Γ `O S ≤ T ∈ K, and K ≤ K ′, then Γ `O S ≤ T ∈ K ′.

3. If Γ `O S ≤ T ∈ K, with Γ `O S ∈ K ′ and Γ `O T ∈ K ′, then Γ `O S ≤ T ∈
K ′.

Proof: By straightforward induction. �

Proof of Lemma 5.86 on page 96: By straightforward induction. �

Lemma C.3 Let Γ abbreviate Γ1, A2:K
′, A1≤A2:K

′, Γ2 or Γ1, A2:K
′, A1:K

′, Γ2. If
Γ ` [A1/A]T ≡ [A2/A]T ∈ K, then [A/A1][A/A2]Γ ` T ◦A.

Proof: By induction over the length of derivation, using the properties of polarities.
�

Proof of Lemma 5.87 on page 96: By induction on the length of derivation.
We show the first part of the lemma; the rest is similar. Let Γ abbreviate the context
Γ1, A2:K

′, A1≤A2:K
′, Γ2.

244 Chapter C Proofs for Polarized F ω
≤

Case R-Refl: [A1/A]T //!
β>U [A2/A]T //!

β>U Γ ` U ∈ K

Γ `CS [A1/A]T ≤ [A2/A]T ∈ K

Since A1 6= A2 and furthermore neither A1 nor A2 occurs freely in T , we know
A1 /∈ fv(U) and A2 /∈ fv(U). This also means A 6∈ fv(T !), implying with the help of
preservation of kinding under reduction that Γ ` T ! ◦A, and hence also Γ ` T ! +A.

Case R-Promote: [A1/A]T //!
β>U ↑Γ T ′

Γ `CS U ∈ K Γ `CS T ′ ≤ [A2/A]T ∈ K

Γ `CS [A1/A]T ≤ [A2/A]T ∈ K

By definition of promotion and the properties of reduction

[A1/A]T //!
β>A′ [A1/A]T1 . . . [A1/A]Tn ↑Γ Γ(A′) [A1/A]T1 . . . [A1/A]Tn = T ′.

We have to distinguish whether or not A′ and A1 coincide.

Subcase: A′ = A1

In this case the subgoal of the promotion rule reads

Γ `CS A2 [A1/A]T1 . . . [A1/A]Tn ≤ [A2/A]T ∈ K.

Note, that A2 [A1/A]T1 . . . [A1/A]Tn is in normal form. Here, the derivation cannot
end in an instance of R-Promote, since A2’s upper bound is a maximal type; hence
the last rules applied must be either instances of one of the application rules or
of reflexivity. Thus we get for all i ∈ {1, . . . , n} one of the following cases (we
have Γ `A A2 [A1/A]T1 . . . [A1/A]Ti−1 ? iff. Γ `A A2 [A2/A]T1 . . . [A2/A]Ti−1 ? by
Lemma 5.76), so we need not consider the symmetric cases where the polarity is
determined by the right-hand side):

1. Γ `A A2 [A1/A]T1 . . . [A1/A]Ti−1 ◦.

2. Γ `A A2 [A1/A]T1 . . . [A1/A]Ti−1 + and Γ `CS [A1/A]Ti ≤ [A2/A]Ti ∈ Ki.

3. Γ `A A2 [A1/A]T1 . . . [A1/A]Ti−1 − and Γ `CS [A2/A]Ti ≤ [A1/A]Ti ∈ Ki.

4. Γ `A A2 [A1/A]T1 . . . [A1/A]Ti−1 ± and Γ ` [A2/A]Ti ≡ [A1/A]Ti ∈ Ki.

The mentioned subtyping statements in case 3 and 4 are justified by a subderivation.
Thus the result follows by induction, by an inner induction on n ≥ 1, Lemma 5.86,
and the rules for polarity. In the case for Γ ` [A1/A]Ti ≡ [A2/A]Ti ∈ Ki, we
additionally use the corresponding for lemma for equivalence (Lemma C.3.), yielding
Γ ` Ti ◦A.

Section C.9 Decidability of polarized subtyping 245

Subcase: A′ 6= A1

By the previous Lemma 5.86 we have Γ′ `CS [A/A1][A/A2](Γ(A′)) T1 . . . Tn ≤ T ∈ K,
which means Γ′ `CS Γ′(A′) T1 . . . Tn ≤ T ∈ K. By design of the `CS-system with its
normalizing reductions, this statement is derivable iff. Γ′ `CS Γ′(A′) T1 . . . Tn ≤ T ! ∈
K is derivable, i.e. Γ′ `CS Γ′(A′) T1 . . . Tn ≤ A′ T1 . . . Tn ∈ K (the types Ti are in
normal form already). Since we know by reflexivity of subtyping Γ′ ` A′ T1 . . . Tn ≷

A′ T1 . . . Tn ∈ K, a derivation of Γ′ `CS Γ′(A′) T1 . . . Tn ≤ A′ T1 . . . Tn ∈ K thus
contradicts Lemma 5.84 and the subcase cannot occur.

Case R-All: [A1/A]T //!
β>[A1/A](All(A′≤T1:K1)T2)

[A2/A]T //!
β>[A2/A](All(A′≤T1:K1)T2)

Γ `CS [A1/A]T1 ≡ [A2/A]T1 ∈ K1

Γ, A′≤[A1/A]T1:K1 `CS [A1/A]T2 ≤ [A2/A]T2 ∈ ?

Γ `CS [A1/A]T ≤ [A2/A]T ∈ ?

By Lemma C.3, Γ′ ` T1 ◦A. By Definition 5.38 ` Γ′, A′≤T1:K1 ◦A, hence the
induction hypothesis applies to Γ, A′≤[A1/A]T1:K1 `CS [A1/A]T2 ≤ [A2/A]T2 ∈ ?, as
well, yielding Γ′, A′≤T1:K1 ` T2 +A, thus

Γ′, A′≤T1:K1 ` T2 +A Γ′ ` T1 ◦A

Γ′ ` All(A′≤T1:K1)T2 +A

Case R-App+l: [A1/A]T //!
β>[A1/A](T1 T2) [A2/A]T //!

β>[A2/A](T1 T2)

Γ `A [A1/A]T1 + Γ `CS [A1/A]T1 ≤ [A2/A]T1 ∈ K1 →K2

Γ `CS [A1/A]T2 ≤ [A2/A]T2 ∈ K1

Γ `CS [A1/A]T ≤ [A2/A]T ∈ K2

By induction Γ′ ` T1 +A and Γ′ ` T2 +A (both T1 and T2 are in normal form), and
the result follows from the application rule for polarities. The remaining cases are
similar. �

C.9.2 Soundness

Proof of Lemma 5.91 on page 99: By induction on the length of derivation in
each part.

We start with part 1 for contexts. The case for the empty context is immediate,
the one for term variables is solved by straightforward induction.

Case C-TVar: A′ 6∈ dom(Γ′′) Γ′′ `O T ∈ K ′′

`O Γ′′, A′≤T :K ′′ ok

i.e. Γ = Γ′′, A′≤T :K ′′. We have to distinguish whether or not the type variable A′

246 Chapter C Proofs for Polarized F ω
≤

coincides with one of the Ai’s. If it does, we are given more specifically Γ = Γl
i, Ai:Ki

and:

A 6∈ dom(Γl
i) Γl

i `O Top(Ki) ∈ Ki

`O Γl
i, Ai:Ki ok

If for instance Γ′ = Γl
i

′
, A′′

i :Ki, A′
i
≤A′′

i :Ki, we can solve the case by C-TVar and
K-TVar (remember that Γ′l

i, A′′
i :Ki abbreviates Γ′l

i, A′′
i
≤Top(Ki):Ki):

A′
i 6∈ dom(Γl

i

′
, A′′

i :Ki)

A′′
i 6∈ dom(Γl

i

′
) Γl

i

′
`O Top(Ki) ∈ Ki

`O Γl
i

′
, A′′

i :Ki ok

Γl
i

′
, A′′

i :Ki `O A′′
i ∈ Ki

`O Γl
i

′
, A′′

i :Ki, A′
i
≤A′′

i :Ki ok

The statement on the top follows by induction on part 2. If Γ′ is of one of the other
possible forms, the case is similar.

If A′ 6= Ai for some i, the induction hypothesis of part 2 applies yielding Γ′′ `O

T ′ ∈ K.

Next the cases for kinding in part 2. The subsumption rule is solved by induction;
likewise the two rules for the maximal types. We show the case for All-types; the
ones for arrow-types and for K-Arrow-E are simpler.

Case K-All: Γ, A′≤T1:K1 `O T2 ∈ ?

Γ `O All(A′≤T1:K1)T2 ∈ ?

By induction Γ′, A′≤T ′
1:K1 `O T ′

2 ∈ ?, and the case follows by K-All.

Case K-TVar: kindΓA′ = K `O Γ ok

Γ `O A′ ∈ K

If A′ = Ai for some i, then K = Ki, and T ′ = A′
i or T ′ = A′′

i . In both cases the result
follows by induction on part 1 of the lemma and K-TVar. If A′ 6= Ai for all Ai, the
result follows similarly.

Case K-Arrow-I+: Γ, A0:K0 `O S ∈ K ′
0

Γ, A′′
0:K0, A′

0
≤A′′

0 :K0 `O [A′
0/A0]S ≤ [A′′

0/A0]S ∈ K ′
0

Γ `O Fun(A0:K0)S ∈ K0 →+ K ′
0

By assumption [~A/ ~A′′][~A/ ~A′′]T ′ = T = Fun(A0:K0)S; hence T ′ = Fun(A0:K0)S
′ with

[~A/ ~A′][~A/ ~A′′]S ′ = S. Induction on part 2 gives Γ′, A′′
0:K0, A′

0
≤A′′

0:K0 `O S ′ ∈ K ′
0.

From the second subgoal Γ, A′′
0:K0, A′

0
≤A′′

0:K0 `CS [A′
0/A0]S

! ≤ [A′′
0/A0]S

! ∈ K ′
0

by completeness (Proposition 5.88), thus by Lemma 5.87 Γ, A0:K0 ` S ! +A0
. This

Section C.9 Decidability of polarized subtyping 247

means we can apply the induction hypothesis of part 4 to the kinding subgoal (For
the A1, . . . , An case 4 d) holds, for the additional variable A0 part 4 b) of the lemma
applies.), yielding Γ′, A′′

0:K0, A′
0
≤A′′

0:K0 `O [A′
0/A0]S

′ ≤ [A′′
0/A0]S

′ ∈ K ′
0, and the

case follows by K-Arrow-I+.

Case K-Arrow-I◦: Γ, A0:K0 `O S ∈ K ′
0

Γ, A′′
0 :K0, A′

0:K0 `O [A′
0/A0]S ≤ [A′′

0/A0]S ∈ K ′
0

Γ `O Fun(A0:K0)S ∈ K0 →◦K ′
0

By the generation lemma and induction Γ′, A′:K0 `O S ′ ∈ K ′
0. Analogously to

the previous case, the result follows by induction on part 4, completeness (Propo-
sition 5.88), Lemma 5.87, and K-Arrow-I◦. The remaining antimonotone and
nonmonotone case for K-Arrow-I± and K-Arrow-I− are similar.

The cases for part 3, dealing with the occurrence of type variables, by straight-
forward induction.

Finally the cases of part 4, the more interesting part. Proceed by induction on
the derivation of Γ `O T ∈ K. The cases for K-Top? and K-Top are solved
by induction. Likewise the ones for K-Arrow and K-All, where for universally
quantified types we need additionally the generation lemma for polarities to check
that the extended context conforms to the conditions in part a) – c) of the lemma.

Case K-Subsumption: K ′ ≤ K Γ `O T ∈ K ′

Γ `O T ∈ K

By induction on part 4, Γ′ `O Tσ1 ≤ Tσ2 ∈ K ′, and the case follows by Lemma C.2.

Case K-TVar: K = kindΓA′ `O Γ ok

Γ `O A′ ∈ K

We have to distinguish whether or not A′ coincides with one of the Ai’s. If it does
not, the case follows by S-Conv, rule K-TVar, and induction on part 1:

K = kindΓ′A′ `O Γ′ ok

Γ′ `O A′ ∈ K

Γ′ `O A′ ≤ A′ ∈ K

If Ai = A′ for some i and case d) holds for Ai, we are given K = kindΓ′Ai = Ki and
σ1(Ai) = σ2(Ai). Thus the case follows by S-Conv and K-TVar.

If Ai = A′ for some i and one of the cases a) – c) holds we know that Γ′ must be
of the form Γ′l

i, A′′
i :Ki, A′

i
≤A′′

i :Ki, Γ′r
i , since Γ ` Ai +Ai

but neither the constant case
a) nor the negative one c) applies. Furthermore σ1(Ai) = A′

i and σ2(Ai) = A′′
i . The

goal Γ′ `O A′
i ≤ A′′

i ∈ Ki follows by transitivity, S-Conv, K-TVar, and induction
on part 1 of the lemma.

248 Chapter C Proofs for Polarized F ω
≤

Case K-Arrow±: Γ, A0:K1 `O T ∈ K2

Γ `O Fun(A0:K1)T ∈ K1 →±K2

By the generaton lemma (respectively Observation 5.90) for polarities and induction
on part 4, we get Γ′, A0:K1 `O Tσ1 ≤ Tσ2 ∈ K2, and thus conclude by S-Arrow±:

Γ′, A0:K1 `O Tσ1 ≤ Tσ2 ∈ K2

Γ′ `O Fun(A0:K1)Tσ1 ≤ Fun(A0:K1)Tσ2 ∈ K1 →
±K2

Case K-Arrow-I+: Γ, A0:K1 ` T ∈ K2

Γ, A′′
0:K1, A′

0
≤A′′

0 :K1 ` [A′
0/A0]T ≤ [A′′

0/A0]T ∈ K1

Γ ` Fun(A0:K1)T ∈ K1 →+ K2

By induction and using the generation lemma Γ′, A′′
0:K1, A′

0
≤A′′

0:K1 ` [A′
0/A0]Tσ1 ≤

[A′′
0/A0]Tσ2 ∈ K1 and the case follows by rule K-Arrow-I+. The cases for

K-Arrow-I− and K-Arrow◦ are solved similarly.

Case K-Arrow-E: Γ `O T1 ∈ K1 →? K2 Γ `O T2 ∈ K1

Γ `O T1 T2 ∈ K2

By the generation lemma for kinding, Γ ` T1 T2 ?′Ai
implies Γ ` T1 ?′Ai

for all

variables Ai. Thus, the induction hypothesis applies yielding Γ′ `O [~A′/ ~A]T1 ≤

[~A′′/ ~A]T1 ∈ K1 →
? K2.

For the argument T2, we distinguish according to the minimal polarity of T1 as
type operator. If, for example, Γ `A T1 ±, we get for all Ai by Lemma 5.21 either
Γ `O T2 ◦Ai

, if one of the cases a) – c) holds, or we know σ1(Ai) = σ2(Ai). Further
by twice induction Γ′ `O T2σ1 ≷ T2σ2 ∈ K1, so by transitivity, S-App, and S-App±:

Γ′ `O T2σ1 ≷ T2σ2 ∈ K1

Γ′ `O (T1 T2)σ1 ≤ T1σ1 T2σ2 ∈ K2

Γ′ `O T1σ1 ≤ T1σ2 ∈ K1 →
? K2

Γ′ `O T1σ1 T2σ2 ≤ (T1 T2)σ2 ∈ K2

Γ′ `O (T1 T2)σ1 ≤ (T1 T2)σ2 ∈ K2

The other cases are similar. �

Lemma C.4 If Γ ` T ∈ K with T in normal form and T ↑Γ T ′, then Γ `O T ≤ T ′ ∈
K.

Lemma C.5 Assume a well-formed context Γ = Γ1, A≤U :K1, Γ2.

1. Let Γ′ = Γ1, A≤V :K1, Γ2 and assume Γ1 `O V ≤ U ∈ K1.

(a) If `O Γ ok , then `O Γ′ ok .

Section C.9 Decidability of polarized subtyping 249

(b) If Γ `O T ∈ K, then Γ′ `O T ∈ K.

(c) If Γ `O S ≤ T ∈ K, then Γ′ `O S ≤ T ∈ K.

2. Assume Γ1 ` U ∈ K ′
1 with K ′

1 ≤ K1 and let Γ′ = Γ1, A≤V :K1, Γ2.

(a) If `O Γ ok , then `O Γ′ ok .

(b) If Γ `O T ∈ K, then Γ′ `O T ∈ K.

(c) If Γ `O S ≤ T ∈ K, then Γ′ `O S ≤ T ∈ K.

Proof: By straightfoward induction, using well-kindedness of subderivations, weak-
ening for subtyping and for kinding. �

Proof of soundness (Lemma 5.92 on page 99): By induction on the length of
derivation with the help of part 4 of the previous Lemma 5.91 for the case of arrow
introduction.

The first part dealing with the contexts by straightforward induction, as the rules
in both formulations coincide.

The cases for kinding statements of the form Γ ` T ∈ K are in most cases also
straightforward. The interesting case is the one for arrow introduction.

Case K-Arrow-I?: Γ, A:K1 ` T ?A Γ, A:K1 ` T ∈ K2

Γ ` Fun(A:K1)T ∈ K1 →? K2

By induction we get Γ, A:K1 `O T ∈ K2. We distinguish according to the polarity
of A inside T . If ? = ± the case follows by K-Arrow± of the original system. If
? = +, we get by induction on the second part of the lemma Γ, A:K1 `O T +A.
Hence by Lemma 5.91 Γ, A2:K1, A1≤A2:K1 `O [A1/A]T ≤ [A2/A]T ∈ K and we can
conclude by K-Arrow-I+:

Γ, A2:K1, A1≤A2:K1 `O [A1/A]T ≤ [A2/A]T ∈ K2 Γ, A:K1 `O T ∈ K2

Γ `O Fun(A:K1)T ∈ K1 →+ K2

The fourth part for equivalence by straightforward induction. E-Refl follows by
induction on part 3 of the lemma and S-Conv, E-Top likewise by induction and
S-Top.

250 Chapter C Proofs for Polarized F ω
≤

Case E-All: Γ, A≤S1:K1 ` S2 ≡ T2 ∈ ? Γ ` S1 ≡ T1 ∈ K1

Γ ` All(A≤S1:K1)S2 ≡ All(A≤T1:K1)T2 ∈ ?

By induction we get Γ, A≤S1:K1 `O S2 ≷ T2 ∈ ? and Γ `O S1 ≷ T1 ∈ K1. This means
by S-All Γ `O All(A≤S1:K1)S2 ≤ All(A≤T1:K1)T2 ∈ ?. Since Γ `O T1 ≤ S1 ∈ K1,
we get from Lemma C.5 that also Γ, A≤T1:K1 `O S2 ≷ T2 ∈ ?, from which again with
S-All second subtyping statement Γ `O All(A≤T1:K1)T2 ≤ All(A≤S1:K1)S2 ∈ ?
follows. E-Arrow is easier. E-Abs by induction and Lemma C.5.

Part 5 dealing with the subtyping statements is again straightforward. The case
for R-Refl follows by well-kindedness of subderivations (Lemma 5.49), induction on
the kinding part of the lemma, and S-Conv. R-Promote is solved by preservation
of kinding under promotion, Lemma C.4, induction on part 3 and part 5 of the
lemma, and S-Trans. R-Top follows directly from S-Top. R-Arrow and R-All

by induction, where for the upper bounds of the universally quantified types we use
induction over part 4 of the lemma. The application cases also by induction, using
an additional instance of transitivity to compensate for the fact, that the application
rules in the original system are more strict in that the insist on the to type operators to
be identical. In case of R-App+l, for instance, we get from Γ `CS S1 S2 ≤ T1 T2 ∈ K2

where S //!
β>S1 S2 and T //!

β>T1 T2 by induction on the subtyping subgoals
Γ `O S1 ≤ T1 ∈ K1 →+ K2 and Γ `O S2 ≤ T2 ∈ K1. Thus we can derive with
transitivity, S-App, and S-App+:

Γ `O S1 ∈ K1 →
+ K2 Γ `O S2 ≤ T2 ∈ K1

Γ `O S1 S2 ≤ S1 T2 ∈ K2

Γ `O S1 ≤ T1 ∈ K1 →K2

Γ `O S1 T2 ≤ T1 T2 ∈ K2

Γ `O S1 S2 ≤ T1 T2 ∈ K2

The remaining application cases are similar, and R-Abs again by straightforward
induction, using well-kindedness of subderivations. �

C.10 Typing

Proof of Lemma 6.1 on page 105: By induction on the length of the typing de-
rivation. The case for T-Subsumption is immediate. In case of of a term variable
(rule T-TVar) the result follows the generation lemma for contexts (Lemma 5.4).
Arrow-elimination by straightforward induction, using the kinding rules for arrow-
types. The case for arrow-introduction is similar, using additionally the generation
lemma for contexts. The rules for All-types again by induction, using the generation
Lemma 5.8 for kinds and the kinding rules for universally quantified types. �

Section C.10 Typing 251

Proof of Corollary 6.3: On well-kinded inputs, the original subtyping relation is
equivalent to strong, cut-free derivations (soundness and completeness of 5.92 and
5.88). Proceed by induction on a derivation of Γ `CS S ≤ T1 → T2. Thus the result
follows by Lemma 5.78. �

Fact C.6

1a. If ` Γ ok , then Γ(x) is a minimal type of x in Γ.

1b. If 6` Γ ok , then x has no type in Γ.

2a. If T2 is a minimal type of e in Γ, x:T1, then T1 → T2 is a minimal type of
fun(x:T1)e in Γ.

2b. If e has no type in Γ, x:T1, then fun(x:T1)e has no type in Γ.

3a. If S is a minimal type for s in Γ and S↗!
Γ

//!
β>T1 → T2 and T is a minimal

type for t in Γ with Γ ` T ≤ T1 ∈ ?, then T2 is a minimal type for s t in Γ.

3b. If s or t has no type in Γ, or if S is a minimal type for s in Γ and T is a minimal
type for t in Γ but S↗!

Γ
//!
β>S ′ 6= T1 → T2, or if S↗!

Γ
//!
β>S ′ = T1 → T2

but Γ 6` T ≤ T1 ∈ ?, then s t has no type in Γ.

4a. If T2 is a minimal type of e in Γ, A≤T1:K1, then All(A≤T1:K1)T2 is a minimal
type of fun(A≤T1:K1)e in Γ.

4b. If e has no type in Γ, A≤T1:K1, then fun(A≤T1:K1)e has no type in Γ.

5a. If S is a minimal type for s in Γ and S ↗!
Γ

//!
β>All(A≤T1:K1)T2 and Γ `

U ≤ T1 ∈ K1, then [T/A]T2 is a minimal type for s U in Γ.

5b. If s has no type in Γ or if S is a minimal type for s in Γ but S↗!
Γ

//!
β>S ′ 6=

All(A≤T1:K1)T2 or if S ↗!
Γ

//!
β>All(A≤T1:K1)T2 but Γ 6` U ≤ T1 ∈ K1,

then s U has no type in Γ.

Proof of Theorem 6.6: By induction, using the previous facts. �

252 Chapter C Proofs for Polarized F ω
≤

