Polarized Higher-Order Subtyping

MARTIN STEFFEN

15. April 1999

Aalborg

Overview

Motivation

Motivation

Types & object-orientation
“F-omega-sub”
Decidability

Conclusion

Motivation

Typed programming

e ‘semantical’ phase of compilers:

lexer - parser ~——— type system ~- “oper. semantics”

regular context-free ? undecidable

e strong type safety:
well-typed programs are free of run-time errors

e preferably: statically checkable (= efficiency)

Types for OO

Parametric polymorphism

e polymorphic: a program can carry more than one type

e Example: swapping arguments

swap(z:N,y:B) = (y,z) : NxB—>BxN

e preferable: one generic swap-function for all types

swap : VX, Y. X XY - Y x X
swap X Y (x:X,1:Y) = (y,x)

=- parametric/universal polymorphism

Types for OO

Subtyping

Is S a subtype of T', then a program of type
S can be safely used in place where a program
of type T’ is expected

= order on the types (<)

e intuitively: subsets S C T, e.g. Int < Real.

e combination with universal polymorphism:

list_max : VX < Ord.(List of X) — X

e bounded universal quantification

Types for OO

Type operators

e Example 1. “List of_" is no type, only “List of N" is, e.g.

14,5,0] : List of N

= type operator = function from types to types

e Example 2: signature/method interface of objects

PointSig of X ={ getr : X — N,
setr : X - N— X }

Features (cont.)

Types for OO

polymorphism

— universal polymorphism
— subtyping

higher-order functions
encapsulation
inheritance

late /dynamic binding

Types for OO

Formal model: typed \-calculi

/ " \ e F: the polymorphic A-calculus [Girard, 1971]
o F. [Reynolds, 1974]
- e F: [Cardelli and Wegner, 1985] . ..
\ Fe 7 e F'“ [Girard, 1971]

= o FZ [Cardelli, 1990] [Mitchell, 1990] . . .

Types for OO

FZ as 00O-calculus

e [Hofmann and Pierce, 1995]: FZ2 as base calculus for OO-languages

— class-based
— single inheritance
— encapsulation (using)

provided:

signature/method interface = monotone type operator

PointSig = Fun(X).{ getr : X — N,
setr : X - N— X }

e class-inheritance = subtype relation between instances
e absence of binary methods

e ‘“inheritance of proofs” [Hofmann et al., 1998]

Types for OO

Example: more flexible typing

e Cf. [Duggan and Compagnoni, 1999] (for object type constructors)

e Example:

|f Int < Real,
then Array of Int < Array of Real 7

Types for OO

FZ = "the” calculus of higher-order subtyping?

full F¥ |
= o full FS“’: [Cardelli, 1990]
/ S~ e bounded operator abstraction:
polarization bounded op's. [Compagnoni and Goguen, 1997]
~ -

pure FS“’

10

What’s next

Types for OO

fix the syntax

axiomatize static properties

— when does program t carries type 17
— when is type S a subtype of type 17

formal deduction system

11

The formal system

Syntax of £

e three levels: programs, types and kinds

™~
o

r | fun(x:T)t | tt
fun(X <T)t | t

T — T
ANX <T)T | X
Top(K)
Fun(X:K)T | TT

* | K=K

functions
universal polymorphism, <

functions
universal polymorphism, <

type operators

kinds (= “type of types")

12

Judgments & rules

The formal system

e So far: syntax only (context-free), but no relationships

= Judgments (e.g.):

I'=t:T program t is of type T
I'=sS<T S is a subtype of T’

'-T7:K type T’ is of kind K

e Dependency: Subsumption

N+~t: 8 I'=s < T
I'"=t:T

(SuB)

13

FZ: subtype system

The formal system

e axiomatization of < by deduction rules

e two classes of <-rules

1. language-independent properties of <, e.g. transitivity.

I'rFS<U I'tU<T
'S <T

2. structural, e.g. for ——types

TIT <8 T8 < T

I FSl—>Sg < T71—T5

(S-TRANS)

(S-ARROW)

14

The formal system

F2 4+ monotonicity

e extension of F'¥ by monotonicity information =

‘ “polarized FZT |

|f Int < Real,

X < X FTX <T Xo

then List of Int < List of Real?

e all in all: 4 polarities = subkinding

I'ET € Ki =T Ky

15

Goal

Decidability

e Given: specification of the (sub—)type systems

e Needed: algorithm to check the judgments.

type system — type checker

16

Decidability

Where is the problem, then?

structural rules —, V ... straightforward (or almost ...)

P T, <8 T8 < T
r FSl—)Sz < T71—T5

but not

1. transitivity:

2. conversion

17

Decidability

Transitivity
e Goal: rule of transitivity is superfluous = “cut elimination”
U <51 5 < U T < U Uz <5
Sl—>SQSU1—)U2 U1—>U2§T1—>T2

T <U U <51 S < Uy Uy < Ty

T, < 5y Sy < T

Sl—>SQST1_>T2

e Problems:

— S-TRANS is not superfluous (known twist)
— destroys the normal form

18

Eliminate cut?

Decidability

e alas, S-TRANS is not superfluous:

o example:! assumeI'=... X <Y. Y < Z....

'-X<Y r-y <z

'-XxX<7

e solution: add a new rule
r+=1'(X) <T

'=X<T

Lone can have more complicated examples in F'%

19

Conversion

Decidability

e Goal: Using normal forms only

e instead of undirected conversion: reduction

SZBS/ TZ@T/ =8 <171

'S <T

e For instance: for arrow-types

S—>2—|—Sl—>52 T—>2—|—T1—>T2 T, <851 € %

FI_SQSTQE*

r=sS<Tex

20

Decidability

Additional problems

pol. application

kinding system subtype system

/

subsumption

typing

LX< Xy FTX < T X,
I T € K1—+1K>

break the direct interdependence of subtyping and kinding = “stratification”
termination
generalization of V-subtyping rule

“antisymmetry” of < (cf. [Compagnoni and Goguen, 1999])

21

Decidability

Results

Theorem. Subtyping I'= S <T: K and kinding I' = T : K for polarized F'¥ are
decidable. a

Proposition. Every well-typed program has a minimal type.

Corollary. Typing I' =t : T for polarized F'¥ is decidable.

22

Future work

Conclusion

e Model (for instance PER-model)

e decidability for the full calculus ([Compagnoni and Goguen, 1997]):

Fun(X< S)T instead of Fun(X: K)T

e local type inference (e.g. [Pierce and Turner, 1998] for F<, in Pict)

23

References

[Cardelli, 1990] Cardelli, L. (1990). Notes about FZ..
Unpublished manuscript.

[Cardelli and Wegner, 1985] Cardelli, L. and Wegner, P.
(1985). On understanding types, data abstraction and
polymorphism. Computing Surveys, 17(4):471-522.

[Compagnoni and Goguen, 1997] Compagnoni, A. and
Goguen, H. (1997). Typed operational semantics for
higher order subtyping. Technical Report ECS-LFCS-
97-361, Department of Computer Science, University
of Edinburgh. Submitted for publication in Information
and Computation.

[Compagnoni and Goguen, 1999] Compagnoni, A. and
Goguen, H. (1999). Antisymmetry for higher-order
subtyping. submitted for publication.

[Duggan and Compagnoni, 1999] Duggan, D. and
Compagnoni, A. (1999). Flexible subtyping with object
type constructors. submitted.

[Girard, 1971] Girard, J.-Y. (1971). Une extension de
I'interpretation de Godel a I'analyse, et son application
a I'élimination des coupures dans I'analyse et la théorie
des types. In Fenstad, J. E., editor, Second Scandinavian
Logic Symposium '71 (Oslo, Norway), number 63 in

Conclusion

Studies in Logic and the Foundations of Mathematics,
pages 63-92. North-Holland.

[Gunter and Mitchell, 1994] Gunter, C. A. and Mitchell,
J. C. (1994). Theoretical Aspects of Object-Oriented
Programming, Types, Semantics, and Language Design.
Foundations of Computing Series. MIT Press.

[Hofmann et al., 1998] Hofmann, M., Naraschewski, W.,
Steffen, M., and Stroup, T. (1998). Inheritance of
proofs. Theory and Practice of Object Systems (Tapos),
Special Issue on Third Workshop on Foundations
of Object-Oriented Languages (FOOL 3), July 1996,
4(1):51-69. An extended version appeared as Interner

Bericht, Universitat Erlangen-Nirnberg, IMMDVII-
5/96.
[Hofmann and Pierce, 1995] Hofmann, M. and Pierce,

B. (1995). A unifying type-theoretic framework for
objects. Journal of Functional Programming, 5(4):593—
635. Previous versions appeared in the Symposium
on Theoretical Aspects of Computer Science, 1994,
(pages 251-262) and, under the title “An Abstract
View of Objects and Subtyping (Preliminary Report),”
as University of Edinburgh, LFCS technical report
ECS-LFCS-92-226, 1992.

[Mitchell, 1990] Mitchell, J. C. (1990). Toward a typed
foundation for method specialization and inheritance.

24

In Seventeenth Annual Symposium on Principles of
Programming Languages (POPL) (San Fancisco, CA),
pages 109-124. ACM. Also in the collection [?].

[Pierce and Turner, 1998] Pierce, B. C. and Turner, D. N.

(1998). Local type inference. In Proceedings of POPL
'98. ACM. Also as Indiana University Technical Report

Conclusion

CSCI TR #493.

[Reynolds, 1974] Reynolds, J. (1974). Towards a theory
of type structure. In Robinet, B., editor, Collogue
sur la programmation (Paris, France), volume 19 of

Lecture Notes in Computer Science, pages 408-425.
Springer-Verlag.

25

