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Motivation

Typed programming

e ‘semantical’ phase of compilers:

lexer - parser ~——— type system ~- “oper. semantics”

regular context-free ? undecidable

e strong type safety:
well-typed programs are free of run-time errors

e preferably: statically checkable (= efficiency)



Types for OO

Parametric polymorphism

e polymorphic: a program can carry more than one type

e Example: swapping arguments

swap(z:N,y:B) = (y,z) : NxB—>BxN

e preferable: one generic swap-function for all types

swap : VX, Y. X XY - Y x X
swap X Y (x:X,1:Y) = (y,x)

=- parametric/universal polymorphism



Types for OO

Subtyping

Is S a subtype of T', then a program of type
S can be safely used in place where a program
of type T’ is expected

= order on the types (<)

e intuitively: subsets S C T, e.g. Int < Real.

e combination with universal polymorphism:

list_max : VX < Ord.(List of X) — X

e bounded universal quantification



Types for OO

Type operators

e Example 1. “List of_" is no type, only “List of N" is, e.g.

14,5,0] : List of N

= type operator = function from types to types

e Example 2: signature/method interface of objects

PointSig of X ={ getr : X — N,
setr : X - N— X }



Features (cont.)

Types for OO

polymorphism

— universal polymorphism
— subtyping

higher-order functions
encapsulation
inheritance

late /dynamic binding



Types for OO

Formal model: typed \-calculi

/ " \ e F: the polymorphic A-calculus [Girard, 1971]
o F. [Reynolds, 1974]
- e F: [Cardelli and Wegner, 1985] . ..
\ Fe 7 e F'“ [Girard, 1971]

= o FZ [Cardelli, 1990] [Mitchell, 1990] . . .



Types for OO

FZ as 00O-calculus

e [Hofmann and Pierce, 1995]: FZ2 as base calculus for OO-languages

— class-based
— single inheritance
— encapsulation (using )

provided:

signature/method interface = monotone type operator

PointSig = Fun(X).{ getr : X — N,
setr : X - N— X }

e class-inheritance = subtype relation between instances
e absence of binary methods

e ‘“inheritance of proofs” [Hofmann et al., 1998]



Types for OO

Example: more flexible typing

e Cf. [Duggan and Compagnoni, 1999] (for object type constructors)

e Example:

|f Int < Real,
then Array of Int < Array of Real 7



Types for OO

FZ = "the” calculus of higher-order subtyping?

full F¥ |
= o full FS“’: [Cardelli, 1990]
/ S~ e bounded operator abstraction:
polarization bounded op's. [Compagnoni and Goguen, 1997]
~ -

pure FS“’

10



What’s next

Types for OO

fix the syntax

axiomatize static properties

— when does program t carries type 17
— when is type S a subtype of type 17

formal deduction system
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The formal system

Syntax of £

e three levels: programs, types and kinds

™~
o

r | fun(x:T)t | tt
fun(X <T)t | t

T — T
ANX <T)T | X
Top(K)
Fun(X:K)T | TT

* | K=K

functions
universal polymorphism, <

functions
universal polymorphism, <

type operators

kinds (= “type of types")
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Judgments & rules

The formal system

e So far: syntax only (context-free), but no relationships

= Judgments (e.g.):

I'=t:T program t is of type T
I'=sS<T S is a subtype of T’

'-T7:K type T’ is of kind K

e Dependency: Subsumption

N+~t: 8 I'=s < T
I'"=t:T

(SuB)
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FZ: subtype system

The formal system

e axiomatization of < by deduction rules

e two classes of <-rules

1. language-independent properties of <, e.g. transitivity.

I'rFS<U I'tU<T
'S <T

2. structural, e.g. for ——types

TIT <8 T8 < T

I FSl—>Sg < T71—T5

(S-TRANS)

(S-ARROW)
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The formal system

F2 4+ monotonicity

e extension of F'¥ by monotonicity information =

‘ “polarized FZT |

|f Int < Real,

X < X FTX <T Xo

then List of Int < List of Real?

e all in all: 4 polarities = subkinding

I'ET € Ki =T Ky
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Goal

Decidability

e Given: specification of the (sub—)type systems

e Needed: algorithm to check the judgments.

type system — type checker
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Decidability

Where is the problem, then?

structural rules —, V ... straightforward (or almost ... )

P T, <8 T8 < T
r FSl—)Sz < T71—T5

but not

1. transitivity:

2. conversion
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Decidability

Transitivity
e Goal: rule of transitivity is superfluous = “cut elimination”
U <51 5 < U T < U Uz <5
Sl—>SQSU1—)U2 U1—>U2§T1—>T2

T <U U <51 S < Uy Uy < Ty

T, < 5y Sy < T

Sl—>SQST1_>T2

e Problems:

— S-TRANS is not superfluous (known twist)
— destroys the normal form
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Eliminate cut?

Decidability

e alas, S-TRANS is not superfluous:

o example:! assumeI'=... X <Y. Y < Z....

'-X<Y r-y <z

'-XxX<7

e solution: add a new rule
r+=1'(X) <T

'=X<T

Lone can have more complicated examples in F'%
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Conversion

Decidability

e Goal: Using normal forms only

e instead of undirected conversion: reduction

SZBS/ TZ@T/ =8 <171

'S <T

e For instance: for arrow-types

S—>2—|—Sl—>52 T—>2—|—T1—>T2 T, <851 € %

FI_SQSTQE*

r=sS<Tex
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Decidability

Additional problems

pol. application

kinding system subtype system

/

subsumption

typing

LX< Xy FTX < T X,
I T € K1—+1K>

break the direct interdependence of subtyping and kinding = “stratification”
termination
generalization of V-subtyping rule

“antisymmetry” of < (cf. [Compagnoni and Goguen, 1999])
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Decidability

Results

Theorem. Subtyping I'= S <T: K and kinding I' = T : K for polarized F'¥ are
decidable. a

Proposition. Every well-typed program has a minimal type.

Corollary. Typing I' =t : T for polarized F'¥ is decidable.
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Future work

Conclusion

e Model (for instance PER-model)

e decidability for the full calculus ([Compagnoni and Goguen, 1997]):

Fun(X< S)T instead of  Fun(X: K)T

e local type inference (e.g. [Pierce and Turner, 1998] for F<, in Pict)
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