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Summary

This habilitation thesis investigates observability for object-oriented, class-based
languages. Notably, we consider classes and heap-allocated objects, imperative
field update with aliasing, and a thread-based model of execution, both for a
single-threaded, deterministic, and for a multi-threaded language. The choice
of features is inspired by modern, object-oriented languages such as Java or
C#. Simplifying, the work answers the question:

What can be observed when programs are structured in classes?

Observational equivalence equates two program phrases when no context
exists able to differentiate between them. In the simplest case, typical for
sequential settings, the observer checks for convergence, or more generally,
reachability of a predefined point.

The contextual definition of progam equivalence is natural, straightforward,
and fundamental. It does not, however, answer what the meaning of a pro-
gram actually is. A denotational semantics explicitly assigns meaning to the
program phrases, and this gives a second answer as to when two programs are
equivalent, namely when they have the same denotation. The coincidence of
the two notions of equivalence is called full abstraction.

The problem of full abstraction has been recognized as fundamental for
the study of program semantics and, consequently, has been investigated in
various settings. The key to the contextual definition is that the context or ob-
server is programmed in the language itself. Hence, the language used and its
constructs influence the notion of observable equivalence and a, consequently,
fully abstract semantics gives insight into the nature of the language constructs
at hand. We take particular interest in classes as constructs.

So, returning to the above question, the simplified answer is:

With program and context given by classes, an approximation of the
heap-structure becomes part of the semantics.

This answer can be analyzed as follows:

Cross-border instantiation and heap abstraction: Separating component and
context classes make instantiation a possible interaction between com-
ponent and context. Consequently, the environment can create objects
which are unconnected to the rest of the component’s heap. Vice versa,
the component can create separate environment objects.
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This separation of the heap must be taken into account for a fully abstract
semantics and is the key semantical consequence of classes. The men-
tioned abstract representation of the heap-structure over-approximates
the heap in that it formalizes the potential acquaintance or connectivity
of objects: o1 →֒ o2 asserts that object o1 potentially contains a refer-
ence to o2. The potential connectivity partitions the heap into equiva-
lence classes, which we call cliques. This connectivity is dynamic, in that
new cliques of objects may be created via instantiation, and previously
separate cliques of objects may merge by communication.

Separate observers and order of events: If the environment or observer is split
into separate cliques of objects, it looses some power of observation, e.g.,
the absolute order of events interacting with the observers cannot be de-
termined. This gives rise to a tree-structured semantics.

Classes as generators of objects and replay: Classes are generators of objects.
Hence, two instances of a class are “identical up-to their identity”, i.e., they
have the same behavior up-to renaming. This, on the other hand, in-
creases the observational power of the environment in that, in one single
experiment, it can create more than one instance of a class, and observe
their behavior.

As mathematical vehicle for our analysis, we use a strongly-typed object
calculus extended by classes. We define a trace-based semantics where the ob-
servable semantics of a component is based on traces, i.e., sequences of calls
and returns exchanged with the environent. Traces are considered up to unob-
servability due to separate observers (giving rise to a tree-like representation),
up to renaming of object identities, and up to replay.

For the semantics, we establish full abstraction wrt. a may-testing preorder,
both in a single-threaded and a multi-threaded setting. This semantics is the first
such result for class-based languages and cross-border instantiation.

As usual, the completeness part of the full abstraction result —denotational
equivalence implies observational equivalence— is a constructive argument.
In our setting, the argument has the following form: Given a trace, construct a
program that exactly realizes this trace (up to the unavoidable imprecision of
the semantics). Interestingly, the constructions for the single-threaded and the
multi-threaded case are largely identical. The only significant additional pro-
gramming task in the concurrent setting is to assure mutual exclusion, basically
by implementing synchronized methods and a simple form of (non-reentrant)
monitors in the calculus.
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CHAPTER 1

Introduction

The first part of the thesis contains some introductory material, surveying some
related work, and trying to convey the main intuitions of the thesis, without
going into technical details.

1.1 Object-oriented programming . . . . . . . . . . . . . . . . . . 2

1.2 Object calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Semantics, observability, and full abstraction . . . . . . . . . 3

1.4 Components, objects, and classes . . . . . . . . . . . . . . . . 4

1.4.1 Cross-border instantiation and connectivity . . . . . . 5

1.4.2 Different observers and order of events . . . . . . . . . 7

1.4.3 Generators, replay, and determinism . . . . . . . . . . 11

1.5 Background material . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . 13



2 1.1 Object-oriented programming

1.1 Object-oriented programming

An established, major paradigm in programming and the design of program-
ming languages is object-orientation. Indeed so much so that someplace “mod-
ern programming language” and “object-oriented programming language” seem
to be taken as synonyms: There are old data-base languages, and there are
object-oriented ones, there are some failed design methods, and object-oriented
ones, etc.. . . Whether one agrees or not, the widespread acceptance of languages
such as C++ [133], Java [65], and C# [50] indicates that features offered by
those languages are helpful in programming and structuring real-life software.

Central for object-oriented languages is, not surprisingly, the notion of ob-
ject, a unit bundling together a state plus methods for querying and updating
the (encapsulated) state. Objects interact and “communicate” via method calls,
i.e., by message passing. They can be created or instantiated on demand and
have a unique identity, their “self”. They are heap-allocated and referenced by
their identity.

Structuring the program state in form of the heap into encapsulated ob-
jects does not imply that the code is structured into objects, as well. Indeed, it
is characteristic for many current object-oriented languages, in particular the
ones mentioned above, that the code is structured into classes, which serve as
blueprint for their instances, the objects.1 For a deeper comparison and discus-
sion of object-based vs. class-based languages see [37] and also [2].

1.2 Object calculi

In the same way as λ-calculi [26] form the core of sequential languages and
various process calculi [28] have been devised to capture the essence of com-
munication and concurrency, object calculi have been proposed as mathemat-
ical core of object-oriented languages.2 They allow to study concepts and core
features in a clean, mathematical way. Whereas λ-calculi are designed around
the notion of function, process algebras around the notion of process, objects
are the basic ingredients of object calculi. A standard reference is Abadi and
Cardelli’s [2]. See [40] for a recent account of object calculi dealing with paral-
lelism, concurrency, distribution, and mobility.

For our semantical study, we take one particular object calculus as starting
point, namely Gordon and Hankin’s concurrent object calculus from [62], also
used by Jeffrey and Rathke in [82]. Being interested in classes, we add the cor-
responding constructs, yielding a calculus offering the following key features:

• classes as structuring concept,

• objects as instances of classes,

• references and aliasing, and a

1Besides as generators of objects, classes often also play also the role of the type of its instance.
Whereas this can seem advantageous from the perspective of economy of concepts, arguments
against this identification can be put forward [41].

2The terms “object-based” and “object-oriented” are sometimes used to distinguish between
two flavors of languages with objects: object-oriented languages, in this manner of speaking, sup-
port classes and inheritance, whereas object-based languages do without classes. Instead, they
offer more complex operations on objects, for instance, general method update.
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• multi-threading model of concurrency.

We are especially interested exploring the semantical consequences of classes in
an object-oriented setting. To do so, we take a (standard) observational approach
to semantics.

1.3 Semantics, observability, and full abstraction

Semantics addresses the question of “what it means”. For computer science in
general (and logics and/or mathematics), and in particular for programming
languages, the answer is a mathematical one. Fundamental as the question
of meaning is,3 the answer is by no means unequivocal. Although, the dis-
tinction between the various semantical approaches is not clear-cut, one dis-
tinguishes roughly the following main flavors: Operational semantics sees a
program as something that “runs” or evolves and concentrates on the change
of configuration during execution. In particular, using inference rules to jus-
tify execution steps has proven a versatile, concise, and often straightforward
mathematical tool. This structural operational semantics (“SOS”) has been pro-
posed by Plotkin [117]. The denotational approach, in contrast, explains a pro-
gram phrase by mapping it to an independent mathematical domain. Finally,
the term “axiomatic” is sometimes used for semantics à la Hoare [72], where
the meaning of a program fragment is specified, in the form of pre- and post-
conditions and respective rules, by its effect on the program state

A natural approach is not to start from the (hard) question what the mean-
ing of a program or construct is, but what can be seen from the outside. Agree-
ment on what is observable immediately answers when two programs are equiv-
alent, namely, when no observation can tell them apart. So the client, from a
practitioner’s point of view, could insist: “I couldn’t care less what the meaning
of this new version of the component is, denotational or what have you, just
make sure that when I use it in my programs in place of the current implemen-
tation, which is known to work, nothing changes.” Important is the black-box
view, i.e., to look at the program from the outside; the observation “I can see
that the programmer used a variable x in line 1753” is not interesting.

The way observations are done should not depend on the eyes or the mind
of a human observer or some other additional definition. This leads to a contex-
tual definition, where the observer (or context) is itself a program in the given
language. Two programs P1 and P2 are equivalent if they can not be discrimi-
nated in the following sense:

for all contexts C[ ], letting C[P1] and C[P2] run, one sees no differ-
ence,

where C[P ] means the closed program consisting of P and the “rest” C[ ] (the
context, the observer, the environment).

Here, we have cheated, obviously, in two points: still, (1) what does it mean
to let a closed program C[P ] run, and (2) what does one see about C[P ] when it
runs. The setting, however, has now become considerably easier, as C[P ] is a

3Fundamental also in a mundane and practical sense: Without a reasonably clear account of
what the meaning of the program is, how should one be able to program, let alone reason about
the program, argue for its functionality, etc.?
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closed program, as opposed to P . For describing the behavior of C[P ], we can
choose whichever semantical description seems most appropriate or easiest;
this amounts to an operational semantics, in most cases. Also observability for
(2) becomes a matter of conscious choice or specification. The simplest possi-
ble external observation about a closed program is that it halts or converges,
written C[P ] ⇓. For sequential programs, termination is, indeed, the crucial ob-
servation; the resulting equivalence, known as “observable equivalence” has been
introduced by Morris [107] for a call-by-name λ-calculus.

For concurrent programs, the idea requires a small amount of refinement,
as termination is no longer a useful criterion to distinguish programs: Pro-
cesses or reactive programs are often not supposed to terminate. Instead, the
observer runs in parallel with the program under observation, typically inter-
acting via message exchange. From the outside it is seen whether both reach a
defined point (written C[P ] ⇓succ) witnessed by a predefined communication,
here called “success”. In a non-deterministic setting and when comparing two
processes wrt. their successfulness confronted with all possible observers, one
distinguishes necessary and potential success, leading to must, resp., may test-
ing equivalence. We write⊑may for the corresponding may pre-order (one pro-
gram yields success together with each observer that reports success together
with the second program). The important notion of testing equivalence has
been introduced by de Nicola and Hennessy [108].

The contextual approach gives a convincing, abstract, definition of when
two programs are equivalent, but does not tell what actually the denotation
of a program is. The quantification over all possible contexts gives the con-
textual definition its strength and simplicity. It makes it hard, however, to ap-
ply, when proving equivalence of two programs. For that purpose, an explicit
denotation is better. Given both an implicit, contextual, and an explicit, de-
notational semantics, their coincidence is called full abstraction [101][116]: Two
programs are observationally equivalent iff they have the same denotation. Let
us write ≡obs for observational and ≡D for denotational equivalence. The de-
notational semantics is an abstraction of the actual program, as it ignores in-
ternals of the code; for instance, representational concomitants —the fact that
variable x appears at line 1753, the names of local variables— as well as in-
ternal execution steps will not be part of the semantics but abstracted. With
the observational definition as reference, the denotational semantics is sound,
if P1 ≡D P2 implies P1 ≡obs P2. The inverse implication, hence “full” abstrac-
tion, corresponds to completeness. Having a fully abstract semantics, and not
just a sound one, is useful since it allows to reason abstractly over programs,
i.e., all properties of the program which are valid wrt. the notion of observa-
tion can be derived from the denotational semantics. Starting with Milner and
Plotkin, the issue of full abstraction has been addressed from many angles and
for many different language features. As mentioned, we investigate in this
work an object-oriented calculus, in particular stressing the roles of classes. We
refer to Section 6.2 in the conclusion for a discussion of related work in the area.

1.4 Components, objects, and classes

The notion of component is well-advertised as structuring concept for software
development. Even if there is little agreement on what constitutes a “compo-
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nent” in concrete software engineering terms, one thing is for sure: Compo-
nents are intended for composition. This corresponds to the observational point
of view, as discussed: Two components are observably equivalent, when no
observing context can tell them apart. At the core is therefore the separation
of a program into the component under observation and the environment or
context or observer,4 both programmed in classes.

This section presents on an intuitive level the consequences of incorporat-
ing classes into the observational set-up. Leaving aside sub-classing and sub-
typing, a class is nothing else than a generator of objects, i.e., it serves as a
blueprint for its instances.

1.4.1 Cross-border instantiation and connectivity

The observational set-up separates classes into component and environment
classes. Hence, not only calls and returns are exchanged at the interface be-
tween component and environment, but instantiation requests, as well.

If, for instance, the component creates an instance of an environment class,
the interaction between the component and the newly created object can en-
tail observable effects in the future, as the code of the object is externally pro-
vided and therefore this interaction belongs to the externally visible observer-
program behavior. Hence, instances of environment classes belong to the en-
vironment, and, dually, those of internal classes to the component. To be more
concrete, we illustrate the idea using Java-syntax.

Example 1.4.1. Consider the following piece of Java-code:

Listing 1.1: External class

pub l ic c l a s s P { / / component
pub l ic s t a t i c void main ( S t r i n g [ ] arg ) {

O x = new O ( ) ;
x .m( 4 2 ) ; / / c a l l t o t h e i n s t a n c e o f O

}
}

c l a s s O { / / e x t e r n a l o b s e r v e r
pub l ic void m( i n t x ) {

/ / body o f m
}

}

Class P is the component and O the environment or observer.5 The program instan-
tiates one object of class O and calls its method m, and passes an integer as argu-
ment. The program fragment P is considered as black box, but O is in the hand of
the experimenter which can use it for observations. The success-report from the may-
testing set-up, mentioned shortly in Section 1.3, can be given here simply by print-
ing ‘‘success’’ to standard-out. Clearly, the observer can see in the mentioned

4In a game theoretical approach to semantics, one also speaks of player and opponent [18].
5For concreteness sake, we use actual Java-syntax. In the example, the program starts in the

static main method of class P . The calculus later will not have static methods. In general, the
examples in this section are given as concrete, executable Java-programs or fragments of programs.
In the text we allow ourselves to refer to variables or identifiers of the form x1 . . . by x1 . . . . The
connection should be clear in all cases.
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sense whether P calls m, since it can fill in the method body by an appropriate print-
instruction. Likewise, it can observe the value that P sends, in this case 42. Conse-
quently, the call ofm, including the integer argument, belongs to P ’s external behavior,
and furthermore, the instance of the external class O belongs to the observer.

Even if the instance of the environment class belongs to the environment,
as well, the reference to the new external object is kept at the creator for the
time being. So if the component instantiates two objects o2 and o3 of the en-
vironment, the situation looks informally as in Figure 1.1, where the dotted
bubbles indicate the scope (the “area” within which the object is known) of o2,
respectively of o3, after creation.

o1

o2

o3

c1 c2 c3
component environment

Figure 1.1: Instances of external classes

Clearly, in that situation, the component can control whether the two object
can contact each other, irrespective of the implementation of the environment.
An exact representation of the semantics must account for the inability of o2
and o3 to be in contact. More generally, the semantics must contain a repre-
sentation of which object can possibly be in contact with others, i.e., an over-
approximation of the heap’s connectivity. Sets of objects which can possibly be
in contact with each other form therefore equivalence classes of names —we
call them cliques— and the semantics must represent them. New cliques can
be created, as new objects can be instantiated without contact to others, and
furthermore cliques can merge, when the component leaks the identity of a
member of one clique to a member of another.

Thus, the component semantics must keep track of which objects of the
environment are connected. The component has, of course, by no means full
information about the complete system; after all, it can at most trace what hap-
pens at the interface, and the objects of the environment can exchange infor-
mation “behind the component’s back”. Hence, the component conservatively
over-approximates the potential acquaintance of objects in the environment
and makes worst-case assumptions concerning the proliferation of knowledge,
which means it assumes that:

1. Once a name is out, it is never forgotten.

2. If there is a possibility that a name is leaked from one environment object
to another, this will happen.
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1.4.2 Different observers and order of events

That the observer may fall into separate cliques of unconnected objects has im-
plications for what can be observed. First of all, the absolute order of events
cannot be determined, as separate observer cliques are not able to coordinate.
For instance, the environment or observer, split into the cliques [o1] and [o2]
on the right-hand sides of the three scenarios of Figure 1.2 cannot distinguish
between the three variants of the component on the respective left-hand sides,
as explained below. Note that the clique structure is dynamic, since commu-

[o1]

[o2]

Comp. Env.

(a)

[o1]

[o2]

Comp. Env.

(b)

[o1]

[o2]

Comp. Env.

(c)

Figure 1.2: Order of interaction

nication can merge previously separate observer cliques. After merging, the
now joint clique, indicated by the big “bubble” containing [o1] and [o22] in Fig-
ure 1.3, can coordinate and thus observe the order of further interaction, but, in
general, the order of past interaction cannot be reconstructed. In other words,
in Figure 1.3, the three components, i.e., the components on the left-hand side
of Figure 1.3(a) – 1.3(c) respectively, are observably equivalent.

Comp. Env.

[o1]

[o2]

[o1, o2]
(a)

Comp. Env.

[o1]

[o2]

[o1, o2]
(b)

Comp. Env.

[o1]

[o2]

[o1, o2]
(c)

Figure 1.3: Order of interaction and merging

The following example illustrates the phenomenon using Java-code. To
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mimic the may-testing framework, we adopt as notion of observation whether
or not the observer together with the program prints out the single and prede-
fined message "success"6

Example 1.4.2 (Order of events). Consider Listing 1.2, where the component creates
two observers,7 kept in x1 and x2.

Listing 1.2: Order of events

pub l ic c l a s s P { / / component
pr ivate s t a t i c i n t x = 0 ;
pub l ic s t a t i c void main ( S t r i n g [ ] arg ) {

O x1 = new O ( ) ; O x2 = new O ( ) ;
x1 . m1 ( ) ;
x2 . n ( ) ;
x1 . m2 ( ) ;

}
}

c l a s s O { / / env ironm ent
pub l ic void m1 ( ) { }
pub l ic void n ( ) { }
pub l ic void m2 ( ) {

System . out . p r i n t l n ( ” s u c c e s s ” ) ;
}

}

The interaction with the first observer consists of callingm1 andm2, and with the sec-
ond one of calling method n. As the two observer instances are separate, the component
P as shown cannot be distinguished from a variant P ′, where the calls x1.m1() and
x2.n() are executed in swapped order. Especially it cannot be distinguished by the
observing environment given by class O.

Note that the phenomena discussed are a consequence of fact that the lan-
guage is class-based. In an object-based setting and thus in absence of separate
cliques of objects, they are not present.

The observer is programmed using classes, the observation —here the print-
ing of “success”— is done by instances of the observer classes. Note that hav-
ing more than one independent observer, especially having more than one in-
stance of the observer classes, does not mean that all have to report success;
only the first one counts. Consequently, interactions with separate observers
cannot be observed in a single experiment and interactions which do not con-
tribute to the success-reporting observer, may “fall under the table”. Consider
Figure 1.4(a): The component C1 on the left interacts with an observer which
falls into two cliques, the second of which reports success. Replacing C1 by
C2 in Figure 1.4(b), which interacts shorter with the first observer clique, does
not change the success of the experiment with the given observer. To pose the
question more generally: For any possible observing environment O, if C2 to-
gether with O can report success each time success can be reported by C1 with
O, what does this imply for C1, i.e., given C1 and C1 ⊑may C2, what do we

6More precisely, we additionally assume that this message is unique, in that no one else than
the observer can produce it, i.e., the program cannot fake success.

7Unlike in Example 1.4.5, the fact that we use here a single class O as template for the two
observers is accidental and due to the fact that it allows more compact code; nothing would change,
if we used two classes, instead.
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succ

Comp. Env.

(a)

succ

Comp. Env.

(b)

⊥

Comp. Env.

(c)

Figure 1.4: Two observers

know about C2? Let us call s1 the global trace of C1 at the interface with the
observers, with

s1 = s11 s
2
1 ,

where s11 denotes the projection of the trace onto the first observer clique and
s21 onto the second. The exact nature of the single interactions, whether they
are calls or returns, for instance, is of no import here.

Continuing the discussion with s21, the observer can force the component to
perform this local trace, as it is able report success only if it has seen the s21 in
its entirety. In other words: The observer as depicted in Figure 1.4(a) can force
the second component C2 to perform s21. The interaction with the first observer
clique does not contribute to the success.

This means that a component C2 instead ofC1 which shows shorter interac-
tion with the first observer and performs the same communication trace with
the second observer as did C1 (cf. Figure 1.4(b)) is equally successful. More-
over, the observer programmed in such a way to enforce the behavior of C1

from Figure 1.4(a) cannot prevent the situation from Figure 1.4(b) from being
successful. Of course, there is, among infinitely many others, another observer,
that attaches the success to the trace s11, which forces C2 to perform s11, as well.
The crux is, that the observer from Figure 1.4(a) cannot enforce this part of the
trace in this run.

This seems to indicate that the traces interacting with different observer
cliques are independent, i.e., that the semantics of the component can be cap-
tured by sets of projections onto the cliques. This seems plausible insofar as
it seems impossible to pass information from, in our case, the first observer
clique to the second one, which reports success. There is, however, one piece
of “information” passed from the first clique to the second: The fact that the
interaction with the first clique was successfully completed, thereby allowing
the component to proceed with s21 that leads to success!

Figure 1.4(c) should clarify the problem. Here, C2 insists on continuing its
interaction s11 by one further communication with the first observer. The ob-
server reacts by terminating the thread. Alternatively, it could diverge for the
same effect, since the notion of observation does not “see” divergence or ter-
mination and the effect is the same: The success-reporting state is not reached.

The next two examples illustrate the discussion using program code.
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Example 1.4.3. Consider the following piece of Java-code.

Listing 1.3: Different observers
pub l ic c l a s s P1 { / / component

pub l ic s t a t i c void main ( S t r i n g [ ] arg ) {
O x1 = new O ( ) ; x1 . m1 ( ) ;
O x2 = new O ( ) ; x2 . m2 ( ) ;

}
}

c l a s s O { / / env ironm ent
pub l ic void m1 ( ) { }
pub l ic void m2 ( ) {

System . out . p r i n t l n ( ” s u c c e s s ” ) ;
}

}

The main program as instance of class P1 instantiates two instances of class O, and
calls method m1 on the first instance and m2 on the second. In this case the observer,
consisting of two separate instances ofO, can observe whetherm2 is called by inserting
the corresponding print-instruction into the method body, as shown in the code.

Alternatively, the environment could observe whether m1 is called by changing O
in thatm1 reports success. Note that the notion of observation does not allow to ensure
that both behaviors, the interaction viam1 and the one via m2, occur in the same run.
Also, if P1 is replaced by a P2 which invokes x1.m1() two times before calling x2.m2(),
the observer can distinguish P1 from P2 by programming m2 in such a way that the
second invocation blocks.

Example 1.4.4 (Non-determinism). If P1 of Example 1.4.3 is replaced by one that
either calls m1 or m2 but not both (cf. P2 of Listing 1.4) then, if an observer can report
success for P1, then it can report success also for P2, since each successful experiment
needs to report only one success.

Listing 1.4: Non-determinism
pub l ic c l a s s P2 { / / component

pr ivate s t a t i c i n t x = 0 ;
pr ivate s t a t i c j a v a . u t i l . Random gen = new j a v a . u t i l . Random ( ) ;
pub l ic s t a t i c void main ( S t r i n g [ ] arg ) {

c h o o s e ( ) ;
i f ( x ==0) {

O x1 = new O ( ) ;
x1 . m1 ( ) ; }

e l s e
{O x2 = new O ( ) ;
x2 . m2 ( ) ; }

}
pub l ic s t a t i c void c h o o s e ( ) {

x=gen . n e x t I n t ( 2 ) ; return ; } / / x ∈ {0, 1}
}

c l a s s O { / / env ironm ent
pub l ic void m1 ( ) { }
pub l ic void m2 ( ) {

System . out . p r i n t l n ( ” s u c c e s s ” ) ;
}

}

One reason is the chosen notion of observation, where only the possible occurrence
of a single success-message is considered. It it further worth mentioning that the
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inverse implication does not hold: There exists an observer which may be successful in
combination with the non-deterministicP2, but will invariantly fail withP1: This is an
observer which, as in Listing 1.3, reports success in method m2, but diverges or blocks
or terminates in method m1 (cf. also Figure 1.4(a) and the subsequent figures).

1.4.3 Classes as generators of objects, replay, and determinism

Classes are generators for objects, and two instances of a class are “identical up
to their identity”, i.e., they have the same behavior up to renaming. If the trace
of a component contains a certain behavior of an object (or more generally of
a clique of objects), then it is unavoidable that the component exhibits an ad-
ditional trace where the equivalent behavior is shown by a second instance of
the object (resp., object clique): Each behavior can be “replayed” on a fresh
instance. With the possibility of cross-border instantiation, the component can
create more than one equivalent instance of its observer, which performs equiv-
alently.

Instantiation of classes into objects is a well-known example of the more
general feature of modern languages of genericity, a mechanism to dynamically
create programming language “entities”. The simplest examples of genericity
are allocation of reference cells and name creation (e.g. Lisp’s gensym func-
tion). The prototypical (concurrent) language for name creation is of course
the π-calculus [103, 125]. In a sequential, functional setting, Pitt’s and Stark’s
ν-calculus [115] extends a typed λ-calculus by name generation facilities. More
background on the ν-calculus can be found in Stark’s thesis [130] and [129].
The core in those models is the possibility to create a fresh reference or name
different from all other names generated so far. For objects, however, the set-
ting gets a bit more complex: Instantiation generates a new reference or name,
but it is attached to the state and the code of the instance. So names are not just
unstructured, basic entities of the calculus, as in the π-calculus, but part of the
identities of objects with “behavior”.

Consider Figures 1.5(a) and 1.5(b). The second one resembles Figure 1.3(a)
before the merge. This time, however, we assume, that the interaction s′ with
the first clique is a prefix of the longer s up to renaming.

Comp. Env.

s

(a) Scenario s

Comp. Env.

s′

s

(b) Replay

Comp. Env.

s′

s

(c) Merged

Figure 1.5: Replay and merging
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If s is a possible behavior of the system, then so is scenario 1.5(b): The s′

is nothing else than (a prefix) of the s, apart from renaming. One can use the
argument also in the reverse direction: If 1.5(b) is possible, then so is 1.5(a); in
other words, both behaviors are equivalent.

If afterwards the observers are merged (cf. Figure 1.5(c)), this scenario clearly
differs from the one where the interaction s′ with the formerly separate clique
is missing. Unlike in the situation of Figure 1.3, where the order of the pre-
viously separate cliques could not be enforced in retrospect, the merging here
allows to compare the different identities (but of course still not the order).

Note that object-based calculi, for instance the one in [82], do feature in-
stantiation. The difference is that the code is not arranged in classes. As a con-
sequence, cross-border instantiation is not possible in that setting, i.e., there is
no need to account for object connectivity, and furthermore, the issue of two
instances of a class having the same behavior as in Figure 1.5 is not present.
One can think of instantiation in the object-based setting to follow as what is
sometimes called singleton pattern [54].

Example 1.4.5 (Replay). Consider the following code fragment, where the environ-
ment class O (not shown) is instantiated into an object confronted with three method
calls:

Listing 1.5: Replay(a)
pub l ic c l a s s P1 { / / component

pub l ic s t a t i c void main ( S t r i n g [ ] arg ) {
O x = new O ( ) ;
x . m1 ( ) ; x . m2 ( ) ; x . m3 ( ) ;

}
}

Now replace P1 by P2, which procures itself a second instance of O and interacts with
it using the same methods calls in the same order (actually only a prefix):

Listing 1.6: Replay(b)
pub l ic c l a s s P2 { / / component

pub l ic s t a t i c void main ( S t r i n g [ ] arg ) {
O x = new O ( ) ; O y = new O ( ) ;
y . m1 ( ) ; y . m2 ( ) ;
x . m1 ( ) ; x . m2 ( ) ; x . m3 ( ) ;

}
}

As the second instance kept in variable y is identical to the first one except for its
identity, there is no observable difference between P1 and P2: If m1 or m2 is used
to report success in the situation with P1, it will be able to do so also with P2 and
conversely. If m3 is used to report success (after having seen interaction with m1 and
m2, for instance), then again this does not help distinguishing P1 and P2

Now, when bringing the two observers into contact, as shown in Listing 1.7, then
the (now merged) observer can compare what it has seen so far and could for instance
distinguish P3 as shown in the code with a variant where the method calls y.m1() and
y.m2() are left out.

Listing 1.7: Replay(c)
pub l ic c l a s s P3 { / / component

pub l ic s t a t i c void main ( S t r i n g [ ] arg ) {
O x = new O ( ) ; O y = new O ( ) ; / / ” same ” obs . t w i c e
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y . m1 ( ) ; y . m2 ( ) ;
x . m1 ( ) ; x . m2 ( ) ; x . m3 ( ) ;
x . merge ( y ) ; / / c o n t a c t

}
}

The possibility to create more than one instance from a class has a further
impact when dealing with deterministic programs in the single-threaded set-
ting. In a multi-threaded setting as for instance in [6], the programs are non-
deterministic because of concurrency and race conditions. If a class is instan-
tiated twice, its instances must behave “the same” up to renaming, i.e., when
confronted with the same input, show the same reaction. For instance, the
shorter trace s′ of Figure 1.5(b) is not only possible, given s, but the left envi-
ronment clique of 1.5(b) can do nothing else than what does the one on the right,
when stimulated by the same input from the component. The scenario used en-
vironment cliques for illustration, but the same arguments apply to component
cliques, as well.

1.5 Background material

I assume some acquaintance with semantics of programming languages, es-
pecially operational semantics. A standard reference for various object calculi
is Abadi and Cardelli’s book [2]. Excellent general references for semantics
of programming language are [122] and [105]. Object-oriented languages in
particular, with an emphasis on typing issues, are treated in [112] and [34]. A
less theoretical survey about object-orientation is presented in [35], and about
concurrency-issues in connection with Java in [93]. The monograph [47] pro-
vides a compendium of the theory of concurrency and Hoare-style verification
of concurrent programs.

1.6 Structure of the thesis

The main technical part is split into two parts. In Part I develops the semantics
in a non-concurrent, i.e., sequential, single-threaded setting. Later, in Part II,
we extend syntax, semantics, and the results to include concurrency in the form
of multi-threading. Part III contains concluding remarks and a discussion of
related work and possible extensions. Part IV in the appendix contains those
proofs omitted from the main body of the thesis.
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CHAPTER 2

A class-based calculus

In this chapter, we present a class-based calculus, basically an extension of a
typed object calculus by classes. Later in Part II, we extend syntax, seman-
tics, and the results to include concurrency in the form of multi-threading, but
many of the semantical aspects, informally discussed in the introduction, al-
ready appear in the sequential setting. After a short introduction, Sections 2.2,
2.3, and 2.4 contain the syntax, the type system, and the operational seman-
tics of the language for closed systems. After making precise the notion of
observation in Section 2.5, we present the semantics for open systems, i.e., for
programs interacting with the environment in Section 2.6.4.
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2.1 Introduction

In this part we present a simple, single-threaded object-calculus with classes,
which serve as templates for new objects. At an abstract level, the caluclus
includes core features of prominent object-oriented languages such as Java [65]
or C# [50], in particular it supports instantiation from classes, method calls,
and updateable object references with aliasing. The syntax is chosen in such a
way that it can later be reused as a special case of the multi-threaded syntax.

2.2 Syntax

The syntax of the class-based calculus is more or less a syntactic extension of
the object calculus from [62, 82]. Compared to an object-based framework,
the basic change is the addition of classes. As in the class-based setting we do
without general method update, we distinguish between methods and fields.

2.2.1 Types

The calculus is typed; also the operational semantics will be applied to well-
typed program fragments, only. Besides base types B if wished —we will al-
low ourselves integers, booleans, . . . , in illustrating examples— the type none

represents the absence of a return value. The name n of a class serves as the
type for the instances of the class. Additionally we need for the type sys-
tem as auxiliary constructs the type or interface of unnamed objects, written
[l1:U1, . . . , lk:Uk] and the type for classes, written [(l1:U1, . . . , lk:Uk)]. It is as-
sumed throughout that the labels li are all different in a type and that the order
in which the labels occur does not play a role. We use furthermore the meta-
mathematical notation T.l to pick the type in T associated with label l, i.e., T.l
denotesU , when T = [. . . , l:U, . . .] and analogously for T = [(. . . , l:U, . . .)]. Only
the types B and n are allowed to appear at the “user level”, i.e., in a closed pro-
gram given as a set of classes. Concerning the types U of methods, we write
Unit → T for T1 × . . . × Tn → T when n = 0, i.e., in particular for fields. The
grammar is shown in Table 2.1.

T ::= B | none | [l:U, . . . , l:U ] | [(l:U, . . . , l:U)] | n
U ::= T × . . .× T → T

Table 2.1: Types

2.2.2 Classes, objects, and components

A program is given by a collection of classes and objects, together with an ac-
tive entity, the thread, where the empty collection is denoted by 0. A class n[(O)]
carries a name n and defines the implementation of its methods and fields,
whereas objects n[n, F ] contain only fields plus a reference to the correspond-
ing class. One difference between an object and a class concerns the nature of
its name or identifier. Class names are the literals introduced when defining
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the class; unlike object names, they may not be hidden using the ν-binder and
may not be sent around.1 Object names, on the other hand, are first-class citi-
zens in that they can be stored in variables, passed to other objects as method
parameters, making the scoping dynamic, and especially they can be created
freshly by instantiating a class. There are no constant object names, at least
not as values; the only way to get a new reference is instantiation.2 The par-
allel composition of C1 and C2 is denoted by C1 ‖ C2. Note that in case of
classes and objects, which are passive entities, the word “parallel” is not to be
interpreted as referring to concurrent activity. The parallel composition of ob-
jects, classes (and later) multiple threads represents the heap of objects plus the
collection of available classes plus the concurrently running threads. As the
algebraic properties for the combination of objects, threads, and classes (e.g.,
associativity and commutativity), we use the same symbol ‖ for combining all
of them. ν(n:T ).C (read “new name n of type T in C”) denotes the component
where the name n is hidden from the outside, as it is new and thus different
from all names outside. The ν acts as binder for the name n with C as its cur-
rent scope i.e., the components are considered up-to renaming of their bound
names. The scope is dynamic, especially communication can enlarge the scope.
The mechanism of dynamic scoping and scope extrusion is taken from the π-
calculus, where the names here refer to the the dynamically generated entities
of the calculus, i.e., references to objects (and later names of threads).

A method ς(n:T ).λ(x1:T1, . . . , xk:Tk).t, often abbreviated as ς(n:T ).λ(~x:~T ).t,
contains the code of the method body abstracted over the formal parameters
of the method. The name parameter n plays a specific role: It is the “self” pa-
rameter bound to the identity of the object upon method call. The type system
later assures that the type T of the self-parameter refers to the class containing
the method. The body itself is a sequential piece of code, i.e., a thread.

At the level of components, one thread of code is being executed, the active
entity of a running program. In particular, objects are passive. To distinguish
the running thread from the threads being kept in the method bodies of the
classes, we denote it by ♮〈t〉. Unlike the other entities at component level, it is
unnamed.3 We assume a single thread present and active from the start, either
inside the component or in the environment. In Java, for instance, this initial
thread is put into one specific method of one specific class, the static main-
method of the main class; C# chooses Main as the name of that method.

A thread t is either a value v, or a sequence of expressions, where the let -
construct is used for local declarations and sequencing; stop stands for the
deadlocked or terminated thread. Besides threads, expressions comprise con-
ditionals (including a definedness-check for fields) and method calls, further-
more object creation via class instantiation and the creation of new threads.
Values, finally, are either variables x or names n (and true, false, 0, 1, . . ., when

1Relaxing the first restriction would not change the theory much. To allow hiding classes inside
ν-binders, one would have to relax the corresponding typing rules accordingly (the T-NU-rules
from Table 2.3). Without the possibility to communicate class names, the scopes for class names
would be static, and their scope would never escape across the interface. When additionally send-
ing class names one needs to extend scope extrusion to class names.

2Fields in classes contain ⊥c indicating that the field is yet uninitialized. But ⊥c is not a value.
3Or rather: We use ♮ as constant symbol. Later, in the presence of multithreading, different

threads are distinguished by name. Moreover, when threads can be created dynamically, their
names will incorporated into the dynamic scoping mechanism, which in the single-threaded set-
ting is used only for object names.
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convenient). For the names, we will generally use o for objects and c for classes
(plus their syntactic variants o1, o

′, . . ., resp., c2, c̃, . . .). The abstract syntax is
displayed in Table 2.2.

C ::= 0 | C ‖ C | ν(n:T ).C | n[(O)] | n[n, F ] | ♮〈t〉 component
O ::= F,M object
M ::= l = m, . . . , l = m method suite
F ::= l = f, . . . , l = f fields
m ::= ς(n:T ).λ(x:T, . . . , x:T ).t method
f ::= ς(n:T ).λ().⊥c | fv field
fv ::= ς(n:T ).λ().v defined field
t ::= v | stop | let x:T = e in t thread
e ::= t | if v = v then e else e | if undef (v.l) then e else e expression
| v.l(v, . . . , v) | v.l := fv | new n

v ::= x | n value

Table 2.2: Abstract syntax

We further use the following syntactic abbreviations and conventions. The
sequential composition t1; t2 of two threads stands for let x:T = t1 in t2, where
x does not occur free in t2. Instance variables or fields are seen as specific
methods, namely of empty parameter list. Besides values v, we allow as con-
tent of a field the “value” ⊥c, abbreviating ς(x:T ).λ().⊥c, which represents
an undefined field value of type c. We abbreviate l = ς(n:T ).λ().v, resp.,
l = ς(n:T ).λ().⊥c by l = v, resp., l = ⊥c. Field access v.l() is written shorter as
v.l.

The important distinction between methods and fields is the one between
“code” and “data”, i.e., fields do not have side-effects. An operation available
for fields, only, is field update v.l ⇐ ς(n:T ).λ().v′, which we abbreviate by
v.l := v′; we do not allow general method update v.l ⇐ ς(o:T ).λ().t, as often
featured by object-based calculi. Note that it is not possible to set a field back
to undefined, using v.l := ⊥c, since ⊥c is not a value. As usual and as for
the corresponding types, we assume for the method suites and the “record” of
fields, that the used labels are all different, and that the order in which they are
listed, is irrelevant.

A further distinction between the syntactical elements of the calculus is be-
tween static and dynamic code. Static code is what is allowed to appear in
classes, i.e., it forms the syntactical material the user can work with, whereas
the (additional) dynamic code describes the entities created at run-time, in par-
ticular references to objects.4 Especially, a field of type c as declared in classes
contains ⊥c, as this is the only well-typed, static syntactic construct available.
For simplicity we do not introduce ⊥ or ⊥c as proper value, side-stepping the
question whether one can pass the undefined reference as argument, or what
happens when invoking a method on ⊥, etc.5

4[21], e.g., distinguish user vs. run-time syntax in their operational semantics of Java with re-
mote method invocation.

5Indeed, the latter point cannot be completely avoided: It is possible, to invoke a method using
a yet uninitialized field. As there is no operational rule covering that, the semantics just stops.
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As said, we distinguish between fields, which are included into the ob-
jects and are updateable, and methods, which remain in the class, introducing
fields syntactically as sub-category of methods. For simplicity, we adopt the
convention, that when writing c[(F,M)] for a class, F contains the fields as all
members of the required form, and the proper methods M none. It would be
straightforward to generalize this scheme, i.e., to declare syntactically some
zero-parameter members as fields and others as proper methods, which re-
main in the classes. We additionally disallow (read and write) references to
fields across object boundaries.6

2.3 Type system

The type system or static semantics characterizes the well-typed programs. The
system is layered into typing for components (in the sense of the corresponding
clause in the abstract syntax of Table 2.2), and, at the second layer, rules for the
syntactic sub-constituents of the components (objects, methods, expressions,
. . . ). The two parts of the type system work on judgments of the forms

∆ ⊢ C : Θ (2.1)

for components (Table 2.3) and judgments of the form

Γ; ∆ ⊢ t : Θ Γ; ∆ ⊢ e : Θ . . . (2.2)

for threads, expressions, . . . in Table 2.4. The type system for components from
Table 2.3 recursively “calls” the one for the sub-constituents from Table 2.4,
when interpreting the rules in a goal-directed manner, i.e., interpreting the
rules a the specification of a recursive type checking procedure.7 The type sys-
tem is rather standard and also quite similar to the one in [82].

Table 2.3 defines the typing at the level of components or global configu-
rations, i.e., for “sets” of objects and classes, all named, together with a single
thread. As said, the typing judgments are of the form ∆ ⊢ C : Θ, where ∆ and
Θ are finite mappings from names to types. In the judgment, ∆ plays the role
of the typing assumptions about the environment, and Θ the commitments of
the configuration, i.e., the names offered to the environment. Sometimes, the
words required and provided interface are used to describe the dual roles. Any-
way, ∆ contains at least all external names referenced by C and Θ mentions the
names offered by C.

We call a context ∆ = n1:T1, . . . nk:Tk well-formed, written ⊢ ∆, if all names
ni are different and if furthermore the following holds: If ∆ = ∆1, o:c,∆2, then
∆ = ∆′

1, c:[(l1:U1, . . . , lm:Um)],∆′
2, i.e., if ∆ contains the binding for an object, it

must provide also the type of the corresponding class. The order of the bind-
ings in a context does not play a role. Considering ∆ as a finite function from
names to types, we write ∆(n) for the type of n as declared in ∆, i.e., ∆(n) = T

6The paper [82] is slightly more general in this respect: It only forbids write-access —including
method update— across component boundaries, introducing the semantic notion of write closed-
ness. The theory does not depend on this difference. Therefore we content ourselves here with the
simpler syntactic restriction which completely disallows field access across object boundaries.

7Apart from allowing a simple form of subtyping, the derivation system is goal-directed and
can indeed be understood as specification of a deterministic, recursive function, with the conclu-
sion as the argument and the premises as the recursive call.
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when ∆ = ∆1, n:T,∆2. Furthermore we write dom(∆) for the domain of ∆. Al-
ternatively we write ∆ ⊢ n : T for ∆(n) = T and ∆ ⊢ n for n ∈ dom(∆). When
writing ∆1,∆2 or synonymously ∆1 + ∆2, we mean the disjoint combination
of ∆1 and ∆2. The definitions are used correspondingly for commitment con-
texts Θ. We call a pair ∆ and Θ of assumption and commitment context to be
well-formed, written ∆ ⊢ Θ, when ∆ and Θ are well-formed, and furthermore
the domains of ∆ and Θ are disjoint. We do not formalize the (straightforward)
formation rules for well-formed contexts.

The empty component 0 is well-typed in any context and exports no names
(cf. rule T-EMPTY). Two configurations in parallel can refer mutually to each
other’s commitments, and together offer the union of their names (cf. rule
T-PAR). It will be an invariant of the operational semantics that the identities
of parallel entities are disjoint. Therefore, Θ1 and Θ2 in that rule are merged
disjointly, likewise for ∆,Θ1, resp., ∆,Θ2.

The ν-binder hides the bound name (cf. the rules T-NUi and T-NUe). The
two variants of the rule distinguish whether the bound object name o is an
instance of an internal or an external class. As the instance of a class always be-
longs to the part of the system, where its class resides, the new name is added
in the first case (cf. rule T-NUi) to the commitment context; otherwise, to the
assumption context. In both cases, the ν-construct does not only introduce a
local scope for its bound name but asserts something stronger, namely the ex-
istence of a likewise named entity. This highlights a difference of let-bindings
for variables and the introduction of names via the ν-operator: The construct
to introduce and create names is the new -operator, which opens a new local
scope and a named component running in parallel. We call the fact that ob-
ject references of external objects can be introduced but instantiated only later
when first used, lazy instantiation; see Section 2.4 for their operational behavior.

Let-bound variables are stack-allocated and checked in a stack-organized
variable context Γ (see Table 2.4 below). Names created by new are heap al-
located and thus checked in a “parallel” context (cf. again the assumption-
commitment rule T-PAR). The instantiated object o[c, F ] will be available in the
exported context Θ by rule T-NOBJ. The rules for the named entities introduce
the name and its type into the commitment (cf. rules T-NOBJ and T-NCLASS).
The premise ; ∆, c:T ⊢ [(O)] : c, resp., ; ∆, o:c ⊢ [F ] : c of T-NCLASS, resp.,
of T-NOBJ is a judgment of the form covered in Table 2.4, with the variable
context Γ empty.

Since the active thread does not have a name and cannot be referred to
in the programming language, the presence of ♮〈t〉 does not extend the con-
text. Rule T-THREAD also requires that the thread t in ♮〈t〉 is well-typed in its
premise.8 In the single-threaded setting, the name of the sole thread ♮ is treated
as constant and is not covered or checked by the type system. Throughout, we
assume, that a component contains one thread, only. In particular, we disal-
low by convention the parallel composition of ♮〈t1〉 ‖ ♮〈t2〉; the type system
does not prevent that. In the multithreaded setting, threads will carry names

8For the thread in T-THREAD, the type none can be introduced only by stop. Compound
threads may also carry none , e.g., the expression if v1 = v2 then stop else stop, but ultimately,
the type none is introduced only by stop. Since none is not a user type, in particular variables
cannot be declared as carrying the type none . Later, two augmentational pieces of syntax will be
introduced, which may also carry none .
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and will have a type, to distinguish thread names from names of objects, for
instance, and in that setting, it is the type system that prevent n〈t1〉 ‖ n〈t2〉 (but
of course allown1〈t1〉 ‖ n2〈t2〉 for two different threads), in the same way as
the type system here disallows, for instance, o[c1, F1] ‖ o[c2, F2]. In the simpler
setting here, we decided not to burden the type system with this task.

The last rule is a rule of subsumption. We make use of a simple form of sub-
typing: We allow that an object, respectively, a class contains more members
than the interface requires. This corresponds to width subtyping. Note, how-
ever, that each object has exactly one type, its class. A name context ∆2 imposes
less restrictions than a context ∆1, written ∆1 ≤ ∆2, if it contains fewer classes
and if the types of the common names are in subtype relation. Weakening
thus allows to hide classes. Note that we do not allow weakening wrt. object
names. Technically, the development could do without hiding of classes. We
nonetheless allows this flexibility, as it allows an intuitive definition of a closed
component: C is closed, when being typeable in () ⊢ C : ().

Definition 2.3.1 (Subtyping and context weakening). The relation ≤ on types is
defined as identity for all types except for class interfaces where we have:

[(l1:T1, . . . , lk:Tk, lk+1:Tk+1, . . .)] ≤ [(l1:T1, . . . lk:Tk)] .

For well-formed name contexts ⊢ ∆1 and ⊢ ∆2, we write in abuse of notation ∆1 ≤
∆2, if the following holds. For all class names c, if ∆2 ⊢ c, then ∆1 ⊢ c. For object
names, ∆1 ⊢ o iff. ∆2 ⊢ o. For all names n with ∆2 ⊢ n, we have ∆1(n) ≤ ∆2(n).

The ≤ relations are obviously reflexive, transitive, and antisymmetric. The
subtyping relation on the interface types allows two forms of hiding via the
subsumption rule, namely hiding of classes and hiding of methods of a public
class.

T-EMPTY

∆ ⊢ 0 : ()

∆,Θ2 ⊢ C1 : Θ1 ∆,Θ1 ⊢ C2 : Θ2

T-PAR

∆ ⊢ C1 ‖ C2 : Θ1, Θ2

∆ ⊢ C : Θ, o:c Θ ⊢ c : [(. . .)]
T-NUi

∆ ⊢ ν(o:c).C : Θ

∆, o:c ⊢ C : Θ ∆ ⊢ c : [(. . .)]
T-NUe

∆ ⊢ ν(o:c).C : Θ

; ∆, c:T ⊢ [(O)] : c
T-NCLASS

∆ ⊢ c[(O)] : (c:T )

∆ ⊢ c : [(TF , TM )] ; ∆, o:c ⊢ [F ] : c
T-NOBJ

∆ ⊢ o[c, F ] : (o:c)

; ∆ ⊢ t : none

T-THREAD

∆ ⊢ ♮〈t〉 : ()

∆′ ≤ ∆ Θ ≤ Θ′ ∆ ⊢ C : Θ
T-SUB

∆
′
⊢ C : Θ

′

Table 2.3: Static semantics (components)

The typing rules of Table 2.4 formalize typing judgments for threads and
objects and their syntactic sub-constituents. Besides assumptions about the
names of the environment kept in ∆ as before, the typing is done relative to
assumptions about occurring free variables. They are kept separately in a vari-
able context Γ, a finite mapping from variables to types.



24 2.3 Type system

The typing rules are rather straightforward and in many cases equivalent to
the ones from [82]. Different from the object-based setting are the ones dealing
with objects and classes. To formulate the open semantics, the syntax will be
augmented later by two auxiliary constructs, namely denoting a thread return-
ing a value to the outside, resp., a thread being blocked and waiting for a return
value from the outside. Thus, for open systems, Table 2.4 will be extended by
rules dealing with the new constructs (cf. Table 2.9).

The similar rules T-CLASS and T-OBJ deal with checking the members of
a class, resp., the fields of an object, using the interface type of the respective
class c. Furthermore it is checked whether the type of self-parameters si of
the members equals the class c in which the members reside. Members (fields
or methods of a class or fields of an object) are dealt with by rule T-MEMB.
Recall the meta-mathematical notation T.l from Section 2.2.1, use to select the
entry labeled l from a type of the forms [(l1:U1, . . . , lk:Uk)] or [l1:U1, . . . , lk:Uk].
The body t of the member is checked with the contexts extended by the formal
parameters. Note that the self-parameter extends the name context ∆, whereas
the formal parameters x1, . . . , xk extend Γ. The interface type of the class the
member belongs to is consulted to extract the expected return type, the T ′ in
the rule, against which the body t is checked.

The type of a method call is the return type of the method being called, and
the rule T-CALL checks compliance of the actual parameters v1, . . . , vk against
the expected argument types. The rule applies to methods and for field lookup.
A field update v.l := v′ invoked on an object reference leaves the class type of
the object unchanged. The corresponding rule T-FUPDATE checks availability
of the field being updated (indirectly by stipulating that T.l is defined) and fur-
thermore that the new value v′ matches the type as declared for the field.9 The
expression new c carries the name c as type, provided c is the name of a class (cf.
rule T-NEWC). The rules for local variable declarations, for conditionals, and
for testing for definedness of a reference are fairly standard (cf. rule T-LET,
T-COND, and T-UNDEF). Note that the type rule for the let-binding extends
the variable context Γ, not the name context ∆. The terminated thread stop

has any type (see rule T-STOP), highlighting the fact that control never reaches
the point after stop. The last three rules deal with the basic syntactic constructs,
variables, names, and the special “constants”⊥c. For variables and names they
type is looked up in the respective context, i.e., in Γ resp., in ∆.

Example 2.3.2. Assume a class c[(l = ς(s:c).λ().v)] with one member labeled l. The
corresponding type derivation looks as follows, abbreviating T1 = [(l : U2)] = [(l :
Unit→ T2)]:

; ∆, c:T1 ⊢ c : T1

; ∆, c:T1, s:c ⊢ v : T2 ; ∆ ⊢ c : T1

T-MEMB

; ∆, c:T1 ⊢ ς(s:c).λ().v : U2

T-CLASS

; ∆, c:T1 ⊢ [(l = ς(s:c).λ().v)] : c
T-NCLASS

∆ ⊢ c[(l = ς(s:c).λ().v)] : (c:T1)

Example 2.3.3. Assume the following abbreviations: Let [(F,M)] = [(O)] = [(l1 =
f1, . . . , lk′ = fk′ , lk′+1 = mk′+1, . . . , lk = mk)] and furthermore T = [(TF , TM )] =

9Remember that later we abbreviate v.l ⇐ ς(s:c).λ().v′ by v.l := v′. This is not a restriction,
type-wise; v.l ⇐ ς(s:c).λ().s can be equivalently expressed by v.l := v (and not by v.l := s, of
course).
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Γ; ∆ ⊢ c : [(l1:U1, . . . , lk:Uk)] Γ; ∆ ⊢ mi : Ui mi = ς(si:c).λ(~xi:~Ti).ti

T-CLASS

Γ; ∆ ⊢ [(l1 = m1, . . . , lk = mk)] : c

Γ; ∆ ⊢ c : [(l1:U1, . . . , lk:Uk)] Γ; ∆ ⊢ fi : Ui fi = ς(si:c).λ().v⊥

T-OBJ

Γ; ∆ ⊢ [l1 = f1, . . . , lk = fk] : c

Γ, x1:T1, . . . , xk:Tk; ∆, n:c ⊢ t : T ′ Γ; ∆ ⊢ c : T T = [(. . . , l:T1 × . . . × Tk → T ′, . . .)]
T-MEMB

Γ; ∆ ⊢ ς(n:c).λ(x1:T1, . . . , xk:Tk).t : T.l

Γ; ∆ ⊢ v : c Γ; ∆ ⊢ c : [(. . . , l:T1 × . . . × Tk → T, . . .)] Γ; ∆ ⊢ v1 : T1 . . . Γ; ∆ ⊢ vk : Tk

T-CALL

Γ; ∆ ⊢ v.l(v1, . . . , vk) : T

Γ; ∆ ⊢ v : c Γ; ∆ ⊢ c : T Γ; ∆ ⊢ ς(s:c).λ().v′ : T.l
T-FUPDATE

Γ; ∆ ⊢ v.l ⇐ ς(s:c).λ().v′ : c

Γ; ∆ ⊢ c : [(T )]
T-NEWC

Γ; ∆ ⊢ new c : c

Γ; ∆ ⊢ e : T1 Γ, x:T1; ∆ ⊢ t : T2

T-LET

Γ; ∆ ⊢ let x:T1 = e in t : T2

Γ; ∆ ⊢ v1 : T1 Γ; ∆ ⊢ v2 : T1 Γ; ∆ ⊢ e1 : T2 Γ; ∆ ⊢ e2 : T2

T-COND

Γ; ∆ ⊢ if v1 = v2 then e1 else e2 : T2

Γ; ∆ ⊢ v : c Γ; ∆ ⊢ c : [(. . . , l:() → T ′, . . .)] Γ; ∆ ⊢ e1 : T2 Γ; ∆ ⊢ e2 : T2

T-UNDEF

Γ; ∆ ⊢ if undef (v.l) then e1 else e2 : T2

T-STOP

Γ; ∆ ⊢ stop : T

Γ(x) = T
T-VAR

Γ; ∆ ⊢ x : T

∆(n) = T
T-NAME

Γ; ∆ ⊢ n : T

Γ; ∆ ⊢ c : [(T )]
T-UNDEF

Γ; ∆ ⊢ ⊥c : c

Table 2.4: Static semantics (2)



26 2.4 Operational semantics

[(l1:T1, . . . , lk:Tk)]. Additionally we write o:c:T for the two bindings o:c, c:T in the
contexts.

; o:c:T ⊢ c : T
; o:c:T ⊢ mi : Ti . . . ; o:c:T ⊢ fj :Tj

T-CLASS

; o:c:T ⊢ [(F, M)] : c
T-NCLASS

o:c ⊢ c[(F, M)] : (c:T )

; o:c:T ⊢ c : T
; o:c:T ⊢ f ′

j : Tj
T-OBJ

; o:c:T ⊢ [F
′
] : c

T-NOBJ

c:T ⊢ o[c, F
′
] : (o:c)

T-PAR

⊢ c[(F, M)] ‖ o[c, F
′
] : (o:c:T )

In the premises of rule T-CLASS and T-OBJ, it is additionally checked that the methods

mi and the fields fj , resp., f ′
j are of the form ς(s:c).λ(~x:~T ).t. In the leaves of the

derivation, j ranges over 1, . . . , k′ (fields) and i over k′ + 1, . . . , k (proper methods).

Remark 2.3.4 (Polymorphism). The type system is not monomorphic, is allows a
simple form of subtyping, more precisely width subtyping as far as the “interface
types” of classes are concerned. There is no subclassing, however. This allows to hide
methods and classes from outside use: A class or an object can have more methods
than advertised in the commitment context, and, furthermore, there might be inter-
nal classes. This will later be needed in the completeness proof, which involves the
implementation of a given behavior. The implementation uses certain methods for ob-
servation, which must not be visible from outside the component. Note that we do
not have hiding of classes via the ν-binder. The rule of subsumption T-SUB, however,
allows to hide component classes from the environment.

2.4 Operational semantics

Next the operational semantics for closed systems in the form of a small-step
semantics formalizing the component internal steps. Later, we add rules which
additionally describe the component-environment interaction (Section 2.6.4).

2.4.1 Internal steps

The internal steps are given in Table 2.5, where we distinguish between conflu-

ent steps, written , and other internal transitions, written
τ
−→.10

The first 7 rules deal with the basic sequential constructs, all as  -steps.
The basic evaluation mechanism is substitution. The corresponding rule RED

requires that the leading let-bound variable of a thread can be replaced only by
values. This means the redex (if any) is uniquely determined within the thread,
rendering the reduction strategy deterministic. The LET rule re-organizes two
nested let-expression, putting the expression e1 at the front position to be re-
duced next. As a side condition in that rule, x1 must not occur free in t, to
avoid variable capture. The four rules for conditionals branch appropriately
depending on the result of the comparison of two values, resp., depending on
the result of the definedness check on a field. Rule COND2 has as side condi-
tion, that v1 6= v2 . The stop-thread terminates for good, i.e., the rest of the
thread will never be executed (cf. rule STOP).

10In the single-threaded setting, the distinction is not too important, as at any time at most one
reduction step is enabled. It nevertheless enhances the understanding to conceptually distinguish
side-effect free steps from those that may lead to race conditions when executed in the presence of
other threads.
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♮〈let x:T = v in t〉 ♮〈t[v/x]〉 RED

♮〈let x2:T2 = (let x1:T1 = e1 in e) in t〉 

♮〈let x1:T1 = e1 in (let x2:T2 = e in t)〉 LET

♮〈let x:T = (if v = v then e1 else e2) in t〉 ♮〈let x:T = e1 in t〉 COND1

♮〈let x:T = (if v1 = v2 then e1 else e2) in t〉 ♮〈let x:T = e2 in t〉 COND2

♮〈let x:T = (if undef (ς(s:c)λ().⊥c′) then e1 else e2) in t〉 

♮〈let x:T = e1 in t〉 COND
⊥
1

♮〈let x:T = (if undef (ς(s:c)λ().v) then e1 else e2) in t〉 

♮〈let x:T = e2 in t〉 COND
⊥
2

♮〈let x:T = stop in t〉 ♮〈stop〉 STOP

c[(F,M)] ‖ ♮〈let x:c = new c in t〉 

c[(F,M)] ‖ ν(o:c).(o[c, F ] ‖ ♮〈let x:c = o in t〉) NEWOi

c[(O)] ‖ o[c, F ′] ‖ ♮〈let x:T = o.l(~v) in t〉
τ
−→

c[(O)] ‖ o[c, F ′] ‖ ♮〈let x:T = O.l(o)(~v) in t〉 CALLi

o[c, F ′] ‖ ♮〈let x:T = o.l() in t〉
τ
−→

c[(O)] ‖ o[c, F ′] ‖ ♮〈let x:T = F ′.l(o)(~v) in t〉 FLOOKUP

o[c, F ] ‖ ♮〈let x:T = o.l ⇐ ς(s:c).λ().v in t〉
τ
−→

o[c, F.l ⇐ ς(s:c).λ().v] ‖ ♮〈let x:T = o in t〉 FUPDATE

Table 2.5: Internal steps

The step NEWOi describes the creation of an instance of a component in-
ternal class c[(F,M)], i.e., a class whose name is contained in the configuration.
Note that instantiation is a confluent step. The fields F of the class are taken as
template for the created object, and the identity of the object is new and local —
for the time being— to the instantiating thread; the new named object and the
thread are thus enclosed in a ν-binding. Rule CALLi treats an internal method
call, resp., a field look-up. In the step, O.l(o)(~v) stands for t[o/s][~v/~x], where

the method suite [O] equals [. . . , l = ς(s:c).λ(~x:~T ).t, . . .]. The rule FLOOKUP

does with field look-up and works similarly with the difference that it does not
refer to the class, but the fields of the object to extract the value. In the rule,
F ′.l(o)() in the steps stands, in analogy to the method look-up in CALLi, for
⊥c[o/s] = ⊥c, resp., for v[o/s], where [c, F ′] = [c, . . . , l = ς(s:c).λ().⊥c, . . .] (if
the field is yet undefined), resp., [c, F ′] = [c, . . . , l = ς(s:c).λ().v, . . .]. Unlike
the situation for CALLi, there will later be not an external variant of the rule
for field look-up in the semantics of open systems, since we do not allow field
access across component boundaries. The same restriction will hold for field
update in rule FUPDATE for field update, where

[c, ( l1 = f1, . . . , lk = fk, l = ς(s:c).λ().v′ ).l ⇐ ς(s:c).λ().v]
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0 ‖ C ≡ C

C1 ‖ C2 ≡ C2 ‖ C1 (C1 ‖ C2) ‖ C3 ≡ C1 ‖ (C2 ‖ C3)

C1 ‖ ν(n:T ).C2 ≡ ν(n:T ).(C1 ‖ C2)

ν(n1:T1).ν(n2:T2).C ≡ ν(n2:T2).ν(n1:T1).C

Table 2.6: Structural congruence

stands for [c, l1 = f1, . . . , lk = fk, l = ς(s:c).λ().v]. We write shorter o[c, F ] ‖

♮〈let x:T = o.l := v in t〉
τ
−→ o[c, F.l := v] ‖ ♮〈let x:T = o in t〉 for the update.

Note also that the steps given by FUPDATE, FLOOKUP, and CALLIi are
τ
−→-

steps, not a confluent ones. Note further that instances of a component class
invariantly belong to the component and not to the environment. This means
that an instance of a component class resides after instantiation in the com-
ponent, and named objects will never be exported from the component to the
environment or vice versa; of course, references to objects may well be exported.

The reduction relations from above are used modulo structural congruence,
which captures the algebraic properties of parallel composition and the hiding
operator. The basic axioms for ≡ are shown in Table 2.6 where in the fourth
axiom, the name n does not occur free in C1. The congruence relation is im-
ported into the reduction relations in Table 2.7. Note that all syntactic entities
are tacitly understood modulo α-conversion. We write =α for equality up to
renaming, and =⇒ for the reflexive and transitive closure of the internal steps
from Table 2.7.

2.5 Notion of observation

We next fix a (standard) notion of semantic equivalence or rather semantic im-
plication —one program allows at least the observations of the other. Being put
into an observing context, the component, together with the context, reaches a
defined point, which counts as the successful observation. A context C[ ] is a
program “with a hole”. In our setting, the hole is filled with a program frag-
ment consisting of a component C in the syntactical sense, i.e., consisting of the

C ≡ ≡ C′

C  C′

C  C′

C ‖ C′′  C′ ‖ C′′

C  C′

ν(n:T ).C  ν(n:T ).C′

C ≡
τ
−→ ≡ C′

C
τ
−→ C′

C
τ
−→ C′

C ‖ C′′ τ
−→ C′ ‖ C′′

C
τ
−→ C′

ν(n:T ).C
τ
−→ ν(n:T ).C′

Table 2.7: Reduction modulo congruence
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parallel composition of (named) classes, named objects, and the thread, and
the context is the rest of the programs such that C[C] gives a well-typed pro-
gram. More precisely, we assume cb:barb ⊢ C[C] : (), where cb is an external
class with a particular success reporting method and the type barb abbreviates
[(succ : Unit→ none)]. A component C strongly barbs on cb, written C ↓cb

, if

C ≡ ν(~n:~T , b:cb).C
′ ‖ ♮〈let x:none = b.succ() in t〉 (2.3)

for some C′. Furthermore, C barbs on cb, written C ⇓cb
, if it can reach a point

which strongly barbs11 on cb, i.e., C =⇒ C′ ↓cb
. The observable preorder [68] is

defined similar as in [82]. Since the programs are deterministic, the distinction
between a “may” and a “must” success disappears.

Definition 2.5.1 (Observable preorder). Assume ∆ ⊢ C1 : Θ and ∆ ⊢ C2 : Θ.
Then ∆ ⊢ C1 ⊑obs C2 : Θ, if

(C1 ‖ C) ⇓cb
implies (C2 ‖ C) ⇓cb

(2.4)

for all Θ, cb:barb ⊢ C : ∆. We will apply the definition only on components in their
initial state, only, i.e. consisting only of classes plus potentially one thread.

Technically, the definition of barbing slightly deviates from the one used
in [82]. For the observation, there must be some visible piece of information
shared between the program and the outside world, otherwise, there is nothing
to observe. Whereas [82] uses an external object for this purpose, in our setting
an external class is more appropriate, but the choice is not very crucial as far as
the resulting theory is concerned.

2.6 External behavior

A component exchanges information with the environment via calls and returns
(cf. Table 2.8). Note that there are no separate labels for object instantiation: Ex-
ternally instantiated objects are created only at the point when they are actually
accessed for the first time, which we call “lazy instantiation”. Note further that
the identity of the caller is not part of the label.

Definition 2.6.1. Given a label ν(Φ).γ′ where Φ is a name context, i.e., a sequence
of single (n:T ) bindings (whose names are assumed all disjoint, as usual) and where
γ′ does not contain any binders, we call γ′ the core of the label. As we communicate
only object names via scope extrusion but neither thread names nor class names, Φ
contains only bindings of the form o:c. We refer with ⌊γ⌋ to the core of a label γ. We
write fn(γ) and bn(γ) for the free, resp., bound (object and thread names of label γ,
and names(γ) refers to all object names; in the multithreaded setting later, we include
also thread names in this set.

Note that class names, which occur in the label as the types of object names,
are not counted among the names carried by a label; we are interested only in
the names carried as argument in the label, not their types (and the calculus
does not allow to communicate class names). A call label is abbreviated by γc

and a return label by γr. The definitions are used analogously for send and
receive labels.

11The notion of barbing was first introduced for the π-calculus in [104]. For an early citation for
a “testing” based semantics in the context of the λ-calculus see [107].
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γ ::= 〈call o.l(~v)〉 | 〈return(v)〉 | ν(n:T ).γ basic labels
a ::= γ? | γ! receive and send labels

Table 2.8: Labels

Remark 2.6.2 (Lazy instantiation). As mentioned, (cross-border) object creation
is not a separate label. However, when considering incoming communication, for in-
stance, not just identities referring to environment objects are received by scope extru-
sion, but also new references referring to component objects. As reaction, the objects
are created and thus the ν-syntax for those objects can be understood as label indicating
an instantiation request.

2.6.1 Augmentation

To formulate the external semantics, we augment the syntax by two additional
expressions,

o1 blocks for o2 and o2 returns v to o1 .

The first one denotes a method body in o1 waiting for a return from o2, and
dually the second expression returns v from o2 to o1. The corresponding typing
rules are shown in Table 2.9. Note that the return expression is of arbitrary type,
reflecting the fact that the control flow never reaches the point after the return
(see also the typing for stop, for which the same argument applies, and which
also carries any type).

T-BLOCK

Γ; ∆ ⊢ o1 blocks for o2 : T

Γ; ∆ ⊢ v : T
T-RETURN

Γ; ∆ ⊢ o2 returns v to o1 : T ′

Table 2.9: Static semantics (3)

Furthermore, we augment the syntax of the method definitions, such that
method calls to external methods are preceded by an annotation of the caller;

i.e., instead of ς(self :c).λ(~x:~T ).(. . . x.l(~y) . . .) we write

ς(self :c).λ(~x:~T ).(. . . self x.l(~y) . . .) , (2.5)

where x is of type c of an external class.
One particular thing we point out in connection with the treatment of stop

in connection with the block-return augmentation: The internal rule STOP for
the deadlocked thread is interpreted on the new syntax insofar that it does not
remove a os returns v to or-statement. I.e., the thread of the form ♮〈let x:T =
stop in t1; o1 returns x to o2; t2〉 does not reduce to (a) ♮〈stop〉, but to (b) ♮〈let x:T =
stop in o1 returns x to o2; t2〉 and deadlocking there, assuming the t1 does not
contain a further return-statement, i.e., assuming that t1 is the rest of the top-
most stack-frame, terminated by the shown return. Basically, we do not reduce
indiscriminatingly to stop, as later we want to distinguish the situation (a) from
(b); situation (a) indicates that the thread has started at the component side and
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the thread has been return to the component, with all calls worked off. In con-
trast, (b) means, the execution of an incoming call has hit stop and got stuck,
i.e., there is at least one pending outgoing return, expected by the environment
which is blocked waiting for the answer, which will, however, never occur.

2.6.2 Connectivity contexts and cliques

An important condition in the rules of the external semantics concerns which
combinations of names can occur in communications. This phenomenon does
not occur in the object-based setting and merits a closer discussion before we
embark on the formalization in the following section. See also Section 1.4.

For a simple example, assume the component creates an instance of an en-
vironment class. Similar to the internal steps as given in Table 2.5, this will
be done by the thread of the component executing a new -statement, with the
difference that the instantiated class does not occur inside the component as
in rule NEWOi, but is listed in the assumption context ∆. With the class as
part of the environment and thus in the hand of the observer, it can be used to
make observations via its instances. Consequently, its instance belongs to the
environment, as well, and communication from and to this object will be part
of the interface behavior. Even if occurring likewise at the interface, however,
the instantiation itself cannot be used by the context to make any observations
about the component. This is a consequence of two facts. First, our language
does not support constructors which, in the hand of the environment, could
be used to make distinguishing observations. Secondly, exchanging a class by
another and thus exchanging its instances does not make a difference in the
overall behavior unless the component communicates with the instances; the
pure existence of one object or another does not make any difference.12

Assume now that the component creates two instances of an external class
or of two different external classes; the class types of the two objects do not
play a role. As just explained, the objects named o1 and o2, say, are themselves
part of the environment. Is it possible in this situation that a communication
occurs where o1 issues a call to an object of the component with o2 as argument?
Clearly the answer is no, unless the component has given away the identity of
o2 to o1, since otherwise there is no means that o1 could have learned about the
existence of o2! Therefore, such a communication must be deemed illegal. (Cf.
also the informal discussion in the introductory section, especially Figure 1.1).

Therefore, for an exact representation, the semantics must keep track of which
identities the component gives away to which object to exclude situations as
just described.

For the book-keeping, a well-typed component thus takes into account the
relation of objects from the assumption context ∆ amongst each other, and the
knowledge of objects from ∆ about those exported by the component, i.e.,
those from Θ. The connectivity contexts E∆ and EΘ overapproximate the heap
structure, i.e., the pointer structure of the objects among each other, divided
into the component part and the environment part.

12The attentive reader will have noticed that there is another assumption underlying the non-
observability of instantiation, namely that there is no bound on the number of objects in the system,
i.e., there is no “out-of-heapspace” situation.
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Definition 2.6.3 (Connectivity contexts). The semantics of an open component is
given by labeled transitions between judgments of the form ∆;E∆ ⊢ C : Θ;EΘ ,
where ∆ and Θ are name contexts containing name bindings of the form n:T . The
connectivity context E∆, a relation on object names, satisfies

E∆ ⊆ ∆× (∆ + Θ) , (2.6)

and dually EΘ ⊆ Θ× (Θ+∆). We write o1 →֒ o2 (“o1 may know o2”) for pairs from
these relations.

Note that the class names do not play a role the connectivity information;
their names are global knowledge. In analogy to the name contexts ∆ and Θ,
E∆ expresses assumptions about the environment, and EΘ commitments of
the component. For the formulation of the semantics itself, the commitments
EΘ are not really needed: It is unnecessary to advertise the approximated EΘ-
commitments to exclude impossible behavior with the code of the component
at hand. Nevertheless, a symmetric situation is advantageous, for instance, if
we come to characterize the possible traces of a component independent from
its implementation (cf. Section 3.3.2).

As mentioned, the component has to over-approximate via E∆ which en-
vironment objects are potentially connected, and, symmetrically, for its own
objects via EΘ. The worst case assumptions about the actual situation is repre-
sented using the reflexive, transitive, and symmetric closure of the →֒-relation:

Definition 2.6.4 (Acquaintance). Given ∆, Θ, and E∆, we write⇌ for the reflex-
ive, transitive, and symmetric closure of the →֒-pairs of objects from the domain of
∆, i.e.,

⇌, (→֒↓∆×∆ ∪ ←֓↓∆×∆)∗ ⊆ ∆×∆ , (2.7)

where we write shorter ∆ × ∆ for dom(∆) × dom(∆). Similarly, we write Θ + ∆
for dom(Θ) + dom(∆), etc.

We also need the union⇌ ∪⇌; →֒ ⊆ ∆× (∆+Θ), for which we will write⇌→֒
(in the definition, “;” denotes relational composition).

Note that we close →֒ concerning environment objects, only, but not wrt.
objects at the interface, i.e., the part of →֒ ⊆ ∆×Θ. As judgment, we use

∆;E∆ ⊢ o1 ⇌ o2 : Θ , respectively, ∆;E∆ ⊢ o1 ⇌→֒ o2 : Θ . (2.8)

For Θ, EΘ, and ∆, the definitions are applied dually. To make explicit whether
we are interested in the clique structure of the component or the environment,
we add sometimes ∆, resp., Θ as subscript to the ⊢-symbol, i.e., write ∆;E∆ ⊢∆

o1 ⇌ o2 : Θ and ∆;E∆ ⊢∆ o1 ⇌→֒ o2 : Θ for the judgments of equation (2.8),
and use ⊢Θ for the dual situation. Strictly speaking, the subscript is not needed;
whether component or environment connectivity is meant is determined by the
class type of o1 whether Θ ⊢ o1 or whether ∆ ⊢ o1 (and only one of the two
conditions can apply). Note also that the subscript in ⊢∆, resp., of ⊢Θ, is just
a “binary flag”, the ∆ and Θ is not meant as the contexts mentioned in the
judgments of equation (2.8).

The fact that we close in the judgment on the right-hand side of equation
(2.8) wrt. environment, only, but not wrt. component objects can be understood
as follows. The transitivity and symmetry of ⇌ expresses the fact that the
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corresponding code is abstracted away. Equation (2.8) takes the perspective of
the component, in that it is the code of the environment which is considered
absent and which is abstractly represented by E∆.

As illustration: If, for three environment objects o1, o2, and o3, it is the case
that o1 →֒ o2 (read: “it is according to the components abstract reckoning, kept
in the assumptions E∆, possible that o1 knows o2, i.e., o1 contains a reference to
o2”) and o2 →֒ o3, then it is also possible that o2 →֒ o1 and o1 →֒ o3, etc., because
they might contact each other and exchange their identities. This exchange of
information would be possible by internal steps of the environment and hence
would go unnoticed by the component.

If we change the scenario insofar that o2 is no longer an environment object
but belongs to the component, then we still have o1 ⇌→֒ o2 implied by E∆,
since o1 →֒ o2 ∈ E∆ ⊆ ∆× (∆ + Θ), but it does not mean that o1 can contact o3
or vice versa, using transitivity and symmetry. The only way that the environ-
ment object o1 can contact the environment object o3 in this situation (assuming
that we have described the situation completely) is via the component object o2,
for instance, o2 could send the identity of o1 to o3 (provided, that o2 in turn
actually knows o1, which is overapproximated by EΘ). But this would involve
an interface interaction between environment and component and would not
remain unnoticed. Being “noticed” means that sending o1 to o3 at the interface
would update E∆ in such a way that afterwards, E∆ it contains additionally
o3 →֒ o1, and by symmetric closure on the domain of ∆ we could then conclude
that o1 →֒ o3.

As an aside: If closing under both the equations of EΘ and of E∆, the situa-
tion would collapse into one single clique, i.e., all objects would be acquainted
with each other. The reason is that each new object, created by cross-border
instantiation is at least known to its creator.

To facilitate the following development notationally, we use the following
conventions.

Notation 2.6.5 (Contexts). We abbreviate the pair of name contexts ∆,Θ as Φ, and
the pair ∆;E∆ and Θ;EΘ of both assumption and commitment context by Ξ, i.e.,
we write Ξ ⊢ C for ∆;E∆ ⊢ C : Θ;EΘ . The Ξ∆ refers to the assumption context

∆;E∆ , and ΞΘ to the commitment context Θ;EΘ . Furthermore we understand ∆́, Θ́
as Φ́, Ξ́ as consisting of ∆́; É∆ and Θ́; ÉΘ, etc.

Thus we write the judgments (2.8) shorter as Ξ ⊢ o1 ⇌ o2 and Ξ ⊢ o1 ⇌→֒
o2. Note that the shorter notation is unambiguous concerning whether the
connectivity context E∆ or EΘ is meant, since the domains of ∆ and Θ are
disjoint. The relation ⇌ is an equivalence relation on the objects from ∆ and
partitions them in equivalence classes. As a manner of speaking, we call a set
of object names from ∆ (or dually from Θ) such that for all objects o1 and o2
from that set, ∆;E∆ ⊢ o1 ⇌ o2 : Θ, a clique, and if we speak of the clique of an
object we mean the whole equivalence class. Given Ξ and Ξ ⊢ o, write [o]/Ξ

for
the clique of o wrt. the connectivity information of Ξ, or shorter [o], where Ξ is
clear from the context.

With E∆ and EΘ as part of the judgment, we must clarify what it “means”,
i.e., when does ∆;E∆ ⊢ C : Θ;EΘ hold? Besides the typing part, which re-
mains unchanged, this concerns the commitment part EΘ. The relation EΘ

asserts about C that the connectivity of the objects from the component C is
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not larger the connectivity entailed by EΘ. Given a component C and two ob-
ject names o1 from Θ and o2 from Θ + ∆, we write C ⊢ o1 →֒ o2, if C ≡ C′ ‖
o1[. . . , l = o2, . . .], i.e., o1 contains in one of its fields l a reference to o2.

Definition 2.6.6. The judgment ∆ ⊢ C : Θ;EΘ holds, if

1. ∆ ⊢ C : Θ, and if

2. C ⊢ o1 →֒ o2 implies EΘ; Θ ⊢ o1 ⇌→֒ o2 : ∆.

We often simply write ∆ ⊢ C : Θ;EΘ to assert that the judgment is satisfied.
Note again that the pairs listed in a commitment context EΘ do not require
the existence of connections in the components, it is rather the contrapositive
situation: If EΘ does not imply that two objects are in connection, possibly
following the connection of other objects, then they must not be in connection
in C. Thus, a larger relation EΘ means a weaker specification.

2.6.3 Check and update of contexts

The semantics is formulated as transitions between judgments:

∆;E∆ ⊢ C : Θ;EΘ
a
−→ ∆́; É∆ ⊢ Ć : Θ́; ÉΘ or shorter Ξ ⊢ C

a
−→ Ξ́ ⊢ Ć . (2.9)

The assumption contexts ∆;E∆ are an abstraction of the (absent) environment,
consulted to check whether an incoming action is currently possible, and updated
in an outgoing communication. The commitments play a dual role, i.e., they are
updated in incoming communication. With the code of the component present,
the commitment contexts are not used for checks for outgoing communication.

The check, whether the current assumptions are met in an incoming com-
munication, is formalized as follows:

Definition 2.6.7 (Connectivity check). An incoming core label a is well-connected

with sender os and wrt. a context Ξ́, written13 Ξ́ ⊢ os
a
→ :wc if

∆́; É∆ ⊢ os ⇌→֒ fn(a) : Θ́ . (2.10)

Note that for incoming call labels, fn(a) includes the receiver or, but that
sender and receiver in general are not part of the label a itself (except or in the
call label), but given as additional argument to the check. I.e., the check is to
per interpreted as checking whether os is acquainted with the free names of a,
where os is best understood as the sender of the label. In the rules later, indeed,
the check will be consulted in such a way, that os is indeed the sender of the
label. Note further that the definition assumes that a is the core of a label, i.e.,
it contains only free names.

Besides checking the connectivity assumptions before a transition, the con-
texts are updated by a step, reflecting the change of knowledge. In first approx-
imation, an incoming communication updates the commitment contexts, but
not the assumption context, and, dually, for outgoing communication. More

13The definition uses contexts named Ξ́, resp., ∆́, Θ́, and É∆ as reminder that in the rules the
check will be done after the contexts have been appropriately updated.
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precisely, however, incoming communication, for instance, updates both con-
texts, namely in connection with references exchanged under a ν-binder. All
external transitions may exchange bound names in the label, i.e., bound refer-
ences to objects, but not to classes since class names cannot be communicated.

For an incoming communication with binding part Φ′ = ∆′,Θ′, the ∆′ con-
tains object references transmitted by scope extrusion, and Θ′ the references to
the lazily instantiated objects. The distinction is based on the class types which
are never transmitted. I.e., in a binding Φ, which is of the form o1:c1, . . . ok:ck,
we can consult the classes ci to determine whether the corresponding instance
oi belongs to the environment or to the component. The distinction uses the
fact that the binding ci : T for a class cannot be contained in both the assump-
tion and the commitment context, as their domains are disjoint. Furthermore,
ci must be declared in the commitment or the assumption context, since other-
wise label would not be well-typed. And finally, classes are never communi-
cated, i.e., whether a class belongs to the environment or to the component is
fixed from the initial communication, and this fixes whether all of its instances
belong to either the environment or the component. In the incoming step, ∆′

extends the assumptions ∆ and Θ′ extends the commitments Θ.

Definition 2.6.8 (Name context update). The update Φ́ of an assumption-commit-
ment name context Φ by an incoming label a = ν(Φ′)⌊a⌋ is defined as:

Θ́ = Θ + Θ′ and ∆́ = ∆ + ∆′ , (2.11)

where + stands for the disjoint union of the name contexts. We write

Φ + a (2.12)

for the update. For outgoing labels, equation (2.11) applies, as well. (The situation of
incoming and outgoing labels is dual in the sense that in the first case, ∆′ refers to
the references transmitted by scope extrusion and Θ′ to the ones lazily instantiated,
whereas in the latter case, the interpretation of ∆′ and Θ′ is reversed.

Next we consider the update of connectivity. We concentrate again on in-
coming communication; the situation for outgoing communication is dual.
Communication may bring objects in connection which had been separate be-
fore, i.e., it may merge object cliques. For the commitment context, this can be
directly formulated by adding the fact that the receiver of the communication
now is acquainted with all transmitted arguments. See part 1 of Definition 2.6.9
below. For the update of assumption connectivity context E∆, we add that the
sender knows all of the names which are transmitted boundedly (cf. part 2 of
Definition 2.6.9). No update occurs wrt. names already known.

Definition 2.6.9 (Connectivity context update). The update (É∆, ÉΘ) of context
(E∆, EΘ) wrt. an incoming label a = ν(Φ′)⌊a⌋? with sender os and receiver or is
defined as:

1. ÉΘ = EΘ + or →֒ fn(⌊a⌋).

2. É∆ = E∆ + os →֒ dom(Φ′).

We write (E∆, EΘ) + os
a
→ or for the update.
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The name context and the connectivity context update are used in general
together. Thus, combining Definition 2.6.8 and 2.6.9, we write

Ξ + os
a
→ or (2.13)

when updating the name and the connectivity contexts at the same time.

Remark 2.6.10 (Identity of communication partners). The identity of the commu-
nication partners is in general not part of the transmitted label. At least not “offi-
cially”; of course the sender or the receiver may be mentioned in the argument position
of the communication label. The only exception is the receiver of a method call, where
the callee or is part of the label 〈call or.l(~v)〉.

In the semantics, however, it will be the case that, even if not being mentioned as
part of the label, the communication partners will be uniquely determined, at least up-
to the identity of the clique. In a multithreaded setting, this knowledge will no longer be
available in those cases where a new thread crosses the environment-component border
for the first time. In the single-threaded case, which is simpler in this respect, only in
the very first external step, the (only) thread crosses the interface, in which case the
originating clique is known to be the “initial clique”.

Besides Definition 2.6.7, which checks whether the connectivity assump-
tions are met, we must check also the static assumptions, i.e., whether the
transmitted values are of the correct types. Labels consist of a binding part
and of the “core” of the label, written a = ν(Φ).⌊a⌋. In the binding part ν(Φ),
the Φ is a name context. Unlike the name context used in the type system
from Section 2.3, the Φ, conventionally consisting of ∆ (environment objects)
and Θ (component objects), does not contain bindings for class names, as the
language cannot send around thread names.

Definition 2.6.11 (Well-formedness and well-typedness of a label). We call a
label a = ν(Φ).⌊a⌋ well-formed, written

⊢ a , (2.14)

if dom(Φ) ⊆ fn(⌊a⌋) and if Φ is a well-formed name-context for object names, i.e.,
no name bound in Φ′ occurs twice. The part of the well-formedness condition for name
contexts ∆ and Θ from page 21 concerning class names does not apply to Φ′, as we do
not communicate class names.

The assertion

∆́, Θ́ ⊢ o.l? : ~T → T (2.15)

(“an incoming call to o of the method l expects arguments of type ~T and gives back a
result of type T ”) is given by the following implication:

; Θ́ ⊢ o : c ; ∆́, Θ́ ⊢ c : [(. . . , l:~T → T, . . .)]

∆́, Θ́ ⊢ o.l? : ~T → T

Note that the receiver o of the call is checked in the commitment context Θ́, only,
to assure that o is a component object. Note further that to check the interface type

of the class c, both Θ́ and ∆́ are consulted, since the argument types ~T or the result
type T may refer to both component and environment classes. For outgoing calls,
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∆́, Θ́ ⊢ o.l! : ~T → T is defined dually. In particular, in the first premise, Θ́ is replaced

by ∆́.
Well-typedness of an incoming core label a with receiver or, resp., with sender

or, with expected type ~T , resp., T , and relative to ∆́, Θ́ is asserted by

∆́, Θ́ ⊢ a : ~T → resp., ∆́, Θ́ ⊢ a : → T (2.16)

(for calls and returns, respectively), as given by Table 2.10. We use ∆,Θ ⊢ a : wt as
notation to assert well-typedness. We write

Ξ́ ⊢ os
a
→ or : ~T → resp. Ξ́ ⊢ os

a
→ or : → T (2.17)

to combine the connectivity check from Definition 2.6.7 with asserting well-typedness.

; ∆́, Θ́ ⊢ ~v : ~T a = 〈call or.l(~v)〉?
LT-CALLI

∆́, Θ́ ⊢ a : ~T →

; ∆́, Θ́ ⊢ v : T a = 〈return(v)〉?
LT-RETI

∆́, Θ́ ⊢ a : → T

Table 2.10: Checking static assumptions

2.6.4 External steps

The operational rules of the semantics are given in Table 2.11. For the formula-
tion of the connectivity contexts, we need one additional syntactical entity, ⊙,
representing the initial clique, i.e., the clique in which the thread starts to exe-
cute initially. The symbol ⊙ can be mentioned in the contexts ∆, resp., Θ, i.e.,
for instance ∆ can be of the form ∆′,⊙. Since the thread starts initially either in
the component or the environment, ⊙ is contained exactly in ∆ or in Θ. Unlike
ordinary objects mentioned in ∆ or Θ, the⊙ does not have a type. The⊙ is not
only contained in ∆, resp., Θ, but can consequently also be mentioned in the
connectivity contexts E∆ and EΘ. As for our notational conventions: When
writing o and its syntactical variants, we mean in the following proper object
references or ⊙.

Initially, the component contains no objects (not even hidden) and neither
the initial context Ξ0 contains bindings for object references. We write Ξ0 ⊢ C :
static to assert that the judgment contains no dynamically generated names,
yet. In general, when writing Ξ0 ⊢ C, we indicate that the component is in its
initial, static state. We use Ξ ⊢ static to assert that the context Ξ is static, i.e.,
Ξ consist of ∆,Θ, where ∆ and Θ contain only bindings for classes, but not for
objects. ∆ or Θ contains, however, the symbol ⊙. In the multithreaded setting,
later, the thread names count as dynamic entities, as well, and are not allowed
in a static context.

Remark 2.6.12 (Initial clique). In the terminology of arena games, a popular game-
theoretical model for semantics of programming languages,⊙ plays the role of a hered-
itary justifier. In the single-threaded setting, there is exactly one such entity.
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Often, only games are considered where the opponent (= environment in our ter-
minology) does the first move, here specified by ∆0 ⊢ ⊙. Games, where the player (=
component) performs the first step are sometimes called positive games [97].

The rules of Table 2.11 formalize the external steps as labeled transitions
between judgments, transforming not only the code of the component, but also
the assumption and the commitment contexts. The rules are grouped into those
for incoming communication and those for outgoing. A further distinction is
whether the communication is done by a method call or by a method return.

a = ν(Φ′). 〈call or.l(~v)〉? ∆0 ⊢ ⊙

Ξ́ = Ξ0 + ⊙
a
→ or Ξ́ ⊢ or.l? : ~T → T Ξ́ ⊢ ⊙

⌊a⌋
→ or : ~T →

CALLI0
Ξ0 ⊢ C

a
−→ Ξ́ ⊢ C ‖ C(Θ′) ‖ ♮〈let x:T = or.l(~v) in or returns x to ⊙; stop〉

a = ν(Φ′). 〈call or.l(~v)〉? tblocked = let x′:T ′ = o blocks for os in t

Ξ́ = Ξ + os
a
→ or Ξ́ ⊢ or.l? : ~T → T Ξ́ ⊢ os

⌊a⌋
→ or : ~T →

CALLI1
Ξ ⊢ ν(Φ).(C ‖ ♮〈tblocked〉)

a
−→

Ξ́ ⊢ ν(Φ).(C ‖ C(Θ′) ‖ ♮〈let x:T = or.l(~v) in or returns x to os; tblocked〉)

a = ν(Φ′). 〈call or.l(~v)〉? ∆ ⊢ ⊙

Ξ́ = Ξ + ⊙
a
→ or Ξ́ ⊢ or.l? : ~T → T Ξ́ ⊢ ⊙

⌊a⌋
→ or : ~T →

CALLI2
Ξ ⊢ C ‖ ♮〈stop〉

a
−→ Ξ́ ⊢ C ‖ C(Θ′) ‖ ♮〈let x:T = or.l(~v) in or returns x to ⊙; stop〉

a = ν(Φ′). 〈call or .l(~v)〉! Φ′ = fn(⌊a⌋) ∩ Φ Φ́ = Φ \Φ′ ∆́ ⊢ or Ξ́ = Ξ + os
a
→ or

CALLO
Ξ ⊢ ν(Φ).(C ‖ ♮〈let x:T = os or.l(~v) in t〉)

a
−→

Ξ́ ⊢ ν(Φ́).(C ‖ ♮〈let x:T = os blocks for or in t〉)

a = ν(Φ′). 〈return(v)〉? Ξ́ = Ξ + os
a
→ or Ξ́ ⊢ os

⌊a⌋
→ or : → T

RETI

Ξ ⊢ ν(Φ).(C ‖ ♮〈let x:T = or blocks for os in t〉)
a
−→ Ξ́ ⊢ ν(Φ).(C ‖ ♮〈t[v/x]〉)

a = ν(Φ′). 〈return(v)〉! Φ′ = fn(⌊a⌋) ∩ Φ Φ́ = Φ \Φ′ Ξ́ = Ξ + os
a
→ or

RETO

Ξ ⊢ ν(Φ).(C ‖ ♮〈let x:T = os returns v to or in t〉)
a
−→ Ξ́ ⊢ ν(Φ́).(C ‖ ♮〈t〉)

∆ ⊢ c
NEWOlazy

Ξ ⊢ ν(Φ′).(C′ ‖ ♮〈let x:c = new c in t〉) Ξ ⊢ ν(Φ′, o:c).(C′ ‖ ♮〈let x:c = o in t〉)

Table 2.11: External steps

The two rules CALLI1 and CALLI2 deal with incoming calls. In both cases
(as for all incoming communication steps), the contexts Ξ before the step are

updated to Ξ́ by setting Ξ́ = Ξ + os
a
→ or, resp., using ⊙ as sender in CALLI2.

The update add the information concerning new objects and new connectivity
transmitted in that step (cf. equation (2.13) for the context update). Further-
more, it is checked whether the label statically type-checks and that the step is
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possible according to the (updated) connectivity assumptions Ξ́. The check is

done in two stages. First, in the premise Ξ́ ⊢ or.l? : ~T → T , the expected types
for the transmitted values as determined (cf. Definition 2.6.11, in particular

equation (2.15)). The ~T is needed for the compliance check of the values trans-
mitted in the current incoming call label. The return type T , in contrast, is not
needed for type checking the label now, the type is needed to check the return
value later, in case the method call should happen to return.14 The return type
T is used in form of the let x : T = or.l(~v) in . . .-syntax of the thread. The last

premise Ξ́ ⊢ os
⌊a⌋
→ or : ~T → , resp., Ξ́ ⊢ ⊙

⌊a⌋
→ or : ~T → (cf. equation (2.17))

does the mentioned type check plus the check whether the sender object, i.e.,
the caller os, resp., ⊙, is acquainted with all arguments of the call and with the
callee or (cf. Definition 2.6.7). The identity of the sender of the call —os in case
of CALLI1 and ⊙ in case of CALLI2— is determined by form of the thread. In
the first case, the identity is taken from the block-syntax in tblocked . In case of
CALLI2, ⊙ is taken instead.

The two discussed rules for incoming calls cover two different situations as
to when an incoming call may happen: A reentrant call15 vs. a call where the
thread is already contained in the component. In the post-configuration, C(Θ′)
are the lazily instantiated objects mentioned in Θ′: For Θ′ = o1:c1, . . . , ok:ck,
Θ = c1:T1, . . . ck:Tk,Θ

′′, and the component in the pre-configuration of the
form C′ ‖ c1[(F1,M1)] ‖ . . . ‖ ck[(Fk,Mk)], C(Θ′) is given as o1[c1, F1] ‖ . . . ‖
ok[ck, Fk]. By convention, Θ′ of the binding part in the incoming communi-
cation label contains the references to the lazily instantiated object, i.e., object
references oi whose class ci belongs to the component, i.e., Θ ⊢ ci. The type
system thus assures that the classes ci[(Fi,Mi)] are actually present in the com-
ponent and that C(Θ′) is well-defined.

For reentrant method calls (cf. rule CALLI1), the thread is blocked, i.e., it
has left the component previously via an outgoing call. The object that had
been the target of the call is remembered as part of the augmented block syn-
tax. In the rule it is referred to as os, as it is the sender of the current incom-
ing call. Three points are worth mentioning: First, os needs not be the actual
caller, which remains anonymous, since the callee cannot observe who really
calls. The reference os, however, can be taken as representative of the environ-
ment clique from which the call is being issued: The call must originate from
the clique where it has previously left into since it cannot enter a disjoint en-
vironment clique, at least not without detour via the component which would
have been observable and recorded in the connectivity contexts. Secondly, note
that the object os stored in the block-syntax is not necessarily the callee of the
call the thread did immediately prior to this incoming call. In the history of
the thread, there might have been message exchange in between the blocked
outgoing call and the current incoming call, whose code has been popped off
the stack. Nonetheless, os must (still) be in the clique which sends the current
call. Finally, it is impossible that in CALLI1, the used os equals ⊙. The reason

14To be precise: The corresponding rule RETO for outgoing returns does not check whether the
transmitted value has the correct type. Indeed, for outgoing communication, neither type checks
nor connectivity checks are done. The checks are not needed in that situation, since the semantics
enjoys a subject reduction property. I.e., starting from a well-typed component, well-typedness is
preserved under reduction.

15Reentrant on the level of the component, not on the level of a single object.
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is, that an outgoing call (via CALLO), which introduces the block-statements,
stores the concrete callee identity, not an arbitrary representative of the clique
of the callee, and ⊙ cannot be called.

Rule CALLI2 treats a non-reentrancy situation, where the thread is already
present in the component nonetheless. As a consequence, the component con-
tains the entity ♮〈stop〉. Unlike in rule CALLI1, the program code contains no
indication as to the origin of the call. The premise ∆ ⊢ ⊙ assures that ♮ had
started its life on the environment side. This bit of information is important
as otherwise one could mistake the code ♮〈stop〉 for the code of a (deadlocked)
outgoing call. If ∆ ⊢ ⊙ and ♮〈stop〉 is part of the component code, it is as-
sured that the thread has left the component to the environment by some last
outgoing return. I.e., the incoming call is possible now, and we can use ⊙ as
representative of the caller’s identity.

Calling an external object leaves the local execution in a blocked state, wait-
ing for the matching return carrying the returned value (cf. rules CALLO and

RETI). Note that the name context ∆́ is used to distinguish an external call in
rule CALLO from an internal one which is covered by the corresponding rule
from Table 2.5. Note that the identity or may be contained in the bound names
∆′ of the label, i.e., the callee or may be lazily instantiated by the outgoing call.
The contexts are updated dually to the treatment for incoming communication.

Outgoing communication is simpler wrt. type checking: Assuming that we
start with a well-typed component, there is no need in re-checking now that
only values of appropriate types are handed out, since the operational steps
preserve well-typedness (“subject reduction”).

The rule CALLI0 is a variant of CALLI1 and in particular of CALLI2, describ-
ing the initial situation, where the thread starts in the environment, stipulated
by ∆0 ⊢ ⊙, and enters the component for the first time. Note that there is no
special rule dealing with the dual situation of an initial outgoing call (when
Θ0 ⊢ ⊙) as this is subsumed by CALLO. Depending on the two mutually ex-
clusive cases that Θ ⊢ ⊙ or ∆ ⊢ ⊙, i.e., depending on whether the thread starts
in the component or the environment, the initial step can either be an incoming
call (justified by CALLI0) or an outgoing call (by CALLO).16 Note that in the
case of an initial outgoing call, the sender does not need to be the initial clique.
The first outgoing environment interaction is not necessarily caused by the
initial code fragment; the component might start with internal method calls.
Object creation across the component boundary is not immediately visible (cf.
rule NEWOlazy ). The reason is that without constructor methods, instantiation
alone cannot be used by an observer. The only way to do observations is by
method calls. Consequently, objects are incorporated only at the point when
they are first communicated to the other side or used from the other side.

The remaining rules of Table 2.11 deal with the return actions and lazy in-
stantiation of objects. When the activity of the thread returns to the environ-
ment (cf. rule RETO), the return-statement is “popped-off” the thread; in com-
bination with the rules for incoming calls we see that the remaining part of
the thread remains blocked or is stopped. Note further in this context, that the
let-bound variable x in rule RETO does not occur free in the remainder of the

16In the degenerated case that no classes are mentioned in Ξ or that the interface types of the
classes do not offer methods, no step is possible and the component shows no external behavior at
all.
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thread t. Note that when the thread returns, the callee is already known. Re-
turns are simpler than calls in that only one value is communicated, not a tuple
(as we don’t have compound types). To avoid case distinctions and to stress
the parallel with the treatment of the calls, we denote the binding part of the
label by ν(Φ′), resp., ν(∆′,Θ′), as before, even if at least one of the name con-
texts are guaranteed to be empty (recall Notation 2.6.5). Rule NEWOlazy deals
with lazy instantiation. Rule NEWOlazy describes the local instantiation of an
external class. Instead of exporting the newly created name of the object plus
the object itself immediately to the environment, the name is kept local until,
if ever, it gets into contact with the environment. When this happens, the new
instance will not only become known to the environment, but the object will
also be instantiated in the environment. Note that the instantiation is a conflu-
ent step. Nevertheless, it is part of the external semantics in that it references
the assumption context.

Remark 2.6.13 (Anonymous caller). The caller is not transmitted in the label which
reflects the fact that it remains anonymous to the callee.17 Even if anonymous, infor-
mation about the caller is important to adjust the book-keeping about the connectivity
appropriately, for instance when returning later.

The antecedent of the call-rules requires that the caller os is acquainted with the
callee or and with all of the arguments. In case of the very first call, we take ⊙ as
the source of the call, which is assumed to be resident in the environment. Besides the
obvious fact that the caller must know the callee, there is a further aspect of connectivity
to be considered: the incoming call can only be issued from an object of the clique
the thread has left previously. When leaving the component by an outgoing call, the
semantics remembers that as part of the block-syntax. If on the other hand the thread
has left by a return, the environment clique of the last call is not remembered; the
corresponding stack frame is popped off. In this case, the thread must have left into the
initial clique again and we take ⊙ as representative.

For the book-keeping, the actual identity of the caller is not needed; it suffices to
know the clique of the caller. As representative for the clique, an equivalence class of
object identities, we simply pick the one remembered.

Later, in the concurrent setting with dynamic thread creation, the problem of not
knowing the sender of certain messages gets harder: In case a new thread crosses the
border, not even the originating clique may be known.

The assumption and commitments contexts play, not surprisingly, dual roles
in the semantics. For instance, in case of incoming communication (cf. for
instance the CALLI-rules), the assumption context is checked as premise, the
commitment context is updated. In connection with the exchange of bound
names and lazy instantiation, however, also the assumption context is updated.
However, this does not lead to new information about names already known.
Again in the situation for incoming communication: SinceE∆ is maintained as
a worst-case assumption about the connectivity of the known external objects,
learning about the existence of a fresh object must not invalidate this assump-
tion. Intuitively, by creating new objects, initially unknown to the component,
the environment cannot contact objects it could not contact otherwise. The fact

17Of course, the caller may transmit its identity to the callee as part of the arguments, but this
nevertheless does not reveal to the callee who “actually” called.
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that no new information is learnt about already known objects (“no surprise”)
in the assumptions can be phrased using the notion of conservative extension.

Definition 2.6.14 (Conservative extension). Given two pairs (Φ, E∆) and (Φ́, É∆),

of name and connectivity context, i.e., E∆ ⊆ Φ × Φ (and analogously for (Φ́, É∆)),

we write (Φ, E∆) ⊢ (Φ́, É∆) if the following two conditions holds:

1. Φ́ ⊢ Φ and

2. Φ́ ⊢ n1 ⇌ n2 implies Φ ⊢ n1 ⇌ n2, for all n1, n2 with Φ ⊢ n1, n2.

In 1, Φ́ ⊢ Φ is meant as: (for all names n), Φ ⊢ n implies Φ́ ⊢ n.

Lemma 2.6.15 (No surprise). Let Ξ ⊢ C
a
−→ Ξ́ ⊢ Ć for some incoming label a. Then

∆;E∆ ⊢ ∆́; É∆. For outgoing steps, the situation is dual.



CHAPTER 3

Full abstraction

In this chapter we address the full abstraction problem for the sequential case
of the calculus. Section 3.1 defines the notion of traces, intended to match
the notion of observation from Section 2.5. The definition takes especially the
evolving clique structure into account. This is done by defining a clique-local
view on a trace, using an appropriate notion of projection, which captures the
tree-like structure of the semantics. Sections 3.2 and 3.3 afterwards deal with
soundness and completeness. As intermediate step for completeness, we char-
acterize those traces, which are possible as interface behavior, the legal ones,
in Section 3.3.2. Section 3.3.3 in particular covers in overview one key to com-
pleteness, the construction of an observer from a given, legal trace.

For both soundness and completeness we show the main top-level proofs
here; minor lemmas and ancillary definitions are relegated to the appendix. In
particular, Chapter B is devoted to most of the actual realization of the observer,
the constructive part of the completeness proof.
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3.1 Traces, cliques, and projection

The observational semantics for well-typed components takes sequences of ex-
ternal steps of the program fragment as starting point.

Not surprisingly, a major complication concerns the connectivity of objects.
The (hypothetical) connectivity of the environment influences what is observ-
able and the fact that the observer falls into a number of independent cliques
increases the “uncertainty of observation”. We can point to two reasons re-
sponsible for this effect. One is that separate observer cliques cannot determine
the absolute order of events. Secondly, separate observers cannot cooperate to
compare identities. This means, as long as not in contact, the observers cannot
find out whether identities sent to each of them separately are the same or not.
In terms of projections to the observing clique it means that local projections
are considered up to α-conversion, only. However, observers can merge which
means that identities, separate and local prior to the merge, become compara-
ble and the now joint clique can find out whether local interaction of the past
used the same identities or not (cf. also the discussion in Section 1.4).

3.1.1 Traces

A trace of a well-typed component is a sequence of external steps; we write

Ξ1 ⊢ C1
t

=⇒ Ξ2 ⊢ C2 when the component Ξ1 ⊢ C1 evolves to Ξ2 ⊢ C2 by
executing the trace t. The corresponding rules are given in Table 3.1. For Ξ1 ⊢

C1
ǫ

=⇒ Ξ2 ⊢ C2, we write shorter Ξ1 ⊢ C1 =⇒ Ξ2 ⊢ C2, where ǫ denote the
empty trace. We use t, s, r, . . . and their syntactic variants for traces.1 We write
names(t) for the set of object names occurring in a trace t (i.e., in accordance
with the corresponding definition for single labels, we do not care about the
names of the classes which occur mentioned as types of the object references),
bn(t) for the bound object names, and fn(t) for the free object names. Clearly,
for a trace of a component starting from an initial configuration, there are no
names occurring free, i.e., names(t) = bn(t).2 By namesΘ(t), we refer to all
names referring to component objects (and analogously for bnΘ(t) and fnΘ(t)),
and dually for environment names, when replacing Θ by ∆. We use also Φ(t)
for the bindings mentioned in t.

Later, for proving soundness and completeness, we need to dualize a trace
in the following sense: Given a trace t, the dual or complementary trace t̄ equals
t but with all labels γ! dualized to γ?, and vice versa.

The evolution of the cliques, both those of the component and of the en-
vironment, is tree structured, i.e., it forms a forest, since there may exist more
than one clique of objects at the end of the trace. In the following, we need
a few properties and auxiliary definitions about the evolving clique structure.
First we generalize the connectivity judgment Ξ ⊢ o1 ⇌ o2 (cf. equation (2.8))
to express acquaintance after executing some trace. As mentioned, to make ex-
plicit whether we are interested in the clique structure of the component or the
environment, we use Θ, resp., ∆ as subscript to the ⊢-symbol.

1The t stands also for threads in the abstract syntax; the context of usage will disambiguate the
two notions.

2Of course, for partial traces, i.e., for t = r s, s may contain free names.
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C1 =⇒ C2
INTERNAL

Ξ1 ⊢ C1
ǫ

=⇒ Ξ2 ⊢ C2

Ξ1 ⊢ C1
a
−→ Ξ2 ⊢ C2

BASE
Ξ1 ⊢ C1

a
=⇒ Ξ2 ⊢ C2

Ξ1 ⊢ C1
t1=⇒ Ξ2 ⊢ C2 Ξ2 ⊢ C2

t2=⇒ Ξ3 ⊢ C3
CONC

Ξ1 ⊢ C1
t1t2=⇒ Ξ3 ⊢ C3

Table 3.1: Traces

Definition 3.1.1 (Acquaintance). Assume Ξ ⊢ C. We write Ξ ⊢Θ t ⊲ o1 ⇌ o2, if

Ξ ⊢ C
t

=⇒ Ξ́ ⊢ Ć and Ξ́ ⊢Θ o1 ⇌ o2. The notation is used analogously for⇌→֒,
and dually for ⊢∆.

Note that the assertions Ξ́ after the trace are determined by t and the pre-
assertions Ξ, since the communication partners are determined by the trace,

which in turn determine the update of the contexts. The Ξ́ can be seen as the
strongest postcondition concerning the name and the connectivity context after
t, given Ξ as precondition. By communication partners, we mean the objects
referred to by the meta-variables os (or⊙) and or in the rules for external steps
from Table 2.11. Note further that the component C is treated as black box in

the definition, i.e., the Ξ́ is determined only by Ξ and the interface behavior t;
the componentC plays a role only insofar as it generates the trace. Indeed, later
we will present an independent characterization, which traces are possible by
some component, the legal traces. Once we have this characterization, we can
define Ξ ⊢ t ⊲ o1 ⇌ o2 without referring to a concrete component (Definition
A.5.3).

3.1.2 Projection

The linear trace t of a component Ξ ⊢ C describes the global behavior of C. This
neglects the fact that the component may fall into separate cliques (as does the
environment) such that locally, per clique of objects, the global, linear order
cannot be realized (from the standpoint of the component cliques) or observed
(from the standpoint of environment cliques). Therefore, we define next a local
view on the global trace via the notion of projection. The projection is done
on a clique of objects. In the definition we have to take into account that the
clique structure is dynamic, i.e., when one clique is merged with a second one,
interaction with objects from the previously separate clique becomes part of
the common behavior after the merge and must appear in the projection onto
each of the clique from that point on.3

The simplest form of clique is one object in isolation and we define the pro-
jection onto a single object, before we generalize the definition onto clique. The
projection of t to o, written o↓ t can be understood as the interaction history of o
in t. The local behavior of o starts from the point when o appears fresh in t, i.e.,
where it is introduced by a ν-binder, and takes the evolving clique structure

3To be precise: The merging action is the first common interaction and therefore contained in
the projection of all cliques being merged.



46 3.1 Traces, cliques, and projection

into account. The projection plays an important role in the definition of the se-
mantics and furthermore the completeness proof later, namely the constructive
part, where we have to come up with a program that realizes the semantics. In
the constructed program, each object, resp., clique, will be equipped with a
static variant of its potential future behaviors, which correspond to the projec-
tion. By static we mean that the structure will be encoded in the programming
constructs available to the user, namely classes, methods, and fields. We call
the definition future or forward projection since it calculates the behavior of a
clique or object, taking into account possible future clique mergings.4

The labels of a trace, in most cases, do not by themselves carry enough
information to determine with which clique(s) the label interact. In case of
the receiver of a call, the callee is mentioned in the label, but not the caller.
For returns, neither the sender nor the receiver is mentioned. To facilitate the
definition of projection, we augment the traces with the missing information.

Definition 3.1.2 (Sender and receiver augmentation). An augmented trace uses
labels, which are augmented by information about the sender and receiver and which
are of the following form in case of incoming communication (cf. also Table 2.8 for the
unaugmented labels):

ν(Φ′).〈[os]call or.l(~v)〉? and ν(Φ′).〈os return or(v)〉? , (3.1)

and dually with ! instead of ? for outgoing communication.
An augmented trace of component C in context Ξ0 is given by the rules of Ta-

ble 2.11 where the additional sender and receiver information is added according to the
respective reduction rule. I.e., in case of CALLI0 and CALLI2, the sender in the call
label of equation (3.1) is ⊙, for CALLI1 it is os as mentioned in tblocked in the premise
of the rule. Likewise for RETI, CALLO, and RETO, os and or are determined by the
form of the thread before the reduction step.

Given an augmented label a, sender(a) and receiver(a) pick out the sender and
receiver identity from the augmentation.

Note that the identities added in the augmentation do not change the bind-
ing part of the label, mentioned in equation (3.1) as Φ′. In the case of call-labels,
both incoming and outgoing, the receiver or does not belong to the augmen-
tation, it is already contained in the unaugmented label. In case of CALLI0
and CALLI2, the sender is ⊙ and is not transmitted boundedly. In CALLI2,
the sender os is a real (environment) object name, i.e., unequal to ⊙. Since the
thread is being blocked on os, the os is already known, i.e., ∆ ⊢ os before the
step, and hence os in the augmentation is not fresh. For incoming returns, and
outgoing communication, the argument is similar.

Definition 3.1.3 (Future projection). Assume a trace t with Ξ0 ⊢ C0
t

=⇒ Ξ ⊢ C
with a component object reference o after t, i.e., Θ ⊢ o : c. Then the forward pro-
jection of t onto o, written o↓ t, is defined as follows: t′ = o↓ t if there exists a
derivation according to Table 3.2, with Ξ0 ⊢ ǫ ⊲o t at the bottom and with Ξ ⊢ t′ ⊲o ǫ
as axiom, and where os and or in the rules are determined by os = sender(a) and
or = receiver(a) (with the exception of rule P-EMPTY, where no label a is involved).

The update of contexts Ξ + os
a
→ or is used from Definition 2.6.9 and 2.6.8 (cf. equa-

tion (2.13)). The projection onto an environment clique is defined dually.

4Later, for the proofs, we use also a different projection, which collects all interaction in the past
of a clique (see Definition A.3.1).
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P-EMPTY
Ξ ⊢ r ⊲o ǫ

a = ν(Φ′
1).γ? Ξ́ 6⊢ o⇌ or Ξ́ = Ξ + or

a
← os Ξ́ ⊢ r ⊲o s

P-IN1

Ξ ⊢ r ⊲o a s

a = ν(Φ′
1).γ? Ξ́ ⊢ o⇌ or Ξ́ = Ξ + or

a
← os

Φ′
2 = {oi:ci ∈ Ξ | oi ∈ fn(a), Ξ́ 6⊢ o⇌ oi} a′ = ν(Φ′

1, Φ
′
2).γ? Ξ́ ⊢ r a′ ⊲o s

P-IN2

Ξ ⊢ r ⊲o a s

a = ν(Φ′′).γ! Ξ́ 6⊢ os ⇌ o Ξ́ = Ξ + os
a
→ or Ξ́ ⊢ r ⊲o s

P-OUT1

Ξ ⊢ r ⊲o a s

a = ν(Φ′′).γ! Ξ′ ⊢ os ⇌ o Ξ́ = Ξ́ + os
a
→ or Ξ́ ⊢ r a ⊲o s

P-OUT2

Ξ ⊢ r ⊲o a s

Table 3.2: Future projection onto a component clique

Given a set O of component objects, the definition of projection O↓ t is de-
fined as the pointwise lifting of o↓ t to all object names from o. We will use
the lifting mostly when O is given as a clique [o] of acquainted component ob-
jects. We use also the following generalization, applying the definition not on
the complete interaction of a given object, but only partially: Assume a trace

t = r s with Ξ0 ⊢ C0
r

=⇒ Ξ ⊢ C
s

=⇒ Ξ́ ⊢ Ć, with a component object reference
o after r, i.e., Θ ⊢ o : c. Then the forward projection of s onto the clique [o]/Ξ

(or [o] for short) is written as r ⊲ [o]↓ s and denotes the part of o↓ r s starting
at s. For environment objects/cliques, the definition is used dually.

Before we explain the rules in bit more detail, we illustrate the intention on
an example.

Example 3.1.4 (Future projection and merging). Consider the following trace t:

ν(o1, o3:c).〈call o1.l1(o3)〉?〈return()〉!
ν(o2:c).〈call o2.l2()〉?〈return()〉!
〈call o1.l(o2)〉? .

(3.2)

We do not make explicit the augmentation in this example, as it is not the focus and
does not change the example. After the first 4 labels, there are two component cliques,
one consisting of o1 and o3, the second one consisting of o2. The subsequent incoming
call 〈call o1.l(o2)〉? merges both cliques by adding the pair o1 →֒ o2 toEΘ in the post-
configuration. The behavior is shown schematically in Figure 3.1 (without showing
the type c). Note, however, that the merging action 〈call o1.l(o2)〉? is represented in
the figure as (without the type/class c)

ν(o2:c).〈call o1.l(o2)〉? resp. ν(o1:c).〈call o1.l(o2)〉? (3.3)

when seen from the perspective of o1, resp., from o2’s perspective. This captures the
fact that the identity o2 is new for the clique of o1, and conversely, o1 is new to the
clique of o2.
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•
ν(o1,o3).〈call o1.l1(o3)〉?��

•
ν(o2).〈call o2.l2()〉?��

•
〈return()〉!��

•
〈return()〉!��

•

ν(o2).〈call o1.l(o2)〉? ))RRRRRRRRR •

ν(o1).〈call o1.l(o2)〉?uulllllllll

•

Figure 3.1: Trace of equation (3.2), schematical representation

In the specification from Table 3.2, the situation of the merge correspond to rule
P-IN2. After the first 4 labels, the component consists, of the two cliques [o1, o3] and
[o2], and the connectivity commitment context EΘ consists just of the pair o1 →֒ o3.
When applying Definition 3.1.3 to object o1, i.e., to invoke the rules from Table 3.2 to
Ξ0 ⊢ ǫ ⊲o1

t, the state after having “executed” the first 4 labels is

Ξ ⊢ ν(o1, o3:c).〈call o1.l1(o3)〉?〈return()〉! ⊲o1
〈call o1.l(o2)〉? , (3.4)

where Ξ in particular contains the connectivity information o1 →֒ o2. In the history,
left of⊲o1

, the third and the fourth label of trace t from equation (3.2) are not recorded;
they have been skipped by rule P-IN1, resp., P-OUT1, since the receiver o2 of the
incoming call of the third label, resp., the sender of the return in the fourth labels, do
not (yet) belong to the clique of o1 we project onto. The state of (3.4) is also when
projecting onto o3. In contrast, projecting onto o2 and “executing” the first four labels
gives the following situation,

Ξ ⊢ ν(o2:c).〈call o2.l2()〉?〈return()〉! ⊲o2
〈call o1.l(o2)〉? , (3.5)

i.e., this time, the first two interactions of the trace of (3.2) are not recorded.
Both for (3.4) and (3.5), the next label to process is 〈call o1.l(o2)〉?, which contains

no ν-binder, as both o1 and o2 have already been encountered previously in the global
trace, and in both situations, rule P-IN2 is used. Continuing in the projection to o1 in
(3.4), uses Ξ to check that o1 is acquainted with the receiver of the label (which is o1
itself) and calculates Φ′

2 as the binding context o2:c, since Ξ 6⊢ o1 ⇌ o2, i.e., from the
local perspective of o1’s clique, the label “looks” as ν(o2:c).〈call o1.l(o2)〉?, since the
o2 is new to the clique. Analogously, the projection of the last label onto o2’s clique is
ν(o1:c).〈call o1.l(o2)〉?.

Basically, considering the rules of Table 3.2 in a goal-directed manner (the
premises as sub-goals to derive the conclusion, i.e., as recursive call), the pro-
jection recursively walks down the trace s, collecting all labels that concerns
the clique in question and omitting the others. The recursive function given by
the rules uses the additional argument Ξ to keep track of names known to the

clique. The transformation of Ξ into Ξ́ when working off one label a is analo-
gous to the treatment of the context in the external steps from Table 2.11 (and
later for the check for legality from Table 3.5). A difference to the treatment in
Table 2.11 is that here we do not use the context to check whether the step is
possible.

That the rules of Table 3.2 give rise to a function rests on the observation
that the premises are mutually exclusive: The label a is either an input or an
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output. The cases P-IN1 and P-IN2 are mutually exclusive, since either Ξ́ ⊢ o⇌
or or not; the same argument separates P-OUT1 and P-OUT2. Furthermore,
these four mentioned cases cover all possible combinations, and the premises

are determined by the form of the conclusion (in particular, Ξ́ is determined).
Finally, when starting with the goal Ξ ⊢ ǫ ⊲o s, the generation of the subgoals
terminates, as t is finite. The fact that we apply the projection onto a trace

t generated by Ξ0 ⊢ C0
t

=⇒ Ξ ⊢ C guarantees that those checks had been
successfully done when executing the component using Table 3.2. So we are
interested for the projection only in the context update part, keeping track of
the evolving clique structure.

The rule P-EMPTY covers the situation, when there is no future right of ⊲o

left, at which point the generation of subgoals terminates, and the result of
the projection is kept in r right of ⊲o. The P-IN-rules for incoming labels dis-
tinguish whether the next label a pertains to the clique of the object o we are
projecting onto. To do so it determines the receiver of a (see Definition 3.3.3)
and checks whether it belongs to the clique or not, according to the current
connectivity information, i.e., the connectivity after trace s, as given by the re-
cursive call in the premise of the rule. If the receiver does not belong to the
clique, a is not part of the projection (cf. rule P-IN1). Otherwise, a is included
in the projection. However, not literally, in extending the prior projection s′ by
a. Instead, locally new labels, Φ′

2 in the rule, are mentioned as ν-bound. The
rules for outgoing communication take the sender of the label as distinction. If
the sender does not belong to the clique of interest, a is omitted, otherwise, it is
added. Unlike in P-IN2, the label is added literally: In the outgoing communi-
cation, all locally new labels are also globally new, since they are freshly created
by the clique.

It will be convenient, especially when considering the encoded program, to
view the rooted forest as the collection of local linear traces, one for each object
in t, which form the paths of the forest from the leaves to the roots.

Definition 3.1.5 (Tree paths and subtrees). Let t be a legal trace. We write t for the
representation of t as set of traces:

t , {o 7→ o↓ t | o ∈ names(t)} . (3.6)

We furthermore need the subtree of a trace t, given by a local end-trace so. Let t be
a legal trace, and r s = t for some r and s. Furthermore, let so =↓[o] s, for some
component clique [o] after r. Assume further so 6= ǫ. Then t− so is defined as follows:

t− so , {ro | ro so ∈ t} . (3.7)

Equation (3.7) defines (in linearized form) the subtree of t, accessed from
one of its roots via so. Note the order of the linear traces forming the branches
of the trees: Unlike more common representations, they do not represent the
access from the root to the nodes of the tree, but are written inversely, describing
the paths from the leaves to the roots of the forest. That, of course, is not a
crucial difference. Note furthermore, that the representation from equation
(3.6) of the tree describes the paths from the leaves to the roots, and not from
each node —leaf or internal node— to the roots (from left to right). In other
words, the set of linear paths is not closed under suffix.
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One point for the representation is worth stressing, related to the fact that t
represents a rooted forest, not a rooted tree. The roots of the forest (at the end
of the trace, not the beginning) correspond to the different cliques of objects
after the end of the trace, either from the perspective of the component or of
the observer. The clique structure thus partitions the set of component, resp,
the environment objects. This implies that the labels constituting the edges of
the forest and the alphabet of the traces disambiguate which of the roots of the
forest are meant. This means, the subtree defined in equation (3.7) is uniquely
defined: the trace so, being non-empty, uniquely identifies a node in the tree,
i.e., the subtree.

Example 3.1.6. For the trace t of equation (3.2), there exists three component objects
after t, i.e., t is the following set/tree:

{ o1 7→ ν(o1, o3:c).〈call o1.l1(o3)〉? 〈return()〉! ν(o2).〈call o1.l(o2)〉?,
o3 7→ ν(o1, o3:c).〈call o1.l1(o3)〉? 〈return()〉! ν(o2).〈call o1.l(o2)〉?,
o2 7→ ν(o2:c).〈call o2.l2()〉? 〈return()〉! ν(o1).〈call o1.l(o2)〉? } .

(3.8)

Note that there are three projections, one for each object. Now, t−ν(o2).〈call o1.l(o2)〉?,
e.g., yields

{ o1 7→ ν(o1, o3:c).〈call o1.l1(o3)〉?〈return()〉!,
o3 7→ ν(o1, o3:c).〈call o1.l1(o3)〉?〈return()〉! } .

(3.9)

It still can be seen as tree, where the leaves correspond to o1 and to o3, which are then
immediately merged.

We use the projections and Definition 3.1.5 for one important equivalence
on traces, namely when they are equal when considered as as tree, i.e., when
projected to the behavior of all component objects in the two traces (or dually
for environment objects). Considering the traces projected onto objects and the
evolving clique structure ignores the linear order of certain5 labels occurring
in different cliques, i.e., they can occur in the traces under comparison in com-
muted or swapped order. We call the relation in traces the swapping relation.
Later, in the proofs, we provide an equational characterization of that relation
(cf. Section A.2.2 and in particular Definition A.2.22).

Definition 3.1.7 (Swapping). Assume two traces in the same context Ξ0, i.e., Ξ0 ⊢

C1
t1=⇒ and Ξ0 ⊢ C2

t2=⇒, for some componentsC1 and C2. The we write Ξ0 ⊢ t1 ≍Θ

t2 when t1 = t2.

The next definition fixes an important ingredient of the semantics, captur-
ing the generative nature of classes: Two instances of the same class are identi-
cal, and thus behave identically, up to their name. We call the fact that a second
instance of a class repeats the behavior of another instance of the same class in
a trace (with the identities appropriately renamed), replay (cf. also Section 1.4.3
for a discussion). The notion is formalized as a relation on traces below. In-
tuitively, t1 is “replay-smaller” than t2, written t1 42Θ t2, if the complete be-
havior of all objects from t1, i.e., starting from instantiation, is covered by the
behavior of objects of t2. In some sense, it is a complicated version of prefixing,

5Just occurring in different branches of the tree does not guarantee that two interactions can be
swapped. This is possible only under additional side conditions. As an easy example of such a
condition is that the alternating nature of calls and returns must not be violated by swapping.
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Figure 3.2: Replay

taking into account the tree-like clique structure and the replay-phenomenon.
One needs to be careful, however, with the identities of objects. As usual, the
names occurring in the traces are relevant only up to renaming. To respect
the clique structure and especially the merge of cliques, however, one cannot
simply compare each linear object behavior in isolation. The renaming has
to be done for whole cliques, not individually per behavior of an object; af-
ter a merge, the names are “coupled” and cannot be renamed independently.
Cf. Example 3.1.9, and also the example from Figure 1.5 in the introduction,
illustrating the same phenomenon, albeit from the dual perspective of the en-
vironment, not the component.

Definition 3.1.8 (Replay). Let4 denote the prefix relation. Assume two traces t1 and

t2 in the same context Ξ0, i.e., Ξ0 ⊢ C1
t1=⇒ and Ξ0 ⊢ C2

t2=⇒ for some components
C1 and C2. Let Ξ1 be the context after t1, and analogously for Ξ2 and t2. We write

Ξ0 ⊢ t1 42Θ t2, (3.10)

if for all component cliques [o1]/Ξ1
, there exists an α-renaming t′2 of t2 s.t., for all

names o ∈ [o1]/Ξ1
, o↓ t1 4 o↓ t

′
2. We write Ξ0 ⊢ t1 ≍−Θ t2, if Ξ0 ⊢ t1 42Θ t2 and vice

versa. The definition for 42∆ is dual.

Note that for each component clique [o1] at the end of t1, one can choose a
different α-variant of t2 for a match.

Example 3.1.9 (Replay). The example illustrates that for comparing two traces t1 and
t2, we cannot consider the behavior of each object in isolation in relating the objects of
the two traces t1 and t2. In other words, the simpler definition, stipulating that each
projection o1

↓ t1 is, up-to renaming, a prefix of o2
↓ t2 for some object o2, would be

incorrect.
Consider the behavior of Figure 3.2. Scenario 3.2(a) shows a trace t1 which ends in

one single clique, which during the run is merged from two separate cliques; for sim-
plicity, we assume that the cliques before the merge consist of one object each, namely
o1, resp., o2. The projections o1

↓ t1 and o2
↓ t1 are of the form u1 s and u2 s, where s is

the common postfix. Scenario 3.2(b) on the right shows the interaction of four objects,
resulting in two end-cliques, the roots of the two trees. Both projected traces u1 s and
u2 s of t1 have, up to renaming, a counterpart in t2; not in the same clique, however.
Indeed, the scenarios of 3.2(a) and 3.2(b) are observably different, if the tree reflects the
branching structure of the observer: At the point of merging, the observer cannot de-
termine the exact past order of events. However, it can distinguish, obviously, whether
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u1 and u2 has happened in the cliques being merged, or u1 and u′2, for instance, as in
the left tree of 3.2(b).

The external semantics from Section 2.6.4 used the assumption context as
an abstract representation of the environment, intended to capture the behavior
of any possible concrete environment. There is, however, one requirement left
out from the assumptions, namely the knowledge that we are dealing with
single-threaded programs which consequently (in absence of any operator for
internal choice) behave deterministically (cf. Section 1.4.3 in the introduction).

In the single-threaded setting, it must be assumed that the environment re-
acts in a deterministic way.6 Abstractly, an environment object or more gener-
ally a clique of objects, reacts deterministically, if the following holds: When
confronted with an equivalent stimulus, its reaction is equivalent. Equivalent
in particular means, up-to renaming of identities.

Note in particular, that the determinism-requirement is already a condition
on a single trace, not on the behavior of a set of traces. If the programming
language had not the properties that (1) the behavior of a piece of code could be
repeated within single trace (here as different instances of the same class) and
that (2) there are unrelated parts of the program or observer without influence
on each other (as here the cliques), a repetition would not be possible, since
there would never be a fresh start of a behavior already seen. Since this applies
to a situation, when a class is instantiated more than once, the requirement is
characteristic of the class-based setting and absent in an object-based one.

Definition 3.1.10 (Deterministic extension). Given the label output a = γ! and a
trace ra with ∆ ⊢ r ⊲ a : Θ. The trace r can be extended deterministically by a,
written Ξ ⊢ r ⊲ a : detΘ, if the following holds:

Ξ ⊢ r a 42Θ r or
there does not exist a label b with Ξ ⊢ r b 42Θ r .

(3.11)

The definition for incoming labels is dual and especially refers to ≍−∆ instead of ≍−Θ.

So, according to (3.11), a trace r can be extended without violating the as-
sumption of determinism, of the new label a has already happened before in r
(in a different clique and with different identities), or if a is really new behavior
(the second line of (3.11)). Since Ξ0 ⊢ r c <3Θ r, the two asymmetric conditions
in equation (3.11) are equivalent to requiring the symmetric ≍−Θ instead of 42Θ.

Note that condition (3.11) does not in itself guarantee determinism for the
trace; if the shorter r is deterministic, it preserves determinism when extending
the trace, which is the way the check is used in the legal trace system later. We
use the judgment Ξ ⊢ r ⊲ a : detΘ to combine enabledness and the output
determinism requirement for the next action in a single assertion. Dually we
use det∆ for input determinism for incoming communication. We write also
Ξ ⊢ t : det∆, resp., Ξ ⊢ t : detΘ, when the whole trace is deterministic wrt.
the environment, resp., wrt. the component. We write Ξ ⊢ t : det∆,Θ, when t is
deterministic wrt. both environment and component.

Based on the above definitions, we define the order on traces as follows.

6That the component itself behaves deterministic needs not be imposed on the external behav-
ior, because the steps of the program are deterministic.
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Definition 3.1.11 (⊑trace). We write Ξ0 ⊢ C1 ⊑trace C2, if for all Ξ0 ⊢ C1
t

=⇒ with

Ξ0 ⊢ t : det∆, there exists Ξ0 ⊢ C2
s

=⇒ with Ξ0 ⊢ s : det∆ such that Ξ0 ⊢ s ≍−∆ t.

The definition basically states that all behavior of C1 can be done by C2,
as well, up-to replay and taking the evolving tree-like structure into account.
As mentioned shortly above, we need only to impose determinism wrt. the
environment to t, resp., s, but not detΘ wrt. the component since this is “au-
tomatically” ensured by the semantics. Note that tree-structure and the replay
are considered from the standpoint of the observer not of the component. It
is the observer’s clique structure which determines the discriminating power.
The clique structure of the components does not play a role in the definition of
⊑trace .

3.2 Soundness

Soundness means that the semantics and the notion of ⊑trace is not “too ab-
stract”, i.e., ⊑trace implies ⊑obs .

Proposition 3.2.1 (Soundness). If Ξ0 ⊢ C1 ⊑trace C2, then Ξ0 ⊢ C1 ⊑obs C2.

The proof is given on page 205 in Section A.4.4 of the appendix. As one
main ingredient of the soundness proof (as well as for completeness) is the
ability to decompose the joint behavior of the environment or observer CO to-
gether with the component C1, resp., with C2 into two complementary traces t
and t̄, and conversely, a composition property, which allows to put together a
component and an observer, both engaging in complementary traces. Com-
plementary means, that each outgoing label of t is replaced in t̄ by the corre-
sponding incoming label, and vice versa. Composition and decomposition are
shown in Section A.4.2 and A.4.3.

3.3 Completeness

3.3.1 Outline

Completeness is dual to soundness and states that the semantics is not too
“concrete” wrt. the notion of observation, i.e., in our setting, that ⊑obs implies
⊑trace . Formulated contra-positively, it means that if C1 6⊑trace C2, then there
exists an environment or observer which reports success for C1, but fails to do
so for C2. Spelled out, C1 6⊑trace C2 means that there exists a trace that C1 can
do but not C2 (modulo ≍−∆). Therefore, the core of completeness is to show
that, whenever a trace exists discriminating between C1 and C2, there exists
an observer which observes the difference in that it reports success for C1 but
refuses to do so for C2.

So one key to completeness is constructive: Given a trace t, program in the

calculus an observer Ct for t, enjoying the properties that Ct
t

=⇒ and further-
more, that Ct basically can do nothing else than t (up to the unavoidable im-
precision of the semantics). The observer Ct is a program of the calculus and
in particular adheres to the syntactic and context-free restrictions of the lan-
guage; in particular, Ct must be well-typed in a given context, i.e., the observer
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is Ξ0 ⊢ Ct rather thanCt alone. Related to that, it is programmed with the user-
available syntactic material, namely classes, methods, fields (as advertised in
Ξ0), plus a single thread.

It should be clear that the construction of the observer Ξ0 ⊢ Ct is impossi-
ble, if t is just an arbitrary sequence of method labels. To make Ξ0 ⊢ Ct actually
realizable in the calculus at hand, t must conform to a number of restrictions
which reflect the semantical nature of the calculus (and the chosen way of com-
position; here the “parallel” composition of classes). In overview, we need to
capture the following restrictions:

• balance: Method calls and returns must be parenthetic.

• typing: The calls and returns must carry values consistent with the de-
clared interfaces.

• connectivity: No communication can transmit references to objects which
are guaranteed to be unconnected.

• determinism: In the single-threaded setting, two instances of the same
class must react to equivalent stimulus in an equivalent way (up-to re-
naming).

Apart from balance, these points have been already addressed in the design of
the external semantics from Section 2.6.4.7 So the next Section 3.3.2 distills the
mentioned language restrictions into a characterization of legal traces.

Afterwards we present, at some level of abstraction, the coding of the ob-
server Ξ0 ⊢ Ct from a given legal trace t (Section 3.3.3). The lower-level details
of the encoding are relegated to Appendix B; Section 3.3.3 conveys, however,
the idea of the encoding by way of examples.

Section 3.3.4 finally contains the completeness argument. Besides the char-
acterization of the legal traces, this additionally requires to account for the im-
precision of the semantics, resp. the notion of observation, yielding certain clo-
sure conditions on the set of traces: If a program exhibits a trace t, then unavoid-
ably it also performs some other traces t′. The reasons for this imprecision
have been partly discussed already. Indeed, the imprecision formalized in the
closure conditions on the behavior of the observer determines the limits of ob-
servation on the behavior of the component. Replay and the tree-like clique
structure are thus (the two major) ingredients of the closure conditions.

3.3.2 Legal traces

In this section we characterize which traces, the “legal” ones, can occur at all at
the interface of a program acting together with an environment; again the cru-
cial difference with the object-based case is the connectivity of objects. We need
furthermore to filter out non-deterministic ones —we have done this already
wrt. determinism of the environment— and the calls and returns of the thread
must be “parenthetic”, i.e., each return must have a matching call prior in the
trace and we must take into account whether the thread is resident inside the
component or outside. If the thread is currently active inside, it cannot at the
same time issue a call from outside.

7Implicitly, balance was dealt with by the stack-like structure of the thread ♮〈t〉. E.g., an incom-
ing call is possible only when the stack is empty or blocked from an previously outgoing call.
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Balance conditions

We start with auxiliary definitions concerning the parenthetic nature of calls
and returns of a sequence of interactions. The definition is similar to the one
in [82]. The calls and returns of a trace form some sort of Dyck-language [137].
See also Lemma A.2.7. However, input and output are distinguished, and fur-
thermore, the trace must start with a call. The requirement is also reminiscent
of the well-bracketed condition on strategies in dialogue games (“every answer
is justified by the last-asked open question”) [77][13]. See also [91].

A trace (of a single thread) is balanced, if every return is an answer to a pre-
vious matching call, and vice versa, each call is answer by some later matching
return. For traces in the multithreaded setting we use the definition analo-
gously for the projection of the trace to the interactions of a given thread.

Definition 3.3.1 (Balance, pop). The assertion that a trace of labels is balanced,
is given by the rules of Table 3.3. We write ⊢ t : balanced for ⊢ t : balanced+ or
⊢ t : balanced−.

B-EMPTY
+

⊢ ǫ : balanced
+

B-EMPTY
−

⊢ ǫ : balanced
−

⊢ t1 : balanced+ ⊢ t2 : balanced+ t1, t2 6= ǫ
B-II

⊢ t1 t2 : balanced
+

⊢ t1 : balanced− ⊢ t2 : balanced− t1, t2 6= ǫ
B-OO

⊢ t1 t2 : balanced
−

⊢ t : balanced+

B-IO
⊢ γc? t γr! : balanced

−

⊢ t : balanced−

B-OI
⊢ γc! t γr? : balanced

+

Table 3.3: Balance

The (partial) function pop on traces is defined as follows (see Lemma A.2.13 for the
argument that it indeed is a partial function):

1. pop (t1at2) = t1 a, if a = γc? and ⊢ t2 : balanced+.

2. pop (t1at2) = t1 a, if a = γc! and ⊢ t2 : balanced−.

The “polarity” of balanced−, resp. balanced+, expresses whether the thread
in the situation after as well as before the trace, resides inside the component
(+), or outside (−). The rules B-IO and B-OI directly express that each re-
turn must have a matching call, and vice versa. The association of a call with
the corresponding return is uniquely determined (see the lemmas below), i.e.,
each return has exactly one matching call, namely a call picked by an instance
of B-OI (or B-IO). The concatenation of two balanced traces is balanced again,
provided the two traces fit together as far as their polarity is concerned (cf.
rule B-II and B-OO). In these two rules, we require, mainly for technical rea-
sons, that the two traces are non-empty. In that way, the traces in premises of
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each rule are proper subsequences of the trace from the conclusion. Note that
the derivation system from Table 3.3 is not deterministic in the sense that the
conclusion determines the subgoals in the premises. The reason for that inde-
terminacy are the two rules B-II and B-OO, since it may be possible to split
a balanced trace in different ways into balanced subsequences. Besides that,
the empty trace is covered by the two axioms B-EMPTY− and B-EMPTY+. The
derivation system is coherent, however, in that the mentioned indeterminacy
does not influence the outcome of the derivation (with the only exception of the
empty trace, which is both balanced− and balanced+, depending on the choice
of the axiom). Besides that, it would be straightforward to render the rules
B-II and B-OO deterministic, for instance, by requiring that in the mentioned
two rules, the subsequence t1 is the shortest balanced prefix of t, or by similar
conditions.

In a balanced trace, each call is answered by a return. Obviously, not all
traces of a component nor all legal traces are balanced. The conditions on the
parenthetic nature of calls and returns is rather that there are no returns with-
out prior matching calls, which corresponds to prefixes of a balanced trace. We
call such prefixes weakly balanced. For the sake of proving properties about
balanced and weakly balanced traces, we provide, however, a direct character-
ization of weak balance. By definition, it is a weaker notion than balance, i.e.,
⊢ t : balanced+, then ⊢ t : wbalanced+ (and analogously for balanced−). For
emphasis, we sometimes call balanced traces also strictly balanced.

Definition 3.3.2 (Weak balance). Let t be a trace (i.e., a sequence) of labels. The rules
for judgments of the form ⊢ t : p1wbalancedp2 are given in Table 3.4, where p1 and p2

(and the respective alphabetic variants) range over + and −, which we call polarities.
We write ⊢ t : wbalanced+ as abbreviation of the disjunction ⊢ t : +wbalanced+

or ⊢ t : −wbalanced+. I.e., the judgment ⊢ t : wbalanced− states that t is weakly
balanced and that the last interaction of t had been outgoing (or t is empty), and leaves
it unspecified whether t starts with an incoming or an outgoing interaction.

Analogous conventions apply to wbalanced−, +wbalanced , and −wbalanced , i.e.,
we omit the polarity superscript when leaving it unspecified.

In particular, ⊢ t : wbalanced asserts ⊢ t : wbalanced+ or ⊢ t : wbalanced−, and
we call the trace t weakly balanced in this case.

In order to compose (weakly) balanced traces into longer ones, the rules use
assertions of the form ⊢ t : p1wbalanced

p2 , where p1 and p2 refer to whether the
thread resides inside or outside the component before, resp., after the trace. For
instance, ⊢ t : −wbalanced+ stipulates that the thread before t traces is active
in the environment, and after executing t, it is active in the component. For
the definition of strictly balanced traces, is suffices to use only one polarity: A
balanced trace is of even length, incoming and outgoing communication occur
in strict alternation (see Lemma A.2.1 below), and hence, the polarity before
the balanced traces equals the one afterwards.

Now, a balanced trace is weakly balanced, as well, by WB-B. The rules
WB1 and WB2 allow to extend a weakly balanced trace by a balanced prefix
or postfix, provided the two sequences fit together as far as their polarity is
concerned. The last two rules WB-CALL+ and WB-CALL− allow to extend
a weakly balanced trace by an unanswered call. This latter rule captures the
difference between strictly balanced traces and weakly balanced ones.
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⊢ t : balancedp

WB-B
⊢ t : p

wbalanced
p

⊢ t1 : balancedp1 ⊢ t2 : p1wbalancedp2 t1, t2 6= ǫ
WB1

⊢ t1 t2 : p1wbalanced
p2

⊢ t2 : p1wbalancedp2 ⊢ t3 : balancedp2 t2, t3 6= ǫ
WB2

⊢ t2 t3 : p1wbalanced
p2

⊢ t : +wbalancedp

WB-CALL
+

⊢ γc? t : −
wbalanced

p

⊢ t : −wbalancedp

WB-CALL
−

⊢ γc! t : +
wbalanced

p

Table 3.4: Weak balance (p ∈ {+,−})

Note that we do not have rules which allow to join two weakly balanced
traces to obtain a larger one; the concatenation rules WB1 and WB2 require one
of the subsequences to be strictly balanced. We have based the formalization
on this more restrictive set of rules, to render the system more deterministic.
Later, however, we prove, that the concatenation of two weakly balanced traces
yields a weakly balanced result (provided, of course, they fit together as far as
their polarity is concerned; see Lemma A.2.4).

Let us call a trace alternating, if incoming and outgoing actions of the thread
occur alternatingly in it. In the multithreaded setting, the condition must apply
to each thread in isolation.

Enabledness and communication partners

Input enabledness stipulates whether, given a sequence of past communica-
tion labels, an incoming call is possible in the next step; analogously for output
enabledness. To be input enabled, one checks against the last matching com-
munication. If there is no such label, enabledness depends on where the thread
started.

Definition 3.3.3 (Enabledness). Given a method call γc. Then call-enabledness of
γc after the history r and in the contexts ∆ and Θ is defined as:

∆ ⊢ r ⊲ γc? : Θ if pop r = ⊥ and ∆ ⊢ ⊙ or
pop r = r′γ′c!

(3.12)

∆ ⊢ r ⊲ γc! : Θ if pop r = ⊥ and Θ ⊢ ⊙ or
pop r = r′γ′c?

(3.13)

For return labels γr, ∆ ⊢ r ⊲ γr! : Θ abbreviates pop r = r′γc?, and dually for
incoming returns γr?.

We also say, the thread is input-call enabled after r if ∆ ⊢ r ⊲ γ? : Θ for
some incoming call label, respectively input-return enabled in case of an in-
coming return label. The definitions are used dually for output-call enabled-
ness and output-return enabledness. When leaving the kind of communication
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unspecified we just speak of input-enabledness or output-enabledness. Note
that return-enabledness implies call-enabledness, but not vice versa.

Based on a balanced past, the following definition formalizes the notion of
source and target of a communication event at the end of a trace by mutual
recursion and with the help of the function pop .

Definition 3.3.4 (Sender and receiver). Let r a be a weakly balanced trace. Sender
and receiver of a after history r are defined by mutual recursion, using pattern match-
ing over the following cases:

sender (γc!) = ⊙
sender(r′ a′ γc!) = receiver(r′ a′)
sender(r′ a′ γr!) = receiver(pop(r′ a′))

receiver (r ν(Φ).〈call or.l(~v)〉!) = or

receiver(r γr!) = sender(pop(r))

For a = γc? and a = γr?, the definition is dual.

Note that source and target are well-defined. In particular, the recursive
definition terminates. Furthermore, Lemma A.2.13 guarantees that each call of
pop yields a well-defined result, as in the definition it is applied to non strictly
balanced traces, only. The definition of sender and receiver (as well as balance)
is given wrt. one single thread. In the multi-threaded setting, we apply the
definitions on the projections of the common trace onto one thread.

For enabledness, the connectivity does not play a role. Nonetheless, we
write often shorter Ξ ⊢ r ⊲ a for ∆ ⊢ r ⊲ a : Θ.

The next definition determines the type expected for the transmitted values
in a label. To do so, in the case of return labels, it needs to look up the matching
call from the history (for calls, all information is already contained locally in
the call label). In the operational semantics, the function of Definition 3.3.5 is
not needed, since the expected return type is stored as part of the block-syntax
let x : T = o1 blocks for o2 in t.

Definition 3.3.5 (Expected typing). Assume a weakly balanced trace r and a label
a. The expected type for the transmitted values of a after r, asserted by Ξ ⊢ r ⊲ a :
~T → T is given as follows:8

a = ν(Φ′).〈call or.l(~v)〉? Ξ́ = Ξ + Φ(r a) ∆́, Θ́ ⊢ or.l? : ~T → T

Ξ ⊢ r ⊲ a : ~T → T

a = γr? pop(r a) = r′ ν(Φ′).〈call or.l(~v)〉!

Ξ́ = Ξ + Φ(r a) ∆́, Θ́ ⊢ or.l! : ~T → T

Ξ ⊢ r ⊲ a : ~T → T

In the rules, Φ(r a) refers to the name context consisting of all the bindings mentioned
in trace r a. Note that or in the first rule is the receiver of the call label a, whereas in
the second rule, it is the sender of the return label a.

8Note: In the second rule for returns, it would suffice to check the type of os in the potentially
smaller context Ξ0 + Φ(r), since the sender of the return cannot be transmitted boundedly by γr?.
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In general, we do not need the type ~T of the arguments and the return type T and
at the same time. I.e., we use the definition in most cases in the form of

Ξ0 ⊢ r ⊲ γc? : ~T → for calls and Ξ0 ⊢ r ⊲ γr? : → T

for returns. The definition is applied analogously for outgoing calls and returns.

Cf. also Definition 2.6.11, and in particular equation (2.15), checking well-
typedness when given the expected type.

We combine the enabledness check (Definition 3.3.3), the calculation of the
sender and receiver cliques from Definition 3.3.4), and the determination of the
expected type as follows:

Notation 3.3.6 (Enabledness, communication partners, expected type). We write

Ξ ⊢ r ⊲ os
a
→ or : ~T → T (3.14)

(reading “after r, the next label a is enabled, has sender os and receiver or, and the

transmitted value is expected to be of type ~T for a call, resp., of type T for a return”) if
the following three conditions hold: (1) Ξ ⊢ r ⊲ a (enabledness), (2) sender (r a) = os

and receiver(r a) = or (communication partners), and (3) Ξ ⊢ r ⊲ a : ~T → T
(typing) When not interested in the type, we write9

Ξ ⊢ r ⊲ os
a
→ or , (3.15)

reading “after r, the label a is enabled with sender os and receiver or”. To enhance

readability, we sometimes write Ξ ⊢ r ⊲ os
a
← or for Ξ ⊢ r ⊲ os

a
→ or in case of in-

coming communication, and use the arrow to the right for outgoing communication.

Checking for legality

The legal traces are specified by a system for judgments of the form

Ξ ⊢ r ⊲ s : trace , (3.16)

stipulating that under the type and relational assumptions ∆ and E∆ and with
the commitments Θ and EΘ, the trace s is a possible future, given the (already
checked) past r of the trace (remember the conventions from Notation 2.6.5).
The rules are shown in Table 3.5. We omit three dual rules: Since the situation,
unlike for the open, operational semantics, is now completely symmetric, the
three omitted rules for outgoing communication (L-CALLO1,2, L-RETO, and
L-CALLO0) correspond to their shown counterparts for incoming communica-
tion just by changing the labels from incoming to outgoing labels. The premises
checking and updating the context Ξ remain unchanged. However, with using
the dual label, the premise using ∆ andE∆ for the check for incoming commu-
nication refers in the dual variant to Θ and EΘ, etc.

Distinguishing according to the first action a of the future trace, the rules
check whether a is possible, i.e., whether it is well-typed and adheres to the
restrictions imposed by the connectivity contexts. Furthermore, the contexts

9Strictly speaking, one does not need the full context Ξ for the judgment determining sender
and receiver, i.e., the connectivity contexts E∆ and EΘ are not needed, only ∆ and Θ are relevant
(actually only whether ∆0 ⊢ ⊙ or else Θ0 ⊢ ⊙).
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L-EMPTY

Ξ ⊢ r ⊲ ǫ : trace

Ξ ⊢ r ⊲ os
a
→ or : ~T → Ξ́ = Ξ + os

a
→ or Ξ́ ⊢ os

⌊a⌋
→ or : ~T →

Ξ 6⊢ static a = ν(Φ′). 〈call or.l(~v)〉? Ξ́ ⊢ r a ⊲ s : trace
L-CALLI1,2

Ξ ⊢ r ⊲ a s : trace

Ξ0 ⊢ ǫ ⊲ ⊙
a
→ or : ~T → Ξ́ = Ξ + ⊙

a
→ or Ξ́ ⊢ ⊙

⌊a⌋
→ or : ~T →

Ξ0 ⊢ static ∆ ⊢ ⊙ a = ν(Φ′). 〈call or.l(~v)〉? Ξ́ ⊢ a ⊲ s : trace
L-CALLI0

Ξ0 ⊢ ǫ ⊲ a s : trace

Ξ ⊢ r ⊲ os
a
→ or : → T Ξ́ = Ξ + os

a
→ or Ξ́ ⊢ os

⌊a⌋
→ or : → T

a = ν(Φ′). 〈return(v)〉? Ξ́ ⊢ r a ⊲ s : trace
L-RETI

Ξ ⊢ r ⊲ a s : trace

Table 3.5: Legal traces (dual rules omitted)

are updated appropriately, and the rules recur checking the tail of the trace.
The derivation system also resembles the one for projection from Table 3.2.
In the projection, the check for well-typedness and well-connectedness is not
needed: The projection definition does not check whether the trace is possible, it
is given a possible trace and filter out the projection onto the object in question.

Concerning the rules from Table 3.5: The empty trace is always legal. An
incoming call (cf. rule L-CALLI1,2) updates the contexts and checks typing and
connectivity the same way as the operational CALLI-rules from Table 2.11 did

(using the judgment Ξ́ ⊢ os
⌊a⌋
→ or : ~T → from Definition 2.6.7 and 2.6.11).

The rule L-CALLI1,2 corresponds to the two situations described by CALL1 and
CALLI2 in the operational semantics.

As slight difference between the L-CALLI-rules here and the CALLI-rules
from the operational semantics concerns the determination of the sender and
receiver and the treatment the expected types. In the operational semantics,
sender and receiver were determined referring to the code of the component.
With the code not available in the legal trace system, we refer to the history r
to determine the communication partners and the expected type. This is done

in the premise Ξ0 ⊢ r ⊲ os
a
→ or : ~T → here. Unlike in the “corresponding”

premise Ξ́ ⊢ or.l? : ~T → T in the CALLI-rules, we do not need the return type
T here at that point. The reason is, that at the point where we need it, i.e., when
(and if) the matching return happens later, we consult the (then longer) history
again to look up the return type. The CALLI-rules of the operational semantics
use the return type to correctly add the method body which consists of a typed
let-statement.

Back to the premises of the L-CALLI-rules here. Besides determining the

type of the arguments and the communication partners, the premise Ξ́ ⊢ os
a
→

or : ~T → checks whether an incoming call is possible in a next step at all,
i.e., whether, given the history r, the thread is input enabled, (cf. Definition 3.3.3
for the definition of enabledness), and determines the expected typing for the
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parameters of the call.
Rule L-CALLI0 is similar and deals with the initial situation, where the in-

teraction starts with an incoming call. This is allowed only if the thread starts
in the environment, as stated by ∆ ⊢ ⊙. Initially, there are no objects contained
in either the assumptions or the commitments. Furthermore, the history left of
the ⊲-symbol is empty in the conclusion.

For incoming returns in L-RETI, the context update and the check works
similarly, and also similar to the treatment in RETI in the semantics. An ob-
vious difference between L-RETI and the L-CALLI-rules is that here we need
the return type, not the argument type, for checking the transmitted value.

This, the corresponding premise reads Ξ ⊢ os
a
→ or : → T instead of

Ξ ⊢ os
a
→ or : ~T → T (see again Definition 3.3.5 and Notation 3.3.6).

3.3.3 Definability

At the heart of the completeness result lies definability: Construct a program Ct

that realizes as exact as possible a given legal trace t. We start by sketching the
line of argument, before we provide the construction in more detail.

Overview and illustration

Before we embark on the construction of Ct itself, it is instructive to abstractly
think of which requirements the commitments express and how the legality
rules manipulate them, since Θ and EΘ must be implemented by some “data
structures” and their changes by some “algorithms”.

The context Θ lists all named components which have to be present and
publicly visible in Ct. As named components we have classes and objects, and
as active component the only thread.

Concentrating for now on the objects, Θ is changed by scope extrusion
when internally created objects get exposed to the environment, i.e., their scope
opens across the component boundary. This sure can be the case for outgoing
communication, but in the lazy instantiation scheme we employ, also incom-
ing communication may make the component aware that the environment has
created instances of internal classes.

The connectivity context EΘ ⊆ Θ × (Θ + ∆) stipulates for each component
object from Θ, which other objects from Θ and from ∆ it is expected to know
and which it should be able to contact, when necessary. In principle, there are
various ways to implement EΘ. We adopt a “distributed” implementation, by
which we mean that each object contains in its instance state its share of EΘ.10

Being kept distributed over the members of the clique, changes to EΘ must be
propagated to all members.

We describe the implementation and the propagation not yet in concrete ν-
calculus terms and postpone the problem to ultimately encode the solution into
classes and objects (cf. Chapter B).

The fact that EΘ is implemented in a distributed way does not literally
mean that each object has a local copy of the full EΘ available in its instance
state, rather than its local view of EΘ in the following sense: Each object keeps
in its instance state the list of objects from Θ as well as those from ∆ it is aware

10How to actually encode it in the calculus, we will discuss later.
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of. In slight abuse of notation we call the respective instance variable Θ; to dis-
tinguish it from the abstract context Θ we will always reference it in a qualified
manner as self .Θ.11

As mentioned, the distributed implementation of EΘ makes it necessary to
broadcast across the clique any change to the connectivity context. This change
ofEΘ occurs in the system for legal traces when dealing with incoming commu-
nication —reception of names may increase the knowledge of the component
clique— and for outgoing communication —new objects previously unknown
to the environment are exported.

In any case, the change of knowledge takes place in some object, namely,
the caller, resp., the callee of the communication. The object therefore has to
update both its own knowledge accordingly and to inform all members of its
clique about the change. Other changes to Θ, resp., EΘ require to create new,
appropriately connected objects.

The pieces of synchronization code in the construction of the component
Ct come in two flavors, input and output synchronization code, and flank the
corresponding external transition steps at the interface. Output synchroniza-
tion code precedes the corresponding output, and dually, input synchronization
trails the input action (cf. equation (3.47) later).

As the commitment contexts of the judgments provide a concise specifica-
tion of the component, the requirement for the synchronization can be clearly
understood by looking at the change of the Ξ ⊢ C- judgments in external steps
(cf. Tables 2.11 and 3.5). The changes are always additive, i.e., the contexts only
grow larger. To implement the extension of the typing context Θ in an output
step, the component must create corresponding objects, whose references are
then published. Likewise, the component must cater for lazily instantiated ob-
jects of the environment, which lead to an extension of E∆ in an output step.
On the other hand, the component is not responsible for extensions of EΘ by
incoming lazy instantiation.

On an abstract level, each object (or clique) needs to implement “exactly”
the behavior as given by the prescribed trace. In principle, this can be achieved
as follows: Each object is equipped with a representation of its prescribed be-
havior, its future, and the program follows this path step by step.

The major complication in this scheme comes from the fact, that objects can-
not be coded individually, but arise as instances of a class, i.e., as incarnations
of the corresponding code, common to all instances of a class. This means,
each class must contain the foreseen behaviors of all their instances. Further-
more, after instantiation, an object of a given class has no a priori way of telling
which future it is supposed to play; directly after instantiation, all instances are
identical up to their name, i.e., α-equivalent.

Remark 3.3.7 (Object-based setting). Note that in an object-based setting, for in-
stance in [82], the problem is absent. Objects are instantiated, not from classes, but
directly from unnamed pieces of code, for instance (omitting the typing information),
in the syntax

let x = new [l1 = ς(s).λ(~x)t1, . . .] in t2 .

11Note that self .Θ corresponds more to a instance-local view of EΘ rather than Θ, and can also
contain objects from ∆.
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This means that one has to deal with the problem of generating a fresh identity for
instantiation, but not with the fact that two instances possess the same behavior up to
their name, since there are never two instances of the same class. Thus the situation
corresponds to the use of classes according to the singleton design pattern.

Remark 3.3.8 (Class variables). With class variables, also called static variables, the
incarnation problem for objects simplifies. With (mutable) static variables, two points
change, one concerning connectivity, the second one the question of incarnation.

First, class variables offer a “communication channel”, i.e., information can flow
from otherwise separate objects via the class variables. Assuming that their visibility
is “private” (in the sense of Java) means that they cannot be used universally for
coordination, but only by the instances of the class in question. As a consequence, all
instances of a given class belong to the same clique, in our terminology.

Concerning the second point, class variables can be used to keep track of the number
of instantiations of a class. Consequently, two instantiations of the same class are
not longer identical up to their name, as the order of instantiations may influence
their behavior. In other words, the phenomenon of replay vanishes from the closure
conditions of the traces, which is a major(!) simplification. See also Section 6.1.2.

In a non-deterministic setting, e.g., when considering multiple threads, a
possible solution could be that the object simply guesses which future it is sup-
posed to play; if it turns out (after some interaction) to be the wrong choice, it
simply blocks. In our setting, guessing is not an option.

Instead, each object, resp., each clique maintains a representation of all pos-
sible futures during the run of the program and while working off the future
and based on the past interaction, it narrows the still open options. In other
words: Without non-determinism and with the class(es) containing the de-
scription of the future for all instances, the implementation must explore all
options “in parallel”, weeding out those which, during the run, turn out to be
inconsistent with the witnessed past behavior. At this point, an example may
help.

Example 3.3.9 (Roles and scripts). Consider the following trace, where o1 and o2
are instances of the same class c.

ν(o1:c).〈call o1.l()〉? 〈return(o1)〉! 〈call o1.l1()〉? 〈return(a)〉!
ν(o2:c).〈call o2.l()〉? 〈return(o2)〉! 〈call o2.l2()〉? 〈return(b)〉! .

(3.17)

In this situation, the class c of the two instances o1 and o2 must contain the description
of the two possible futures, which, up to the second call, are indistinguishable. The
second incoming call l1 vs. l2 is the distinguishing interaction in this example. This
means, up to this point, the respective instance cannot know whether it must behave
according to the given behavior of o1 or o2 and, indeed, both behave the same, and
the object must “keep both options open” until the distinguishing interaction occurs.
Especially, the following reaction, the return, must be equal (up to naming) in the
deterministic setting, since the first incoming call does not contain enough information
to distinguish the two behaviors so far.

When either l1 or l2 occurs, it becomes clear that from now on the object must be-
have like o1 in the trace of equation (3.17) or like o2. Of course, the implementation
cannot assure that the object concretely carries the identifier o1, resp., o2, as the se-
mantics is invariant under α-renaming. However, when confronted with, say, l2 in
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the second step, the object, whatever its identifier, must behave from now on the way,
o2 behaves in the above trace; for instance, it must return an b and not a label a in the
next step.12

In the given (fixed) trace, we call an identity of an object in the trace a role (or
rather, we will later use the word role for the instance variable used to store that iden-
tity). In the above example, a new instance of c is expected to play exactly one of two
possible roles, the one as witnessed by o1 in the given trace, and one for o2.

When coding statically the intended behavior(s) in a class, the roles are represented
by (appropriately typed) instance variables. In the trace of equation (3.17), the com-
ponent thus contains two instance variables, i.e., roles x1 and x2 of type c, initially
undefined. The association of roles with currently known objects is kept in a data
structure with typical elements σ, σ′

1, . . . . Initially, the values in the examples are
σ1 = ⊥ and σ2 = ⊥ below, i.e., the finite mappings [x1 7→ ⊥, x2 7→ ⊥]. The future
behavior of the instances of that class is coded in terms of these instance variables and
thus the uninitialized future of instances of this class is represented as follows, where
for both scripts the association part is “empty”, i.e., σ1 = ⊥ and σ2 = ⊥:

š1 = x1 7→ ν(x1:c).〈call x1.l()〉? 〈return(x1)〉! 〈call x1.l1()〉? 〈return(a)〉!
š2 = x2 7→ ν(x2:c).〈call x2.l()〉? 〈return(x2)〉! 〈call x2.l2()〉? 〈return(b)〉! .

(3.18)

The values of the two instance variable script1 and script2 consists of the pair (σ1, š1),
resp., (σ2, š2) and can be thought of as (structured) instance variables, as well.

The coding of the scripts is shown in more detail later; that the coding is
possible rests of the fact that all encoded entities (the number of roles, the num-
ber and the length of the scripts, the number of different method labels, etc.)
are finite, given a finite trace to be represented.

The above example illustrates the static representation, i.e., the coding of the
intended behavior of a program within classes and in terms of roles and scripts.
Next we illustrate the dynamic aspects of the data representations, i.e., how
they change during the run of the program. As mentioned, the current state
of an object (or, conceptually, the clique) is represented by identifying which
futures are still possible, which includes which roles are still possible, given
the past interaction. Confronted with an input, the object (or clique) checks
which scripts in the current state are consistent with the input and shortens
the respective future, perhaps filling in more roles. We call this “playing the
scripts”.

Example 3.3.10 (Playing a script). Consider the trace from equation (3.17), resp.,
the script coding of equation (3.18). Let us assume that the behavior corresponding to
the first script is what actually happens. Wlog., assume further that the actual name
of the object in the run is o1, i.e., the identity of the object happens to equal the identity
from the trace of equation (3.17); any other would do as well.

In the illustration, the shortening of the scripts is directly represented by shortening
the future traces in the scriptsi instance variables. Upon instantiation, the object o1
is in the state as given by equation (3.18); without constructor, the state of the new
instance must equal the state as given by the class. To execute the first call

a = 〈call o1.l()〉? ,

12We assume for sake of the argument that a and b are two different reactions, left unspecified.
Also l1 and l2 are assumed to be different, of course.
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object o1 in its initial state checks which of the two possible scripts is consistent with
the witnessed a; in this case, both. The state after playing a can be represented as (we
omit here the association of the two lines to a role, as it is clear from the bindings):

σ1
1 = [x1 7→ o1] š11 = 〈return(x1)〉! 〈call x1.l1()〉? 〈return(a)〉!
σ1

2 = [x2 7→ o1] š12 = 〈return(x2)〉! 〈call x2.l2()〉? 〈return(b)〉! .
(3.19)

Playing the first script, the incoming communication a associates the role x1 with the
actually witnessed identity o1 and leaves the role x2 undefined; in case of script2 in
the second line, o1 takes the role of x2. Continuing the interaction, the object answers
with a return in both situations. Using σ1

1 , resp., σ1
2 , the value returned is identically

o1 in both cases. In the state before the incoming second call 〈call o1.l1()〉?, the futures
look as follows; playing the return does not add more constraints, i.e., it leaves σ1

1 and
σ1

2 unchanged:

σ2
1 = [x1 7→ o1] š11 = 〈call x1.l1()〉? 〈return(a)〉!
σ2

2 = [x2 7→ o1] š22 = 〈call x2.l2()〉? 〈return(b)〉!
(3.20)

Matching 〈call o1.l1()〉? succeeds when playing the first script, but fails with the
second. I.e., after playing the second call, there remains only one possible future:

σ2
1 = [x1 7→ o1] š21 = 〈return(a)〉! . (3.21)

The following example illustrates the handling of data structures, when two
cliques are merged. In this case, information distributed across two different
cliques needs to be combined.

Example 3.3.11 (Merging). Consider the following trace:

ν(o1, o3:c).〈call o1.l1(o3)〉?〈return()〉!
ν(o2:c).〈call o2.l2()〉?〈return()〉!
〈call o1.l(o2)〉? .

(3.22)

The trace is the one from Example 3.1.4, equation (3.2). See also Figure 3.1 for a
schematic tree representation. Remember, from Example 3.1.4, that the merging action
〈call o1.l(o2)〉? is represented in the figure as

ν(o2).〈call o1.l(o2)〉? resp. ν(o1).〈call o1.l(o2)〉?

when seen from the perspective of o1, resp., from o2’s perspective. This captures the fact
that the identity o2 is new for the clique of o1, and conversely, o1 is new to the clique
of o2. These two clique-local views onto the global label 〈call o1.l(o2)〉? corresponds to
the treatment of ν-binders for projection (cf. Definition 3.1.3).

Given the above trace, the set of static scripts contains the following three possible
futures, using x1, x2, and x3 as roles:

x1 7→ ν(x1, x3).〈call x1.l1(x3)〉? 〈return()〉! ν(x2).〈call x1.l2(x2)〉? ,
x3 7→ ν(x1, x3).〈call x1.l1(x3)〉? 〈return()〉! ν(x2).〈call x1.l2(x2)〉? ,
ν(x2).〈call x2.l2()〉? 〈return()〉! ν(x1).〈call x1.l(x2)〉? .

(3.23)

After the first four global actions, i.e., before the merge, the component consists of two
separate cliques, each with a separate view concerning the future. In the clique of o1



66 3.3 Completeness

(and o3), only one future is still possible, since the call with method l1 in the past of
o1’s clique invalidated the second script:

σ2
1 = [x1 7→ o1, x3 7→ o3] {ν(x2).〈call x1.l(x2)〉?} . (3.24)

The script of equation (3.24) is available twice, once for x1 and once for x3, but already
after the first step, they are identical. For o2’s clique, the possible future presents itself
as

σ2
2 = [x2 7→ o2] {ν(x1).〈call x1.l(x2)〉?} . (3.25)

As said, the incoming call a = 〈call o1.l(o2)〉? merges the two cliques. Matching the
actual label a against the only possible expected one from equation (3.23), clique o1’s
post configuration then is of the form

[x1 7→ o1, x2 7→ o2, x3 7→ o3]

and the same holds for the post configuration of o2’s clique. Indeed, o1, o2, and o3
belong to the same clique after the merge and must from now on have the same view
upon the future. In the example, there is only one future left, corresponding to the
empty trace.

The next example is slightly more complex in that it shows how the possible
roles are narrowed during a run (as opposed to being cancelled out altogether).

Example 3.3.12 (Merging). Let the trace t be given as

t(o1, o2) , ν(o1).〈call o1.l0()〉?〈return()〉!
ν(o2).〈call o2.l0()〉?〈return()〉!
〈call o1.l1(o2)〉?〈return()〉! ,

(3.26)

and further t(o′1, o
′
2) the variant with o1 and o2 renamed to o′1 and o′2. Consider the

trace s which performs t(o1, o2) and t(o′1, o
′
2), followed by an interaction which allows

to distinguish the cliques [o1, o2] and [o′1, o
′
2] which exist after t(o1, o2)t(o

′
1, o

′
2):

s(o1, o2, o
′
1, o

′
2) , t(o1, o2) t(o′1, o

′
2)

〈call o1.l2(o2)〉?〈return()〉!
〈call o′2.l2(o

′
1)〉?〈return()〉! .

(3.27)

The distinguishing action is the call of l2, in the first clique a call to o1 with o2 as
parameter and in the second clique a call to o′2 with o′1 as argument. This allows
to distinguish the two cliques, since at that point, o1 and o2, resp., o′1 and o′2, are
distinguishable, where the merging action 〈call o1.l1(o2)〉? prior in the trace separated
the behavior of o1 from that of o2, resp., 〈call o′1.l1(o

′
2)〉? for o′1 and o′2.

A tree representation of the behavior is shown Figure 3.3. We use a(o1, o2) as
abbreviation for 〈call o1.l1(o2)〉? and analogously for a(o′1, o

′
2). Since s contains four

different object identities, the static encoding foresees four roles, x1, x2, x
′
1, and x′2.

Furthermore, there are initially four scripts, one for each role (we write the script in an
abbreviated form: r! stands for a 〈return()〉! and calls are written shorter x.l(y)):

{ σ⊥ : ν(x1).x1.l0()? r! ν(x2).x1.l1(x2)? r! x1.l2(x2)? r!
σ⊥ : ν(x2).x2.l0()? r! ν(x1).x1.l1(x2)? r! x1.l2(x2)? r!
σ⊥ : ν(x′

1)x
′
1.l0()? r! ν(x′

2).x
′
1.l1(x

′
2)? r! x′

2.l2(x
′
1)? r!)

σ⊥ : ν(x′
2).x

′
2.l0()? r! ν(x′

1).x
′
1.l1(x

′
2)? r! x′

2.l2(x
′
1)? r! } .
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Figure 3.3: Trace of equation (3.27), tree representation

Now assume that the following trace happens, with t(o1, o2) given by equation (3.26):

t(o1, o2) o1.l2(o2)? r! . (3.28)

The trailing incoming call o1.l2(o2)? is the interaction which distinguishes between
the trees on the left-hand and the right-hand side of Figure 3.3 and it corresponds to
the tree on the left. Of course, the exact identities o1 and o2 are irrelevant.

After the first call ν(o1).o1.l0()? and the subsequent return, the potential future
behaviors look as follows:

{ [x1 7→ o1] : ν(x2).x1.l1(x2)? r! x1.l2(x2)? r!
[x2 7→ o1] : ν(x1).x1.l1(x2)? r! x1.l2(x2)? r!
[x′

1 7→ o1] : ν(x′
2).x

′
1.l1(x

′
2)? r! x′

2.l2(x
′
1)? r!

[x′
2 7→ o1] : ν(x′

1).x
′
1.l1(x

′
2)? r! x′

2.l2(x
′
1)? r! }[o1] .

(3.29)

The subscript [o1] is meant to indicate that (3.29) describes the value of the data struc-
tures in the clique [o1], currently consisting of o1 in isolation. In this state, [o1] is also
the only clique which exists. The next (global) input ν(o2).o2.l0()? does not affect this
clique, but creates a new one for o2, whose data structures after the execution of the
input (and after the subsequent return) look analogous to equation (3.29), only that
the identity o2 instead of o1 is associated with the roles x1, . . . , x

′
2:

{ [x1 7→ o2] : ν(x2).x1.l1(x2)? r! x1.l2(x2)? r!
[x2 7→ o2] : ν(x1).x1.l1(x2)? r! x1.l2(x2)? r!
[x′

1 7→ o2] : ν(x′
2).x

′
1.l1(x

′
2)? r! x′

2.l2(x
′
1)? r!

[x′
2 7→ o2] : ν(x′

1).x
′
1.l1(x

′
2)? r! x′

2.l2(x
′
1)? r! }[o2] .

(3.30)

The next step o1.l1(o2)? merges the cliques of o1 and o2 and contains enough informa-
tion to distinguish between o1 and o2. More precisely, it contains enough information
to distinguish between the roles x1 and x′1 on the one hand and x2 and x′2 on the other.
Before the communication, as witnessed by equation (3.29) and (3.30), o1 and o2 can
both play the role of x1 and x2 or vice versa (cf. also Example 3.3.11). After the merge,
two possible futures have turned out inconsistent (the second and the fourth one from
the perspective of o1 in (3.29), and the first and third one from the perspective of o2 in
(3.30) and the post-state is given by:

{ [x1 7→ o1, x2 7→ o2] : x1.l2(x2)? r!
[x′

1 7→ o1, x
′
2 7→ o2] : x′

2.l2(x
′
1)? r! }[o1,o2] .

(3.31)
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Figure 3.4: Trace of equation (3.34), tree representation

Finally, the communication o1.l2(o2)? is compatible only with the future and the asso-
ciation in the first line of equation (3.31), which distinguishes between the left and the
right tree of Figure 3.3.

The examples so far are simplified in that the merging leads to the same
conclusion concerning the future for both cliques participating in the merge.
In the next example, the merge must lead also to a combined view on the future.

Example 3.3.13 (Merging). Let the trace t1 be given as

t1(~o) = t1(o1, o2, o3, o4) , ν(o1, o3).o1.l0(o1, o3)?r!
ν(o2, o4).o2.l0(o2, o4)?r!
o1.l(o2)?r!

(3.32)

and further t2 be defined as

t2(~o
′) = t2(o

′
1, o

′
2, o

′
3, o

′
4) , ν(o′1, o

′
3).o

′
1.l0(o

′
3, o

′
1)?r!

ν(o′2, o
′
4).o

′
2.l0(o

′
2, o

′
4)?r!

o′1.l(o
′
2)?r! .

(3.33)

In what follows, we use ~o as short-hand for o1, o2, o3, o4, similarly ~o′ for o′1, . . . , o
′
4 and

~x for x1, . . . , x4, etc. Note that the order of the arguments to the first call is reversed,
comparing (3.32) and (3.33). Thus, unlike the traces t(o1, o2) and t(o′1, o

′
2) from Ex-

ample 3.3.12, the traces t1(o1, o2, o3, o4) and t2(o
′
1, o

′
2, o

′
3, o

′
4) are not α-equivalent.

Another difference to Example 3.3.12 is that the two traces continue by merging the
two remaining cliques. So consider the trace s which performs t1(~o) and t2(~o

′) fol-
lowed by an interaction which merges the cliques [o1, o2, o3, o4] and [o′1, o

′
2, o

′
3, o

′
4]

which exist after t(~o) t(~o′):

s(~o, ~o′) , t1(~o) t2(~o
′) o1.l(o

′
2)?r! (3.34)

A tree representation of the behavior is shown Figure 3.4.
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The initial, static configuration looks as follows:13

{ σ⊥ : ν(x1, x3).x1.l0(x1, x3)? r! ν(x2).x1.l(x2)? r! ν(x′
2).x1.l(x

′
2)? r!

σ⊥ : ν(x2, x4).x2.l0(x2, x4)? r! ν(x1).x1.l(x2)? r! ν(x′
2).x1.l(x

′
2)? r!

σ⊥ : ν(x′
1, x

′
3).x

′
1.l0(x

′
3, x

′
1)? r! ν(x′

2).x
′
1.l(x

′
2)? r! ν(x1).x1.l(x

′
2)? r!

σ⊥ : ν(x′
2, x

′
4).x

′
2.l0(x

′
2, x

′
4)? r! ν(x′

1).x
′
1.l(x

′
2)? r! ν(x1).x1.l(x

′
2)? r! } .

(3.35)

Now assume that the following trace happens, with t1(~o) given by equation (3.32):

t1(~o) o1.l(o2)? . (3.36)

The first call ν(o1, o3).o1.l(o1, o3)? now already distinguishes between the behavior of
t1 and that of t2. After that call and after the subsequent return, the potential future
behavior looks as follows:

{ [x1 7→ o1, x3 7→ o3] : ν(x2).x1.l(x2)? r! ν(x′
2).x1.l(x

′
2)? r!

[x2 7→ o1, x4 7→ o3] : ν(x1).x1.l(x2)? r! ν(x′
2).x1.l(x

′
2)? r!

[x′
2 7→ o1, x

′
4 7→ o3] : ν(x′

1).x
′
1.l(x

′
2)? r! ν(x1).x1.l(x

′
2)? r! }[o1,o3] .

(3.37)

This means, the third line of equation (3.35) has been invalidated, the other three re-
main open. The next interaction ν(o2, o4).o2.l0(o2, o4)? creates a new clique (and
leaves the data structures of the clique [o1, o3] unchanged). After the call, the state of
the new [o2, o4] clique looks as follows

{ [x1 7→ o2, x3 7→ o4] : ν(x2).x1.l(x2)? r! ν(x′
2).x1.l(x

′
2)? r!

[x2 7→ o2, x4 7→ o4] : ν(x1).x1.l(x2)? r! ν(x′
2).x1.l(x

′
2)? r!

[x′
2 7→ o2, x

′
4 7→ o4] : ν(x′

1).x
′
1.l(x

′
2)? r! ν(x1).x1.l(x

′
2)? r! }[o2,o4] ,

(3.38)

i.e., up to the fact that different object identities are stored in the roles, the states of
equation (3.37) and (3.38) are equivalent. Note in passing that the “range” of the
mappings from roles to identities is identical for each script (in each clique separately).
Indeed, the stored identities form the current clique. Another invariant concerns the
“domain” of the mapping, i.e., the set of currently chosen roles: In each clique it is the
case that for each distinct pair of scripts, the domains are disjoint.

The next incoming label is of the form o1.l(o2)? and merges the two cliques [o1, o3]
and [o2, o4]. We start with the behavior of the callee clique, i.e., the clique of o1. The
script labels contain the information, which identities are new from the local perspec-
tive; for instance, the script in the first line expects identities for x2, whereas x1 and x3

are already filled in. Besides the identity of x2, the partner clique contributes also the
identity for x4, which is new for clique [o1, o3] but not mentioned in the label. Con-
centrating on the first line of equation (3.37): It is an invariant that from the state of
its partner, i.e., the state of o2’s clique in equation (3.38), there is at most one script
that offers the dual of the required roles; in the example, only the second line of equa-
tion (3.38) offers x2 and x4.

The second line of [o1, o3] matches, as far as the exchange of identities and roles
are concerned, with the first line of [o2, o4]. The last line of [o1, o3] does not find a
partner: No still open future of [o2, o4] offers the required identities for x′1 and x′3 (the
corresponding script has “died out”).

13We show only half of the scripts, we do not separately list the futures corresponding to o1 and
o3, for instance.
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After [o1, o3] has received the identities, the (intermediate) state looks as follows
(the newly filled roles are underlined, the third line of equation (3.37) has been re-
moved):

{ [x1 7→ o1, x2 7→ o2, x3 7→ o3, x4 7→ o4] : x1.l(x2)? r! ν(x′
2).x1.l(x

′
2)? r!

[x1 7→ o2, x2 7→ o1, x3 7→ o4, x4 7→ o3] : x1.l(x2)? r! ν(x′
2).x1.l(x

′
2)? r! }[o1,o3] .

(3.39)

From the perspective of [o2, o4], the last line of equation (3.38) does not find a partner
and is thus removed; the other two are still possible:

{ [x1 7→ o2, x2 7→ o1, x3 7→ o4, x4 7→ o3] : x1.l(x2)? r! ν(x′
2).x1.l(x

′
2)? r!

[x1 7→ o1, x2 7→ o2, x3 7→ o3, x4 7→ o4] : x1.l(x2)? r! ν(x′
2).x1.l(x

′
2)? r! }[o2,o4] ,

(3.40)

The state is intermediate, since so far only the new identities have been consis-
tently exchanged, which corresponds loosely to the binding part of the label; the core of
the communication label has not yet been evaluated which is why it is still mentioned
in the scripts at the current stage, with the ν-binders removed.14

Evaluating also the core o1.l(o2) of the call with the current possible bindings and
matching it against x1.l(x2) cancels out the second line of equation (3.39) for [o1, o3]
and the first line of (3.40) for [o2, o4]. Both cliques have reached agreement and thus
the now common state after the merge (and after the subsequent return) is:

{ [x1 7→ o1, x2 7→ o2, x3 7→ o3, x4 7→ o4] : ν(x′
2).x1.l(x

′
2)? r! }[o1,o2,o3,o4] . (3.41)

Note that from the original, static arrangement of scripts from equation (3.35), line
1 has survived in equation (3.39) and line 2 in equation (3.40) which are merged into
(3.41). In other words: When merging two cliques, one cannot just statically compare
scripts as they appear in the original code, for instance match line 1 of (3.35) in one
clique against the same line in the partner clique.

Having arrived at (3.41), the clique [o1, . . . , o4] has only one possible future left
open. The next possible step from the perspective of o1, . . . , o4 with the current role
bindings, is o1.l(o

′
2)?, provided the partner clique, whose derivation is not shown, is

able provide appropriate bindings for the roles x′1, . . . x
′
4, in particular, x′2 7→ o′2 for

some o′2 which is new for the clique [o1, . . . , o4].

The next example illustrates the behavior of newly instantiated objects.

Example 3.3.14 (Initialization). Consider the following global trace

t = ν(o1:c, o2:c).o1.l(o2)? r! , (3.42)

i.e., two instances of a component class c are created by the same incoming call. Thus,
the class contains two roles, x1 and x2 and two corresponding scripts. Unlike the
previous examples where we did not mention for simplicity the classes of the objects in
the traces or in the scripts, now we are explicit about the class, here c, since the class is
needed as template for the newly instantiated objects.

init = [ x1 7→ ν(x2:c).x1.l(x2)? r!
x2 7→ ν(x1:c).x1.l(x2)? r! ] ;

scripts = ⊥ ;

(3.43)

14The actual implementation will not actually first remove the ν-binding part from the scripts
stored in the instance state and afterwards the core of the label. Conceptually, when executing
the code, the two stages are performed in the mentioned order. When successful, the scripts are
shortened by removing the whole label in one step.
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Initially, the scripts data structure is undefined. The static code for all scripts is kept
in init . The two mentioned object references o1 and o2 give rise to two roles x1 and x2,
respectively. Each role is associated with one unique future in terms of their roles.

The “ν”-binders for roles in the script are now interpreted slightly differently from
the intuition of ν-binders in traces (such as that from equation (3.42) in this example).
In a trace and in the semantics, the ν acts as a binder, and object references are inter-
preted always up to α-renaming. In the scripts in equation (3.43) or (3.44), which can
be seen as a static representation of one fixed trace, (νx) is not understood as a binder
for the rest of the script. In particular we are not at liberty to rename the “binding
occurrence” in a capture avoiding way in one script.15

The incoming call ν(o1:c, o2:c).o1.l(o2)? at the beginning of the trace creates two
new instances; that’s how the semantics, independently of any encoding, deals with
lazy instantiation (as said, c is a component class). The encoding must then initialize
the sketched dynamic data structures appropriately. We treat the freshly created two
objects o1 and o2 as two separate cliques. Separate at least for a short moment, until
they are merged by the label in the same way, as cliques existing already for a longer
time are merged (cf. the other examples). Object o1 thus forms a clique consisting
only of itself. With no other information evaluated, the self-identity o1 can play any
of the foreseen roles, in this case x1 and x2. Therefore, the state of the clique [o1] after
initialization looks as follows (the value of init does no longer play a role and not shown
again; it is only used once to fill in the initial value of scripts):

init = [ . . . ]
scripts = { [x1 7→ o1] : ν(x2:c).x1.l(x2)? r!

[x2 7→ o1] : ν(x1:c).x1.l(x2)? r! }o1 .

(3.44)

Object o2 executes the same initialization phase, reaching an equivalent state, where
o1 is replaced by o2 in the role associations.

After this phase, two properly initialized cliques exist. Indeed, the two cliques are
now no longer in a specific “initial” state; for instance, the state of the clique [o1]
contains no information whether it has just been created or whether it has undergone
already a number of calls and returns (without contact to other objects), since cliques
need not record the history. Consequently, the rest of the behavior follows exactly the
merge protocol as seen in the other examples.

Remark 3.3.15 (Initialization and lazy instantiation). As an aside: The first ini-
tialization leading to the code of equation (3.44) can be understood as the coder’s per-
spective on lazy instantiation. In absence of constructors, objects created by of cross-
border instantiation are actually created only when first accessed by a method call (for
instance at that moment in the example). The actual new -statement of the (absent)
environment may have been executed earlier. If the language had constructors, any ob-
ject creation would be observable immediately, and furthermore the constructor could
be used to set up the data structures directly after creation. The initialization illus-
trated in Example 3.3.14 can be interpreted as the “trivial” constructor executed in a
lazy manner, i.e., immediately preceding the method call proper, and trivial in the sense
that it uses the only dynamic piece of information handed over to the object, namely
the identity as value of self, i.e., the value of the ς-parameter.

15One could, of course, program the whole component with a differently chosen set of instance
variables, as far as the names in concrete syntax are concerned. In that way —of course— the
representation is invariant under renaming. However, the aspect of dynamic scoping is missing.
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Data structures and algorithms

Next we describe the data structures contained in each class. Definition 3.3.16
describes only the form or “type”, not the exact values; they will be filled in in
the construction of Definition 3.3.20. Cf. also Definition B.2.1 in the appendix.
In the following, when speaking about fields and their types we mean collections
or compound ensembles of basic fields in the calculus which encodes the data
structure appropriately. In general we use italics (or mathematical symbols) for
the encoded methods and fields. For the encoded types, we use sanserif (or
also mathematical notations such as × for product types).

Definition 3.3.16 (Data structures). Each class contains the fields script containing
the current futures and init , containing the initial, static representation of scripts . In
overview and ignoring “overloading”, the interface type for each class is of the form:

[( init , scripts : set of script

stepi : label× (set:object)→ Unit

stepo : Unit→ Unit

l : ~T → T
...

)] .

The vertical “. . . ” refer to further methods and fields contained in the class which are
independent from the definability construction —only one method l is shown here—
but whose presence is required by the given commitment context. For the sets, we
use the mathematical notation such as { }, ∪, etc. For the lists, we write [a1, a2, . . .],
and a :: s for extending the list by the new element at the head. Those notations
are used in the construction of Ct. Thus they have no run-time significance and are
used as meta-mathematical notation to describe the constructed program. The concrete
implementation of the types and values and those access functions needed at run-time
to access and manipulate the data are shown later. Further, we use the following “type”
abbreviations:

script , assoc× future

scripts , set of script .

(3.45)

The methods stepi and stepo (and many more auxiliary methods described
in the appendix) are “private” in that they are hidden to the environment using
subsumption. stepi and stepo are the top-level method responsible for “playing
the scripts”, i.e., for shortening the script data structures step by step. stepi

does so for incoming labels and stepo for outgoing.
Next we fix the notation and the conventions for the static representation of

the run-time identities. They form the core of the data representation, similarly
as names are the simplest entity in the syntax and semantics: In the abstract
syntax from Table 2.2, names are one of the two forms of values of the calculus
(the other form are local variables.) The names are dynamic in nature: they are
created during the run of the program and they cannot occur in the static code
of classes. The names occurring in a trace of the semantics are represented in
the code by instance variables:

Definition 3.3.17 (Static representation). Given the legal trace t to realize. Each
object identity o of a component class in the trace is represented by an instance variable
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ǒ of the corresponding class type. For object identities o1, o
′
2, . . ., we also refer to the

corresponding instance variable as x1, x
′
2, . . ., when the connection is clear. We apply

the same convention also to compound entities such as labels and traces, i.e., the static
representation of a basic label γ is denoted by γ̌, of a label a as ǎ, and of a trace t as ť,
where each occurrence of an object reference o is replaced by its static instance variable.

For instance, given a label a = ν(o1:c1, o2:c2).〈call o2.l(o1, o3)〉?, the static
equivalent ǎ is ν(x1:c1, x2:c2).〈call x2.l(x1, x3)〉?, where the xi are instance vari-
ables. As a manner of speaking, we call the instance variables for object refer-
ences, i.e., the static representations of names from the given trace, roles.

In the constructed component Ct, each clique contains a static, linear rep-
resentation of its still open future plus an association from roles (instance vari-
ables) to actual object identities. Informally, we can associate the type “role →
object” to the mentioned associations. However, this “function” is given only
implicitly, in that the roles are nothing else than a statically given set of instance
variables, and the (finite) association is given by storing the object identity as-
sociated with the role in that instance variable (see also Remark 3.3.19 below).

The association of roles with objects is maintained as an abstraction of the
clique’s past. We call a pair of role-name association and future a script. Since,
due to replay, a clique may have more than one potential future, the central
data structure scripts is a set of scripts. Initially, the scripts contain empty as-
sociations together with the static analogs of all possible futures, as given in
equation (3.46) (cf. also Definition 3.1.5 for the definition of linear paths from
the local viewpoint of an object, resp., a clique, based on the notion of projec-
tion).

We fix a number of notations to facilitate the coding and the reasoning about
the component Ct. A more detailed implementation of the data structures used
can be found in Appendix B. See also Lemma A.5.13 for some invariants con-
cerning the data structures mentioned in the introduced notations.

Notation 3.3.18. With the data structures given as in Definition 3.3.16, we define a
number of “views” on the state. Given a component object o, o.scripts refers to the
set of scripts as value. We use σ, σi, . . . for “values” of type assoc, called associations
or substitutions. The range of an association is denoted by ran(σ), the domain by
dom(σ). Furthermore, ranΘ(σ) denotes the instance variables contained component
object references from ran(σ) (i.e., those instance variables typed by a component class
and not containing ⊥), and analogously ran∆(σ) to the instance variable containing
environment object references. By o.Σ, we refer to the set of scripts as value. Further-
more, o.Ξ refers to ran(σ) for some/all σ from o.script, o.Θ to the component objects
from o.Ξ, and o.∆ to the environment objects from o.Ξ.16

Given Ξ0 ⊢ Ct
r

=⇒ Ξ ⊢ C and a component clique [o]/EΘ
(or [o] for short) after

r, then [o].l means the clique of o agrees on the value of the field l and [o].l is the value
of o′.l for some/all o′ ∈ [o].

To avoid confusion: Given Ξ0 ⊢ Ct
t

=⇒ Ξ ⊢ C = ∆;E∆ ⊢ C : Θ;EΘ , the
value o.Θ does not implement the context Θ. Representing all the objects that
o knows, it rather corresponds to or implements the portion of the connectivity
context EΘ in acquaintance with the object o. Correspondingly, o.∆ are the
environment objects that o knows, i.e., it corresponds to the objects o′ such that

16It will be an invariant that all associations σ have identical range.
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Θ;EΘ ⊢ o⇌→֒ o′ : ∆. In particular o.∆ has nothing to do with the connectivity
E∆; after all we need to implement the commitments, not the assumptions.

Remark 3.3.19 (Association). The range of an association σ is a set of object iden-
tifiers, the domain a “set of instance variables”. The range ran(σ) is unproblematic;
it can be straightforwardly encoded and the implementation Ct must have access to
all objects in the range of σ, since this set represents the connectivity. This means,
ran must be implemented as some method. The domain dom(σ) as a set of instance
variables is not explicitly needed in the program as data structure or method, it is
used as meta-mathematical notation to refer to all role instance variables, whose value
is different from ⊥. In particular we do not need a method returning a “set” of in-
stance variable or manipulating such sets; this would amount to implement some sort
of reflection.

Definition 3.3.20 (Observer for trace t). Assume Ξ0 ⊢ t : trace, i.e., t is a deter-
ministic, legal trace. The observer for t, denoted by Ct is defined as as follows. Let C′

t

be the part of Ct without (potentially) the thread, consisting of classes, only. It is given
as follows. Each class mentioned in the commitment assertion Θ0 is equipped, with the
data structures typed as given in Definition 3.3.16, with scripts = ⊥ and

init = {(σ⊥ , ťo) | to = o↓ t, o ∈ names(t)} . (3.46)

Each public method l : ~T → T of each component class c is implemented as

l , ς(s:c).λ(~x : ~T ).tisync(~x); t
o
sync . (3.47)

If ∆0 ⊢ ⊙, then Ct = C′
t, i.e., Ct does not contain the thread ♮. If otherwise Θ0 ⊢ ⊙,

then Ct is of the form

Ξ0 ⊢ Ct , Ξ0 ⊢ C
′
t ‖ ♮〈let x:ci in new ci in x.start()〉 (3.48)

for some class ci with Θ ⊢ ci.

The mentioned data structures are presented in more detail in the appendix.
That the encoding is possible rests ultimately on the fact that the given trace t
is finite. In particular it contains a finite number of object identities, which
means that Ct contains also only a finite number of roles, one ǒ for each name
o occurring in t. Also the number of different methods is finite.

Remark 3.3.21 (Start method and hiding). If the thread starts executing in the
component, it starts its activity by invoking the start -method of some component class
(cf. equation (3.48)). This requires at least one class to be present in the component,
which further implies that at least one class is mentioned in the interface: Θ0 ⊢ ci. The
reason is that ν-binders cannot hide classes. If we allowed this, Θ0 could advertise no
class to the environment, and in that case, the “initial class” implementing the start
method could be hidden. The resulting theory would not change much. Of course,
without externally visible component classes, the environment cannot call any compo-
nent method. Traces with outgoing calls and with only incoming returns would be
perfectly legal. See also Section 6.1.7.

The next definition is helpful to reason about the behavior of Ct. It basically
expresses the induction hypothesis about the evolving Ct in that it asserts the
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still open future of the component. To do so it uses the introduced data struc-
tures and the future projection from Definition 3.1.3. In particular, it connects
the associations or substitutions σi as abstractions of the past clique interaction
with the still open future scripts of the clique. It is an existential assertion; it
simply states that in the current state of the component, each clique has still
open a future compatible with the (rest of the) global trace s. The assertion is
used for the inductive proof of definability.

Definition 3.3.22 (Future). The assertion Ξ ⊢ C :: s is defined as follows. For all
component objects o from Θ, i.e., for all o with Θ ⊢ o we are given

Ξ ⊢ C :: [o] 3 [o]↓ s , (3.49)

where the component clique [o] abbreviates [o]/Ξ
and is defined wrt. EΘ (since o is a

component object). The specification of equation (3.49) is meant as follows:

[o].scripts = {. . . , (σ, š′), . . .} (3.50)

such that [o]↓ s . š′σ and ran(σ) = [o], and where š′σ denotes the application of the
substitution σ to š′ and . denotes matching (cf. Definition B.4.13 in the appendix).
We furthermore write

Ξ ⊢ C :: [o] 3⊥ (3.51)

when o′.scripts = ⊥ for all component objects o′ from [o].

3.3.4 Completeness argument

The next lemma states that, given a trace t, the corresponding observer Ct can
indeed perform the trace. Considering t as the specification of the observer, we
call the lemma “total correctness” of Ct wrt. t.

Lemma 3.3.23 (Total correctness). Let t be a legal trace and Ξ0 ⊢ Ct given by

Definition 3.3.20. Then Ξ0 ⊢ Ct
t

=⇒.

Whereas the total correctness Lemma 3.3.23 stipulates that Ct can perform
the trace t, we show next that it can perform nothing else (up to unavoidable
variations). We can consider the corresponding exactness Lemma 3.3.24 also as
partial correctness property.

Lemma 3.3.24 (Exactness/partial correctness). Let t be a legal trace, i.e., Ξ0 ⊢ t :

trace , and Ξ0 ⊢ Ct given by Definition 3.3.20. If Ξ0 ⊢ Ct
r

=⇒, then Ξ0 ⊢ r 42Θ t.

The next lemma is the last step towards completeness. It performs the com-
pleteness proof without exploiting the knowledge that a closed program —the
component together with the environment— behaves deterministic. In this
respect it corresponds to the completeness proof in the multithreaded setting
where programs behave non-deterministically. With concurrency, however, the
completeness proof is more complex in another respect, caused by the inability
to atomically observe interaction in the presence of race condition.

First we define a variant of the ⊑trace relation from Definition 3.1.11, which
ignores the fact that closed programs are deterministic. This definition will be
helpful in proving completeness where the effects of determinism are factored
out. Besides being helpful in the proof, the definition is instructive insofar,
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as it captures the generalization of ⊑trace needed if we dropped the assump-
tion that the programs are deterministic, for instance if we introduced a non-
deterministic choice operator to the language. Later, in the concurrent setting,
⊑trace will resemble the version from Definition 3.3.25, since in the presence of
concurrency and race conditions, programs behave non-deterministically (cf.
Definition 5.1.6).

Definition 3.3.25. Let t1 be a legal trace. We write Ξ0 ⊢ t2 42•
∆ t1, if:

1. Ξ0 ⊢ o↓ t2 = o↓ t1 for all environment objects o ∈ [o1], where [o1] is the
environment clique of the last action of t1.

2. Ξ0 ⊢ t2 42∆ t1

If t1 is empty, the first condition is omitted. We write Ξ0 ⊢ C1 ⊑nondet
trace C2, if for all

Ξ0 ⊢ C1
t1=⇒, there exists a t2 with Ξ0 ⊢ C2

t2=⇒ with Ξ0 ⊢ t1 42•
∆ t2.

Lemma 3.3.26. If Ξ0 ⊢ C1 ⊑obs C2, then Ξ0 ⊢ C1 ⊑nondet
trace C2.

Definition 3.1.10 characterizes deterministic traces from the perspective of
the component, captured in the assertion Ξ0 ⊢ t : detΘ, and dually from the
perspective of the observer Ξ0 ⊢ t : det∆. Traces at the component-observer
interface and of a closed program (consequently legal traces) are deterministic

in both respects, for which we use det∆,Θ . Note that requiring for Ξ0 ⊢ C
t

=⇒,
that the t is deterministic, i.e., impose Ξ0 ⊢ t : det∆,Θ as restriction,17 does not
mean that Ξ0 ⊢ C can perform only t (plus all its prefixes and up to renaming)!
For each single environment, which closes C, there exists exactly one behavior

(up to prefixing and renaming), but Ξ0 ⊢ C
t

=⇒ describes the behavior of C as
open program, with the environment program being abstracted away.

The following definition captures the intuition, that in the deterministic set-
ting a closed program can do basically only one trace. I.e., in the setting of com-
ponent and observer, in the parallel composition Ξ0 ⊢ C1 ‖ CO , the trace at the
interface between c1 and CO is basically fixed. There is not literally exactly one
trace possible, of course. Assume

Ξ0 ⊢ C ‖ CO
t1=⇒
t̄1

and Ξ0 ⊢ C ‖ CO
t2=⇒
t̄2

(3.52)

The super- and subscript of the reduction relation =⇒ are meant to indicate that
the parallel composition of C and CO are evolving by internal reduction steps,
where C is doing t1 (resp., t2) at the interface and CO is doing the complemen-
tary trace t̄1, resp., t̄2. That a =⇒-reduction can be decomposed into two com-
plementary interaction traces and conversely, that two complementary traces
cancel out into a common internal reduction is the topic of Section A.4.3 and
A.4.2. Given the two behaviors of equation (3.52), the fact that C ‖ CO is a de-
terministic, closed program obviously does not imply t1 = t2. The remaining
slack allows prefixing and renaming, since the congruence rules of the seman-
tics do not determine the actual names (or to say it differently, the components
and the traces are anyway considered up to permutation of names, only). We
introduce a separate notation for prefixing up to choice of ν-bound names in a
trace.

17Indeed, Ξ0 ⊢ t : det∆ as restriction suffices, since the component C can produce only traces
which are deterministic from the commitment perspective.
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Definition 3.3.27 (Prefixing and renaming). Let s and t be traces. Then s 4α t, if
there is a renaming of t, i.e., some t′ with t′ =α t such that s 4 t.

Lemma 3.3.28 (Individual determinism). Assume a legal trace Ξ0 ⊢ t1 : trace.
Assume further a set of traces T = {u′ | u′ 4α u or u′ 3α u} for some trace
Ξ0 ⊢ u : trace. If for all prefixes u1 4 t1, there exists a trace u2 ∈ T such that the two
conditions of Definition 3.3.25 relate u1 and u2, then Ξ0 ⊢ t2 ≍−∆ t1 for some trace t2.

We can now combine Lemma 3.3.26 with Lemma 3.3.28.

Theorem 3.3.29 (Completeness). If Ξ0 ⊢ C1 ⊑may C2, then Ξ0 ⊢ C1 ⊑trace C2.
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CHAPTER 4

Multithreading

In this chapter, we extend the results from Part I to include concurrency in the
form of multithreading. The presentation follows the one for the sequential
language. The additions are modest: Basically, the language is extended by the
possibility to create threads. Hence, components now contain, besides classes
and objects, a dynamic “set” of named threads.

Concerning the connectivity, complications arise in that now calls are possi-
ble, where the caller clique is not known. The general setting remains similar.
Especially the open interface behavior rests again on an appropriate formu-
lation and treatment of commitment and assumption contexts including heap
abstractions.
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4.1 Introduction

We extend now the development of Chapter 2 and 3 by concurrency in the form
of multithreading. Syntactically and concerning the type system, the changes
are modest, and also the main point of the development, the consideration of
object connectivity, remains basically unchanged. Hence, we reuse much of
the material from the sequential setting; in particular we do not explain or
sometimes not even show rules and definitions that carry over. The resulting
calculus is more or less a syntactic extension (by classes) of the concurrent object
calculus from [62, 82].

4.2 Syntax

Concerning available types, a new one is introduced, the type thread of threads;
the grammar of types is shown in Table 4.1 (cf. also Table 2.1).

T ::= B | none | thread | [l:U, . . . , l:U ] | [(l:U, . . . , l:U)] | n
U ::= T × . . .× T → T

Table 4.1: Types

Besides named objects and classes, the dynamic configuration of a program
can now contain a number of named threads n〈t〉 as active entities, which, like
objects, can be dynamically created. I.e., instead of one single thread named ♮,
each thread n〈t〉 carried now a unique name n. Unlike objects, threads are not
instantiated by some statically named entity (a “thread class”, as in Java), but
directly created by providing the code (cf. also Section 6.1.5 in the conclusion
for a discussion, and [9] [12] [11] for an investigation including thread-classes).
Otherwise, the syntax is largely unchanged. In addition to the syntax of Ta-
ble 2.2, we introduce

currentthread and new〈t〉

as new expressions, referring to the name of the current thread and an expres-
sion which spawns a new thread with the code given by t.

For the names, we generally use n and its syntactic variants for threads (or
just in general for names), o for objects, and c for classes. Otherwise, we use
the syntactic abbreviations and conventions agreed upon in Section 2.2.

4.3 Type system

The type system requires some modest adaptation and extension (cf. Section
2.3, especially Tables 2.3 and 2.4). At the level of components, we need to ac-
count for the fact that threads are now named and appear in the interfaces Θ
and ∆. The contexts now additionally store thread names, i.e., besides bind-
ings of the form o:c and c:[(l:U, . . . , l:U)] for objects and classes, they contain
bindings for thread names of the form n:thread .



Chapter 4 Multithreading 83

C ::= 0 | C ‖ C | ν(n:T ).C | n[(O)] | n[n, F ] | n〈t〉 program
O ::= F,M object
M ::= l = m, . . . , l = m method suite
F ::= l = f, . . . , l = f fields
m ::= ς(n:T ).λ(x:T, . . . , x:T ).t method
f ::= ς(n:T ).λ().⊥c | fv field
fv ::= ς(n:T ).λ().v defined field
t ::= v | stop | let x:T = e in t thread
e ::= t | if v = v then e else e | if undef (v.l) then e else e expression
| v.l(v, . . . , v) | v.l := fv | currentthread

| new n | new〈t〉
v ::= x | n values

Table 4.2: Abstract syntax

T-EMPTY

∆ ⊢ 0 : ()

∆ ⊢ C1 : Θ1 ∆, Θ1 ⊢ C2 : Θ2

T-PAR

∆ ⊢ C1 ‖ C2 : Θ1, Θ2

∆ ⊢ C : Θ, n:thread
T-NUit

∆ ⊢ ν(n:thread).C : Θ

∆ ⊢ C : Θ, o:c Θ ⊢ c : [(. . .)]
T-NUio

∆ ⊢ ν(o:c).C : Θ

∆, o:c ⊢ C : Θ ∆ ⊢ c : [(. . .)]
T-NUe

∆ ⊢ ν(o:c).C : Θ

; ∆, c:T ⊢ [(O)] : T
T-NCLASS

∆ ⊢ c[(O)] : (c:T )

; ∆ ⊢ c : [(TF , TM )] ; ∆, o:c ⊢ [F ] : [TF ]
T-NOBJ

∆ ⊢ o[c, F ] : (o:c)

; ∆, n: thread ⊢ t : none

T-NTHREAD

∆ ⊢ n〈t〉 : (n: thread)

∆′ ≤ ∆ Θ ≤ Θ′ ∆ ⊢ C : Θ
T-SUB

∆′ ⊢ C : Θ′

Table 4.3: Static semantics (components)
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In Table 4.4, we list only the rules additional to the ones from Table 2.4.
The statement new〈t〉 for thread creation possesses, not surprisingly, the type
thread , and the same holds for the keyword currentthread . Note that rule
T-NEWT requires t to be well-typed with type none , in accordance with rule
T-NTHREAD for named threads on component level in Table 4.3.

Γ; ∆ ⊢ t : none

T-NEWT
Γ; ∆ ⊢ new〈t〉 : thread

T-CURRT
Γ; ∆ ⊢ currentthread : thread

Table 4.4: Static semantics (2), extending Table 2.4

4.4 Operational semantics

The operational semantics is again split into a part dealing with internal steps
and those with externals steps.

Table 4.5 for the internal steps extends Table 2.5 by rules for the new con-
structs. The expression currentthread evaluates to the name of the thread which
executes the expression (cf. rule CURRENTTHREAD). A new thread with a new
local name is created by NEWT, which starts executing asynchronously, i.e.,
after the creation by NEWT, the spawning thread and the new one are running
in parallel. As in the rule for object creation NEWOi in Table 2.5, the ν-binder
hides the new name n2 outside the two involved threads. Note that the type
system, especially rule T-NEWT, assures that the type T mentioned in the re-
duction rules CURRENTTHREAD and NEWT equals thread .

All other rules remain as they are, with ♮ replaced by n. As before, the
reduction relations are used modulo structural congruence≡, i.e., the rules from
Table 2.6 and 2.7 still apply.

n〈let x:T = currentthread in t〉 n〈let x:T = n in t〉 CURRENTTHREAD

n1〈let x:T = new〈t〉 in t1〉 ν(n2:T ).(n1〈let x:T = n2 in t1〉 ‖ n2〈t〉) NEWT

Table 4.5: Internal steps, extending Table 2.5

4.5 External behavior of a component

The external behavior of a component is given in terms of transitions, labeled
by calls and returns, as before (cf. Table 4.6; cf. also the corresponding Table 2.8
in the sequential setting). In the binding part of the label, the scope of new
objects and thread names may be extruded, or a name of an object may be
transmitted to be lazily instantiated.
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γ ::= n〈call o.l(~v)〉 | n〈return(v)〉 | ν(n:T ).γ basic labels
a ::= γ? | γ! receive and send labels

Table 4.6: Labels

The only change in comparison with the labels of Table 2.8 is that the label
carries the name of the concerned thread. As a consequence, the name context
Φ in the binding part of the label may now contain also the name of the thread,
in case the name escapes via the communication to the other side. Unchanged
from the sequential case is the augmentation, i.e., we use o1 blocks for o2 and
o2 returns v to o1 as additional expressions, as described in Section 2.6.4 with
the typing as before (cf. Table 2.9). Also the external calls are augmented by
the identity of the caller, i.e., the self of the method (cf. equation (2.5)). Note
we use the self -parameter also to augment code fragments new〈t〉 inside the
method, if t itself contains calls to external objects.

If the initial thread starts in the component, as asserted by Θ0 ⊢ ⊙, the
activity does not start “inside” a particular object. The initial thread uses ⊙ as
“self”-augmentation for external method calls, i.e., the calls are augmented to
external calls ⊙ x.l(~x).

As introduced in the sequential setting, we use ⊙ to represent the initial
clique of the system (cf. page 37). In the multithreaded setting here, we need
a corresponding symbol for each thread. We use ⊙n for the initial clique of
thread n. Note that ⊙ is still used additionally as representative for the very
first clique.

4.5.1 Connectivity contexts

Again, in the presence of cross-border instantiation, the semantics must contain
a representation of the connectivity as an abstraction of the program’s heap.
In the single-threaded setting, the assumption and the commitment context
∆ and Θ contained object and class names. Here, they additionally contain
thread names, i.e., bindings of the form n:thread . We refine our convention
from now1 on as follows: By convention, we refer with Σ to the bindings for
threads, whereas ∆, resp., Θ contain the bindings for object and class names,
as before.

Leaving aside the thread names, the assumption and commitment contexts
adhered to the following invariant during reduction: A class either resides in
the component or in the environment, and correspondingly for the objects. A
named thread, in contrast, in general occurs both in the environment and the
component. This, of course, was already true in the single-threaded case with
the thread named ♮, only that with the name fixed by convention, there was no
need to incorporate it into the type system.2

1In the type system of Section 4.3, we did without designating the thread bindings in a special
way.

2Note, however, that the rule for parallel composition T-PAR does not allow that a thread occurs
on both sides of the ‖-construct, since the domains of the commitment contexts on both sides of the
‖-operator must be disjoint. Indeed, the parallel composition n〈t2〉 ‖ n〈t1〉 does not make sense,
and thus the type system forbids this.
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The external semantics is formalized as labeled transitions between judg-
ments

∆,Σ;E∆ ⊢ C : Θ,Σ;EΘ , (4.1)

where ∆,Σ;E∆ are the assumptions about the environment of the component
C and Θ,Σ;EΘ the commitments. The assumptions consist of a part ∆,Σ con-
cerning the existence (plus static typing information) of named entities in the
environment. The semantics maintains as invariant that the assumption and
commitment contexts are disjoint concerning object and class names, whereas
a thread name occurs as assumption iff it is mentioned in the commitments.
By convention, the contexts Σ (and their alphabetic variants) contain exactly
all bindings for thread names.

This means, as invariant we maintain for all judgments ∆,Σ;E∆ ⊢ C :
Θ,Σ;EΘ that ∆, Σ, and Θ are pairwise disjoint. A further invariant is that a
thread name n occurs in Σ, iff ⊙n occurs in either ∆ or Θ. This means, besides
being relevant for connectivity information, ⊙n contains also the information
whether the thread started its life in the environment or in the component.

As mentioned, the ⊙n-symbol is needed in particular because new thread
names may be communicated between environment and component (even if
not in argument position).

The connectivity contexts are still of the form (cf. equation (2.6))

E∆ ⊆ ∆× (∆ + Θ) (4.2)

for the assumption contexts, and dually EΘ ⊆ Θ × (Θ + ∆). Note that EΘ

and E∆ are relations only between objects references; connectivity concerning
class names or thread names does not play a role. We write o1 →֒ o2 for pairs
from the relationsE∆, resp.EΘ. Note thatE∆ (resp.EΘ) does not include pairs
from ∆ × Σ (resp. Θ × Σ) for connectivity. The reason that we can do without
considering acquaintance of objects with threads names is that objects cannot
pass around thread names in as arguments of method calls.3 If they could, as
we allowed in [9] [12], E∆ ⊆ ∆ × (Θ + Σ + ∆).However, since Θ and ∆ can
contain the symbols⊙ and⊙n, pairs of the form o →֒ ⊙ or⊙n →֒ o are possible.

Given E∆ (plus ∆, Σ, and Θ), we write⇌ for the reflexive, symmetric, and
transitive closure of →֒ on objects from ∆ (cf. also equation (2.7), i.e.,

⇌, (→֒↓∆×∆ ∪ ←֓↓∆×∆)∗ ⊆ ∆×∆ . (4.3)

As before, we write⇌→֒ for the union⇌ ∪ ⇌; →֒ ⊆ ∆ × (∆ + Θ), where the
semicolon denotes relational composition. As judgment, we use ∆,Σ;E∆ ⊢
o1 ⇌ o2 : Θ,Σ, resp. ∆,Σ;E∆ ⊢ o1 ⇌→֒ o2 : Θ,Σ. For Θ,Σ, EΘ, and ∆,Σ, the
definitions are applied dually.

4.5.2 Check and update of contexts

The semantics is formulated as transitions between typed judgments (cf. also
equation (2.9))

∆,Σ;E∆ ⊢ C : Θ,Σ;EΘ
a
−→ ∆́, Σ́; É∆ ⊢ Ć : Θ́, Σ́; ÉΘ .

3Indirectly, objects can pass around the name of a thread to another object, of course, namely
simply in that it calls a method of that object. The callee can find out the name of the thread via the
expression currentthread .
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We can reuse much of the corresponding definitions from the sequential case,
with appropriate adaptations, and we start by changing the abbreviation for
combined contexts.

Notation 4.5.1 (Contexts). We adapt the conventions from Notation 2.6.5 as follows.
We abbreviate the triple of name contexts ∆,Σ,Θ as Φ, and the context ∆,Σ,Θ, E∆, EΘ

combining assumptions and commitments Ξ. The notations Ξ∆ and ΞΘ refer to the

assumption and the commitment context. Furthermore we understand ∆́, Σ́, Θ́ as Φ́,

and Ξ́ as consisting of ∆́, Σ́, Θ́, É∆, ÉΘ, etc.

The compliance check of an incoming communication step wrt. the assump-
tions now reads as follows: (cf. Definition 2.6.7).

Definition 4.5.2 (Connectivity check). An incoming core label a with sender os is

well-connected wrt. context Ξ́ (written Ξ́ ⊢ os
a
→ :wc) if:

∆́, Σ́; É∆ ⊢ os ⇌→֒ fn(a) : Θ́, Σ́ . (4.4)

Note that we assume that a is the core of a label; in the rules of the semantics
and the rules for checking legality, the definition is invoked on the label with
the binding part already “stripped off”, and in the post-context which already
contains the new information. Consequently in case of an incoming all label,
fn(a) includes the receiver or and the thread name. However, pairs of the form
o →֒ n where n is a thread name, are not part of the connectivity contexts.

Definition 4.5.3 (Name context update). The update Φ́ of an assumption-commit-
ment context Φ wrt. an incoming label a = ν(Φ′)⌊a⌋? is defined as follows.

1. Θ́ = Θ + Θ′.

2. ∆́ = ∆ +⊙Σ′ ,∆′.

3. Σ́ = Σ + Σ′.

We write Φ + a for the update. The update for outgoing communication is defined
dually. Especially, ⊙Σ′ is added to Θ, instead of ∆. The notation ⊙Σ′ abbreviates ⊙n

if Σ′ ⊢ n, otherwise ⊙n is not present.

Now to the update of connectivity, which we basically reuse from the single-
threaded setting (Definition 2.6.9). Incoming communication —for outgoing
communication, the situation is dual— may bring entities in connection which
had been separate before. For the commitment context, this can be directly
formulated by adding the fact that the receiver of the communication now is
acquainted with all transmitted arguments (part (1) of Definition 4.5.4). For the
update of assumption connectivity context E∆, we add that the sender knows
all of the names which are transmitted boundedly (cf. part (2)). No update
occurs wrt. names already known.

The semantics maintains as invariant that for each thread name n men-
tioned in the Σ-context, either ∆ ⊢ ⊙n or Θ ⊢ ⊙n: A thread n known both
at the environment and the component started on exactly one side, marked by
⊙n.
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Definition 4.5.4 (Connectivity context update). The update (É∆, ÉΘ) of a con-
nectivity context (E∆, EΘ) wrt. an incoming label a = ν(Φ′)⌊a⌋? with sender os and
receiver or is defined as:

1. ÉΘ = EΘ + or →֒ fn(⌊a⌋).

2. É∆ = E∆ + os →֒ dom(Φ′).

We write (E∆, EΘ) + os
a
→ or for the update.

Combining Definitions 4.5.3 and 4.5.4, we write

Ξ + os
a
→ or , (4.5)

when updating names and connectivity at the same time (cf. equation (2.13)).
In addition to checking connectivity we must type-check the label.

Definition 4.5.5 (Well-formedness and well-typedness of a label). We use the
definitions of well-formedness of a label (⊢ a), the expected argument types of a
method call, asserted by

⊢ a and ∆́, Θ́ ⊢ o.l? : ~T → T and ∆́, Θ́ ⊢ o.l! : ~T → T (4.6)

as given Definition 2.6.11. Furthermore, well-typedness of a core label is given by
Table 4.7. The rules LT-CALLO and LT-RETO are analogous and not shown.

Σ́ ⊢ n : thread ; ∆́, Θ́ ⊢ ~v : ~T a = n〈call or.l(~v)〉?
LT-CALLI

∆́, Σ́, Θ́ ⊢ a : ~T →

Σ́ ⊢ n : thread ; ∆́, Θ́ ⊢ v : T a = n〈return(v)〉?
LT-RETI

∆́, Σ́, Θ́ ⊢ a : → T

Table 4.7: Checking static assumptions

The definition is taken basically unchanged from the sequential setting (cf.
Definition 2.6.11). The adaptations are caused by the fact that the communica-
tion labels now additionally carry the name of the thread, i.e., they are of the
form ν(Φ).n〈call or.l(~v)〉? and ν(Φ).n〈return(v)〉? instead of ν(Φ).〈call o2.l(~v)〉?
and ν(Φ).〈return(v)〉?. In particular, compared to Table 2.10 in the sequential
setting, the rules of Table 4.7 contain an additional check that the name n is
indeed a thread name. Again, the assertions in equation (4.6) and of Table 4.7

are formulated mentioning contexts ∆́, Θ́, and Σ́ instead of ∆, Θ, and Σ (which
would work as well, of course). This is done as reminder that the check is used
in the rules always for the post-context.

The order of the checks from Definition 4.5.5 (in the external steps of the se-
mantics and the characterization of the legal traces) will be as follows. Given,
e.g., an incoming call ν(Φ′).n〈call or.l(~v〉?, checking for well-formedness is
first, i.e., that Φ′ is a well-formed name context, and furthermore that only
names actually occurring in the core n〈call or.l(~v〉? of the label are bound by
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Φ′. Afterwards, using ∆́, Θ́ ⊢ or.l? : ~T → T from equation (4.6), resp., equation
(2.15), checks that or is the name of a component object, that it supports (via

its class) a method labeled l. This check furthermore determines the types ~T
expected for the arguments of the call and T for the value handed back when
returning for the call. In the third step, rule LT-CALLI checks the actual param-

eters ~v against their expected type ~T , and in addition, that n is the name of a
thread. Note that rule LT-CALLI makes no use of the return type T . The return
type is needed when checking return labels with rule LT-RETI or LT-RETO, of
course.

4.5.3 External steps

The operational rules are quite similar to the ones from Section 2.6.4 for the
sequential setting. The three rules CALLI0–CALLI2 cover three different situa-
tions wrt. incoming calls: A call of a thread new to the component, a reentrant
call, and a call of a thread whose name is already known in the component.
To deal with component entities that are being created during the call, C(Θ′)
stands for lazily instantiated objects mentioned in Θ′.

Rules CALLI1 and CALLI2 work analogously to the single-threaded case. In
CALL2, the sender of the call is now ⊙n, the initial clique of thread n, whereas
in the single-threaded setting, the sender was ⊙, the initial clique at the very
start of the program, as the rule could be applied to the only thread ♮ there.
In the simpler setting, we did not introduce a ⊙♮, but used ⊙ to represent the
initial clique of ♮. In the multithreaded setting now, the first thread, say n, that
crosses the border is represented both by ⊙ and by ⊙n Both are put into the
same clique, however, by the initial step, either by rule CALLI0 or by CALLO0,
depending on whether ∆0 ⊢ ⊙ or Θ0 ⊢ ⊙. This can be seen as follows. As-
suming for one case ∆0 ⊢ ⊙, then ⊙ is the only choice for the source of the
call in the premise ∆ ⊢ o of L-CALLI0.4 Therefore, after the call, the equation
⊙ →֒ ⊙n is part of the (assumption) connectivity context, when n is the name
of the thread in question.

Rule CALLI0 deals with the situation, that the thread n enters the compo-
nent for the first time, assured by the premise Φ′ ⊢ n.5 With the thread being
new, we have no indication from which clique the call originates. However, the
new thread must have been created at some point before by some environment
clique. Indeed, any existing environment clique is a candidate for having cre-

ated n. So the update to Ξ́ non-deterministically guesses to which environment
clique the thread’s origin ⊙n belongs to, namely in the premise ∆ ⊢ o. The
guess is remembered by adding o →֒ ⊙n to the connectivity context. Note that

Σ′ ⊢ n implies ∆́ ⊢ ⊙n after the call (cf. Definition 4.5.3(3)).
The return steps are simpler than the calls, as the element of guessing is

not present: When a thread returns, the callee as well as the thread are already
known. Returns are simpler than calls also in that only one value is commu-
nicated, not a tuple (and we do not have compound types). To avoid case
distinctions and to stress the analogy with the treatment of the calls, we denote

4In the sequential setting of Table 2.11, the corresponding premise of CALLI0 explicitly required
∆0 ⊢ ⊙, not simply ∆0 ⊢ o. Here, we use ∆ ⊢ o, since CALLI0 not only applies for the initial step,
but also later when a new thread crosses the interface.

5That n is indeed a name of a thread, i.e., that Φ′ ⊢ n : thread , is assured by the type checking
premises, in particular by rule LT-CALLI of Table 4.7.
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a = ν(Φ′). n〈call or.l(~v)〉? ∆ ⊢ o Φ′ ⊢ n

Ξ́ ⊢ or.l? : ~T → T Ξ́ = Ξ + (o →֒ ⊙n) + ⊙n
a
→ or Ξ́ ⊢ ⊙n

⌊a⌋
→ or : ~T →

CALLI0
Ξ ⊢ C

a
−→ Ξ́ ⊢ C ‖ C(Θ′) ‖ n〈let x:T = or.l(~v) in or returns x to ⊙n; stop〉

a = ν(Φ′). n〈call or.l(~v)〉? tblocked = let x′:T ′ = o blocks for os in t

Ξ́ ⊢ or.l? : ~T → T Ξ́ = Ξ + os
a
→ or Ξ́ ⊢ os

⌊a⌋
→ or : ~T →

CALLI1
Ξ ⊢ ν(Φ).(C ‖ n〈tblocked〉)

a
−→

Ξ́ ⊢ ν(Φ).(C ‖ C(Θ′) ‖ n〈let x:T = or.l(~v) in or returns x to os; tblocked〉)

a = ν(Φ′). n〈call or.l(~v)〉? ∆ ⊢ ⊙n

Ξ́ ⊢ or.l? : ~T → T Ξ́ = Ξ + ⊙n
a
→ or Ξ́ ⊢ ⊙n

⌊a⌋
→ or : ~T →

CALLI2
Ξ ⊢ C ‖ n〈stop〉

a
−→ Ξ́ ⊢ C ‖ C(Θ′) ‖ n〈let x:T = or .l(~v) in or returns x to ⊙n; stop〉

a = ν(Φ′). n〈call or .l(~v)〉! Φ′ = fn(⌊a⌋) ∩ Φ Φ́ = Φ \Φ′ ∆́ ⊢ or Ξ́ = Ξ + os
a
→ or

CALLO
Ξ ⊢ ν(Φ).(C ‖ n〈let x:T = os or.l(~v) in t〉)

a
−→

Ξ́ ⊢ ν(Φ́).(C ‖ n〈let x:T = os blocks for or in t〉)

a = ν(Φ′). n〈return(v)〉? Ξ́ = Ξ + os
a
→ or Ξ́ ⊢ os

⌊a⌋
→ or : → T

RETI

Ξ ⊢ ν(Φ).(C ‖ n〈let x:T = or blocks for os in t〉)
a
−→ Ξ́ ⊢ ν(Φ).(C ‖ n〈t[v/x]〉)

a = ν(Φ′). n〈return(v)〉! Φ′ = fn(⌊a⌋) ∩ Φ Φ́ = Φ \Φ′ Ξ́ = Ξ + os
a
→ or

RETO

Ξ ⊢ ν(Φ).(C ‖ n〈let x:T = os returns v to or in t〉)
a
−→ Ξ́ ⊢ ν(Φ́).(C ‖ n〈t〉)

∆ ⊢ c
NEWOlazy

Ξ ⊢ ν(Φ′).(C′ ‖ n〈let x:c = new c in t〉) Ξ ⊢ ν(Φ′, o:c).(C′ ‖ n〈let x:c = o in t〉)

Table 4.8: External steps

the binding part of the label by ν(Φ′), resp., ν(∆′,Σ′,Θ′), as before, even if Σ′

and at least one of the name contexts ∆′ and Θ′ are guaranteed to be empty.
Rule NEWOlazy , as before, deals with lazy instantiation and describes the local
instantiation of an external class.

As initial step, only calls are possible (by rule CALLI0 or CALLO0). As
in the single-threaded setting, there is exactly one initial thread, either in the
component or in the environment. Where the initial activity starts is marked
by ⊙, which makes it the only possible guess for o in CALLI0. For the initial
static contexts, we are given either ∆0 ⊢ ⊙ or Θ0 ⊢ ⊙.
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Full abstraction

Next we address full abstraction in presence of multithreading. Section 5.1
defines the notion of traces and the notion of observation as contextual equiv-
alence, resp., contextual preorder; Section 5.2 deals with soundness and com-
pleteness. For completeness, we characterize the set of possible (“legal”) traces
in Section 5.2.1, state closure conditions on the set of traces in Section 5.2.2, and
show how to realize a legal trace up to the unavoidable uncertainty (captured
in the closure conditions) in Section 5.2.3, yielding completeness.
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5.1 Trace semantics and ordering on traces

The trace semantics resembles the one from Section 3.1. Again, a trace of a
well-typed component is a sequence of external steps where the correspond-
ing rules from Table 3.1 can be reused. The only change is that the labels in the
traces now carry additionally the name of the corresponding thread. Using the

conventions from Notation 4.5.1, we write Ξ1 ⊢ C1
t

=⇒ Ξ2 ⊢ C2 for C1 exhibit-
ing the external trace t in the assumption and commitment context Ξ1. Further
material which we reuse is the definition of future projection (Definition 3.1.3)
and Definition 3.1.1 for connectivity after executing a trace:

Ξ ⊢Θ t ⊲ o1 ⇌ o2, (5.1)

resp. Ξ ⊢Θ t ⊲ o1 ⇌→֒ o2 (and dually for ⊢∆).
Since the caller of a method is anonymous, the equivalences on the traces

need a refinement. In the single-threaded setting, anonymity of the caller did
not cause concern: The sender of a, say, incoming call can be determined by
the history of the thread, determined at least up to the originating clique (cf.
Definition 3.3.4). Also in case that the sole thread enters initially, the sender is
determined as the representative⊙ of the initial clique.

Now, a new thread may enter the component via a method call with the
caller unknown. The semantics deals with this circumstance in that the corre-
sponding CALLI-rule non-deterministically guesses the originating clique, con-
sistent with the current connectivity contexts, and where the step updates the
contexts according to the guess.

For the closure conditions, especially replay, the problem lies in the fact that
a given component trace does not contain enough information to determine
the senders of those labels. What is worse, with the trace at hand, the external
semantics from Section 4.5 is based on one choice of the identities of unknown
senders, while in fact there might be more than one possible interpretation
consistent with the trace. To see why this is problematic, consider the following
example.

Example 5.1.1 (Replay). Consider Figure 5.1: Does a component exhibiting the be-
havior of Figure 5.1(a) unavoidably show also the one of Figure 5.1(b). I.e., is the last
c′ is justified by being a replay of earlier behavior? Let s1 be the interaction of the trace
with the clique of o1 (without c), and analogously s2 the interaction with the clique of
o2 (again without c). After s1 and s2, the component consists of two cliques, repre-
sented by the objects o1 and o2. After s1s2, the component answers with the outgoing
call c, where we assume that the call is issued by a thread new to ∆. This means that
the origin of the call, either the clique of o1 or of o2, might be undetermined.1

The interaction continues with s′1 which we assume to create a duplicate of the
clique of o1, and let us assume that the next outgoing call c′ can originate only from
o′1. Now the question is, whether at the end of scenario 5.1(a), c′ is unavoidable, i.e.,
whether

s1 c s2 s
′
1 ≍−Θ s1 c s2 s

′
1 c

′ ? (5.2)

The answer is no. The sender of c′ is (as we assume) the clique of o′1. Since the previous
outgoing call c might have originated not in the clique of o1 but in o2, the c′ is not

1Sometimes, of course, the situation is such that further information carried with the call-label
solves the uncertainty wrt. the origin of the call.
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Figure 5.1: Replay

unavoidable, as in that situation, it is not a replay. It would be unavoidable only if for
all possible senders of c, s′1 c

′ has been seen before.
If the second clique o2 of Figure 5.1(a) would itself be a replay of o1, as indicated

by o′′1 of Figure 5.1(c), then the second c′ would be justified by replay.
A more formal justification for the above “no” goes as follows. Let us add infor-

mation to the trace to disambiguate origin of a label. This is necessary for calls of new
threads, only. We do this by adding the sender of the call to the call label and call such a
label augmented. Analogously, we call a trace with this additional information aug-
mented (cf. Definition 5.1.4 below) and indicate an augmented trace as t+, where t is
the underlying unaugmented trace.

In the above situation of equation (5.2), there are two possible augmentations for
the trace t on the left, let us call them t+1 and t+2 :

s1 c
+
1 s2 s

′
1 and s1 c

+
2 s2 s

′
1 . (5.3)

The two possible situations are shown in 5.2(a) and 5.2(b), where the additional, fat
arrow indicates the source clique of the call c, i.e., the caller. Remember that the call c
is done by a new thread and that spawning a new thread works asynchronously. For
instance, in scenario 5.2(a), the new thread is created [o1] but remains invisible from
the outside until after the interaction with the second clique [o2] has been executed.

As assumed, the second call c′ can come only from o′1, i.e., there are still only two
augmentations for the longer trace t2 = t1 c

′, corresponding to the two augmentations
of equation (5.3); with the origin of c′ fixed by assumption, the longer trace does not
introduce a further degree of freedom. For t+1 , the longer t+1 c′ is a replay, for t+2 , it is
not. To sum up: t c′ a replay given t, if for all augmentations, (t c′)+ is a replay for
t+.

Example 5.1.2 (Replay (2)). Let us extend the previous Example 5.1.1 such that the
call c′ in question has two possible source cliques (cf. Figure 5.3), and again we ask,
whether it is unavoidable that, given the scenario s of Figure 5.3(a), the component
shows also the behavior sc′ of Figure 5.3(b) with the additional, trailing c′. Unlike
the situation of Figure 5.1(a) and 5.1(b), now s ≍−Θ sc′. As before, the origin of c is
undetermined —both the cliques of o1 or of o2 are candidates— but no matter which
clique is the source of c, the second c′ is unavoidable, since depending on the situation,
it can extend s by extending o′1 or o′2.



94 5.1 Trace semantics and ordering on traces

[o1]

[o′1]

[o2]

c

Θ∆

(a)

[o1]

[o′1]

[o2]

c

c′

Θ∆

(b)

Figure 5.2: Replay
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Example 5.1.3 (Anonymous caller). The next example illustrates the issue from
the dual perspective of the observer. Consider the scenario 5.4(a). The observer on
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Figure 5.4: Anonymous caller

the right-hand side consists of two cliques, represented by o1 and o2, created by the
program on the left. Additionally, the observer creates two new threads which interact
with the component by a call and a return. Concerning the first call-return interaction
c1 and r1, the originating clique is not in doubt: It’s the only one present at that point,
the one of o1. This is guaranteed in the rule CALLI0 for incoming calls via a new
thread by requiring that there exists an environment object ∆ ⊢ o acquainted with the
arguments of the label.2

The situation is different for the second call-return pair c2 and r2. Assuming that
the connectivity for the arguments of the call does not disambiguate the origin of the
incoming call, both cliques of o1 and o2 may have spawned the second new thread (cf.
the scenarios 5.4(b) and 5.4(c)). In particular, 5.4(c) is possible, since a new thread
may not immediately be visible at the interface and may have been created internally
before the very first thread has left the clique o1.

Now consider the component C1 from the left-hand side of scenario 5.4(a) and let’s
denote its interface behavior as

t1 c1 r1 t2 c2 r2 . (5.4)

Furthermore, assume a second component C2 with the behavior

t1 c1 r1 + t2 c2 r2 , (5.5)

i.e., it non-deterministically chooses the left-hand branch or the right-hand branch.
The “+” can be understood as non-deterministic choice between the two traces. Alter-
natively one can think of the behavior described by (5.5) consisting of the two traces
t1 c1 r1 and t2 c2 r2 (plus their prefixes).

Now, can an observer distinguishC1 fromC2? The answer is yes; in particular, the
observer on the right-hand side of scenario 5.4(c) can insist on observing t1 c1 r1 c2 r2

2In more detail, the premise of the rule, requires that ⊙n, the “virtual” initial object/clique of
the new thread is acquainted with the objects from the label after adding o →֒ ⊙n to E∆ (cf. part
2 of Definition 4.5.4).
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before reporting success. Also another component C′
2 with the behavior

t1 c1 r1 c2 r2 t2 , (5.6)

i.e., where in comparison with scenario 5.4(a) and equation (5.4), t2 and c2 r2 are
swapped, can be distinguished from C1, namely by the observer from 5.4(b), where the
clique of o1 can block progress after t1 c1 r1. However, if C1 may be successful, then
also C′′

2 doing
t1 c1 r1 c2 r2 + t2 c2 r2 (5.7)

may be successful. No matter whether the observer is programmed to spawn the second
thread in the clique o1 or of o2, it cannot hinder success.

Given a trace t, let t+ represent the trace augmented with additional information
about the callers’ identities. Then the reason why success of C1 implies success of C′′

2

is that no matter whether the original trace of C1 of scenario 5.4(a) is interpreted as t+b
or as t+c as in the second and third scenario, there exists one branch of behavior from
equation (5.7), which leads to success.

As mentioned and discussed in the above examples, the origin of a com-
munication in case of new threads is guessed but not remembered in the trace.
To repair this lack of information, we augment the labels such that for each call
by a new thread, the sender clique is kept in the trace. This augmentation is
needed only when a new thread enters the component (via a method call). For
other method calls and for returns the sender can be determined by consult-
ing the history, as done in the single-threaded case. In case of a first interface
interaction of a thread, as formalized in L-CALLI0, the sender of the call is cal-
culated by the premise Ξ ⊢ r ⊲ ⊙n

a
→ or : ~T → as ⊙n, the representative of

the initial clique of thread n.

Definition 5.1.4 (Augmentation). An augmented trace of component C in con-
text Ξ0 is given by the rules of Table 4.8 where incoming call labels justified by rule
CALLI0 are kept in the trace as ν(Φ′, n:thread).n〈[o]call or.l(~v)〉?, where o is the
sender guessed in the premise ∆ ⊢ o of that rule.

For outgoing calls via CALLO, where the scope of the thread n escapes the compo-
nent, i.e., for steps labeled ν(Φ′, n:thread).n〈call or.l(~v)〉!, the augmentation works
as follows: Some object o with Θ ⊢ o and Ξ ⊢ os ⇌ o is added, where os is the object
mentioned as sender in the augmented code in CALLO. This yields as augmented label
ν(Φ′, n:thread).n〈[o]call or.l(~v)〉!.

We write Ξ0 ⊢ C
t+

=⇒ for C performing an augmented trace, where we understand

t as the underlying unaugmented, original trace. Given Ξ0 ⊢ C
t

=⇒, and in abuse
of notation, we mean by t+ also the set of augmented traces of t, i.e., the set of all

augmentations t+ of t with Ξ0 ⊢ C
t+

=⇒.

Remark 5.1.5 (Augmentation and justification pointers). The augmentation here
is reminiscent to the use of justification pointers in arena games also known as HO-
games (Hyland and Ong) [77]. What is called traces here, is often dubbed paths in
game theory, i.e., sequences of moves (= labels). The moves of a game come equipped
with an enabling relation, expressing potential causality: m ⊢ n reads “move m en-
ables move n”, where in standard situations, m ⊢ n implies that m is a player move
and n one of the opponent, or vice versa; non-standard are initial situations for moves
without having an different move to enable them, where m ⊢ m, and which are called
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self-enabling. The considered plays (= traces) are not just arbitrary sequences of move,
but the must adhere to a few restrictions. Apart from alternation, one general condi-
tion is that the enabling relation ⊢ is respected in the following sense: Each occurrence
of a move in the play is justified by a uniquely determined move occurring earlier in
the play which enables it (with the exception of self-enabling moves, which can occur
“spontaneously”, without justification). This additional information pointers —paths
with this additional pointer structure are called justified— resemble the augmenta-
tion with the caller identity we use in our traces. Cf. e.g., [76] for some introduction
to game semantics.

With the augmentation, we can define the pre-order as follows (cf. also Def-
inition 3.1.11 for the corresponding definition in the deterministic setting).

Definition 5.1.6 (⊑trace). Ξ0 ⊢ C1 ⊑trace C2, if the following holds. If Ξ0 ⊢ C1
t+1=⇒,

then for all environment cliques [o1] after t1, Ξ0 ⊢ C2
t+2=⇒ for some t+2 , s.t.,

1. Ξ0 ⊢ o↓ t
+
2 = o↓ t

+
1 , for all environment objects o ∈ [o1], and

2. Ξ0 ⊢ t
+
2 42∆ t+1 : trace.

The relationship between the definition of ⊑trace here and in the sequential
setting (cf. Definition 3.1.11) is as follows. With only one thread in the sequen-
tial case, the augmented t+ coincides with t, so Definition 5.1.6 degenerates
to the old definition wrt. augmentation when applied to the single-threaded
case. Secondly, expanding the condition s ≍−∆ t of sequential setting (and after
choosing an appropriate renaming of, e.g., t, gives condition 1 for the success-
reporting clique of the above definition. In other words, part 1 corresponds
to ≍−∆ for one clique and with the clique chosen, the names in s and t can be
renamed such that actual “tree equality” holds, as expressed in part 1, using
projections. Part 1 indeed holds (apart from augmentation) in the determin-
istic setting as a consequence of the equality ≍−∆. The difference is that here
this form of equality hold only for one clique, whereas for all others, only the
weaker “prefix” 42∆ is required. Instructive is also the comparison with Def-
inition 3.3.25 of ⊑nondet

trace , which we introduced as auxiliary, weaker definition
of ⊑trace in the sequential setting. Indeed, ⊑nondet

trace is closer to the definition
of ⊑trace from Definition 5.1.6 of above, since, unlike the variant of Defini-
tion 3.1.11, it does not exploit the fact that in the single-threaded setting, pro-
grams behave deterministically.

As notion of observation, we use may testing preorder, i.e., basically the
same definition as in the sequential setting (cf. Section 2.5 and especially equa-
tion (2.3) for the notion of barbing).

Definition 5.1.7 (May testing). Assume Ξ0 ⊢ C1 and Ξ0 ⊢ C2. Then Ξ0 ⊢
C1 ⊑may C2, if

(C1 ‖ C) ⇓cb
implies (C2 ‖ C) ⇓cb

(5.8)

for all Ξ̄0, cb:barb ⊢ C, where Ξ̄0 corresponds to Ξ0 with the roles of assumption and
commitment contexts exchanged.
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5.2 Soundness and completeness

The situation for soundness is not much more complicated than in the sequen-
tial setting. As before, t̄ denotes the trace complementary to t.

Proposition 5.2.1 (Soundness). Ξ0 ⊢ C1 ⊑trace C2 implies Ξ0 ⊢ C1 ⊑may C2.

5.2.1 Legal traces

As in the sequential case, we characterize the interface behavior in the form of
possible traces. Half of the work has been done already by the careful design of
the open semantics of Section 4.5, where the absent environment is represented
abstractly by the assumption contexts. For characterizing the legal traces, we
analogously abstract away from the program code, which makes the system
completely symmetric.

The formalization works quite similar to the one from Section 3.3.2. The
restrictions on the set of traces are again grouped into well-typedness, well-
connectedness, and enabledness. One restriction missing now is, obviously,
the requirement of determinism.

Enabledness, i.e., whether after a given history, an input or and output is
possible and whether the next interaction can be a call and/or a return is given
by Definition 3.3.3. The corresponding judgment is written as (“label a is en-
abled after history r”):

Ξ ⊢ r ⊲ a .

Furthermore important is the determination of sender and receiver from a
given history. Based on the characterization of balance and with the help of
the pop-function (cf. Definition 3.3.1 and Table 3.3), the functions sender and
receiver are given in Definition 3.3.4 in the sequential setting for a trace of a sin-
gle thread. Obviously, the notion of balance and, based on that, the definitions
of sender, receiver, and enabledness, make only sense per thread. Therefore,
the mentioned definitions are used here on the projection of the multi-threaded
trace onto the thread of interest. I.e., for checking enabledness of Ξ ⊢ r ⊲ a,
we use the single-threaded definition to check Ξ ⊢ r ↓n ⊲ a, where n is the
thread executing label a and where the projection r ↓n of r to thread n consists
of the sequence of labels from r, with all labels not executed by n omitted. If
Ξ ⊢ r ⊲ γ? and n is the thread of label γ?, we say, thread n is input-enabled
after r. Analogously for input-call enabledness, input-return enabledness, etc.

The legal traces are specified by a system for judgments

Ξ ⊢ r ⊲ s : trace , (5.9)

where Ξ consists of an assumption context ∆,Σ;E∆ and a commitment context
Θ,Σ;EΘ. The judgment asserts that under the assumptions and commitments
Ξ and after r, the trace s is legal. In the judgment, r represents the history
of the trace, consulted to assure (amongst other things) that calls and returns
appear in a balanced manner per thread. The rules for legal traces are shown
in Table 5.1.

The legal trace system, as the external operational semantics, works non-
deterministically in guessing the sender, when unknown, i.e., in the case of
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L-EMPTY

Ξ ⊢ r ⊲ ǫ : trace

Ξ ⊢ r ⊲ os
a
→ or : ~T → Ξ́ = Ξ + os

a
→ or Ξ́ ⊢ os

⌊a⌋
→ or : ~T →

Φ ⊢ n a = ν(Φ′). n〈call or.l(~v)〉? Ξ́ ⊢ r a ⊲ s : trace
L-CALLI1,2

Ξ ⊢ r ⊲ a s : trace

Ξ ⊢ r ⊲ ⊙n
a
→ or : ~T → ∆ ⊢ o Ξ́ = Ξ + (o →֒ os) + os

a
→ or Ξ́ ⊢ os

⌊a⌋
→ or : ~T →

Φ′ ⊢ n a = ν(Φ′). n〈call or.l(~v)〉? Ξ́ ⊢ r a ⊲ s : trace
L-CALLI0

Ξ ⊢ r ⊲ a s : trace

Ξ ⊢ r ⊲ os
a
→ or : → T Ξ́ = Ξ + os

a
→ or Ξ́ ⊢ os

⌊a⌋
→ or : → T

a = ν(Φ′). n〈return(v)〉? Ξ́ ⊢ r a ⊲ s : trace
L-RETI

Ξ ⊢ r ⊲ a s : trace

Table 5.1: Legal traces (dual rules omitted)

L-CALLI0. When using the rules on augmented traces, the system becomes de-
terministic.

The rules resemble the ones in the sequential case, checking whether after
r, action a is possible, i.e., whether it is well-formed, well-typed, and adheres
to the restrictions imposed by the connectivity contexts. Furthermore, the con-
texts are updated appropriately, and the rules recur checking the tail of the
trace. The rules are symmetric wrt. incoming and outgoing communication.

Apart from the fact that now the thread name is part of the label, the main
difference concerns the identity of the communication partners. In the sequen-
tial case, the sender of each communication is determined. Now that new
threads can be created, it is possible, that the sender of a call is undetermined.
Hence the check for legality makes a non-deterministic guess among the possi-
ble senders. In the semantics, this concerned CALLI0 of Table 4.8, which deals
with exactly this situation: A call enters the component by a new thread. The
treatment in L-CALLI0 here is analogous: the guessed sender o, which must
be contained in the environment (∆ ⊢ o), is remembered by added o →֒ os

to the assumptions, where os is the sender calculated from the history r. The
rule L-CALLI1,2 for legal traces here combines CALL1 and CALL2 of the seman-
tics where the sender is determined as the thread is already known and where
consequently the sender can be determined consulting the history.

A further difference between the single-threaded setting and the rules now
is that rule L-CALLI0 (or dually L-CALLO0) does not only cover the initial
state, but deals with all situations where a new thread crosses the interface.
Hence, unlike L-CALLI0 from Table 3.5, the rule here must allow a non-empty
history r left of the ⊲-symbol.

Remark 5.2.2. Note that for rule L-CALLI0, the sender is determined as ⊙n, which
is not a “real” object but a place holder and hence has no type. However, being a call
label, the sender argument is not needed for the type check of the core of the label in the

premise Ξ́ ⊢ ⊙n
⌊a⌋
→ or : ~T → , (cf. Table 4.7).
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Ξ ⊢ s ν(Φ′).γ2? γ1? r ⊑Θ s ν(Φ′).γ1? γ2? r : trace O-II

Ξ ⊢ s ν(Φ′).γ2! γ1! r ⊑Θ s ν(Φ′).γ1! γ2! r : trace O-OO

Ξ ⊢ sγ2?γ1!r ⊑Θ sγ1!γ2?r : trace O-OI

Ξ ⊢ s 42Θ t : trace
O-SWAPREPLAYΘ

Ξ ⊢ s ⊑Θ t : trace

Ξ ⊢ sγ? ⊑Θ s : trace O-INPUT

Table 5.2: Closure preorder (on augmented traces)

5.2.2 Closure

Next we spell out the closure conditions for sets of traces, i.e., characterize the
uncertainty of observation or, dually, the uncertainty up-to which a component
can be programmed.

A few ingredients have already been mentioned at the beginning of Sec-
tion 5.1, namely the tree-like structure of the traces, replay, and prefixing. Those
are already present in the sequential setting. Concurrency adds one more aspect
of observational uncertainty, namely the inability to atomically observe interac-
tion, in particular the order of certain communication steps. Furthermore, since
objects are input enabled, each trace can be extended by a further incoming call;
the latter is of course not a consequence of concurrency. Note that for aug-

mented traces, the post-assertions Ξ́ after a trace t are determined by Ξ and t
(up to renaming, of course).

Definition 5.2.3 (Closure preorder). The closure on traces is defined as:

Ξ ⊢ s ⊑Θ t : trace

iff for all t+, there exists an s+ such that (in abuse of notation) Ξ ⊢ s+ ⊑Θ t+ : trace,
where ⊑Θ is the reflexive and transitive closure generated by the rules from Table 5.2.
The traces left and right of ⊑Θ are tacitly assumed to be legal.

O-SWAPREPLAYΘ imports the tree-like clique structure and replay into the
closure conditions (cf. Definition 3.1.8). Rule O-INPUT expresses input enabled-
ness. Note that a component is enabled not only wrt. incoming calls but also
wrt. incoming returns.

The remaining three rules allow to exchange the order of two neighboring
steps in certain situations. We call the slack introduced in Table 5.2 in addition
to 42Θ and input enabledness and caused by the non-atomicity of interaction
as switching to distinguish it from swapping by which we mean reordering due
to separate observer cliques. We use⊑switch

Θ to denote the order relation gener-
ated by the 3 additional rules.

Switching has nothing to do with connectivity and concerns the behavior
of even a single object. Indeed, the switching rules (as well as the one for
input-enabledness) are already present in an object-based setting, for instance
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in [82]. Note further that the (implicit) proviso that ⊑ is considered for legal
traces, only, implies that two labels which can be switched concern two different
threads.

Two incoming communications may occur in any order (cf. rule O-II). The
reason is that an incoming call step, resp., an incoming return has no immedi-
ate, atomic side effects. Hence the order in which the incoming communication
steps are traced at the interface says nothing about the order in which they lead
to observable effects in the state of the concerned objects.

The reason why two outgoing steps (cf. rule O-OO) can be exchanged, is
a bit different: After an outgoing step has occurred, the responsible thread is
blocked and can therefore not influence the second step. By the same reason,
an outgoing communication before an incoming communication step can be
postponed (cf. rule O-OI). Note that an inverse rule to O-OI is not correct:
If an incoming communication occurs before an outgoing one, the second one
may be causally dependent on the first; hence it is not guaranteed that the trace
can occur also in the switched order. See also the switching Lemma C.2.5.

Remark 5.2.4 (Thread classes). In a language featuring thread classes (cf. e.g., [9]), a
possible interface interaction is thread creation. Thread creation is an asynchronous in-
teraction, i.e., the spawner of a thread is not blocked after issuing the spawn. As a con-
sequence, when allowing thread creation interaction (or other forms of asynchronous
communication), the rule O-OO would not be correct in general. See also Section 6.1.5
in the conclusion.

Remark 5.2.5 (Monitors). Java allows that methods are executed under mutual ex-
clusion, specified by the synchronized-modifier. In a setting where the objects act
as (re-entrant) monitors, inequations in addition to those of Table 5.2 are needed. In
particular, a rule reversing O-OI can be added, if the two actions concern the same
monitor. Cf. [10] and also Section 6.1.4 in the conclusion.

Let us illustrate the interplay between swapping and switching.

Example 5.2.6. Consider the scenarios from Figure 5.5(a) – 5.5(c). From the perspec-
tive of the observer on the right, the three behaviors ta, tb, and tc are indistinguishable:
The observer cannot distinguish ta from tb, as the order of the two neighboring out-
going actions, here marked 1 and 2, cannot be determined (cf. rule O-OO).3 Further-
more, the observer cannot distinguish tb from tc, because of its clique structure. From
the perspective of the component (and assuming that the left-hand side consists of just
one clique), tb and tc are clearly not equivalent, i.e., tb ≍−Θ tc does not hold. However,
ta and tb are equivalent due to switching, also from the perspective of the component.

A further point can be seen from the scenarios. Comparing 5.5(a) with 5.5(c), we
cannot separate the effects of ≍−∆ and of switching in such a way that it is possible to
transform the scenario of 5.5(a) into 5.5(c) by doing first only≍−∆ and afterwards apply
the reordering via switching (or in the opposite order). I.e., ta ⊑∆ tc and ta ⊒∆ tc
does not imply that ta ≍−∆ t′a ⊑

switch
∆ tc for some t′a.

3The rules of Table 5.2 on the preceding page are formulated from the perspective of the com-
ponent, not the observer, as indicated by the notation ⊑Θ. Hence, strictly speaking, the situation
corresponds (from the perspective of the observing component) to rule O-II.
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[o1]

[o2]

1

2

Θ ∆

(a)

[o1]

[o2]

1

2

Θ ∆

(b)

[o1][o2]

1

2

Θ ∆

(c)

Figure 5.5: Swapping and switching

5.2.3 Definability

The core of completeness is a constructive argument: Given a trace, program
a component which (1) realizes this trace, and moreover, realizes it exactly, (2)
at least up-to the unavoidable imprecision of the semantics. Of course we can
realize only traces which are actually possible, i.e., legal. Point (2) corresponds
to the closure conditions above. This section provides the construction of the
component from a given legal trace.

Outline of argument

Interestingly enough, the construction in the presence of thread creation al-
most completely corresponds to the construction in the single-threaded case.
Remember Section 3.3.1 and 3.3.3 for an outline of the completeness argument
and of the definability construction for the sequential language. Especially the
data structures mentioned abstractly in that section can be used unchanged.
The only two points in which the construction deviates or extends the old one
are the following:

thread creation: The sending of new thread names across the interface must be
realized in the code by appropriate thread creation. Incoming new thread
names are unproblematic.

mutual exclusion: The core of the algorithm as explained in the sequential
part can be used unchanged, i.e., the implementation of connectivity and
the update of the corresponding information still works as before. In the
multithreaded setting, however, we must curb the concurrent access to the
common data structures to preclude destructive interference.

Basically, we must implement “synchronized” versions of the methods or
algorithms of the sequential setting, synchronized, however, not on the
level of objects, but on the level of cliques.

Of course, the traces are slightly more complex now in that they the labels
now contain additionally the thread name and the sender objects for calls, as
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we are dealing with augmented traces. The extension of the corresponding
data structures for the implementation is straightforward.

Data structures and algorithms

As mentioned, the code for the observer in the concurrent setting here is simi-
lar to the one for the sequential setting. The key data structure is, as before, the
static representation of the still open futures together with the role-bindings
for the identities already encountered (cf. Definition 3.3.16). The only adapta-
tion we need to do (at this level of abstraction) is to include thread identities into
the data representation. In the same way as for object identities, each thread
name n is statically represented by a corresponding instance variable of type
thread , referred to by xn or also ň. Furthermore we need to change the data
structure for labels (“type” label in the representation) such that it now con-
tains the name of the thread as additional entity. Otherwise, the corresponding
Definitions 3.3.16 and 3.3.17 can be reused.

The definition of the observer of a given trace is basically identical to the
one in the sequential setting (cf. Definition 3.3.20), except that the initial thread
is hidden now. The synchronization code tisync and tosync in the method body
mentioned in equation (5.11) below (resp. (3.47) in the sequential setting) needs
some adaptation here to deal with race conditions or contention, more precisely
to assure that interaction with the component cliques is executed under mutual
exclusion.

Definition 5.2.7 (Observer for trace t). Assume Ξ0 ⊢ t : trace. The observer for
t, denoted by Ct, is defined as as follows. Each class mentioned in the commitment
assertion Θ is equipped with the data structures as given in Definition 3.3.16, with
scripts = ⊥ and

init = {(σ⊥ , ťo) | to = o↓ t, o ∈ names(t)} . (5.10)

Each public method l : ~T → T of each component class c is implemented as

l , ς(s:c).λ(~x : ~T ).tisync(l, ~x); t
o
sync . (5.11)

If ∆0 ⊢ ⊙, then Ct contains no thread. If otherwise Θ0 ⊢ ⊙, then Ct is of the form

Ξ0 ⊢ Ct , Ξ0 ⊢ ν(n:thread).(C′
t ‖ n〈let x:ci = new ci in x.|);x.start()〉) (5.12)

for some class ci with Θ ⊢ ci.

The definition of Ct refers to code, which is shown in detail only later, in
Section B in the appendix. We sketch here their functionality on an abstract
level, only. The tisync(l, ~x) and tosync (see Definition B.2.2 and B.2.11) is the code

for “input” and “output synchronization”, by which we mean, that tisync(l, ~x)
and tosync have play the scripts as illustrated in the overview of Section 3.3.3 in
the deterministic setting. Input synchronization is performed after and incom-
ing communication and output synchronization before an outgoing communi-
cation. The arguments, handed over in an input step from the environment,
are remembered in the instance state. We use the notation tisync(l, ~x) as a re-
minder that the code for input synchronization contains the formal parameters
~x of the method freely, and l refers to the label of the method body the code
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is contained in. The block syntax dealing with incoming returns (not visible at
the level of Definition 5.2.7) will be of the form tisync(return, x), where x is the
let-bound variable used to receive the return value (see Definition B.2.12).

The synchronization code for a method from equation (5.11) in particular
contains a locking mechanism to assure mutually exclusive access to the data
structures. Conceptually, the code tisync(l, ~x); t

o
sync of equation (5.11) is of the

form
(|t̃isync(l, ~x)|) ; (|t̃osync |) ,

where (| and |) mark the begin and the end of the critical section, executed under
mutual exclusion (at the level of component cliques). The (| and |) are given in
Definition B.2.21, using some locking scheme. See also the discussion below,
how the implementation of mutual exclusion allows to reduce the arguments
for the concurrent setting here to the arguments in the sequential setting. In
the initial situation , described by equation (5.12) in case Θ0 ⊢ ⊙, the |) at the
very first object is used to initialize the lock of that object approproately, setting
the lock to be “free”, before the invocation of x.start() kicks off the further
execution of the thread, which starts with the first output synchronization (see
Definition B.2.17).

We continue by showing total correctness of the construction, i.e., that Ct

can indeed perform the trace t. In the inductive proof, we can reuse the judg-
ment Ξ ⊢ [o] :: s, asserting that the component C is able to perform the (global)
trace s (cf. Definition 3.3.22).

Lemma 5.2.8 (Total correctness). Let t be a legal trace and Ξ0 ⊢ Ct given as in

Definition 5.2.7. Then Ξ0 ⊢ Ct
t

=⇒.

Taming concurrency or reduction to the sequential case The counterpart of to-
tal correctness is partial correctness or exactness of Ct: The component Ct can ba-
sically do nothing else than t (cf. Lemma 5.2.10, resp., definability from Corol-
lary 5.2.11 below). The main complication, in comparison with the sequential
setting, is the loss of exactness due to concurrency, reflected in the switching
rules from the closure conditions of Table 5.2. In particular, the order of labels
in a trace, coming from two different threads, can (in many cases) not be fixed
absolutely by programming (cf. rules O-II, O-OO, and O-OI).

These additional closure conditions complicate the reasoning. In the fol-
lowing, we get rid of those switchings, such that we can argue as in the sequen-
tial setting. To do so means to disentangle the steps of a reduction sequence wrt.
their threads. We illustrate the idea on a simple example: Assume a trace of
two labels, γ1? γ2!, where the thread of γ1 is n1, and for γ2, it is n2:

Ξ ⊢ C
γ1?
=⇒

γ2!
=⇒ . (5.13)

With a closer look at the single reduction steps, the sequence looks as follows:

Ξ ⊢ C n2

+3 •
γ1?

n1

// •
n1,n2

+3 •
γ2!

n2

// •
n1

+3 • . (5.14)

In the sequence, we assume for simplicity, that no threads other than n1 and
n2 play a role. The threads carrying the internal steps are indicated below the
respective arrow (and algebraic congruence “steps” are not shown; they are
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not executed by any thread, anyway). In particular, the reduction sequence
between n1’s incoming communication γ1? and n2’s outgoing communication
γ2! can be a mixture of steps of n1 and of n2. To disentangle the steps of n1 and
n2 amounts to reorder the steps such that those of n1 trailing γ1? and those of
n2 preceding γ2! do not occur in this mixed manner. We call such a reduction,
the result of the disentangling, clean (cf. also Definition C.4.1).

In general, of course, we cannot disentangle the sequence of equation (5.14)!

In particular the sequence −−−→
∗

n1,n2

can contain non-confluent
τ
−→-steps (access-

ing the instance state) which cannot be arbitrarily reordered (cf. the switching
Lemma C.2.5). In particular, the order of steps corresponding to a read-write or
a write-write conflict —one thread reads from an instance state and the second
thread writes to the state, or both write— cannot be changed without endan-
gering the outcome.

The key to make this disentangling possible is mutual exclusion! Reconsider
the execution (5.13) and assume we are dealing with the interaction of a single
component clique.4 Writing (| and |) for the beginning and the end of the critical
section, i.e., the code executed under mutual exclusion, the picture changes as
follows. Conceptually, only one of the following 5 executions is possible:

Ξ0 ⊢ C
γ1? // •

(|1|)

n1

+3 •
(|2|)

n2

+3 •
γ2! // • (5.15)

or

Ξ0 ⊢ C
(|2|)

n2

+3 •
γ1? // •

γ2! // •
(|1|)

n1

+3 • (5.16)

Ξ0 ⊢ C
γ1? // •

(|2|)

n2

+3 •
γ2! // •

(|1|)

n1

+3 •

Ξ0 ⊢ C
(|2|)

n2

+3 •
γ1? // •

(|1|)

n1

+3 •
γ2! // •

Ξ0 ⊢ C
γ1? // •

(|2|)

n2

+3 •
(|1|)

n1

+3 •
γ2! // • .

Since (| and |) assure mutual exclusion, the reduction steps from the atomic
section (|1|) of n1 either precedes (|2|) of n2, or vice versa.

A crucial difference concerns the reduction (5.15) and the four reductions
of (5.16); in the first case, the (|1|) occurs before (|2|), in the latter, the order is
opposite. In particular in (5.16), the order in which the two critical sections are
executed is reversed compared to the order in which the corresponding labels
γ1? and γ2! appear in the interface.

Another way to characterize the difference between the two groups of sce-
narios is that for those of (5.16), the steps of n1 and n2 are not cleanly grouped.
For instance, γ1? is separated from the =⇒-reduction implementing the trailing
critical section (|1|) in the first reduction of (5.16); similarly for the other 3 re-
ductions of that group. Given the situation (5.16), however, we can disentangle
the execution, if we switch the externally visible steps γ1? and γ2!, yielding

Ξ0 ⊢ C
(|2|)

n2

+3 •
γ2! // •

γ1? // •
(|1|)

n1

+3 • , (5.17)

4This is to avoid that we also draw the tree structure of the semantics into the current discussion.
In case that the steps of n1 and of n2 interact with two different component cliques, then they do
not interfere with each other anyhow.
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where the steps are switched in the first reduction from (5.16). Note that this
switch is the reverse order as stipulated by O-OI from Table 5.2. However, the

switching inequations in that table speak about switching weak steps, i.e.,
a

=⇒-
steps, whereas the reduction sequence of (5.17) is obtained by switching two
single reduction steps (which by themselves do not have any side effect on the
instance state), when taking the first reduction of (5.16).

The common denominator of the scenarios from (5.15) and (5.16), both re-
alizing the same observable sequence γ1? γ2!, is that by switching a number of
execution steps, the reduction can be brought into a form where the steps of n1

and n2 are disentangled. Reduction (5.15) is already of this form, those from
the second block can be transformed in a finite number of transposition steps.

As said, these transpositions are used in the opposite direction of the switch-
ing steps of Table 5.2 (cf. Lemma C.4.2). The order is relevant in particular for
the combination of an input label γ1? followed by an output label γ2!, illus-
trated in the scenarios above, which corresponds to the reversal of the switch-
ing rule O-OI. Note that Table 5.2 does not contain a rule O-IO. This is con-
sistent with the observation, that given the sequence γ1! γ2?, there is no un-
certainty in which order the respective atomic regions are positioned, namely
reflecting the order of the external steps:

Ξ ⊢ C
(|1|) +3 •

γ1! // •
γ2? // •

(|2|) +3 . (5.18)

Remark 5.2.9 (Lock grabbing). Concerning the reductions (5.15) and (5.16), we
remark the following. The use of (| and |) is a slight idealization (but no distortion) of
the actual situation at the lowest level in that the notation seem to indicate an atomic,
single step lock-grabbing. The lock handling operations (| and |) are encoded by terms
of the calculus (cf. Definition B.2.21 and B.2.26). The lock-grabbing (|, e.g., consists
of quite a number of elementary internal steps (which of course must assure that the
lock is taken as if the action were atomic; that’s the whole purpose of (|, after all). As a
consequence, compared to the microscopic level of single reduction steps, the sequence
of (5.15), for instance, is idealized in that it pretends that no elementary step of thread
n2 precedes the (| of thread n2 (and similar for n1, etc.). More precisely, the reduction
of (5.15) could look as follows:

Ξ0 ⊢ C n2

+3 •
γ1? // •

(|1|)

n1

+3 •
(|2|)

n2

+3 •
γ2! // • . (5.19)

I.e., there may be actions of n2 preceding the atomic region (|1|) of n1, even if (|2|)
comes after (|1|). Those steps of n2 belong to the “trying section” of the mutex protocol:
n2 starts the protocol for acquiring the lock. However, thread n1 intervenes, wins the
race for entering the critical section, and only after it has left it again by executing |),
thread n2 can enter. The reduction (5.15) is, however, no distortion of the general idea,
in that, if (5.19) is possible, then, after reordering, (5.15), as well and with the same
effect. In other words, we can consider (| and |) as atomic steps.

To sum up: the additional uncertainty of observation due to concurrency
—switching— can be undone if the observer realizes mutual exclusion. We
call clean a reduction, where the steps of the different threads do not occur in a
mixed manner (see Definition C.4.1). Since each reduction can be turned into a
clean one (by “disentangling”), the proof of partial correctness can be basically
carried over from the sequential setting. See Section C.4.1 for further details.



Lemma 5.2.10 (Exactness/partial correctness). Let t be a legal trace and the ob-
server Ξ0 ⊢ Ct given by Definition 5.2.7.

If Ξ0 ⊢ Ct
s

=⇒ then bΞ0 ⊢ s ⊑Θ t : trace . (5.20)

Now we combine the result for clean reductions from Lemma C.4.3 with
properties of the switching relation into completeness.

Corollary 5.2.11 (Definability). Assume Ξ0 ⊢ t : trace. Then there exists a compo-

nent C with the following property: Ξ0 ⊢ C
s

=⇒ if and only if Ξ0 ⊢ s ⊑Θ t.

Theorem 5.2.12 (Completeness). If Ξ0 ⊢ C1 ⊑may C2, then Ξ0 ⊢ C1 ⊑trace C2.





Part III

Conclusions

109





CHAPTER 6

Conclusion

This final section contains a short discussion of possible variations and exten-
sions of the results, and also refers to related work.
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6.1 Variations and extensions

We phrased our results in a specific calculus intended to capture the core fea-
tures of current class-based, object-oriented languages like Java or C#, notably
classes, objects, and threading. The core message when compared to the object-
based case is that object-connectivity becomes important as part of the observ-
able semantics.

The choice of features was motivated to capture this central aspect without
complicating the main story (at least not beyond necessity . . . ). Here we discuss
the effect on the development if some of the choices had been taken differently.

6.1.1 Constructors and constructor methods

The presented calculus does not contain constructor methods, or one could
say only a trivial, default one, which means the constructor (method) is not
programmable. This means it cannot be used for observations.

One can identify two levels of complexity when adding programmable con-
structors. In the simpler case, the constructors are simply functional and allow
to pass values to the newly created instance. In this case, the syntax of classes

is extended to cλ(~x:~T )[(F,M)] and the fields of the class can refer to the formal
parameters of the constructor. So the only way the constructor can be used is
to store the handed-over values in the fields, but without further side effects
or execution of code (in the development in the main body of the work, with-
out constructors, the fields remain undefined after instantiation until set via
methods).

The expression for instantiation then reads new c(~v) and the rule NEWOi

for instantiation of component-internal objects (cf. Table 2.5) is replaced by:

cλ(~x : ~T )[(F,M)] ‖ n〈let x:c = new c(~v) in t〉 

cλ(~x : ~T )[(F,M)] ‖ ν(o:c).(o[c, F [~v/~x]] ‖ n〈let x:c = o in t〉)

Of course, in Java, for instance, constructors are more flexible; they can be
freely programmed (beyond just parameter passing) and thus act like methods.

Syntactically classes this case can be represented by c[(ς(s:c).λ(~x:~T ).t, F,M)]
and the reduction rule for instantiation resembles a combination of the old
rules for instantiation and method calls:

c[(ς(s:c).λ(~x:~T ).tc, F,M)] ‖ n〈let x:c = new c(~v) in t〉 

c[(ς(s:c)λ(~x:~T )tc, F,M)] ‖ ν(o:c).(o[c, F ] ‖ n〈let x:c = tc[o/s][~v/~x]; o in t〉)

To keep the issue of monomorphism of the type-system separate, there
should be exactly one constructor method with fixed arguments.1 One pos-
sible syntactic representation of classes would be to explicitly require that the

1Of course one could by convention arrange that without explicit constructor method, still the
default one is present. But that’s syntactic sugar. But constructor overloading, which we wish to
avoid here, is a different issue again.
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name of exactly one of the class methods coincides with the name of the class,
similarly as the issue is handled in Java. Without (constructor or method) over-
loading, a better representation, i.e., a representation less reliant on “conven-
tions”, is to add as additional “unnamed” method in the class.

The absence of constructor methods made instantiation as such unobserv-
able, i.e., we used a “lazy instantiation” scheme where cross-border instantia-
tion appears at the interface trace only at the point when the first method of
the instantiated object is called. The introduction of (functional) constructors
or constructor methods requires some refinement.

With constructor methods, cross-border instantiation becomes observable,
which means, one needs to introduce a corresponding new -label and include
instances of the label in the traces. More concretely, for outgoing instantiation,
the label could be written as ν(o:c).ν(Θ).new (~o)!, where o is the environment
object being instantiated and Θ contains the bindings for the component objects
from ~owhose scope extrudes by this instantiation (we omit from the discussion
the case where also the thread name is new). Note that without lazy instanti-
ation, there are no fresh environment objects in the label except the one being
instantiated now. Similarly, the labels for outgoing calls, for example, simplify
from ν(∆,Θ).n〈call or.l(~v)〉! to ν(Θ).n〈call or.l(~v)〉!.

Functional constructors take some middle ground between constructor meth-
ods and the setting without (any but the default) constructors that we consid-
ered. Functional constructors cannot be used for immediate observation; in
particular they cannot be programmed to report success. Therefore the exact
point in time in the trace where the constructor is called remains unobserv-
able. However, which arguments are handed over during instantiation must
be recorded to take care of connectivity.

6.1.2 Class variables

The presented calculus is imperative: Objects contains as state the fields or
instance variables, which can be updated. Class-based languages often feature
another kind of updateable state, the so-called static variables or class variables.

If we introduced public (and non-final, i.e., with read and write access)
static variables, the consequence to the semantics were rather drastic. Basically,
they correspond to global “communication channels”. Being globally known
and accessible, the notion of separate cliques of objects, unable to communicate
with each other, would break down. The crux of this work, however, was how
the introduction of classes and of cross-border instantiation leads to a situation
of groups of objects without any common communication channel.2

With private class variables, as understood as in Java, the situation would
be more refined, in that only instances of the class have access to a static field
restricted by the private-modifier. Thus, instances of a given class would be
able to communicate and therefore would never be placed in separate cliques.
This means the clique structure would get coarser. Indeed, [45] used a language
featuring class variables.

2To be overly precise: The discussion around the question, what can be seen by more than one
observer in Section 1.4.2 revealed that in a certain sense there is some common “hidden commu-
nication channel” between separate cliques of observers: If a later one succeeds, one can conclude
that earlier ones at least did not get stuck.
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A further consequence of static variables —public or otherwise— is that
one crucial property in the relationship between classes and object disappears,
which is: “Instances of a class are identical, except their name, until some in-
teraction is performed that makes a difference”. In its class variables and in
the presence of constructor methods (cf. Section 6.1.1), the class can keep track,
how many times it has been instantiated. This means, different instances of a
class are no longer α-equivalent; the object itself is aware (via its class) whether
it is the nth or the mth instance, and using this information it can behave dif-
ferently from the start. In other words, instantiation looses the spirit of name
generation! In the semantics, therefore, the ν-binder is no longer needed, and
in particular, the labels in the trace need not distinguish between bound and
free transmission of names. Clearly, also the issue of replay in the trace seman-
tics disappears. So with connectivity collapsing and without ν-binders, the
semantics would resemble quite close some standard trace semantics: The ob-
servational semantics of a program component is without much complications
simply the set of traces.

6.1.3 Libraries

The presented general setup is completely symmetric: Component and envi-
ronment interact symmetrically, together yielding a closed program. Which
part of the program is the environment and which the component under ob-
servation is in the eye of the beholder: The observer of the component plays
the role of the environment for the program under observation, but dually the
program can be understood as the observer environment in the same manner.3

Considering now the observable behavior of a library, the situation is in-
tuitively asymmetric. The user program uses classes from the library in that
it instantiates objects from it, but not vice versa. This corresponds to the intu-
itive understanding that a library cannot instantiate user classes because it does
does not know by name any classes of the user program. The initial state of a
library is therefore characterized that it does not need any assumptions about
its environment to be well-typed:

⊢ C : Θ ,

where Θ is static, i.e., it contains neither an instance nor an activity. Conse-
quently, also the relational partEΘ is empty. As a consequence, instantiation as
one possible interaction between library component and observer only works
in one direction. It is therefore a straightforward invariant that the observer
forms one single clique of objects, and so for the observer. On the other hand,
for the library this obviously does not hold and instantiation from the client
program still can fragment the component objects.

Technically, the full abstraction result presented directly subsumes the one
for the library case. In the restricted case, the construction for the complete-
ness proof could is slightly simpler, as one need not take care of the creation
and the merging of cliques. Furthermore one could do without the projection
of traces onto single cliques. Nonetheless, the information propagation of iden-
tities within the single observer clique would still be required.

3The symmetry, however, is slightly broken in the definition of may-success, as the type system
enforces that only the observer can report a success.
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6.1.4 Concurrency control

The calculus we used (just as the object-calculus) has no native mechanism for
concurrency control. Threads execute concurrently upon the shared state which
is organized in objects forming the heap. Having shared state without means
of protection against concurrent access and against interference by other con-
current activity is of course intolerable for practical programming.4 Java (and
C#) offer the following mechanism on the language level: Each object acts
as monitor, i.e., it comes equipped with a lock which can be used for concur-
rency control, in particular, to control the access of threads to the instance.5

More concretely, Java realizes the concept of re-entrant monitors [73][31][93]:
A thread already owning the lock of an object can “re-enter” the monitor via
(direct or indirect) recursion. See e.g. [7][5] for a Hoare-style proof-theoretic
account of multithreading and reentrant monitors in Java.

Adapting the framework presented here to incorporate monitors, in partic-
ular synchronized methods, requires a number of extensions.

To start with, it is easy to see that the presence of synchronized methods
changes what is observationally equivalent. Indeed, sticking to may-testing as
notion of observation, the implied notion of observational equivalence in a lan-
guage with monitors is incomparable to the one in a language without monitors.
This is illustrated by the following two examples.

Example 6.1.1 (Synchronized methods decrease distinguishing power). This
example shows, how the presence of locks in the observer renders certain observations
impossible, i.e., using synchronized methods one looses discriminating power. Con-
sider the following two traces:

t1 = γ1! γ2?
= ν(n1:thread , o0:c0).n1〈call o1.l1(o0)〉! n1〈call o0.l0()〉?

(6.1)

and
t2 = t1 γ3!

= t1 ν(n2:thread).n2〈call o1.l2()〉! .
(6.2)

More precisely, consider the components Ct1 and Ct2 performing t1, respectively t2.
Note that clearly such components Ct1 and Ct2 exists; in particular, in the setting
with synchronized methods, the component Ct2 is possible (which implies that Ct1

is possible as well, and also the setting with non-synchronized methods makes the
realization only easier).

Now, in the non-synchronized setting, the following observer distinguishes be-
tween Ct1 and Ct2 : The initial thread starts in the component, and the observer reports
success as soon it has seen γ1! γ2? γ3!, i.e., the longer t2. Obviously, confronted with
Ct1 , the observer will not report success, since γ3! is missing in the observation, but it
reports success with Ct2 (for which the observer was tailor-made).

It is almost as easy to see that Ct1 and Ct2 cannot be distinguished in the syn-
chronized setting.6 Looking at the traces, the only difference is the additional outgoing

4Software solutions at user level for the mutual exclusion problem or the interference problem,
for instance, do not qualify as practical approach.

5We assume in the discussion the discipline we also used in the technical development, namely
that the fields of an object are accessed and changed only via methods but not directly. In particular,
in a concurrent setting, direct field access is a non-advisable programming practice . . .

6Since we have to argue about all possible observers which are unable to see a difference as
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call γ3! of thread n2. This call cannot be observed, because in order to be observed it
must enter the monitor o1 but that is guaranteed to be impossible: No matter how the
observer is programmed, the lock of o1 is taken for sure by thread n1 after t, and thus
n2 cannot enter that monitor.

Example 6.1.2 (Synchronized methods increase distinguishing power). In con-
trast to the previous example, this one indicates that the presence of locks can increase
the accuracy of discrimination. Consider the following trace:

t = γ1? γ2! γ3? γ4!
= ν(n1:thread , o

′:c′).n1〈call o1.l(o′)〉? n1〈call o′.l()〉!
ν(n2:thread , o

′′:c′).n2〈call o2.l(o′′)〉? n2〈call o′′.l()〉! .

(6.3)

First, the observer invokes a method of a component object o1, which is answered by the
component with an outgoing call. Next, the observer calls another component object
o2 via a new thread, which is followed by a further outgoing call of that second thread.

In a setting without locks, the last outgoing call can be implemented by the compo-
nent in two different ways: (1) o2’s method l directly calls back l of o′′, or (2) o2 does
an internal call to o1 which then realizes the outgoing call.

With locks, the latter implementation would not lead to the last outgoing call of
trace t, since object o1 is locked by thread n1, and therefore cannot realize the call in
this situation. Thus, an observer whose success report depends on the last outgoing
call could distinguish components implemented in the first or in the second manner,
whereas no observer in a setting without locking could tell them apart.

It is relatively straightforward to extend the syntax and the semantics to
deal with re-entrant monitors. The basic syntactical extension is to equip ob-
jects with a flag indicating whether the lock is free or whether it has been taken
by a thread n, as expressed by the following two syntactical phrases

o[c, F, n] and o[c, F,⊥thread ] , (6.4)

representing objects, where n is the name of a thread and ⊥thread a specific
name (but not a value) denoting that the lock is free. A bit more thought re-
quires the design of the operational semantics. To maintain the clean decou-
pling of environment and component, i.e., to maintain a clean assumption/-
commitment framework, it is best to have the internal steps deal with lock-
grabbing and lock-release. See Table 6.1 for a formalization of the correspond-
ing internal steps. Having the internal semantics responsible for lock-handling
implies that the external steps are basically unchanged, at least wrt. the com-
ponent part. As far as Θ-locks, i.e., the locks of the component, are concerned,
an incoming communication, in particular an incoming call, is always possible,
since it is not the interface action which takes the component lock or blocks, but
a subsequent internal step (cf. the rules CALLIs

i ).
This non-atomic lock handling allows a clean semantical decoupling of com-

ponent and environment. However, separating the visible interface interaction
from the action lock-handling introduces a uncertainty of observation, which
makes it harder to characterize when a lock is free, resp., taken. In other words,
the characterization of the interfaces behavior, the definition of the legal traces,
becomes more complex.

opposed to find a single one that sees the difference, the argument now is conceptually more
complex. However, the two components Ct1 and Ct2 are quite simple.
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In particular, without atomic lock handling at the interface, the trace of in-
terface interaction contains not enough information to observe exactly in all sit-
uations when the lock is taken or not. With atomic lock handling, one definitely
knows that after observing trace t n〈call or.l()〉?, the lock of the component ob-
ject or is taken (assuming that l is a synchronized method).

If the lock management, as sketched, is handled by the internal steps from
Table 6.1, the lock of the callee or may or may not be taken yet. Whether it is
taken or not depends on the history t —if the lock has been taken definitely
after t, then this still is true after t n〈call or.l()〉?— and on the (non-observable)
internal scheduling: If the incoming call is such that it applies for the lock of or,
then after the call, the thread may own the lock, i.e., there are states where it
does not yet hold the lock and there can be states where it owns it. Only after a
further subsequent outgoing call, one has the definite, observable knowledge
that the thread now must hold the lock. The description of the legal traces, as
it seems, works with may- an must- approximation of lock-ownership. Con-
centrating on a single thread and writing Ξ ⊢Θ t : ♦o for “the thread may own
the lock of component object o after trace t (and analogously for “must” repre-
sented by � instead of ♦), the formalization uses rules as shown in Table 6.2.

Based on these abstractions for lock-ownership, one can define when a trace
r can be extended by an additional action a without violating mutual exclusion.
For instance, when a lock is known to be taken for sure, all other interaction
with the concerned monitor must either happen before the lock is taken, or af-
ter it has been released again. This concerns also possible data dependencies in
that it is not sufficient that a (new) value is handed over at the interface to
be used by trailing reaction, it must be delivered to the monitor. See [10] for
more details, where we formalize the ideas sketched above, based on ♦ and �
approximations for lock ownership and three kinds of causal dependencies cal-
culated from a trace: Data-dependence, control-dependence, and dependence
due to mutual exclusion. The formalization is carried out for a multithreaded
setting without classes, i.e., concentrating on the problem of mutual exclusion,
but without connectivity and cliques.

As for future work, one can consider the combination of merging clique
structure and the lock handling. The combination is not completely straight-
forward, since the update of the connectivity structure would have to respect
the monitor discipline: If some references are handed over at the interface,
which lead to a merge of cliques, this merge is not effective until the corre-

c[(F,M)] ‖ o[c, F ′,⊥thread ] ‖ n〈let x:T = o.ls(~v) in t〉 

c[(F,M)] ‖ o[c, F ′, n] ‖ n〈let x:T = M.ls(o)(~v) in release(o); t〉 CALLs
i1

c[(F,M)] ‖ o[c, F ′, n] ‖ n〈let x:T = o.ls(~v) in t〉 

c[(F,M)] ‖ o[c, F ′, n] ‖ n〈let x:T = M.ls(o)(~v) in t〉 CALLs
i2

o[c, F, n] ‖ n〈let x:T = release(o) in t〉
τ
−→ o[c, F,⊥thread ] ‖ n〈t〉 RELEASE

Table 6.1: Internal steps: Lock handling
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receiver (t γc?) = o
M-I♦

Ξ ⊢Θ t : ♦o

Ξ ⊢ t : ♦o
M-O�

Ξ ⊢Θ t γc? : �o

Table 6.2: May and must lock-ownership (example rules)

sponding action enters the monitor. This does not seem a conceptually hard
problem; however, the notation/formalization would become quite “heavier”,
when considering the graphs of dependencies for mutual exclusion and the
connectivity graphs at the same time. Besides that, one should make the moni-
tor setting more realistic by adding the thread coordination mechanism of wait
and signal (Java’s wait and notify methods).

Remark 6.1.3 (Concurrency control). In the definability construction underlying
the completeness proof in the concurrent setting, we implemented a form of concur-
rency control, introducing the constructs (| and |), where (| t |) was used for the exe-
cution of t without interference by other threads. Indeed, the constructs were imple-
mented using some form of locks as part of the objects. Two remarks in comparison
with the native monitor concept of Java are in order.

First of all, the may testing framework used for observational equivalence puts
us, as implementors of the observer component, in a rather comfortable position: For
the proof, it is not required to solve the full blown mutual exclusion problem (cf. e.g.
Dijkstra [49]). It is just required to prevent interfering runs in the critical sections
bracketed by (| and |), but not to resolve a situation with concurrent attempt to access a
critical section, for instance by blocking all competitors except one until the lock is free
again. The may-setting, i.e., the restriction on the safety aspect of mutual exclusion,
thus allows that one can simply stop executing (by termination or divergence) once
the critical section is attempted of being entered by a second thread. Obviously, this
simplifies the implementation of (| |) considerably, in particular considering that we
needed non-interference not for just one object, but on the level of cliques of objects. It
allows basically that the conceptual lock for the clique of objects can be implemented in
a distributed manner.

Secondly, the mechanism implemented in the completeness proof was not required
to support reentrant monitor locks. To be sure: In the implementation in Section 3.3.3,
resp., 5.2.3, reentrant method calls occur, especially in the identity propagation al-
gorithm. However, the synchronization code does not make nested use of the (| |)-
brackets: One particular thread executing its synchronizing code, acquires the lock (if
available) once, performs its task and then gives the lock back. Thus the locks them-
selves may be oblivious of the identity of the threads.

6.1.5 Thread classes

The basic syntactic change from the object-based to the class-based setting pre-
sented in Section 2.2 respectively Section 4.2 was the addition of classes as “gen-
erators of state”. In contrast to the object-based setting, this allowed to gener-
ate or instantiate new objects across the component boundaries. Objects (as
classes) are passive entities; the active part of the program is represented by
threads. Indeed, in the multithreaded setting, there was also a mechanism for
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“generating new activity”, i.e., for creating new threads. The thread instantiation
mechanism, however, corresponds more to the situation of object instantiation
in the object-based setting, since the code t in the thread instantiation expres-
sion new〈t〉 is directly given. In other words, for threads, there is no cross-
border generation. In Java (or similarly in C#), however, the designers choose
to entangle the concepts of thread and classes respectively objects in a particu-
lar way7 in that certain objects are instances of so-called thread classes and they
contain one particular method, the start-method, which can be called at most
once and which spawns a new thread.

Remark 6.1.4 (Thread classes). The details in Java are a bit more convoluted and
rely on sub-classing and overriding. The actual code which constitutes the initial se-
quential part of the new thread is contained in a method called run, whose body is
provided by the user. The start-method calls (typically) the run-method and spawns
the new activity. The situation there is insofar a bit muddy, in that the concepts are
not cleanly separated and their functioning relies to some part on conventional correct
use. For instance, the start method may be overridden, such that it does no longer
call the run method. Furthermore, nothing prevents the user to directly invoke the
run-method as many times as wished, even if that’s probably not what the run-method
was designed for, namely to provide the code for a new thread. Finally, it is perfectly
ok, that the “thread object” serves the program also in a role as container for data
and other methods; after all it is not forbidden that a thread object contains fields and
further methods beside the (inherited) start- and the overridden run-method.

In that set-up, creating a new thread amounts to instantiating a new object and
invoke its start-method. Since the method, as mentioned, can be called at most once,
the thread identity can be identified with the identity of the object where it started
its life. We adopted this model in the proof-theoretical account of multithreaded Java
(JavaMT), for instance in [8]. For a comprehensive account see especially Ábrahám’s
thesis [5]. Relevant for our current discussion is only that cross-border generation of
threads is possible, if the code of the new thread is contained in a “class”.

In our setting, we can introduce following construct for thread classes to
the syntactic category of component (cf. Table 4.2):

c〈(ta)〉 with ta , λ(~x : ~T )t .

The phrase ta is the body of the thread class, abstracted over its arguments.
This, the interface type of a thread class is T1 × . . . × Tn → thread . Unlike
ordinary classes, where we omitted constructor methods, thread classes must
have a mechanism that allows to hand over arguments during instantiation
(cf. Remark 6.1.5). The reason is that in the formalization, instantiation at the
same time means the thread starts executing. An alternative would be, to have
an designated method (like start in Java) which gets the new thread running,
and which could be used to hand-over values to the thread.

Concerning typing, the system from Table 4.3 and 4.4 is to be extended by
the following rules of Table 6.3. Also the operational rules for thread creation
are rather straightforward. As for ordinary classes, one distinguishes between
internal and external thread creation (cf. Table 6.4 resp. 6.5; we show only the
additional rules).

7Probably to avoid introducing another core concept into the language at the syntactic level.
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;∆, ct:T ⊢ 〈(ta)〉 : T
T-NTCLASS

∆ ⊢ ct〈(ta)〉 : (ct:T )

Γ, x1:T1, . . . , xk:Tk;∆ ⊢ t : none
T-TCLASS

Γ; ∆ ⊢ 〈(λ(~x:~T ).t)〉 : ~T → thread

Γ;∆ ⊢ ct : ~T → thread Γ;∆ ⊢ ~v : ~T
T-SPAWN

Γ;∆ ⊢ spawn ct(~v) : thread

Table 6.3: Typing for thread classes

ct〈(λ(~x:~T ).t2)〉 ‖ n1〈let x:T = spawn ct(~v) in t1〉 

ct〈(λ(~x:~T ).t2)〉 ‖ ν(n2:T ).(n1〈let x:T = n2 in t1〉 ‖ n2〈t2[~v/~x]〉) SPAWNi

Table 6.4: Internal steps (thread classes)

An internal spawning of a thread works similar to internal object creation.
In particular, a new scope is introduced which hides the name of the new
thread outside the spawning thread.

Ξ́ = Ξ + os
a
→ ⊙n Ξ́ ⊢ os

⌊a⌋
→ ⊙n : thread

a = ν(Φ′).〈spawn n of ct(~v)〉? Θ́ ⊢ ⊙n ∆ ⊢ os Θ ⊢ ct Σ′ ⊢ n
SPAWNI

Ξ ⊢ C
a
−→ Ξ́ ⊢ C ‖ C(Θ′, Σ′ \n) ‖ n〈ct(~v)〉

a = ν(n′: thread, Φ′).〈spawn n′ of ct(~v)〉! Φ′ = fn(⌊a⌋) ∩ Φ1 Φ́1 = Φ1 \Φ′

∆ ⊢ ct Ξ́ = Ξ + os
a
→ ⊙n′

SPAWNO

Ξ ⊢ ν(Φ1).(C ‖ n〈let x:T = os spawn ct(~v) in t〉)
a
−→ Ξ́ ⊢ ν(Φ́1).(C ‖ n〈let x:T = n′ in t〉)

Table 6.5: External steps (thread classes)

Remark 6.1.5 (Thread constructors). The spawner can hand over values to the new
thread via the thread constructor. One consequence of thread constructors is that there
is no “lazy instantiation” for new threads; without thread constructor, there would
be no need for a separate spawn-label, since instantiation would not be immediately
observable, as for class instantiation, where we have not considered class constructors.

In case of threads, however, the absence of constructors would be more drastic:
Without acquaintance with objects handed over at instantiation time, the new thread
would not be able to contact any of the existing objects in the component as well as in
the environment. The spawner is “acquainted” with the new thread in that it knows
its identity but it cannot “communicate” with its child thread. In some sense, the only
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point where the spawner can communicate with the threads is during instantiation and
without this possibility, the multithreading would degenerate to a program consisting
of groups each with one single threads which are globally completely separate, i.e.,
not simply separate when considered the connectivity as seen from the component or
the environment. Note that it does not mean that for instance an environment thread
created by the component via L-SPAWNO cannot “call back” to the component, only
that for calling back it need to create its own cliques of objects unrelated to the rest.

In [12] we formulated an operational semantics for thread classes. In con-
trast to the language presented here, a further difference is that thread names
can be communicated via message passing. Besides that the paper explores a
different representation of the legal trace system, namely one where the branch-
ing nature of the merging clique structure is directly reflected in a branching of
the legal trace system. As for full abstraction (not covered in that paper), the
most significant change, as it would seem, is that the closure conditions would
have to be adapted. In particular, thread creation is an asynchronous commu-
nication, in that the thread performing the spawn action is not blocked by that
step. In our lazy instantiation setting, where the instantiation gets visible only
by the first cross-border call, the call action leads to a blocked thread (waiting
for return). As a consequence, the switching inequations from Table 5.2 cannot
be used identically for spawn-labels, but need adaptation. The question of the
exact formulation (and definability, etc.) is left for future research.

6.1.6 Cloning

An extension with interesting semantical consequences is cloning. Syntax, typ-
ing, and operational behavior are straightforwardly defined. We assume a pa-
rameterless clone-method. For simplicity, let each object be cloneable. To be
cloneable, a value must be an object, and the clone has the same class type as
the original object:

Γ;∆ ⊢ v : c Γ;∆ ⊢ c : [(T )]
T-CLONE

Γ;∆ ⊢ v. clone() : c

Cloning is similar to instantiation: The clone-method cannot be used to pro-
gram any observations and we assume an unbounded heap. In case of instanti-
ation, we introduced the mechanism of lazy instantiation: The new instance is
created only “on demand”, i.e., the first time it is used in a method call, either
as target object or as argument passed across the border.

The absence of programmable constructor methods allows to postpone the
actual creation of the new instance in instantiation because we can be sure that
the first time someone calls the object, it still is in its pristine, initial state (cf.
rule NEWOlazy in Table 2.11). The same holds for cloning: Even if the clone o′,
when created as a shallow clone from an extant object o, “inherits” the connec-
tivity of o, since all its references are copied, the rest of the objects, in particular
o, does not in turn know o′!

With cloning not being immediately observable, there is not need to intro-
duce a clone label. Similarly, we did not include an explicit instantiation label.

Cloning an existing internal object (cf. rule CLONEi) just copies the state of
the object and creates a new local scope for the freshly created reference. This
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corresponds to the notion of shallow clone. The corresponding rule is shown in
Table 6.6.

n〈let x:T = o. clone() in t〉 ‖ o[c, F ]

 ν(o′:c).(n〈let x:T = o′ in t〉 ‖ o′[c, F ]) ‖ o[c, F ] CLONEi

Table 6.6: Cloning (internal step)

But how to treat the cloning of an external object, i.e., what is the analog to
NEWOlazy? A first attempt could look as follows, quite similar to the rule for
instantiation:

∆ ⊢ o : c

Ξ ⊢ ν(Φ).(C ‖ n〈let x:c = o. clone() in t〉) Ξ́ ⊢ ν(Φ, o′:c).(C ‖ n〈let x:c = o′ in t〉)

However, the rule ignores the difference between instantiation and cloning,
namely that the cloned object “inherits” the connectivity of the original object.
When later the object o actually is exported to the environment, e.g., in that
the component calls one of its methods, o′ will have no connectivity except
the connections handed over by the call itself, which correctly describes the
situation for instantiation, but not for cloning.

Note that an “eager” approach, exporting the clone o′ immediately together
with the connectivity of the original o would be wrong, as well:

∆ ⊢ o : c Ξ́ = Ξ + o′ →֒ Ξ(o)

Ξ ⊢ ν(Φ).(C ‖ n〈let x:c = o. clone() in t〉) Ξ ⊢ ν(Φ).(C ‖ n〈let x:c = o′ in t〉)

In the premise, Ξ + o′ →֒ Ξ(o) is meant as adding all acquaintances of o ac-

cording to Ξ to the new o′. The rule is wrong, as in the extended context Ξ́, not
just o′ knows all references that o knows, but also inversely, since connectivity
is interpreted as the reflexive, symmetric, and transitive closure of →֒ (as far as
environment objects are concerned in the above situation of output).

To formalize lazy cloning, we can generalize the framework as follows: The
ν-constructor for components must be extended such that it hides not only
references, but also their connectivity. I.e., we need to consider bindings of the
form ν(∆′, E′

∆).C, where ∆′ contains the lazily instantiation or lazily cloned
environment objects, and E′

∆ their “inherited” connectivity:

∆, ∆′ ⊢ o : c Ξ́ = Ξ, Ξ′

Ξ ⊢ ν(Ξ′).(C ‖ n〈let x:c = o. clone() in t〉) 

Ξ ⊢ ν(Ξ′, o:c; o′ →֒ (Ξ́(o)).(C ‖ n〈let x:c = o′ in t〉)

Consequently, the external labels do not just exchange information about
fresh names, but also connectivity information. I.e., labels are of the form ν(Ξ′).γ,
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and the context update in the external steps and the legal traces system needs
to be adapted accordingly.

A further consequence is that if the observer can procure itself copies of
an object makes choice points in the behavior of the objects observable, i.e., it
exhibits the branching structure of the behavior.

Example 6.1.6 (Cloning). The example represents the prototypical example distin-
guishing between a linear (trace based) semantics and a branching semantics, such as
bisimulation (cf. e.g. [102]). The example is schematically shown in Figure 6.1. With
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Figure 6.1: Branching

the observer having the power to create a duplicate after the a-action, it can distinguish
the left and the right process: In the first case, the original process and its copy can do
b and c, while in the second case, both can do either only b or only c. This idea is
easily representable in the object calculus as follows; here the essence of the example is
programmed in Java:

Listing 6.1: Branching and cloning
c l a s s P1 implements C l o n e a b l e {

pr ivate i n t x = 0 ;
pr ivate j a v a . u t i l . Random gen = new j a v a . u t i l . Random ( ) ;

pub l ic O b j e c t c l o n e ( ) {
t ry { return super . c l o n e ( ) ; } / / us e t h e n a t i v e c l o n e−method
catch ( C l o n e N o t S u p p o r t e d E x c e p t i o n e ) { / / j u s t c a t c h i t .
}
return new P2 ( ) ; / / u n r e a c h a b l e

}

pub l ic void c h o o s e ( ) { x=gen . n e x t I n t ( 2 ) + 1 ; return ; } / / x in {1 , 2}

pub l ic void a ( ) { return ;}
pub l ic void b ( ) {

t h i s . c h o o s e ( ) ;
i f ( x ==1) { return ; } e l s e { System . e x i t ( 0 ) ; } ;

}
pub l ic void c ( ) {

t h i s . c h o o s e ( ) ;
i f ( x ==2) { return ; } e l s e { System . e x i t ( 0 ) ; }

}
}

pub l ic c l a s s O { / / component
pub l ic s t a t i c void main ( S t r i n g [ ] arg ) {

P1 x = new P1 ( ) ;
x . a ( ) ;
P1 y = ( P1 ) x . c l o n e ( ) ;
x . b ( ) ; y . c ( ) ;
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System . out . p r i n t l n ( ” s u c c e s s ” ) ;
}

}

The actual behavior is slightly more complex, as the interaction between the environ-
ment and the instance is not atomic as sketched in Figure 6.1 but consists of a pair of
call and return, so the label a of the abstract example corresponds now to the call and
the return of the a-method etc. Furthermore, the calls are always enabled.

The code shows only the first alternative P1, where the choice is taken after the
cloning. The schematic figure is imprecise insofar, as it looked as if after a, both b and
c were enable, while the code internally chooses between b and c. Clearly, with an
instance of P1, the observer may report success. On the other hand, in case of P2 the
observer can never report success.8 Hence P1 6⊑may P2.

Not only the observer can duplicate objects of the component, also the pro-
gram can apply cloning to the observer. The detailed consequences on the
semantics are left for future research. A final word on cloning: The complica-
tions entailed by cloning are not caused by cloning alone, it is the possibility of
cloning across the environment/component border, that exhibits the branching
structure.

6.1.7 Subtyping and inheritance

One major feature of class-based object-oriented languages not tackled here is
inheritance. Also subtyping is employed only in a simple and restricted man-
ner. It is commonly accepted that inheritance and subtyping are conceptually
different [41][23][134]. Subtyping is one specific form of polymorphism, pop-
ularized by object-oriented languages. The types of a language form a partial
order, and characteristic of subtyping is that an element of a smaller, more spe-
cial, type can safely used at places where an inhabitant of a larger, i.e., more
general, type is expected (“subsumption”). Inheritance, on the other hand, is
a mechanism for code reuse, mostly in the form of class inheritance, where a
sub-class inherits code from its super class(es).

Subtype polymorphism and hiding

The type system presented in Section 2.3, resp., in Section 4.3 is almost monomor-
phic. A type system is monomorphic, if each program or term has at most one
type; if not, it is polymorphic. Typically, object-oriented languages (or, perhaps
better, modern programming languages . . . ) are polymorphic in various dif-
ferent ways. See e.g., [39] for a well-known classification of various flavors
of polymorphism. Anyway, our type system from Section 2.3 contains exactly
two points where the strict monomorphic type discipline is broken. One con-
cerns the type of the stopped process, which has any type. This reflects the
fact that the types are partial correctness assertions, and since the control-flow
never reaches the point after a stopped thread and especially a thread does not
return any value, stop has any type. For the same reason, the auxiliary block-
and return-expression have any type.

8The code of P2 is not shown. It differs from P1 simply by moving the call to this.choose()
from the body of method a into both methods b and c.
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Apart from that, the type system injects a small quantum of structural sub-
typing into the derivation system, allowing a rudimentary subtype polymor-
phism, sometimes known as width subtyping. Indeed, when considering closed
programs using the internal semantics we could as well formulate the type
system without subtyping without changing the semantics. Subtyping just al-
lows to use type declaration more precise than actually provided by the im-
plemented methods (cf. Definition 2.3.1 for the subtype relation ≤ on interface
types). So subtyping is a question of hiding (but of nothing else) and due to
subject reduction, this additional flexibility of the type system has no run-time
significance.

The aspect of hiding is also the reason why subtyping is needed in the ex-
ternal semantics, where the type information is part of the component interface,
both as assumptions and as commitments. Since we allow observations only
for well-typed programs, the amount of publicly available information does
have a semantical import. For instance, already the external semantics is for-
mulated by steps between typed judgments ∆ ⊢ C : Θ and objects not exported
by the commitment Θ cannot be called from outside, and likewise, methods not
mentioned in the type interface because they are hidden due to subtyping can-
not be invoked from outside. After all, that’s the meaning of hiding: It makes
things unobservable . . . .

Note in this context, that the ν-binders allows to hide names to the outside,
as well. However, the more fine-grained export of class interfaces possible by
width-subtyping —some methods are public to the environment and some are
not— plays a crucial role in the completeness proof. The programmed observer
makes use of a number of private methods, which must not be available for its
environment. Whether the full abstraction result in the calculus is possible
without this form of hiding is unclear.

It seems possible to achieve full abstraction without subtyping but with the
possibility to hide classes via the ν-binder. The programming of the observer,
the core of the completeness, would be quite different from the one presented
in Chapter B. Without private methods but with hidden classes, the realization
could not rely on the “distributed” implementation of the connectivity of EΘ

as given in Chapter B, where each object keeps track of its share of connectiv-
ity, i.e., all the object names it has ever learnt, which where the information is
broadcast to all clique object during execution to keep the information in sync.

Instead, one would have to centralize the data-storage concerning connec-
tivity and the “playing of the scripts” and the task of achieving mutual exclu-
sion into a central server or broker, whose class can be kept hidden and outside
the reach of the environment. Clearly, the implementation cannot rely on a sin-
gle broker, but there would have to be one for each clique. Just using a central-
ized solution and exploiting class hiding does not allow to connect objects in
different cliques. Hence, in that form of solution, one would have to program
a dynamic number of broker objects, which are created when new cliques are
created and which must be combined into a single broker when cliques are
merged. An observer using such a centralized implementation has been pre-
sented in [66]. It is interesting that the form of hiding —hiding of classes vs.
hiding of methods via subtyping— dictates the realization of the observer —
centralized broker solution containing all the bookkeeping code in one spot vs.
a decentralized solution, distributing the code over the objects.
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Without any form of hiding, the result seems impossible or at least complex
beyond hope. The coding of the observer must, in general, rely on entities of
the language not available for the environment. Without hidden classes and
without hidden methods in otherwise public classes, the only programmable
entity not exported to the outside are threads. As threads themselves only con-
tain a local state and cannot access the instance states other than by methods
(which are all public) one possible realization would have to rely on some “en-
coding” of the semantics in thread configurations (which seems impossible).
Alternatively, if the semantics is to be encoded into instance variables (as we
did in Chapter B), their manipulation would require to use the public methods,
since instance variables cannot be directly accessed across object boundaries.
To make that scheme work would then require that the body of the method
can discriminate “real” calls from the environment, and the use of the method
in an internal calls just to update the book-keeping of the instance state and
to realize the required behavior. However, the strict typing discipline forbids
any straightforward solution for that. In particular, in absence of method over-
loading, we cannot simply pass an additional argument as indication that the
method is to be evaluated as internal call. To put it differently and more pre-
cisely: If the type system allowed this, then also the environment could pass
the additional argument and we would have gained nothing. Also this route
does not look promising.

Inheritance

The semantical impact of inheritance is more considerable than that of subtyp-
ing. However, even if conceptually different, subtyping and inheritance are
often related. A typical choice is that “inheritance implies subtyping”, i.e., the
type of instances of a class is a subtype of the instances of super-classes.

In our setting, where objects are typed by the name of their class, the natural
way to introduce subtyping in connection with inheritance is nominal subtyp-
ing. In this scheme, a class c1 is a (direct) subtype of another c1 exactly if c1
is defined to inherit from c2.9 Java, e.g., uses the extends-keyword to express
inheritance, which implies subtyping.

Apart from subtyping, the main complication when introducing inheri-
tance is that the component becomes open in one more aspect. Classes of
the component cannot just be used for cross-border instantiation, but also for
“cross-border inheritance”. This works in two directions: The environment
can make observations about the component by inheriting from component
classes, but also by inheriting code to the component. This makes more de-
tails of the component observable. Sometimes this is known under the slogan
“inheritance breaks encapsulation”.

Part of this phenomenon is also called the fragile base class problem [100] [131]
[127]. Listing 6.2 presents a simple example.

Listing 6.2: Fragile base class

c l a s s A {
void add ( ) { . . . }
void add2 ( ) { . . . }

9In Definition 2.3.1, we used structural subtyping for interface types (which do not carry
names).
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. . .
}

c l a s s B extends A {
void add ( ) {

s i z e = s i z e + 1 ;
super . add ( ) ;

}
void add2 ( ) {

s i z e = s i z e + 2 ;
super . add2 ( ) ;

}

It shows two classes A and B, implementing some container data structure,
where the methods add and add2 add one, resp., two elements. This com-
pletely (if informally) describes the intended behavior of A’s two shown meth-
ods. Class B in addition keeps information about the size of the container. The
respective instance variable is accordingly updated in the overridden methods
add and remove , which are assumed to behave identical to the methods of A
and are therefore implemented using the super-keyword. The same is done for
the add2-method, which increases the size by 2.

Now, the implementation of B shown in the figure is wrong, if the add2-
method of the superclass A is implemented via self using (for instance) twice
the add-method. The real problem, however, is that nothing in the interface or
the functional specification of A helps to avoid the problem!

The upshot of the simple example is that in the presence of sub-classing,
overriding, and late binding, the dependence of the methods amongst each other
is observable. Ultimately this seems to mean that also the self-communication
is observable, basically that the “implementation” of a method in terms of se-
quences of self-calls is visible. This can be interpreted as “inheritance breaks
encapsulation”, since it exposes details of A to the environment which would
normally be considered implementation details.

A similar phenomenon has been investigated in [136], albeit in an object-
based setting with method update instead of a class-based setting with inheri-
tance and method update.

6.2 Related work

Observable equivalence of programs is a natural and fundamental notion. It
has been addressed from many angles, for various notions of observability, for
different mathematical or semantical frameworks, and in particular for all sorts
of language constructors. Consequently, the literature on observable semantics
and full abstraction results is vast. Our choice of language features, motivated
by languages like Java and C#, concentrated on object-oriented features such
as classes as generators of fresh objects and concurrency in the form of multi-
threading. So in the discussion of related work, besides mentioning a few “clas-
sical” results mainly for various λ-calculi and process calculi, we concentrate
on object-oriented languages and calculi. Also we cover some results on lan-
guages with name-passing/name-generation facilities, notably the π-calculus,
since name generation for allocating addresses for new objects plays a role in
our semantics. See also the tutorial paper [114] for further discussion of obser-
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vational equivalences for (sequential) calculi, especially for functional calculi
involving state.

6.2.1 Observational semantics and full abstraction

The contextual definition of program equivalence —two programs are equiva-
lent if, when put into all possible contexts, they behave the same— appeared
first in the thesis [107] of Morris, for a call-by-name λ-calculus. Especially for
parallel programs and process algebras, the notion of testing has been widely
studied: The observer runs in parallel with the program under observation,
typically interacting via message exchange, and reaching a defined point (wit-
nessed by a predefined communication) is rated as success. In a non-deterministic
setting and when comparing two processes wrt. their successful-ness confronted
with all possible observers, one distinguishes necessary and potential success,
leading to must, resp., may testing equivalence. The important notion of test-
ing equivalence has been introduced by de Nicola and Hennessy [108] (see also
[68]).

Sequential languages

The issue of full abstraction for programming language semantics started with
sequential (and functional) languages [101][116]. Plotkin [116] investigated
the semantics of a functional language, i.e., PCF (“programming language for
computable functions”), an idealized typed functional language, basically a
simply-typed λ-calculus with recursion and call-by-name evaluation. The in-
fluential paper indeed contains a negative result, namely that a standard de-
notational model, where the ground types are interpreted as flat cpos and ar-
row types are modeled as continuous functions, is sound, but fails to be fully
abstract wrt. a standard notion of program equivalence (observational equiv-
alence). Enriching the syntax by a “parallel” construct to the language mends
the discrepancy between the denotational and the observational equivalence.
See also [29] for a (slightly dated) survey of full abstraction results for sequen-
tial languages. At the same time, Milner [101] gave a fully abstract model of
(a combinatory representation of) PCF without extending the language, but
relying on equivalence classes of terms as basis of the model. The thesis of
Stoughton [132] presents a language-independent theory of fully abstract de-
notational semantics of programming languages.

Parallelism and trace semantics

Testing equivalences, trace equivalences, or finer notions of equivalences and
related full abstraction results have been extensively studied for numerous
process calculi. For instance, full abstraction results for CSP, Hoare’s “com-
municating sequential processes” [74], are presented in Roscoe’s book [123],
especially using various variations of the trace model, for instance for deter-
ministic processes, or considering failures and divergence. Early results con-
cerning trace semantics for CSP include [135] [110] see also [138] [33]. Con-
cerning shared variable concurrency, Park [111] invented the “transition trace”
semantics, a denotational semantics using traces, where a transition trace is a
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finite sequence of pairs of states recording the potential interaction of the pro-
gram with its environment (cf. also [122]). A resumption semantics for shared-
variable concurrency is presented in [71]. The semantics, a denotational se-
mantics using power domains, is compositional, but not fully abstract, at least
not without extending the original language. The approach is extended to a
fully abstract denotational semantics by [32], based on a transition trace se-
mantics. Quite similar is the fully abstract trace semantics presented in [46]
[75]. Various forms of traces have also been used as fully abstract semantics for
dataflow networks, a computation model based on asynchronously communi-
cating, parallel “agents”, e.g., in [85] [87] [124] [90].

Object-oriented languages and calculi

Viswanathan [136] investigates the full abstraction problem in an object cal-
culus with subtyping. The setting is a bit different from the one used here as
he does not compare an contextual semantics with an denotational one, but a
semantics by translation by a direct one. The paper considers neither concur-
rency nor aliasing. As source languages, functional object calculi with first-
order types (including recursive types) are considered, more precisely Ob1µ

and Ob1≤:µ from [2], and encoded into a functional record calculus. The start-
ing point is the observation that a straightforward encoding, Kamin’s [86] so
called self-application semantics fails to be fully abstract, it is too concrete; basi-
cally, the straightforward encoding exposes the dependency of a method body
on the self-parameter to the observer.

Gordon et.al [63] investigate observational equivalence(s) in the setting of
Abadi and Cardelli’s (untyped and sequential) imperative object calculus impς ,
featuring method update and cloning (but no classes). For the formalization of
the operational semantics, i.e., not on the user level, locations in a global store
are used. Three forms of operational semantics are used at the source level:
A small-step semantics (based on a contextual definition and using an object
store) and big-step substitution based semantics, and finally a big-step closure
based semantics. The three equivalences at the source level operational seman-
tic are compared with a lower-level semantics, given by an abstract machine.

Gordon and Rees [64] consider a Morris-style contextual equivalence for a
(stateless) sequential object calculus with recursive types and subtyping (more
precisely, Ob1≤:µ from [2]). Starting from the standard definition of contex-
tual equivalence (or “observational congruence”) considering two programs
as equivalent if not context can tell them apart observing their termination
behavior on ground types, they characterize the contextual equivalence by a
bisimulation relation.

[84] present a fully abstract trace semantics of a (single-threaded) core of a
Java-like languages (JavaJr). The work in loc. cit. is similar to our framework;
especially and unlike the formalism in [82], JavaJr features classes and instantia-
tion of objects. Beside objects and classes, the language features a “third level”
of program structure (“packages”) which as in Java group together classes.
For the may-testing based semantical framework, packages are taken as the
unit of composition. The notion of package, however, differs package concept
of Java. One difference is that packages in [84] are equipped with a package-
interface, something not present in Java. Being basically a unordered lump of
classes (and interfaces for instances of classes), the notion of package in Java is
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indeed a rather crude abstraction and composition mechanism, offering little
more than convenient way of addressing classes.10 In the light of the work pre-
sented here, a crucial restriction is that instantiation across package boundaries
is not possible. As a consequence, the resulting trace semantics does not have
to deal with object connectivity, cliques, and their consequences, for instance
swapping and replay. The resulting trace semantics, fully abstract wrt. may-
testing, is very similar to the semantics in the object-based setting (cf. [82]) due
to the absence of cross-border instantiation.

Smith [126] presents a fully abstract model for Object-Z, an object-oriented
extension of the Z [128][118] specification language. The complete-readiness
model, as it is called in [126], is closely related to the readiness model of Olderog
and Hoare [110]. The observational starting point is less restrictive than ours:
The environment is allowed to observe (possibly infinite) traces of events of
the component within a context, not simply the fact whether a certain point
is reached, as in the barbing set-up used here. So the starting point itself is
already “almost” the fully abstract semantics. It turns out, however, that the
plain trace semantics is not compositional and thus not fully abstract in the
presence of non-determinism.11 The intuitive reason that the plain trace model
is unsound is, very abstractly, that the observer in the model has the power to
“observe” whether a given operation (or method) is currently enabled.

A more general and abstract approach is investigated in [60], based on the
categorical notion of sheaves, for concurrent, interacting objects. Sheaves as
semantic basis of concurrency have been advocated in [61] and can be under-
stood as a generalization of traces. Other work using sheaves as a model for
concurrency and object-oriented systems is [106] and [51].

Similar in spirit to the work presented here, but with a different form of lan-
guage in mind, [45] presents a fully abstract trace semantics for object-oriented
programs, featuring instantiation and concurrency. Abstracting away from
syntactical details, the pertinent differences to the work presented here are
the following. (1) The concurrency model in not based on multithreading as
here, but on “active objects” (cf. [22] for an early discussion of ways to com-
bine concurrency and object-orientation). More concretely, the the behavior of
(the instances of) a class is given in the form of state machines communicat-
ing via synchronous operations, i.e., the objects are bearer of activity and of state
and the concurrency model resembles a message-passing process framework.
Especially, there is no call-return discipline obey in the external interaction.
Like here, the objects are instantiated across the component boundaries, which
makes it necessary to consider the connectivity of the instances. (2) The se-
mantical framework is simpler, however, wrt. instantiation: The presence of
static class variables makes the number of instances of a class to be observable.
Hence the problem of replay is absent (cf. also the discussion in Section 6.1.2).

Full abstraction in nominal calculi

Languages and calculi with the ability to dynamically create and communicate
names have attracted much attention. The pioneering calculus in this context

10The “little more” refers to the fact that packages can be organized in sub-packages, where the
membership of classes to (sub-)packages influences whether for instance class inheritance across
package boundaries is allowed.

11The thesis uses the notion of contextual full abstraction, which implies compositionality.
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is the π-calculus [103] [125] (the “calculus of mobile processes”), the standard
process algebra for name passing and dynamically changing communication
structures. Fiore, Moggi, and Sangiorgi [52] present a full abstraction result for
the π-calculus. The extensional semantics draws heavily on techniques from
domain and category theory (e.g., using functor categories), and using (strong,
late) bisimulation equivalence as starting point, not may testing resp. traces as
here. Apart from the categorical machinery, a key feature of the semantics is
that the denotation of a process is given relative to the free names available to
the outside. Indeed, as interface information, the number of maximally used
free names is used. So this interface information corresponds to the commit-
ment contexts Θ, except that here (as in [82]) actual names are exported modulo
α-conversion, that the names carry a type here, and that the exact set of names
is exported, not an upper bound. The reason seems to be, that here the names
stand for objects (and threads and classes), and once created, objects never
disappear, they are not destroyed and there is no garbage collection. [139]
gives equational full abstraction for the standard translation of the polyadic π-
calculus into the monadic one. Without additional information, the translation
is not fully abstract, and [139] introduces graph-types as an extension to the
π-calculus sorting to achieve full abstraction. The graph types abstracts the dy-
namic behavior of processes. In capturing the dynamic behavior of interaction,
Yoshida’s graph types are rather different from the graph abstracting the con-
nectivity of objects presented here. Another fully abstract (filter) model for the
π-calculus wrt. may testing is presented in [44]. A fully abstract (filter) model
for mobile ambients [38] is investigated in [42], the higher-order case, where
ambients themselves can be sent and received, is covered in [43].

[25] presents a fully abstract encoding of a π-calculus with terms (πT) into
the more basic (polyadic) π-calculus (without native data), employing may-
testing as the notion of observation. In contrast to [24], the translation is shown
to be fully abstract, in particular the more concrete level cannot be used for
more discriminating tests. The key to achieve full abstraction in the data en-
coding is to deviate from the standard π-calculus encoding trick, which rep-
resents data types as processes and the operations on the data by “interaction
protocols”. Such encodings are similar to the traditional Church encodings of
data types in the λ-calculus, where data values are represented as functions.
The problem with the “data-as-process” approach is that the process behaves
as intended, i.e., as the value it represents, so long the client using the data
adheres to the protocol, interacting with the channels as foreseen. An environ-
ment, however, which is not “playing according to the rules” can in general
observe more, breaking full abstraction. In some sense, there is to much (and
too liberal) interference with the data. The key trick of [25] is then not have
the data behave like an interacting process, but centralize the access to the data
via some “integrity manager”, offering interference control. One “service” it
offers is mutual exclusion (using mutex locks) for the data access. So the solu-
tion there is reminiscent to one crucial ingredient of our observer construction,
namely the use of lock synchronization for concurrency control in the multi-
threaded setting. In particular the centralized “broker” for maintaining the
required data structures investigated in [66] and mentioned in Section 6.1.7 re-
sembles the integrity manager of [25]. A difference is that in our object-oriented
setting, we can use the data-storage facilities, the updateable fields, for ba-
sic data-representation. This seemed more straightforward than a “objects-as-
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data”-representation, which would also seem possible.
Hennessy [69] gives a fully abstract semantics for higher-order CCS in the

form of a path semantics, i.e., some form of trace semantics. Similarly, [70]
contains a fully abstract set-theoretic denotational model for the π-calculus, for
may- and must-testing. The model is based on functor categories. Those con-
structions are in particular used to give categorical meaning to the fact that the
semantics of a process is given relative to an index-set of free names available
in the process. The functor category uses a category of finitely many names and
injections (renamings) as “source” category. The source category represents in
particular the idea that the set of externally visible names is dynamic (due to the
scoping mechanism of the ν-binders) and that the behavior is invariant under
renaming.

Pitts and Stark [115, 130] combined name-generation and higher-order func-
tions into the ν-calculus, an extension of a call-by-value simply-typed λ-calculus
with a ground type for names and with the ability to create fresh names, which
can be passed around and tested for equality. Unlike the treatment in ob-
ject calculi (for instance here), name creation is not linked to object creation,
but is a basic construct in its own right. The language itself is thus rather re-
stricted, especially the calculus is not really imperative: Part of the semantics
is a “heap” of created names, which grows larger during evaluation when new
names are added, but the “references” cannot be destructively updated; on
the other hand, as λ-calculus, of course, the ν-calculus features higher-order
functions. [115] shows that observational equivalence coincides with applica-
tive equivalence (defined using logical relations, expressing representation in-
dependence for the generated names) for terms of first-order types and that,
under this restriction, ν-calculus is decidable for first-order terms.

Recently, contextual equivalences in the presence of parametric polymorphism
have been investigated in the context of the π-calculus. Pierce and Sangiorgi
[113] use barbed equivalence as notion of equivalence and discuss semantical
issues considering a polymorphic discipline in connection with channel typ-
ings. In particular the “impure” nature of the calculus (aliasing and the possi-
bility to compare names even when their type remains “abstract”) is identified
as a source of headaches. Jeffrey and Rathke [83] present a fully abstract model
for the polymorphic π-calculus. A further study of polymorphism in the π-
calculus is done in [27], including a fully abstract embedding of Girard and
Reynold’s polymorphic λ-calculus, also known as “System F”, [58] [59] [120]
into the process calculus.

Full abstraction and security

The name-generation facilities of the π-calculus have proved useful to provide
a foundation of key-elements of cryptographic protocols. The prototypical cal-
culus in this respect is Abadi and Gordon’s spi-calculus [4], an extension of the
π-calculus by primitives for encoding, decoding, and key generation.

The concept of (equational) full abstraction has also been proposed as use-
ful criterion for assuring security properties and describing protection of (soft-
ware) systems against attackers. The “observer”, in that perspective, is the
attacker or adversary which interacts with the program, e.g., the security pro-
tocol. in arbitrary ways. Abadi [1] investigates these issues, comparing Java-
programs with their translation into byte code (translation correctness; the
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same question it discussed in the paper for translating the π-calculus into the
spi-calculus). Translational full abstraction means that the translation from a
source to a target language preserves and reflects observational equivalence.
When going from a higher-level, more abstract language to a lower-level, more
detailed one may allow the observer to more more detailed observations, lead-
ing to security breaches ([1] [88] sketches the breach of equivalence by transla-
tion into byte code and resulting security threats for C# and Microsoft’s .NET-
architecture.

Baldamus, Parrow, and Victor [24] deal with the same question in the con-
text of translating the cryptographic spi-calculus into the more basic π-calculus,
more precisely, the synchronous, untyped, polyadic π-calculus with late value
passing semantics. Using may-tests as observations, the paper provides an en-
coding which preserves observational equivalence, provided the observer in the
target language in a translation of a source language observer.

Malacaria and Hankin [94] apply a categorical, game-theoretic semantics as
foundation for flow analysis, in particular for secure information flow. The set-
up is an observational: The game consists of the opponent (the observer) and
the player (the program). The analysis makes use of the fully abstract game
semantics for PCF.

Boreale, de Nicola, and Pugliese in e.g., [30] use contextual equivalences, for
the analysis of cryptographic protocols, formalized in the spi-calculus. They
show full abstraction of some trace semantics wrt. may-testing (and addition-
ally the paper relates weak bisimulation to barbed equivalence). In the cryp-
tographic setting, compared to a framework without encryption like the π-
calculus, the formalization of the external behavior is more complex as the
knowledge of names is protected by the knowledge of keys, represented by
names, as well. To keep track of that knowledge, the operational semantics
is enriched by a “data base” of known keys and the transitions are restricted
by the knowledge the environment has about names and in particular keys.
This set-up is reminiscent of the assumption contexts used in the operational se-
mantics here (and in [82]). Outgoing communication updates the environment
knowledge, whereas incoming communication has to be checked against the
assumptions (where newly created names also extend the environment knowl-
edge). In particular, to do an input step, the environment assumptions must
contain enough knowledge to produce the label, for instance by containing an
expression proving that the names of the label can be obtained by using, en-
coding, and decoding the available information. No connectivity is involved,
however.

Similar the results of Abadi, Fournet, and Gonthier: The paper [3], investi-
gate under which circumstances a translation from a higher-level to a low-level
language preserves security properties. Technically, the result is presented as full
abstraction of the translation from the join-calculus (a member of the π-calculus
inspired family of languages) [53] into the the sjoin-calculus, a lower-level join-
calculus with cryptographic primitives.

Game semantics

Game theory recently has gained attraction as a fresh and unifying approach to
compositional and fully abstract semantics. Some of the concepts of the game
semantic approach (not very surprisingly) bear some general resemblance with
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the set-up presented here. The player or more precisely the player’s strategy,
represents the program and the strategy of the opponent represents the environ-
ment or context. Often a strategy is represented as a set of sequences of moves,
where a moves constitutes a basic interface interaction. Thus, the game seman-
tics can be seen as some form of trace semantics, and a typical full abstraction
result would state that two program fragments are observably equivalent if the
corresponding sets of plays (i.e., “traces”) are equivalent.

This general framework has been applied to a number of programming cal-
culi, often variations and extensions of PCF or idealized Algol, considering
features like a store, pointers, local-variables, procedures, and different eval-
uation mechanisms, like call-by-value vs. call-by-name evaluation. One pio-
neering contribution in this context is Hyland and Ong’s fully abstract game
semantics model for PCF [77]. [15] investigates a simply-typed call-by-value
λ-calculus with higher-order store and ML-like references and present a fully
abstract game semantics for observational equivalence. General references,
i.e., references not just to data cells but also to functions, is a powerful lan-
guage construct; in particular, one can straightforwardly encode the notions
of objects, object references, and instantiation (cf. [15, Sect. 2.3]). The encod-
ing, however, does not model classes, and so connectivity does not play a
role here. Abramsky and McCusker provide a fully abstract game seman-
tics for (full) idealized Algol [121] [109] in [17]. This result is simplified by
Ghica and McCusker in [57], restricting the language to a finitary, recursion-
free, second-order fragment. The fully abstract semantics is based on regular
languages, where terms are interpreted as regular languages. The full abstrac-
tion results gives decidability of program equivalence for the considered frag-
ment. A regular-language model for a similar call-by-value language (instead
of call-by-name) is given in [56].

Also for nominal calculi, games semantics have been employed. Laird [92]
presents a categorical game semantics for Pitt’s and Stark’s ν-calculus [115],
a typed λ-calculus extended by names, respectively an imperative extension
(also called λν!-calculus), but the semantics is not fully abstract. Abramsky
et.al. [14] present a fully abstract semantics based on nominal games for the
ν-calculus. Neither work considers concurrency. More background on the ν-
calculus can be found Stark’s thesis [130] and [129].

An interesting recent contribution are asynchronous games [97] [99] [98]. The
plays of a game in game semantics are typically characterized by a strict alter-
nation of player and opponent moves and in this sense sequential. Melliès, in
a series of papers, relaxes this constraint, introducing a notion of concurrency
“into the arena”. Strict alternation is abandoned, such that the player and the
opponent can pursue more than one game each that the same time, to stay in
the picture. Furthermore, drawing from rewriting theory, the models allow
to permute independent moves, similar to the treatment of independence and
concurrency in Mazurkiewicz traces [95][96]. To do that properly, i.e., to avoid
confusion when permuting independent moves or labels, [97] (re-)introduces
indexed threads to the plays (i.e., traces) of the games, similar as in the game
semantics for PCF from [16]. See also the concurrent games in [19]. To repre-
sent the permutations on traces like swapping and switching in a game the-
oretic framework the techniques from the theory of asynchronous game look
promising.

Concerning specifically object-oriented features, the PhD thesis of Burt [36]
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presents a game-theoretical, denotational semantics for FJS (“Featherweight
Java with store”), an extension of FJ (Featherweight Java) [81]. The language
is sequential, but more true to Java than our setting in certain respect, espe-
cially wrt. typing issues, in that it features inheritance, subtyping (and even
type casts). In that work, the semantics of FJS is given via some encoding
into two lower level PCF-style languages featuring subtyping resp. subtyping
and references (PCF≤ and REF≤). The translation is a variant of Kamin’s [86]
self-application semantics. For the lower level languages, Burt shows full ab-
straction for a game-theoretical denotational model. The lower level calculi
PCF≤ and REF≤, however, for which the full abstraction results are shown, do
not feature classes and instantiation, i.e., also there, the problem of connectivity
does not show up.
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A.1 Operational semantics

First some straightforward invariants of the operational semantics. Many carry
over to the multithreaded case, where we will not prove them again.

The following standard lemma states that well-typedness of a component
is preserved under reduction. This property is also known as subject reduction.
It will be used later tacitly at various places.

Lemma A.1.1 (Subject reduction). Assume Ξ ⊢ C.

1. (a) If C  C′, then Ξ ⊢ C′.

(b) If C
τ
−→ C′, then Ξ ⊢ C′.

(c) If C ≡ C′, then Ξ ⊢ C′.

2. If Ξ ⊢ C
a
−→ Ξ́ ⊢ Ć, then Ξ́ ⊢ Ć .

Proof. All parts by induction on the length of derivation for the corresponding
reduction step. The judgment asserts well-typedeness and connectivity; we
treat both parts separately and show a few cases for each.

Case: RED: ♮〈let x:T = v in t〉 ♮〈t[v/x]〉
Since Ξ ⊢ C, we know ∆′ ⊢ ♮〈let x:T = v in t〉 : () for some name context
∆′ which furthermore implies ; ∆′ ⊢ v : T and x:T ; ∆′ ⊢ t : none (inverting
T-THREAD, T-LET, and T-NAME, using the fact that v can have at most one
type. Note that the value v can only be an object reference o).1 Hence by a

(standard) substitution lemma, ; ∆′ ⊢ t[v/x] : none, which entails Ξ́ ⊢ Ć, as
required.

Case: NEWOi: c[(F,M)] ‖ ♮〈let x:c = new c in t〉  c[(F,M)] ‖ ν(o:c)(o[c, F ] ‖
♮〈let x:c = o in t〉)
Well-typedness of the pre-configuration entails ∆1 ⊢ c[(F,M)] : (c:Tc) for some
context ∆1 and type Tc = [(O)], and furthermore ∆1, c:Tc ⊢ ♮〈let x:c = new c in t〉 :
(). The latter judgment (inverting rules T-THREAD, T-LET, and T-NEWC) gives
x:c; ∆1, c:Tc ⊢ t : none . By weakening, thus (1) x:c; ∆1, o:c, c:Tc ⊢ ♮〈t〉 : none.
For the named object: ∆1 ⊢ c[(F,M)] : (c:Tc) entails (2) ∆1, o:c ⊢ o[(c, F )] : (o:c).
Using the typing derivation for the pre-configuration, the post-configuration
can thus be justified with T-PAR, T-NUi, and using (1) and (2).

The remaining rules of Table 2.5 work similarly.
The proof for part 1c, that the structural congruence from Table 2.6 pre-

serves well-typedness, is straightforward, using a weakening, resp., a strength-
ening property for typing in the case C1 ‖ ν(n:T ).(C2) ≡ ν(n:T ).(C1 ‖ C2),
where n does not occur free in C1.

Case: CALLI0 with a = ν(Φ′)〈call or.l(~v)〉?
We need basically to argue that C(Θ′) ‖ ♮〈let x:T = or.l(~v) in or returns x to ⊙ 〉
is well-typed in the given evaluation context. TheC(Θ′) is defined as o1[c1, F1] ‖
. . . ‖ ok[ck, Fk], where Θ′ = ~o:~c are the bindings for the lazily instantiated ob-
jects, i.e., Θ ⊢ ci : Ti for all ci.

The typing part of Ξ́ in the premise is given by Θ́ = Θ + Θ′ and ∆́ =
∆ + ∆′ (Definition 2.6.8). Thus, each oi[ci, Fi] from C(Θ′) is well-typed (with

1In the multithreaded setting, besides a reference to an object, the value can also be a reference
to a thread.
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type ci). Expanding the typing part of the premise Ξ́ ⊢ or
⌊a⌋
← ⊙, we are

given ; Θ́ ⊢ or:cr, furthermore ; ∆́, Θ́ ⊢ cr : [(. . . , l:~T → T, . . .)], and ; ∆́, Θ́ ⊢

~v : ~T (cf. LT-CALLI from Table 2.10). In particular, the declared type T of
x coincides with the return type of method l. Well-typedness of ♮〈let x:T =
or.l(~v) in or returns x to ⊙ 〉 is justified by T-THREAD, T-CALL, and T-RETURN,
and the mentioned premises.

Case: CALLO with a = ν(Φ′)〈call or.l(~v)〉!
By well-typedness of the preconfiguration, (inverting in particular T-LET), ; ∆1 ⊢
or.l(~v) : T and x:T ; ∆1 ⊢ t : none, and the result follows using T-BLOCK.

For connectivity, proceed similarly by induction on the steps. As  -steps
do not access the instance state and affect only the top-most stack frame, the
induction step is immediate. Note that internal reduction steps affect only the
top-most stack frame and that no information is passed to deeper stack frames
(or from the stack of one thread n to another thread n′ in the multithreaded
case), especially not by the substitution in rule RED.

Lemma A.1.2 (Static nature of class names). If ∆;E∆ ⊢ C : Θ;EΘ
a
−→ ∆́; É∆ ⊢

Ć : Θ́; ÉΘ, then for all class names c, ∆ ⊢ c iff ∆́ ⊢ c and likewise Θ ⊢ c iff. Θ ⊢ c.

Proof. Obvious. Class names cannot be sent around; hence they never occur in
a communication label.

Lemma A.1.3 (Invariants). Assume Ξ0 ⊢ C
t

=⇒ Ξ́ ⊢ Ć. Then:

1. É∆ ⊆ ∆́ × (∆́ + Θ́) and ÉΘ ⊆ Θ́ × (Θ́ + ∆́).

2. dom(∆́) ∩ dom(Θ́) = ∅, for all object and class references.

Proof. Straightforward by inspection on the rules for external steps from Ta-
ble 2.11; internal steps obviously preserve the properties.

For part 2: By induction on the length of reduction. Internal steps and
the rules for structural congruence leave the contexts untouched. The external
steps from Table 2.11 add a fresh object name only to either ∆ or to Θ, and
the freshness assumption assures that the new name does not occur on both
contexts. Class names are never exchanged boundedly (cf. Lemma A.1.2).

In the multithreaded case later, there will be a third category of names be-
sides class and object names, namely names for the threads (see Lemma C.1.1.

We call a well-typed component ∆ ⊢ C : Θ is instance closed, if for all iden-
tifiers o with ; Θ ⊢ o : c, also ; Θ ⊢ c : T . In other words, each object identifier
typeable in Θ and thus occurring free in the component C, is an instance of a
class also typeable in Θ. Note that the type system assures that T is a class type,
i.e., T = [(T ′)]. For example, ⊢ o[c, F ] ‖ c[(O)] : o:c, c:[(T ′)] is instance closed, but
the component containing the object o in isolation is not. Instance closedness
is preserved under reduction.

Lemma A.1.4 (Preservation of instance closedness). Assume Ξ ⊢ C
a

=⇒ Ξ́ ⊢ Ć.
If Ξ ⊢ C is instance closed, then so is Ξ́ ⊢ Ć .

Proof. Straightforward. Internal steps do not change the contexts nor do they
change the externally visible object names (or externally visible thread names
in the multithreaded setting). The same holds for the structural rules (apart
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from renaming). The external rules maintain instance closedness by distin-
guishing in the exchange of bound (object) references according to the class, as
indicated by writing ν(∆′,Θ′). 〈call or.l(~v)〉?, resp., ν(∆′,Θ′). 〈return(v)〉? for
labels of incoming communication, where by convention ∆′ refers to references
to external objects and threads whose scope is extruded in the step, and Θ′ to
references to component objects and threads. In the case of object references in
Θ, this realizes lazy instantiation. For outgoing communication, the situation
is dual. Remember that the assumption and commitment contexts are disjoint
as far as class names are concerned (Lemma A.1.3(2)).

In the whole development we will always assume that well-typed compo-
nents are instance closed.

Proof of Lemma 2.6.15 on page 42 (no surprise). By definition of the incoming steps
from Table 2.11, using the context update from Definition 2.6.8 and 2.6.9.

A.2 Traces and equivalences

This section contains material about traces. Some of the definitions are used
later in the characterization of the legal traces. Section A.2.1 collects a number
of properties in connection with the parenthetic nature of the calls and returns
in a trace (of one given thread). After formalizing predicates for balance (each
call must be answered by a matching return) and weak balance, characterizing
prefixes of balanced traces, we define the sender and receiver of a communi-
cation, given the past interaction, and prove properties about enableness of
communication after a trace.

Sections A.2.2 and A.2.3 give equational characterizations of the swapping
and replay relations relation≍Θ and≍−Θ, which were introduced in Section 3.1
using the notion of projection (cf. Definition 3.1.7 and 3.1.8).

A.2.1 Balance conditions

Lemma A.2.1 (Balance and alternation). If ⊢ t : wbalanced , then t is alternating.
For non-empty t: If ⊢ t : wbalanced+, then t = t′ γ?. Dually for wbalanced−. A
fortiori, the same property holds for strictly balanced traces.

Proof. By straightforward induction on the rules of Table 3.3 and 3.4.

The next property shows that one can remove balanced subsequences from
a weakly balanced trace without destroying weak balance. The reverse prop-
erty —balanced subsequences can be added, as well— is covered in Lemma
A.2.4.

Lemma A.2.2 (Removal of balanced parts). If ⊢ s1 t s2 : p1wbalancedp2 and
⊢ t : balanced , then ⊢ s1 s2 : p1wbalancedp2 .

Proof. For the proof prove in addition to the property of the lemma (part 3
below), two simpler properties:

1. If ⊢ s1 γc? γr! s2 : balancedp, then ⊢ s1 s2 : balancedp.

2. If ⊢ s1 γc? γr! s2 : p1wbalancedp2 , then ⊢ s1 s2 : p1wbalancedp2 .
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3. If ⊢ s1 t s2 : p1wbalancedp2 and ⊢ t : balanced , then ⊢ s1 s2 : p1wbalancedp2 .

Part 1 by induction on the rules from Table 3.3, using for the cases B-II and
B-OO the observation (a) that non-empty balanced traces start with a call and
end with a return. Part 2 by induction on the rules of Table 3.4, using part 1.
The observation (a) again assures that we can proceed by induction in the cases
for WB1 and WB2.

For part 3, proceed by induction on the balance derivation for t. For one
case, assume ⊢ t : balanced+. The case of B-EMPTY+ is immediate. For B-II,
we are given t = t1 t2 with ⊢ t1 : balanced+ and ⊢ t2 : balanced+, where
t1 and t2 are strictly shorter than t. Hence the case follows by using twice
the induction hypothesis. For case B-IO, t = γc? t

′ γr! with ⊢ t′ : balanced+

by a subderivation. By part 2, ⊢ s1 γc? γr! s2 : p1wbalancedp2 , and hence by
induction, ⊢ s1 γc? t

′ γr! s2 : p1wbalancedp2 , as required.

Concatenation preserves weak balance, provided that the two traces fit to-
gether in the sense that alternation is respected. Also a balanced sub-sequence
can be inserted without destroying weak balance.

Lemma A.2.3 (Balance and insertion). Assume ⊢ s1 s2 : balancedp1 and further-
more ⊢ s1 : p1wbalancedp2 , and ⊢ t : balancedp2 , then ⊢ s1 t s2 : balancedp1 .

Proof. Proceed by induction on the derivation of ⊢ s1 s2 : balancedp1 . In case of
B-EMPTY+ or B-EMPTY−, the result is trivial. For B-II, we have that p1 = +.
We distinguish according to the way, the rule B-II splits s1s2 = s. If s = s11 s

2
1 s2

with ⊢ s11 : balanced+ and ⊢ s21 s2 : balanced+ as subgoals of B-II, we get by
induction ⊢ s21 t s2 : balanced+, and the result follows with B-II. The case where
s2 is split, i.e., where s = s1 s

1
2 s

2
2 and with subgoals ⊢ s1 s12 : balanced+ and

⊢ s22 : balanced+, works analogously. Finally, if B-II has ⊢ s1 : balanced+ and
⊢ s2 : balanced

+ as subgoals, the result follows directly using twice B-II. The
case for B-OO works analogously.

For B-IO, s = s1 s2 = γc? s
′
1 s

′
2 γr!, with ⊢ s′1 s

′
2 : balanced− as subderiva-

tion, and the case follows by induction and B-IO. The case for B-OI works
analogously.

Lemma A.2.4 (Weak balance, concatenation, and insertion).

1. The following two rules for weak balance are admissible:

⊢ s : p1wbalancedp2 ⊢ t : p2wbalancedp3

WB-CONC
⊢ s t : p1wbalanced

p3

⊢ s1 s2 : p1wbalancedp3 ⊢ s1 : p1wbalancedp2 ⊢ t : balancedp2

WB-INSERT
⊢ s1 t s2 : p1wbalanced

p3

2. Assume ⊢ s : wbalanced and ⊢ t : wbalanced . If s t is alternating, then
⊢ s t : wbalanced .

Proof. For part 1, we start with WB-CONC (as the admissibility of WB-INSERT

uses WB-CONC): Assume that s 6= ǫ and t 6= ǫ (the result is trivial then) and
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proceed by induction on the derivation of the first sub-sequence s. If s is bal-
anced (rule WB-B), the case follows by WB1. The case for WB1 follows by in-
duction, and using WB1. In the case for WB2, we have that s = s2 s3, with ⊢ s2 :
p1wbalanced

p2 and ⊢ s3 : balanced
p2 . By induction we get ⊢ s3 t : p1wbalanced

p3 ,
and again by induction, ⊢ s2 s3 t : p1wbalancedp3 , as required.

Concerning rule WB-INSERT. Assume that s1, s2, and t are not empty, oth-
erwise the argument is immediate: If t = ǫ, the result is trivial. If s1 = ǫ (and
neither t nor s2 empty), then WB1 yields the result, observing that p2 = p1.
For s2 = ǫ, the argument is analogous, using WB2 instead, and observing that
p2 = p3.

Otherwise, proceed by induction on the length of derivation for the judg-
ment ⊢ s1 : p1wbalancedp2 from Table 3.4. The case for WB-B is immediate
(using B-II or B-OO, depending on the polarity). For WB1, the result fol-
lows by straightforward induction and WB1. For WB2, we are given s1 =
s′1 s

′′
1 such that ⊢ s′1 : p1wbalancedp2 and ⊢ s′′1 : balancedp2 . By rule B-II or

B-OO of Table 3.3, ⊢ s′′1 t : balancedp2 . By removal of balanced parts from
Lemma A.2.2, the premise of WB-INSERT ⊢ s′1 s

′′
1 s2 : p1wbalancedp3 implies

⊢ s′1 s2 : p1wbalanced
p3 (since s′′1 is balanced). Hence we get by induction,

s′1 (s′′1 t) s2 : p1wbalancedp3 , as required.
For WB-CALL+, we are given s1 = γ′c? s

′
1 with ⊢ s′1 : +wbalancedp2 (and p1

must equal−). By concatenation using rule WB-CONC, ⊢ s′1 s2 : +wbalancedp3 .
Hence by induction, ⊢ s′1 t s2

+wbalancedp3 , whence ⊢ γ′c? s
′
1 t s2

−wbalancedp3

follows with WB-CALL−, as required. The case for WB-CALL− works analo-
gously.

Part 2 is a straightforward consequence.

The next lemma establishes the mentioned intuition of the weak balance
condition, namely that a weakly balanced trace is a prefix of a balanced one. Of
course, a weakly balanced one can be completed not to just one single balanced
trace, but to infinitely many, since balanced parts can be injected at will (so long
alternation is preserved) in the prolongation. Given a weakly balanced trace r,
there is, however, a minimal, canonical balanced trace twith r 4 t, which is the
one, where all unanswered calls are just completed by the responding return,
i.e., where r s = t, where s contains only calls. We do not need this property, so
Lemma A.2.5 simply states that there is some balanced trace which completes
the weakly balanced one.

Lemma A.2.5 (Balance and weak balance). Given a trace r. Then ⊢ r : wbalanced

iff r 4 t for some t such that ⊢ t : balanced .

Proof. There are two directions to show.

Case: “if”
Assume r 4 t, i.e., r s = t for some s, and ⊢ t : balanced . First, for any t of the
form t1 t2 t3 we have by Lemma A.2.2: If ⊢ t : balanced

− and ⊢ t2 : balanced ,
then ⊢ t1 t3 : balanced−. Let r′ be defined as r with all balanced subsequences
removed. In analogous way, s′ is obtained from s. Clearly, r′ contains only
calls, and s′ only returns. Assuming otherwise contradicts the fact r′ or s′ do
not contain balanced subsequences.

For one case, assume ⊢ t : balanced−. By the above observation, ⊢ r′ s′ :
balanced−, where r′ contains only calls. Therefore, ⊢ r′ : wbalanced−, resp.,
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⊢ r′ : wbalanced+. This implies with the rules from Table 3.4, that also ⊢ r :
wbalanced−, resp., ⊢ r : wbalanced+, as required.

Case: “only if”
By induction on the derivation from Table 3.4, so assume ⊢ r : p1wbalancedp2 .
The case where r is already strongly balanced (rule WB-B) is immediate. The
case of WB1 follows by straightforward induction on the weakly balanced
premise and using B-OO. In the case for WB2, r = r1 r2 with ⊢ r1 : p1wbalancedp2

and ⊢ r2 : balancedp2 , both by subderivation. By induction, the weakly bal-
anced r1 is a prefix of a balanced trace t1, i.e., r1 s1 = t1 for some t1 with
⊢ t1 : balanced

p1 . By Lemma A.2.3, ⊢ r1 r2 s1 : balanced
p1 , as required.

For WB-CALL+ we are given that r = γc? r
′ and ⊢ t : balanced+. By rule

B-IO. ⊢ γc? r
′ γr! : balanced−, as required. Rule WB-CALL− works symmetri-

cally.

Corollary A.2.6 (Closure under prefix). Weakly balanced traces are closed under
prefix, i.e., ⊢ t : wbalanced and s 4 t, then ⊢ s : wbalanced

Proof. An immediate consequence of Lemma A.2.5.

Balance and weak balance are given by recursive, “context-free”, defini-
tions, capturing in a natural way the parenthetic nature of calls and returns.
The operational semantics and the system for legal traces, however, generate,
resp., check a trace not following the context-free structure of calls and return,
but step by step. To prove invariants of the trace semantics or of legal traces
(and the connection between the two), the following characterization is some-
times better suited (see also Lemma A.2.17, which constitutes basically the re-
verse direction of the next lemma).

Lemma A.2.7 (Number of calls and returns). Given t as trace of calls and returns.
Let k∆ be the number of outgoing calls minus the number of incoming returns, i.e.,
the number of calls unanswered by the environment. Dually, let kΘ be the number of
incoming calls minus the number of outgoing returns.

1. If t is alternating and for each prefix of t,

k∆ ≥ 0 and kΘ ≥ 0 , (A.1)

then

(a) if the length of t is even, then kΘ = k∆.

(b) if the length of t is odd and the last label of t is outgoing, then kΘ = k∆−1.
If alternatively, the last label is incoming, then kΘ = k∆ + 1.

2. If t is balanced, k∆ = kΘ = 0.

3. If t is weakly balanced, then equation (A.1) holds.

4. If t is weakly balanced, then the two implications of 1a and 1b hold for t.

Proof. For part 1, proceed by straightforward induction on the length of the
trace. Assume for one case that the first interaction of the trace is incoming, i.e.,
the thread starts in the environment. Let r 4 t. The base case for r = ǫ trivially
satisfies the conditions. Now consider r a for the induction step. If r is even,
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it means that a is an incoming communication, since the trace is alternating.
By induction, using part 1a, kΘ = k∆ before the extension. After the incoming

call, the component has one more unanswered call, i.e., ḱΘ = kΘ +1, satisfying

part 1b. An incoming return gives ḱ∆ = k∆ − 1, likewise covered by part 1b. If
otherwise the length of r is odd, the last action of r is incoming, and therefore
a is outgoing. By induction on part 1b, kΘ = k∆ + 1 for r. If a is an outgoing

call, ḱ∆ = k∆ + 1, establishing the property of part 1a after the call. Similarly

for outgoing returns, where ḱΘ = kΘ − 1. The case where the first interaction
in the trace is outgoing is analogous.

Part 2 is shown by straightforward induction on the rules of Table 3.3. Part 3
by straightforward induction on the rules from Table 3.4, using the result of
part 2, and the easy observation that ⊢ a t : wbalanced implies that a is a call.
Part 4 is the combination of part 1, 3, and the alternation Lemma A.2.1.

Lemma A.2.8 (Weak balance: Characterization). Assume ⊢ t : wbalanced− but
not balanced. Then t is of the form t1 γc! t2 with ⊢ t2 : balanced−. The property holds
dually for wbalanced

+.

Proof. By Lemma A.2.7.

The next lemma states that the derivation of balance of a trace is determin-
istic as far as the choice of rules of Table 3.3 is concerned. Note that in rules B-II
and B-OO we require that s1 and s2 are non-empty. Note, however, that the
tree of derivation is not determined by the trace whose balanced is checked.

Lemma A.2.9 (Determinism). Given a balanced trace s. Then for all derivations of
⊢ s : balanced

+ (resp. ⊢ s : balanced
−) exactly one of the following three conditions

applies: All end with an instance B-EMPTY+, or all end with B-II, or all end with
B-OI (dually for ⊢ s : balanced+).

Proof. In case of a non-empty trace, only B-II or B-OI applies. Assume for a
contradiction then that ⊢ s : balanced+ can be derived by both B-II and B-OI
in the last step. This means that

s = s1 s2 = γc! s
′
1 s

′
2 γr! ,

where γc! s
′
1 and s′2 γr? are balanced and also s′1s

′
2 is balanced. We furthermore

know that, since balanced, s1 ends with a return, and similarly s2 starts with a
call. From Lemma A.2.7: The assumption that s1 is balanced means the num-
ber of calls equals the number of returns in s1. The assumption that s′1 s

′
2 is

balanced implies that in its prefix s′1 the number of returns is less or equal than
the number of calls, which yields a contradiction.

Lemma A.2.10 (Cut of a balanced trace). Assume ⊢ s1s2 : balanced . Then:

1. ⊢ s1 : balanced iff ⊢ s2 : balanced .

2. ⊢ s2 : balanced iff ⊢ s2 : wbalanced .

And as direct consequence:

3. ⊢ s1 : balanced iff ⊢ s2 : wbalanced .
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Proof. Part 1 by Lemma A.2.9, Part 2 by Lemma A.2.7. Part 3 is a combination
of 1 and 2.

Lemma A.2.11 (Unique last unanswered call). Assume s = s1 a1 t1 = s2 a2 t2
where a1 and a2 are call labels. If t1 and t2 are balanced, then s1 = s2, t1 = t2, and
a1 = a2.

Proof. It suffices to show that t1 = t2. Assume for a contradiction that t1 6=
t2. Wlog. assume that t1 is strictly longer than t2, i.e., t1 = t′1 a2 t2. By
Lemma A.2.10, t′1 a2 is balanced, which is a contradiction; a balanced trace
cannot end in a call (Lemma A.2.7).

Lemma A.2.12 (Weak balance and case distinction). Let s be a weakly balanced
trace. Then exactly one of the following three cases holds:

1. s is balanced.

2. s = s1γc? s2 for some call label γc, and where ⊢ s2 : balanced+

3. s = s1γc! s2 for some call label γc, and where ⊢ s2 : balanced−

In case 2 and 3, the s1, γc? (resp., γc!), and s2 are uniquely determined.

Proof. First of all it is clear that the three cases are mutually exclusive: When
case 2 or 3 applies, the complete s is not balanced (using Lemma A.2.10), i.e.,
case 1 does not apply. Case 2 and 3 are mutually exclusive, as well, with the
help of Lemma A.2.11. Now assume that s is weakly balanced. If it is not
strictly balanced, the fact that s is of the form s1as2 for a call label a and where
s2 is balanced follows from Lemma A.2.7. The uniqueness of s1, a, and s2
follows also from Lemma A.2.11.

Lemma A.2.13 (Functionality of pop). pop is a (partial) function on weakly bal-
anced traces. Furthermore, pop(t) is undefined iff t is balanced (assuming ⊢ t :
wbalanced ).

Proof. That pop returns at most one value is a consequence of Lemma A.2.11.
If t is balanced, pop clearly is undefined. Now, if t is not balanced (but weakly
balanced) the fact that pop is defined follows by Lemma A.2.12.

Lemma A.2.14 (Sender and receiver).

1. Let t = t1 t2 be a weakly balanced trace. Assume, t2 is balanced and non-empty,
i.e., t2 = γc? t

′
2γr! and ⊢ t2 : balanced− (or dually, ⊢ t2 : balanced+). Then

receiver (t1 t2) = sender(t1 γc?).

2. Let t γ? be a weakly balanced trace. If t = ǫ, then sender(t γ?) = ⊙. If
otherwise t = t′ a, then sender (t′ a γ?) = receiver(t′ a) (and a is outgoing).

Proof. Part 1 follows directly by definition of sender and of pop.
For part 2, proceed by induction on the length of t. The base case where

t = ǫ and the induction case where γ? is a call are immediate by the definition
of sender . For returns, sender (t′ a γr?) = receiver (pop (t′ a))). By the defi-
nition of pop and since t′ a γr? is alternating (Lemma A.2.1), t′ a = t′ γ′! =
t1 t2 = t1 (γ2

c ? t′2γ
2
r !) (i.e., a′ = γ2

r !) with ⊢ t2 : balanced−, and furthermore,
sender (t′ a γr?) = receiver (t1). By induction, receiver (t1) = sender (t1 γ

2
c ?). By

part 1, sender(t1 γ
2
c ?) = receiver(t1 (γ2

c ? t′2γ
2
r !)) which equals receiver(t′ a), as

required.
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Lemma A.2.15. Assume Ξ0 ⊢ t : balanced and Ξ0 ⊢ t ⊲ γ?. Then sender (t γ?) =
⊙ iff. Ξ0 ⊢ t : balanced−, ∆0 ⊢ ⊙, and γ is a call. The same holds dually for γ!,
balanced+, and Θ0 ⊢ ⊙.

Proof. An easy consequence of Lemma A.2.13. There are two directions to
show. Assume first that sender(t γ?) = ⊙. Assume further for a contradiction
that the additional label is a return, i.e., γ = γr. By definition 3.3.4, the sender
of γr equals receiver (pop t) (with t 6= ǫ). However, by Definition 3.3.1, pop t is
a call, and the receiver of that call cannot be ⊙, yielding the contradiction.

Hence, the label is a call, say γ = γc. Since t is balanced, pop t = ⊥
(Lemma A.2.13). Therefore, together with the call-enabledness assumption
Ξ0 ⊢ t ⊲ γ? (Definition 3.3.3, equation (3.12)), ∆0 ⊢ ⊙, as required. The last
claim Ξ0 ⊢ t : balanced− follows with Lemma A.2.12.

The reverse direction is similar: Since t is balanced, pop t = ⊥ (Lemma A.2.13).
The input-call enabledness assumption Ξ0 ⊢ t ⊲ γc? gives directly ∆0 ⊢ ⊙ (and
the second clause of equation (3.12)) does not apply).

Corollary A.2.16. Assume ⊢ t : balanced+, and further ⊢ s1 : wbalanced+. Then
⊢ s1 t s2 : wbalanced+ iff. ⊢ s1 s2 : wbalanced+. Dually ⊢ s1 t s2 : wbalanced−

iff. ⊢ s1s2 : wbalanced−. Two further dualizations hold where ⊢ t : balanced− and
⊢ s1 : balanced−.

Proof. The two directions of the claim are covered by Lemma A.2.4(1), rule
WB-INSERT, and Lemma A.2.2.

The next lemma expresses the reverse characterization of weakly balanced
traces of Lemma A.2.7 and Lemma A.2.1 (cf. page 57 for the definition of alter-
nation).

Lemma A.2.17 (Number of calls and returns). Let t be an alternating trace. If
for each prefix of t, the number of incoming returns is smaller or equal the number of
outgoing calls, and dually for outgoing returns and incoming calls, then t is weakly
balanced.

Proof. Let s 4 t, i.e., s is a prefix of t. We show by induction on the length
of s, that it is weakly balanced, given the conditions on the number of calls
and returns from the lemma. Let k∆ be the number of outgoing calls minus
the number of incoming returns, i.e., the number of calls unanswered by the
environment. Dually, let kΘ be the number of incoming calls minus the number
of outgoing returns.

Case: Base case: s = ǫ
Immediate by B-EMPTY+ or B-EMPTY−.

Case: Incoming call: s = s′γc?
By assumption, kΘ ≥ 0 and k∆ ≥ 0 after s′ and furthermore (by induction),
s′ is weakly balanced. Now consider sγr! = s′γc?γr!, for some outgoing re-
turn γr!. The pair γc?γr! is balanced, i.e., ⊢ γc?γr! : balanced−. By Corollary
A.2.16, s′γc?γr! is weakly balanced. Hence, being shorter, also s′γc? is weakly
balanced, as required.
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Case: Outgoing return: s = s′γr!
By assumption, kΘ ≥ 1 after s′, and by induction, s′ is weakly balanced (but not
balanced). By Lemma A.2.11, s′ is of the form s′1γc?s

′
2 with ⊢ s′2 : balanced+,

for some incoming call label γc?. This implies with B-IO that ⊢ γc? s
′
2 γr! :

balanced−. By Corollary A.2.16, s′1γc? s
′
2 γr! is weakly balanced if s′1 is. The

latter is given by induction.
The remaining two cases for outgoing calls and incoming returns are dual.

Lemma A.2.18 (Weak balance and enabledness). Assume ⊢ t : wbalanced .

1. If Ξ0 ⊢ t ⊲ γr?, then Ξ0 ⊢ t ⊲ γc?. Dually for γc! and γr!.

2. If t is non-empty, then either Ξ0 ⊢ t ⊲ γ′? or Ξ0 ⊢ t ⊲ γ′′!.

3. ⊢ t : wbalanced+ and ⊢ t : wbalanced− iff t = ǫ.

4. If ⊢ t : balanced− and ∆0 ⊢ ⊙, then Ξ0 ⊢ t ⊲ γc? and Ξ0 6⊢ t ⊲ γr?. The case
holds dually for balanced

+, Θ0, and γc!, resp., γr!.

5. Assume ⊢ t : wbalanced and ⊢ t ⊲ a. Then ⊢ t : wbalanced− iff a is an
incoming communication. Dually for wbalanced+.

Proof. See Definition 3.3.3 for the definition of enableness. Part 1 follows di-
rectly from the definition of enabledness.

For part 2: Because return enabledness implies call enableness by part 1, we
need to consider only the case of two calls. By the case distinction of Lemma
A.2.12, trace t is of exactly one of three possible forms. If t is strictly balanced,
corresponding to A.2.12(1), pop t = ⊥ (Lemma A.2.13), and therefore, either
Ξ0 ⊢ t ⊲ γc? or Ξ0 ⊢ t ⊲ γc!, by the first line of equation (3.12), resp., of
(3.13) and the fact that either ∆0 ⊢ ⊙ or Θ0 ⊢ ⊙. Otherwise, either A.2.12(2) or
A.2.12(3) applies, i.e., t is either of the form t1 γ̃

1
c ! t2 or of t1 γ̃

2
c ? t2, where t2 is

balanced, and furthermore pop t = t1 γ̃
1
c ! or else pop t = t1 γ̃

2
c ?, depending on

which of the two alternatives applies. Therefore, the second line of either (3.12)
or of (3.13) applies, giving either Ξ0 ⊢ t ⊲ γ1

c ? or Ξ0 ⊢ t ⊲ γ2
c !, as required.

The two directions of part 3 are covered by part 2 and by the rules B-EMPTY+

and B-EMPTY− from Table 3.3 (in combination with WB-B from Table 3.4).
For part 4, assume for one of the two dual cases that ⊢ t : balanced− and

∆0 ⊢ ⊙. The judgment Ξ0 ⊢ t ⊲ γc? follows by Lemma A.2.13 and directly
from the definition of enabledness, equation (3.12). The fact that Ξ0 6⊢ t ⊲ γr?
follows likewise by Lemma A.2.13 and the definition of input return enabled-
ness.

The next lemma basically shows that weak balance is an invariant of the
traces of a component, respectively a legal trace: Adding an enabled label to a
weakly balanced trace preserves weak balance. Remember that enabledness is
one of the premises being checked for doing one step in the external semantics,
resp., in the system for legal traces.

Lemma A.2.19 (Weak balance and enabledness). Assume a trace t with Ξ0 ⊢ t :
wbalanced and Ξ0 ⊢ t ⊲ a, i.e., a is enabled after t. Then the following holds:

1. If a = γ?, then Ξ0 ⊢ t γ? : wbalanced+.
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2. If a = γ!, then Ξ0 ⊢ t γ? : wbalanced−.

And as direct consequence:

3. Ξ0 ⊢ t a : wbalanced .

Proof. Part 3 is just a combination of the other two parts. For part 1 and 2 we
exploit the characterization of weakly balanced traces in terms of numbers of
calls and returns from Lemma A.2.7 and A.2.17. For the enabledness assertion
Ξ0 ⊢ t ⊲ a, see Definition 3.3.3. Let kΘ and k∆ be defined as in Lemma A.2.7.

By assumption, t is weakly balanced, i.e., Lemma A.2.7 gives k∆ ≥ 0 and
kΘ ≥ 0.

Case: Incoming call (a = γc?)
If a is an incoming call, the two inequations still hold after the communication,
hence by Lemma A.2.17, t a is still weakly balanced, yielding Ξ0 ⊢ t γc? :
wbalanced . That Ξ0 ⊢ t γc? : wbalanced+ follows straightforwardly, yielding
part 1 of the lemma.

Case: Incoming return (a = γr?)
In this case, we must show that in particular k∆ − 1 ≥ 0 holds after the re-
turn; the value of kΘ remains unchanged. By Definition 3.3.3 of input-return
enabledness, Ξ0 ⊢ t ⊲ γr? means pop t = t1 γ

′
c! for some call label γ′c, were t1 γ

′
c!

is a (not necessarily proper) prefix of t. By Definition 3.3.1 of pop, we stronger
know that t = t1 γ

′
c! t2, where t2 is balanced. By Lemma A.2.7(2), the differ-

ence of calls minus returns (in both directions) is 0 concerning the balanced t2.
Thus, the value of k∆ after t equals that value after t1γ

′
c!, which implies k∆ ≥ 1,

and thus, the difference is still ≥ 0 after t γr?. The result therefore follows by
Lemma A.2.17.

For outgoing communication, the argument is dual.

The following is an easy observation in the definition of legal traces: Each
label in the trace is enabled at the point in the trace before the label.

Lemma A.2.20 (Legality and enabledness). Assume Ξ0 ⊢ t a : trace, then Ξ0 ⊢
t ⊲ a.

Proof. By induction on the length of t and inspection of the rules from Table 3.5
(resp. Table 5.1): The enabledness judgment Ξ0 ⊢ t ⊲ a is a premise of each of

the rules for legal traces (where it appears in the form of Ξ0 ⊢ t ⊲ o1
a
→ o2 :

~T → or Ξ0 ⊢ t ⊲ o1
a
→ o2 : → T , where additionally the communication

partners and the expected types are determined).

Lemma A.2.21 (Legality and balance). If Ξ0 ⊢ t : trace, then ⊢ t : wbalanced .

Proof. In each step when checking legality of a trace, the enabledness of the
next label a after r is checked by a premise of the form Ξ0 ⊢ r ⊲ a.2 Thus, the
claim follows with preservation of weak balance when extending a trace by an
enabled label (Lemma A.2.19).

2In the rules of Table 3.5 or 5.1, the corresponding actual premise reads Ξ0 ⊢ r ⊲ o1
a
→ o2, but

this judgment contains Ξ0 ⊢ r ⊲ a as part of its definition, and the connectivity part referring to
sender and receiver object does not concern us in this lemma.
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A.2.2 Balance and swapping

The fact that the absolute order of certain labels is unobservable, when the
observer is split into separate cliques, has been captured using the forward
projection of a trace, i.e., considering the interaction from the perspective of
single objects. Since the projection takes the merging of cliques into account,
it captures the tree-like structure of the semantics (cf. Definition 3.1.7) Analo-
gously, the effect of replay has been captured using the forward projection; see
Definition 3.1.8 for the definition of 42Θ and its symmetric variant ≍−Θ.

The mentioned definitions represent the tree-like structure of the semantics
appropriately, which is emphasized also by the fact that the forward projec-
tion builds the core of the implementation of the observer in the completeness
proof. The global nature of the definition of s ≍−Θ t, based on projections, how-
ever, makes it hard, to prove properties about s and t, two linear traces, not
trees, and their relationship. Properties we are interested in are certain preser-
vation properties, e.g.: If s is weakly balanced and s ≍Θ t, then t is weakly
balanced, as well.

As the implicit definition using local projections is ill-suited for proving this
kind of properties, we present an alternative characterization of the swapping
and replay relation, were s ≍Θ t, resp., s ≍−Θ t is represented by a number
of elementary transformation steps, providing an “equational” representation
of the relations, where interactions with different cliques can be swapped and
new interactions can be added or removed due to replay. The correspond-
ing transformation rules for traces resemble the informal examples from Sec-
tion 1.4.

The swapping and replay rules are not literally an “equational” represen-
tation of the tree-like structure of the semantics. What makes it more complex
than a plain equational or rewriting representation is that the equations cannot
be applied to a subsequences of a trace in isolation, without taking (parts of)
the whole trace into account. I.e., we cannot have an equation as follows: If s
and t belong to two different cliques, then

s t ≍Θ t s ,

and use this equation to conclude that

r s t u ≍Θ r t s u .

There are two main reasons for this. First, the question whether s and t belong
to two different cliques or not depends on the previous history r. Secondly (and
related), the trace does not just consist of a sequence of labels, but must adhere
to the balance requirements regulating the connections of the calls and returns.
An additional more subtle point is that the possibility of swapping of s and t
does not only depend on the history r, but also on the future u. In other words,
we cannot in general conclude:

r s t ≍Θ r t s

r s t u ≍Θ r t s u

The failure of this property captures the fact that under certain circumstances,
the order of interactions, here the order of s and t, can be observed in retrospect.
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To sum up, ≍Θ and ≍−Θ are not context-free equations on traces, but swap-
ping of parts of a trace has to be considered in the context of the past behavior
r as well as the future behavior u. To distinguish the “equational” represen-
tation of the swapping and the replay relation from their original definitions,
we denote them by ≍̇Θ and ≍̇−Θ. We show that ≍̇Θ and ≍Θ, resp., ≍̇−Θ and ≍−Θ,
coincide (see Corollary A.2.45, resp., A.2.55).

We start with the equational definition of swapping.

Definition A.2.22 (Swapping). The swapping relation ≍̇Θ on traces is as the re-
flexive, transitive, and symmetric closure of the rules from Table A.1. In the rules, |t|
denotes the length of the trace t, i.e., the number of labels of the trace. The definition of
≍̇∆ is dual.

Ξ0 ⊢Θ s ⊲ t1 6⇌ t2 ⊢ u : wbalanced ⊢ t1, t2 : pwbalancedp

SWAPWΘ

Ξ0 ⊢ s ν(Φ).t1 t2 u ≍Θ s ν(Φ).t2 t1 u

Ξ0 ⊢Θ s ⊲ t1 6⇌ t2 ⊢ t1 : balanced |t2|even
SWAPBΘ

Ξ0 ⊢ s ν(Φ).t1 t2 u ≍Θ sν(Φ).t2 t1 u

Table A.1: Swapping

The next lemma states that balance is preserved by swapping.

Lemma A.2.23 (Swapping and balance).

1. If ⊢ t1 : wbalanced+ and Ξ0 ⊢ t1 ≍̇Θ t2, then ⊢ t2 : wbalanced+. Analogously
for wbalanced+ (and for ≍̇∆).

2. If ⊢ t1 : balanced+ and Ξ0 ⊢ t1 ≍̇Θ t2, then ⊢ t2 : balanced+. Analogously for
balanced+ (and for ≍̇∆).

Proof. There are two parts to show and we start with part 1 for weak balance.
So let t1 = s ν(Φ).t′1 t

′
2 u. We need to show that the rules from Table A.1

preserve weak balance. If t′1 or t′2 equals ǫ, the argument is trivial. So assume,
t′1 and t′2 are not empty.

Case: SWAPWΘ

By Lemma A.2.1, ⊢ t1 : wbalanced+ implies that t1 is alternating. Furthermore,
the alternation lemma implies that ⊢ t′1 : wbalanced− iff. ⊢ t′2 : wbalanced− (and
analogously for balanced+), since they are of even length, as required by the
premises of SWAPWΘ and SWAPBΘ.

Since Ξ0 ⊢Θ s ⊲ t1 6⇌ t2, the situation ⊢ t′1 : wbalanced
+ (and ⊢ t′1 :

wbalanced+) cannot be the case (but see also Remark A.2.24). Hence we are
given ⊢ t′1 : wbalanced− and ⊢ t′2 : wbalanced−. Furthermore, ⊢ s : wbalanced−.
The latter fact is justified as follows. First ⊢ s : wbalanced follows with Corol-
lary A.2.6 from s 4 t, where ⊢ t : wbalanced by assumption. If s = ǫ, ⊢ s :
wbalanced− follows by B-EMPTY−. If s 6= ǫ, ⊢ s : wbalanced−, since the weakly
balanced t alternating (Lemma A.2.1) and since t′1 and t′2 are not empty.
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We distinguish whether the trailing u is empty or not. Assume first u 6= ǫ.
In the given situation, where ⊢ t′2 : wbalanced−, the premise ⊢ u : wbalanced

implies that we know stronger that ⊢ u : −wbalancedp, since t1 is alternating.
In the first of the two dual parts of the lemma, we additionally have p = +.
Hence, the result follows using three times the concatenation Lemma A.2.4 for
weakly balanced traces.

When u = ǫ, the concatenation lemma needs to be applied only twice.

Case: SWAPBΘ

We are given that t′1 is strictly balanced. Note that u and t′2 need not even be
weakly balanced. The premise Ξ0 ⊢Θ s ⊲ t1 6⇌ t2 implies that ⊢ t′1 : balanced

−.
The fact that t1 is alternation gives, as in the case for SWAPWΘ, that ⊢ s :
wbalanced−. Furthermore, t′2 is of the form

γ′′1 ? t′′2 γ
′′
2 ! (A.2)

(remember that we agreed that t′2 is not empty). For the end of the trace we
distinguish whether u is empty or not. If u 6= ǫ, u = γ3? u

′. By Lemma A.2.2 ⊢
s t′2u : wbalanced . By preservation of weak balance under prefixing of Corollary
A.2.6, ⊢ s t′2 : wbalanced and by the form of t′2 from equation (A.2), ⊢ s t′2 :
wbalanced−. Hence the result follows by Lemma A.2.4, rule WB-INSERT.

In part 2, we need to show the same property for strict balance instead of
weak balance. Again, if t′1 and t′2 are empty, the result is trivial, so let t′1 and t′2
be different from ǫ. The rest of the argument is similar to the one for part 1

Case: SWAPWΘ

As above, we get ⊢ t′1 : wbalanced− and ⊢ t′2 : wbalanced−. If the trailing u is not
empty, ⊢ u : −wbalancedp (as above). Assuming further, for one of two possible
cases, that p = +, we argue as follows. By the cut Lemma A.2.10(2), u is not just
weakly balanced, but strictly balanced, i.e., here ⊢ u : balanced−. By Lemma
A.2.10(1), this means ⊢ s t′1 t

′
2 : balanced−. Using the same argument twice

more times gives ⊢ s : balanced− and ⊢ t′1 : balanced− and ⊢ t′2 : balanced−.
Thus the result follows with rule B-OO and transitivity. For u = ǫ, the argu-
ment is analogous.

As a remark: Effectively, the assumption that t1 is balanced showed that the
use of the swapping rule SWAPWΘ for weakly balanced sub-sequences actually
swapped balanced sub-sequences.

Case: SWAPBΘ

Similar.

Remark A.2.24 (Preservation of balance). Note that the proof of Lemma A.2.23
used the premises Ξ0 ⊢ s ⊲ t1 6⇌ t2 to exclude certain situations concerning the
polarity of the swapped subsequences.

Indeed, the excluded situations could have been proven in same, i.e., dual, man-
ner than the possible ones. The pure preservation of balance and the alternation of the
thread is independent of the connectivity information and the preservation of enabled-
ness under swapping from Lemma A.2.23 holds analogously also, when omitting the
premises Ξ0 ⊢ s ⊲ t1 6⇌ t2 from the rules of Table A.1.

Lemma A.2.25 (Independence). Assume ⊢ s t : wbalanced . If ⊢ t : wbalanced ,
then
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1. If ⊢ t : balanced , then pop(s t) = pop(s). Otherwise,

2. if 6⊢ t : balanced , then pop(s t) = s pop(t).

Furthermore, if ⊢ t : balanced (i.e., in the situation of part 1), pop(s t) is undefined iff
pop s is undefined iff ⊢ s t : balanced .

Proof. For the definition of pop , see Definition 3.3.1. Let pop(s t) be defined.
Part 1 is immediate by definition. For part 2 we have 6⊢ t : balanced but weakly
balanced. This implies with the characterization from Lemma A.2.12 that t =
t1 γc t2 such that t2 is balanced . Thus pop(s t) = pop(s t1 γc t2) = s t1 γc =
s pop(t1 γc t2) = s pop(t).

For the claim about definedness: By Lemma A.2.13, pop (s t) is undefined
iff s t is balanced. The fact that pop(s t) is undefined iff pop s is follows imme-
diately from Lemma A.2.13 and Lemma A.2.10.

The symbol ⊙ represents the initial clique, where the thread starts its life.
In the multi-threaded setting, it is the starting clique of the initial thread (in
the multi-threaded setting, additionally ⊙n represents the initial clique of the
thread n). The ⊙ is not a “real” clique, i.e., a collection of instantiated ob-
jects, but needed to represent the connectivity appropriately, in particular, to
have a representative for the connectivity of the initial activity, even if no real
object happens to be known.3 The next lemma characterizes under which cir-
cumstances ⊙ functions a communication partner, namely basically when the
history before the communication step in question is balanced (for the sender
of a call and for the receiver of a return).

Lemma A.2.26 (⊙ as communication partner).

1. Assume ⊢ t γc? : wbalanced

(a) receiver (t γc?) 6= ⊙.

(b) sender(t γc?) = ⊙ iff ⊢ t : balanced−.

2. Assume ⊢ t γr? : wbalanced

(a) sender(t γr?) 6= ⊙.

(b) receiver (t γr?) = ⊙ iff ⊢ t γr? : balanced+.

For outgoing calls and incoming returns, the statements hold dually.

Proof. See 3.3.4 for the definition of sender and receiver. Proceed by induction
on the length of the trace. Part 1a is immediate by definition: The receiver of a
call, the callee, is directly mentioned in the label.

For part 1b, there are two directions two show. If ⊢ t : balanced− and t is
empty, then sender(γc?) = ⊙ by definition. If otherwise, t = t′ a′, sender(t γc?) =
receiver (t′ a′). Since t = t′ a′ is balanced, a′ is a return, and since t′ a′ γc? is al-
ternating (Lemma A.2.1), the return is outgoing, i.e., a′ = γ′r!, and ⊢ t′ γ′r! :
balanced−. So the result follows by induction on part 2b. For the reverse
direction of part 1b, we are given sender (t γc?) = ⊙. If t is empty, the re-
sult is immediate by B-EMPTY− of Table 3.3. For t 6= t′ a′, we are given

3This may happen, since the sender of call is not transmitted.
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sender (t γc?) = sender (t′ a′ γc?) = receiver(t′ a′) = ⊙. Again, the label a′ is an
outgoing return, and t′ a′ is balanced by induction on (the dual of) part 2b.

For part 2a: By definition, sender(t γr?) = receiver(pop(t)). Since pop(t)
ends with an (outgoing) call (Lemma A.2.12), the case follows by induction on
(the dual of) part 1a.

For part 2b, there are two directions to show. Assume receiver (t γr?) = ⊙.
By definition, receiver (t γr?) = sender (pop(t)). The non-empty trace pop(t)
ends in outgoing call (Lemma A.2.12), i.e., t = t′1 γ

′
c! t

′
2 s.t. t′2 is balanced. This

implies by B-IO that γ′c! t
′
2 γr? is balanced. With the cut Lemma A.2.10, t′1 is bal-

anced, as well, from which the result follows by rule B-II of Table 3.3. For the
reverse direction, assume ⊢ t γr? : balanced+. By definition, receiver(t γr?) =
sender (pop(t)), where pop(t) ends in an outgoing call, i.e., as above, t = t′1 γ

′
c! t

′
2

s.t. t′2 is balanced. As in the previous direction, Lemma A.2.10 yields that the
shorter t′1 is balanced, more precisely, ⊢ t′1 : balanced+. By induction on (the
dual of) part 1b, sender(pop(t)) = ⊙, as required.

The next lemma covers a crucial property for showing that the swapping
relation ≍̇Θ preserves sender and receiver of the labels in a trace. The informal
discussion at the beginning of Section A.2.2 mentioned that the possibility of
swapping of subsequences of a trace may depend on the rest of the trace, the
past as well as the future. This dependence is (amongst other reasons) caused
by the fact that the communication partners of a trace may depend on the prior
parts being swapped. The next lemma thus characterizes when the sender
and receiver of a trace depends on a past subsequence: Given a trace s t a
ending in a weakly balanced t a, then the sender and receiver of the label a are
determined by t (and thus do not depend on s), or equal⊙, in which case, they
may depend on s.

Lemma A.2.27 (Independence).

1. Assume ⊢ s t a : wbalanced . If ⊢ t a : wbalanced , then

(a) sender(s t a) = sender(t a), or a = γc and sender(t a) = ⊙, and

(b) receiver(s t a) = receiver(t a), or a = γr and receiver (t a) = ⊙.

2. Assume ⊢ s t u a : wbalanced . If ⊢ t : balanced , then sender(s t u a) =
sender(s u a) and receiver(s t u a) = receiver (s u a).

Proof. For sender and receiver, see Definition 3.3.4.

Part 1 (weak balance)
If s = ǫ, the result is immediate. So proceed by induction on the length of s t,
assuming that s 6= ǫ. We distinguish according to the form of a.

Case: Outgoing return: a = γr!
We have:

receiver(s t γr!) = sender(pop(s t)) (Definition 3.3.4)
= sender(s pop(t)) (Lemma A.2.25(2))
= sender(s t′ a′) (by definition of pop)
= sender(t′ a′) (induction on part 1a, case (i))
= sender(pop t)
= receiver(t γr!) .
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To apply Lemma A.2.25(2) in the above chain note that ⊢ t γr! : wbalanced

implies that t is not strictly balanced (Lemma A.2.7), since t γr! ends with a
return. To apply the induction hypothesis, not that s t′ is strictly shorter than
s t, and furthermore that t′ a′ and s t′ a′ are weakly balanced (Lemma A.2.5).

Alternatively, (ii) sender(t′ a′) = ⊙ and a′ is a call, i.e., in particular an
incoming call, say γ′c? because of alternation. This implies with Lemma A.2.26
that ⊢ t′ : balanced−, and this gives by Definition 3.3.4 that receiver (t γr!) = ⊙,
as required.

Concerning the sender: We are given sender(s t γr!) = sender(s (t′ a′) γr!) =
receiver (pop(s (t′ a′))), i.e., t = t′ a′, where a′ = γ′!, as before. Lemma A.2.25
gives, receiver(pop(s (t′ a′))) = receiver (s pop(t′ a′)), from which the case fol-
lows by induction.

Case: Incoming call: a = γc?
For the receiver, the case is immediate by definition. Concerning the sender: If
s and t are empty (and hence the sender equals ⊙), the statement holds triv-
ially. Otherwise, s t γc? = u′ a′ γc? (where a = γ′! because of alternation, see
Lemma A.2.1) and sender (u′ γ′! γc?) = receiver(u′γ′!). Now, if t = t′γ′!, i.e.,
s t = s (t′γ!), the result follows by induction on part 1b. Otherwise, t = ǫ and
s = s′γ′!. Hence, sender (t γc?) = sender(γc?) = ⊙, as covered by part 1a.

The cases for outgoing returns and incoming calls are dual.

Part 2 (balance)
Straightforward, by the definition of sender and receiver and using the pop-
function.

The next lemma shows that swapping, in most cases, preserves the infor-
mation about sender and receiver, but not always. In Lemma A.2.28 below,
formulated for ≍̇Θ, the communication partners in the environment may not
be preserved (see part 1 of the lemma). This change can affect the sender of
an incoming call or the receiver of an outgoing return (for ≍̇∆, the situation is
dual). In the light of our intention, that traces in ≍̇∆-relation are observably
equivalent, or dually, that ≍̇Θ captures a closure condition on the set of traces,
this seems odd. Critical in this context is especially rule SWAPW∆, resp., its
dual SWAPWΘ. The swapping of a strictly balanced part, in contrast, preserves
sender and receiver. For SWAPWΘ, however, the trailing u is required to be
weakly balanced in isolation. The property that certain communication part-
ners are not preserved by swapping reflects the fact that the sender of a call
is not transmitted in a label and thus cannot be observed by the callee (and
indirectly, neither can the receiver of returns).

Lemma A.2.28 (Swapping and communication partners). Assume Ξ0 ⊢ t1 a ≍̇Θ

t2 a, where ⊢ t1 a : wbalanced .

1. communication partner in ∆:

(a) receiver (t1 γc!) = receiver(t2 γc!).

(b) sender(t1 γr?) = sender(t2 γr?).

2. communication partner in Θ:

(a) sender(t1 γ!) = sender (t2 γ!)
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(b) receiver(t1 γ?) = receiver (t2 γ?)

If ≍̇Θ is justified by instances of SWAPBΘ alone, also for ∆-objects in part 1, addition-
ally sender of incoming calls and the receiver of outgoing returns are preserved, i.e.,
combining 1 and 2 and merging the cases, which gives:

3. sender(t1 a) = sender(t2 a) and receiver (t1 a) = receiver (t2 a) .

The lemma holds dually for ≍̇∆.

Proof. For the sender and receiver of a label, see Definition 3.3.4. First, by
Lemma A.2.23, swapping preserves weak balance; hence, sender and receiver
of a after t2 are well-defined (Definition 3.3.4 insists on its argument to be
weakly balanced).

Case: SWAPWΘ: t1 a = s ν(Φ).t11 t
2
1 u

′ a with ⊢ u′ a : wbalanced

We distinguish, whether the communication partner is part of the environment
or of the component.

Subcase: Communication partner in the environment (part 1)
The case where a = γc! in part 1a is covered by Lemma A.2.27(1b). If a = γr?
in part 1b is covered by Lemma A.2.27(1a).

Subcase: Communication partner in the component (part 2)
In this case we need to show preservation of the communication partners in all
situations. We distinguish according to the form of a, where the argument in
the first two cases corresponds to the one for dealing with the communication
partners in the environment.

Subsubcase: Incoming call (a = γc?)
Part 2b is covered by Lemma A.2.27(1b), since the receiver of the call is inde-
pendent of the swapped part.

Subsubcase: Outgoing return (a = γr!)
Part 2a is covered by analogously by Lemma A.2.27(1a).

Subsubcase: Outgoing call (a = γc!)
If t′1 or t′2 are empty, the case is trivial. Thus assume that both subsequences are
non-empty. By Lemma A.2.27(1a), there are two cases to consider. In the first
case, if sender(s ν(Φ).t11 t

2
1 u

′ a′) = sender(u′ γc!), we are done.

Otherwise,

sender (u′ γc!) = ⊙ . (A.3)

We argue that this case cannot occur. The premise Ξ0 ⊢Θ s ⊲ t11 6⇌ t21 of rule
SWAPWΘ, implies ⊢ t11 : −wbalanced− and ⊢ t21 : −wbalanced−, and further-
more,

⊢ u′ γc! : −wbalanced− . (A.4)

Equation A.3 implies with (the dual of) Lemma A.2.26(1b), ⊢ u′ : balanced+.
Now, that contradicts the polarity information in equation A.4, refuting the
assumption from equation (A.3).

Subsubcase: Incoming return (a′ = γr?)
Analogously.
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Case: SWAPBΘ: t1 = s ν(Φ).t11 t
2
1 u with ⊢ t11 : balanced

Note first that stronger ⊢ t11 : balanced−, since the trace is alternating, since
balanced sub-sequences are of even length, and because of the requirement
⊢ s ⊲ t11 6⇌ t21. The case is covered by Lemma A.2.27(2).

The next example illustrates the lemma, in particular using the swapping
of weakly balanced traces from the perspective of the component, i.e., we illus-
trate mainly SWAPWΘ and the role of the sender and receiver of a communica-
tion in that context.

Example A.2.29 (Swapping). Consider the following trace s1 = s11 s
2
1:

s1 = ν(o1:c).〈call o1.l()〉? 〈call o.l()〉! ν(o2:c).〈call o2.l()〉? 〈call o.l()〉! , (A.5)

where s11 consists of the first two calls and s21 of the remaining two. The interactions
with the two component cliques, represented by o1 and o2 are not strictly balanced, but
weakly balanced. Clearly, the component can perform the two interactions also in the
reversed order

s2 = ν(o2:c).〈call o2.l()〉? 〈call o.l()〉! ν(o1:c).〈call o1.l()〉? 〈call o.l()〉! , (A.6)

i.e., s1 ≍̇Θ s2.
Assume now that the two cliques are merged by a further incoming call, where s1

is extended by γc? = 〈call o1.l′(o2)〉?. Now, does the following equality hold?

s1 γc? ≍̇Θ s2 γc? (A.7)

According to SWAPWΘ, the equality indeed holds. The intuitive justification for that
equation is, that each component showing the left-hand trace of (A.7) shows also the
one on the left-hand side (and vice-versa). In other words, the component code executed
after γ? must not be able to react differently after s1 and s2. This can be seen by looking
at the behavior of the component more closely.

Assuming that we start with an empty stack, the reduction looks as follows, where
we show only the thread-part of the component. Let us abbreviate the blocked stack-
frames as

t1 , let x:T = o1 blocks for o in t′1 and t2 , let x:T = o2 blocks for o in t′2 .

Then:
♮〈stop〉

s1
1=⇒

♮〈t1blocked; stop〉
s2
1=⇒

♮〈t2blocked; t1blocked ; stop〉
γc?
=⇒

♮〈let x:T = o1 blocks for o in t; t2blocked; t1blocked; stop〉 .

(A.8)

Instead of the derivation shown, the alternative sequence s2 γc? can unavoidably be
taken as well, only that in the end configuration, the blocked method bodies of the two
incoming calls are stacked in reversed order:

♮〈let x:T = o1 blocks for o in t; t1blocked ; t2blocked ; stop〉 . (A.9)

Note, however, that the sender of γc?, an environment object, is different in s1 γc? and
in s2 γc?. This is reflected in Lemma A.2.28 in that sender of an incoming communi-
cation is preserved for incoming returns (see part 1b), but not necessarily for incoming
calls.
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Now, when the merging is not done by a call but by a return, the situation changes!
The return either deblocks t2 after s1 (replacing the call-step at the end of (A.8)), or
it deblocks t1 after s2. Clearly, the component can react differently two these two sit-
uations, since it executes two different pieces of code after the return. Concerning the
swapping relation, the two trace are not equal, i.e., s1 γr? 6≍̇Θ s1 γr?. In particular,
rule SWAPBΘ does not apply, as u = γr? is not weakly balanced. Still another way
to interpret the example is that the swapping with the trailing return is not allowed,
which means that the sender of the incoming call must be preserved. For incoming
calls, the sender needs not be preserved, as the sender of a call as such is not transmit-
ted; hence, swapping of s1 by rule SWAPWΘ is allowed for s1γc?.

Next we prove that swapping preserves enabledness. As just discussed,
swapping does not preserve sender and receiver under all circumstances. The
judgment Ξ0 ⊢ t ⊲ a of enabledness, however, ignores the sender and receiver
of a and depends on the pure call and return structure of t. In Lemma A.2.38
later, we will extend Lemma A.2.30 to deal with enabledness judgments of the

form Ξ0 ⊢ t ⊲ o1
a
→ o2, which include information about the communication

partners.

Lemma A.2.30 (Swapping and enabledness). Assume t1 : wbalanced . If Ξ0 ⊢
t1 ⊲ a for some label a and Ξ0 ⊢ t1 ≍̇Θ t2 then Ξ0 ⊢ t2 ⊲ a.

Proof. Enabledness is given in Definition 3.3.3. For one case, we assume ⊢ t1 :
wbalanced− (the one for wbalanced+ is dual). By preservation of balance under
swapping from Lemma A.2.23, ⊢ t2 : wbalanced−, as well.

We show that one application of SWAPWΘ, resp., of SWAPBΘ, preserves
enabledness. The claim follows by transitivity of ≍̇Θ/induction.

The definition of enabledness distinguishes call and return labels. By Lemma
A.2.18(5), a must be an incoming communication.

Case: Incoming call: a = γc?
We further distinguish according to the instance of the rules from Table A.1.

Subcase: SWAPWΘ

According to equation (3.12) of input enabledness for calls, there are two cases
to consider. In the first case, pop t1 = ⊥ and ∆0 ⊢ ⊙. Hence by Lemma A.2.13,
t1 is balanced, more precisely, ⊢ t1 : balanced−. By Lemma A.2.23(2), ⊢ t2 :
balanced−. Hence, Ξ0 ⊢ t2 ⊲ a by the definition of pop (equation (3.12)).

In the second case, pop t1 = t′1 γc!, which means t1 = t′1 γc! t
′′
1 with ⊢

t′′1 : balanced−. There are a few cases to distinguish, namely concerning which
part(s) of t′1 γc! t

′′
1 are affected by ≍̇Θ.

Subsubcase: Swapping inside t′1 or inside t′′1
If t2 = t′1 γc! t

′′
2 with4 t′′1 ≍̇Θ t′′2 , then by preservation of balance under swapping

from Lemma A.2.23(2), t′′2 is balanced, as well, and the case follows from the
definition of enabledness. The case for t2 = t′2 γc! t

′′
1 with t′1 ≍̇Θ t′2 is simpler,

as the balanced end-sequence t′′1 is not affected by the swapping.

Subsubcase: Swapping neither in t′1 nor in t′′1
Remain the situations where the swapping moves γc!. In one case, we have

t1 = r′1 s
′
1γc!r

′′
1 s

′′
1u

′′
1 ≍̇Θ r′1 s

′′
1 s

′
1γc!r

′′
1 u

′′
1 = t2 , (A.10)

4We write in the proof in situations as the current one ⊢ t′′1 ≍̇Θ t′′2 short for Ξ0 ⊢ t′1 γc! t′′1 ≍̇Θ

t′1 γc! t′′2 with ≍̇Θ changing only the t′′1 -part to t′′2 .
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where the swap (from left to right) of the underlined and the overlined sub-
sequence is justified by rule SWAPWΘ. By the premise of that rule, the trail-
ing u′′1 is weakly balanced. Since additionally r′′1 s′′1 u′′1 is balanced, the cut
Lemma A.2.10(2) and (3) yields that r′′1 s

′′
1 and u′′1 must be balanced, as well.

By a second premise of rule SWAPΘ, s′′1 is weakly balanced, hence applying
Lemma A.2.10(2) once more gives, that also r′′1 is balanced, from which the
result follows. Alternatively, SWAPWΘ gives rise to the following situation,
reversed compared to (A.10):

t1 = r′1 s
′
1 u

′
1 γc! r

′′
1 u

′′
1 ≍̇Θ r′1 u

′
1 γc! r

′′
1 s

′
1 u

′′
1 = t2 . (A.11)

By the premises of the swap-rule, the overlined and the underlined parts s′1 and
u′1 γc! r

′′
1 are both weakly balanced, and additionally the trailing u′′1 is weakly

balanced, as well as. Furthermore, r′′1 u
′′
1 is balanced, which implies with the

cut lemma Lemma A.2.10(2) and (3) that both r′′1 and u′′1 are balanced (in the
given situation, ⊢ r′′1 u

′′
1 : balanced−, ⊢ r′′1 : balanced− and ⊢ u′′1 : balanced−).

The sequence s′1, however, is not guaranteed to be strictly balanced, only
weak balance is assured! If s′1 is balanced, as well, the case follows straightfor-
wardly from the definition of enabledness and pop, since the trace after γc! on
the right-hand side, i.e., r′′1 s

′
1 u

′′
1 , is balanced then.

If s′1 is not balanced, we know at least ⊢ s′1 : −wbalanced
− in the given

situation (because the trace is alternating, we can conclude, that in particular
u′1 is of odd length). By the characterization of weakly balanced traces from

Lemma A.2.8, s′1 is of the form s11
′
γ′c! s

2
1
′

such that ⊢ s21
′
: balanced−. By rule

B-OO, ⊢ s21
′
u′′1 : balanced−, from which the case follows, using equation (3.12).

Subcase: SWAPBΘ

Easier. As in the previous case, there are two cases to consider (see equa-
tion (3.12)). The one for pop t1 = ⊥ works as for SWAPWΘ. If otherwise,
pop t1 6= ⊥, the case follows by the easy observation that pop(s u) = pop(s t u)
for balanced traces t (where alternation is respected, i.e., s t u must be alternat-
ing). See Lemma A.2.2 and A.2.4.

Case: Incoming return: a = γr?
In this case, return enabledness means that pop(t1) = t′1 γc!, i.e., the argument
works analogously to the part for γc? where pop t1 6= ⊥, i.e., to be input en-
abled, the case where t1 is balanced cannot occur.

Case: Outgoing communication: a = γ!
Similar.

Remark A.2.31 (Swapping and enabledness). Concerning Lemma A.2.30 and its
proof. The lemma shows preservation of Ξ0 ⊢ t1 ⊲ a, when t1 is replaced by t2 by
swapping. The interesting cases are the ones justified by SWAPWΘ.

In the situation for incoming calls, described by equation (A.11) in the proof, the
subsequence s′1 is weakly balanced, but may not be balanced, as treated in the proof in
one subcase. Also in that situation, swapping preserves enabledness of the incom-
ing call. The sender of γc? however, changes! Before the swap, sender(t1 γc?) =
receiver (t1), afterwards, have sender (t2 γc?) = receiver (t2), which might not be the
same.

The same holds also for returns, i.e., the sender of γr? may change (caused by
SWAPWΘ, but not by SWAPBΘ). This does not contradict Lemma A.2.28, in partic-
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ular not part 1b, which stipulates that Θ-swapping preserves the sender of incom-
ing returns. In the mentioned situation that sender (t1 γr?) 6= sender(t2 γr?),
where Ξ0 ⊢ t1 ≍̇Θ t2 and both Ξ0 ⊢ t1 ⊲ γr? and Ξ0 ⊢ t2 ⊲ γr?. However,
Ξ0 6⊢ t1 γr? ≍̇Θ t2 γr?, since the condition ⊢ u : wbalanced for SWAPBΘ does not
hold. For calls γc?, on the other hand Ξ0 ⊢ t1 ≍Θ t2 implies Ξ0 ⊢ t1 γc? ≍Θ t2 γc?,
even if that might change the sender of γc?.

Later we prove in the extension Lemma A.2.40 that ≍̇Θ is preserved under
extending the two compared traces under certain circumstances, but not in
general. However, prefixing always preserves ≍̇Θ:

Lemma A.2.32 (Swapping and prefix). Assume Ξ0 ⊢ s a : wbalanced . If Ξ0 ⊢
s a ≍̇Θ t a (i.e., where a is not affected by the swapping), then Ξ0 ⊢ s ≍̇Θ t.

Proof. Immediate by inspection of the rules from Table A.1, and the fact that
weak balance is preserved under prefixing (see Corollary A.2.6).

The next two lemmas show preservation of enabledness under swapping,
similar to Lemma A.2.30, but additionally taking sender and receiver of the
next label into account.

Lemma A.2.33 (Swapping and partners). Assume Ξ0 ⊢ t1 γ1? γ2! : wbalanced

and furthermore Ξ0 ⊢ t1 γ1? ≍̇Θ t2 γ1? (i.e., the swapping affects only t1 and t2).
Then sender(t1 γ1? γ2!) = sender (t2 γ1? γ2!). The property holds dually for ≍̇∆,
i.e., where incoming and outgoing communication is reversed.

Proof. First, we know stronger that Ξ0 ⊢ t1 γ1? γ2! : wbalanced−. By preserva-
tion of balance under swapping (Lemma A.2.23), Ξ0 ⊢ t1 γ1? γ2! : wbalanced−,
as well. Clearly, this implies for the prefixes Ξ0 ⊢ t1 γ1? : wbalanced

+ and
Ξ0 ⊢ t2 γ1? : wbalanced+ and, in particular,

Ξ0 ⊢ t1 γ1? ≍̇Θ t2 γ1? . (A.12)

That weak balance is preserved under prefixing follows from Corollary A.2.6;
preservation of ≍̇Θ under prefixing by Lemma A.2.32. Furthermore we have
sender (t1 γ1? γ2!) = receiver (t1 γ1?) and analogously sender(t2 γ1? γ2!) =
receiver (t2 γ1?) by (the dualization of) Lemma A.2.14(2).

Equation (A.12) implies with Lemma A.2.28(2b), that the receiver of γ1? is
preserved under swapping, i.e., receiver(t1 γ1?) = receiver (t2 γ1?), indepen-
dent of whether the label is a call or a return. Therefore, sender (t1 γ1? γ2!) =
sender (t2 γ1? γ2!), as required for the sender of γ2!.

In the legal trace system of Table 3.5, the conditions to extend a trace t by
an additional label a to t a can be split into three conditions (resp., into four
conditions in the deterministic setting): (1) enabledness, i.e., whether alternation
between incoming and outgoing communication is respected and whether, in
case of a return, it is an answer to a matching call (cf. Definition 3.3.3). The

enabledness condition is combined in judgments of the form Ξ0 ⊢ t ⊲ os
a
→

or : ~T → T with the calculation of the sender and receiver and the calculation
of the expected types (see equation (3.14)). Then (2) typing, i.e., basically that
the transmitted values are of the expected types. In Definition 2.6.11, this is
formulated in the context after updating the context before the label with the
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fresh information carried by the label. Finally, (3) the connectivity information
is checked. Part (2) and (3) use the sender and receiver plus the type calculated
in (1) for the check. In the deterministic setting, additionally (4) a condition
ensuring determinism is required. The next definition combines the mentioned
conditions into a single judgment, for convenience.

Definition A.2.34 (Legality). In context Ξ0 and after trace t, the next label a is legal,
written

Ξ0 ⊢ t ⊲ a :ok , (A.13)

if

1. Ξ0 ⊢ t ⊲ os
a
→ or : ~T → T for some os and or (cf. Definition 3.3.3 on page 57)

2. ∆́, Θ́ ⊢ ⌊a⌋ : ~T → , resp., ∆́, Θ́ ⊢ ⌊a⌋ : → T , depending on whether a is a

call, resp., a return and with ~T and T determined by part 1 (cf. Definition 2.6.11
on page 36, equation (2.16)).

3. Ξ́ ⊢ os
⌊a⌋
→ : wc (cf. Definition 2.6.7 on page 34, equation (2.10)).

4. Ξ ⊢ t ⊲ a : det (cf. Definition 3.1.10 on page 52).

In part 2 and 3, Ξ́ is given by Ξ0
t

=⇒ Ξ and Ξ́ = Ξ + os
a
→ or (see equation (2.13),

combining the context updates from Definition 2.6.8 and 2.6.9).

Lemma A.2.35. Assume Ξ0 ⊢ t a : trace , then Ξ0 ⊢ t ⊲ a :ok .

Proof. Straightforward, as the definition of Ξ0 ⊢ t ⊲ a :ok collects the premises
used to check Ξ0 ⊢ t a : trace, given a proof of Ξ0 ⊢ t : trace. By Defini-
tion A.2.34, there are four conditions to be checked. The enabledness of part
A.2.34 of the definition is covered by Lemma A.2.20. Well-typedness and well-
connectedness for part 2 and 3 are covered by the respective premises of the
rule for legality applied to derive Ξ0 ⊢ t a : trace. Part 4 for determinism is
immediate.

The next lemma shows that two traces are swapping equal using the tree
representation if they are swapping equal using the equational representation.
The reverse direction is proven later in Lemma A.2.44.

Lemma A.2.36 (≍̇Θ implies≍Θ). Assume ⊢ s : wbalanced− and ⊢ t : wbalanced−.
If Ξ0 ⊢ s ≍̇Θ t, then Ξ0 ⊢ s ≍Θ t. The property holds analogously for wbalanced+

and dually for ≍̇∆ and ≍∆.

Proof. We show the implication for one application of a rule for ≍̇Θ. The result
then follows by induction/transitivity.

Proceed by induction on the length of s. Note first that s and t are of equal
length. Furthermore, using the alternation Lemma A.2.1, if ⊢ s : balanced−,
then ⊢ t : balanced− (and analogously for balanced+). The base case for s = ǫ,
and hence t = ǫ, is immediate with reflexivity of≍Θ. For the induction step we
distinguish according to the last label of s.

Case: Input call: s = s′ γc? ≍̇Θ t
We distinguish whether the swap-step ≍̇Θ affects the end label γc? or not.
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Subcase: Ξ0 ⊢ s′ γc? ≍̇Θ t′ γc?, with Ξ0 ⊢ s′ ≍̇Θ t′

The shorter traces are weakly balanced, as well (Corollary A.2.6). Thus by
induction, Ξ0 ⊢ s′ ≍ t′. By the preservation of communication partners from
Θ under swapping from Lemma A.2.28(2b), receiver (s′ γc?) = receiver(t′ γc?)
(the receiver, i.e., the callee, is a component object). I.e., the label γc? belongs
to the same component clique in s′ and in t′. Therefore, Ξ0 ⊢ s′ ≍Θ t′ implies
Ξ0 ⊢ s′ γc? ≍Θ t′ γc?.

Subcase: s = s′ γc? = r′ s′1 s
′
2 γc? and t = r′ s′2 γc? s

′
1

This case cannot happen (unless s′1 = ǫ, in which case the claim is trivial). Since
t is alternating, s′1 must start with an outgoing label. This, however, contradicts
Ξ0 ⊢ r ⊲ s′1 6⇌ s′2 γc?.

Case: Input return: s = s′ γr? ≍̇Θ t′

As for incoming calls, the case where the swap affects γr? implies that the case
is trivial, i.e., s = t. I.e., we have to consider only the following situation:

Subcase: Ξ0 ⊢ s
′ γr? ≍̇Θ t′ γr?, with Ξ0 ⊢ s

′ ≍̇Θ t′

The case works similar to the corresponding one for incoming calls. The shorter
traces s′ and t′ are weakly balanced, as well. Therefore, by induction, Ξ0 ⊢
s′ ≍Θ t′. Lemma A.2.28(2b) gives that also for returns receiver (s′ γr?) =
receiver (t′ γr?), a component object. Therefore, Ξ0 ⊢ s′ γr? ≍Θ t′ γr?, as re-
quired.

Case: Output call: s = s′ γc!
We distinguish whether the swap-step ≍̇Θ affects the end label γc! or not.

Subcase: Ξ0 ⊢ s′ γc! ≍̇Θ t′ γc!, with Ξ0 ⊢ s′ ≍̇Θ t′

Induction yields Ξ0 ⊢ s′ ≍ t′. Lemma A.2.28(2a) gives that the sender object
of the call, a component object is not affected by the swap, i.e., the γc! belongs
to the same component clique, comparing s′ and t′, and hence Ξ0 ⊢ s

′ γc! ≍Θ

t′ γc!, as required.

Subcase: s = s′ γc! = r′ s′1 s
′
2 γc! and t = r′ s′2 γc! s

′
1

Unlike the situation for incoming communication we cannot argue away this
case. However, the premises for both SWAPBΘ and SWAPWΘ require that
Ξ0 ⊢Θ r ⊲ s′1 6⇌ s′2 γc!, from which the case follows by definition of ≍Θ.

Case: Output return: s = s′ γr!
Analogous to the case for outgoing calls. Also for outgoing return, Lemma
A.2.28(2a) assures that the sender of the return is not affected by the swapping.

Lemma A.2.37 (Swapping and contexts). If Ξ0
s

=⇒ Ξ1 and Ξ0 ⊢ s ≍̇Θ t, then

Ξ0
t

=⇒ Ξ2, where (∆1,Θ1) = (∆2,Θ2) and EΘ1
= EΘ2

. The property holds dually
for ≍̇∆, where E∆1

= E∆2
instead.

Proof. Straightforward, using in particular the preservation of communication
partners under ≍̇Θ from Lemma A.2.28(2), and the definition of connectivity
update (Definition 2.6.9, in particular, part 1 for incoming communication and
the dual of part 2, both updating EΘ).

The next lemma shows that the judgment Ξ0 ⊢ s ⊲ a : ok is preserved
under swapping according to the cliques of Θ, provided, s ends in an incoming
communication.
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Lemma A.2.38 (Swapping). Assume ⊢ s′ γ′? : wbalanced and Ξ0 ⊢ s′ γ′? ≍̇Θ t.

1. If Ξ0 ⊢ s′ γ′? ⊲ os
γ!
→ , then Ξ0 ⊢ t ⊲ os

γ!
→ . The “ ” is a place holder,

indicating in particular, that the receiver might not be preserved. In short:

⊢ s′ γ′? : wbalanced Ξ0 ⊢ s′ γ′? ⊲ os
γ!
→ Ξ0 ⊢ s′γ′? ≍̇Θ t

Ξ0 ⊢ t ⊲ os
γ!
→

2. If Ξ0 ⊢ s′ γ′? ⊲ γ! : wt , then Ξ0 ⊢ t ⊲ γ! : wt .

3. If Ξ0 ⊢ s′ γ′? ⊲ γ! : wc, then Ξ0 ⊢ t ⊲ γ! : wc.

4. If Ξ0 ⊢ s′ γ′? ⊲ γ! : det , then Ξ0 ⊢ t ⊲ γ! : det .

The properties hold dually for ≍̇∆ and for γ′! instead of γ′?.

Proof. There are four parts to show; in the multithreaded setting, the condi-
tion dealing with determinism is not needed, but the implication would hold
nonetheless.

Part 1 (enabledness and sender)
By preservation of enabledness under swapping from Lemma A.2.30,

Ξ0 ⊢ t ⊲ γ! . (A.14)

It remains to be checked, that the sender is preserved, as well. First, we know
stronger that ⊢ s′ γ′? : wbalanced

+, since weakly balanced traces are alter-
nating (Lemma A.2.1). By preservation of balance under swapping (Lemma
A.2.23), Ξ0 ⊢ t : wbalanced+, as well. As t is alternating, as well, again with
Lemma A.2.1, t is of the form t′ γ′? (with Ξ0 ⊢ s′ ≍̇Θ t′). Hence, Lemma A.2.33
applies, yielding the result.

For the next two parts, let Ξ be given by Ξ0
s′ γ′?
=⇒ Ξ1, and Ξ́1 = Ξ1 +os

γ!
→ or,

as given by equation (2.13), combining Definition 2.6.8 and 2.6.9.

Part 2 (typing)
Well-typedness of a label is given in Definition 2.6.11 on page 36. We need
to distinguish, where γ! is a call or a return, according to the two rules of Ta-
ble 2.10, more precisely, the duals of the two rules.

Case: LT-CALLO
First, the receiver of the call is preserved by swapping. Secondly, Ξ0

t
=⇒ Ξ2 im-

plies with Lemma A.2.37 that (∆2,Θ2) = (∆1,Θ1), and furthermore (∆́2, Θ́2) =

(∆́1, Θ́1). Therefore, Definition 3.3.5 determines the same expected type and
the premises of rule LT-CALLO apply unchanged also for the situation after t.

Case: LT-RETO
Similarly, plus the fact from part 1 of the lemma that the sender is preserved.
The receiver, which in contrast might not be preserved, is not relevant for
LT-RETO.

Part 3 (connectivity)
See Definition 2.6.7 for the check of connectivity, where we need the dual of
equation (2.10), i.e., for outgoing core labels. The connectivity check is based on
the sender, only. Thus, the part works analogously to part 2 for typing and rests
again on preservation of the sender from part 1.
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Part 4 (determinism)
See Definition 3.1.10 for the definition of deterministic extension. Note first,
that the lemma is dealing with the extension by an outgoing label and hence
we need to check only for preservation of detΘ, not for det∆, which is preserved
automatically. Let us abbreviate s′ γ′! by s. So we are given one of two possible
situations (cf. equation (3.11)). If Ξ0 ⊢ s γ! 42Θ s, we argue as follows. By
assumption, Ξ0 ⊢ s ≍̇Θ t. Hence by Lemma A.2.36, Ξ0 ⊢ s ≍Θ t, i.e., by
the tree-based definition of swapping (Definition 3.1.7), s = t, which further
means that s and t are equal when projected to the behavior of all mentioned
component objects. Since the sender of γ! is preserved under swapping by part
1, also Ξ0 ⊢ t γ! 42Θ t, as required. The alternative form (3.11)), that there does
not exists a label b with Ξ0 ⊢ s γ! 42Θ s, works analogously.

Corollary A.2.39. Assume ⊢ s′ γ′? : wbalanced and Ξ0 ⊢ s′ γ′? ≍̇Θ t. If Ξ0 ⊢
s′ γ′? ⊲ γ! :ok , then Ξ0 ⊢ t ⊲ γ! :ok .

Proof. Directly by Lemma A.2.38.

Lemma A.2.32 showed that swapping is preserved under prefixing. The
reverse preservation, under extension, does not hold in general. The intuitive
reason is, that in particular extending the trace by a merging action may reveal
information about the order of interaction in the past, which has not been ob-
servable as long as the cliques had been separate. The reconstruction of past
orderings by merging, however, is not in general possible. In particular, it is
not possible if them merging is done by a call. More technically, extending two
traces by an additional label may break ≍̇Θ (and dually ≍̇∆), since extending a
trace may break weak balance, namely when adding a return. This additional
return may invalidate the corresponding premise from SWAPWΘ. See, also the
informal discussion at the beginning of Section A.2.2.

Lemma A.2.40 (Swapping and extension).

1. Assume ⊢ s γc? : wbalanced+. If Ξ0 ⊢ s ≍̇Θ t, then Ξ0 ⊢ s γc? ≍̇Θ t γc?.

2. Assume ⊢ s γr? : wbalanced
+. If Ξ0 ⊢ s ≍̇Θ t and receiver (s γr?) =

receiver (t γr?), then Ξ0 ⊢ s γr? ≍̇Θ t γr?.

3. Assume ⊢ s γ! : wbalanced−. If Ξ0 ⊢ s ≍̇Θ t, then Ξ0 ⊢ s γ! ≍̇Θ t γ!.

The three statements5 are summarized by the rules of Table A.2. The property holds
dually for ≍̇∆.

Proof. We show that the property holds for a single application of one of the
rules from Table A.1. The result follows by transitivity/induction.

Rule SWAP1
Θ: Extension by an incoming call

First note that Ξ0 ⊢ t γc? : wbalanced+ (by preservation of weak balance under
swapping from Lemma A.2.23). There are two cases to distinguish.

5It is not necessary, for instance in the first statement to assume that ⊢ s γc? : wbalanced+, it
would suffice to require ⊢ s γc? : wbalanced ; analogously in the other two parts. The polarity is
spelled out for clarity.
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Ξ0 ⊢ s ≍̇Θ t
SWAP

1
Θ

Ξ0 ⊢ s γc? ≍̇Θ t γc?

Ξ0 ⊢ s ≍̇Θ t receiver (s γr?) = receiver (t γr?)
SWAP

2
Θ

Ξ0 ⊢ s γr? ≍̇Θ t γr?

Ξ0 ⊢ s ≍̇Θ t
SWAP

3
Θ

Ξ0 ⊢ s γ! ≍̇Θ t γ!

Table A.2: Swapping and extension

Case: SWAPWΘ: Ξ0 ⊢ s = r (s1 s2) u ≍̇Θ r (s2 s1) u = t,
where ⊢ u : wbalanced− (by Lemma A.2.18(5)). Clearly, extending the weakly
balanced u by a call preserves weak balance (Lemma A.2.7). Hence, ⊢ u γc? :
wbalanced+, from which the claim follows.

Case: SWAPBΘ: Ξ0 ⊢ s = r (s1 s2) u ≍̇Θ r (s2 s1) u = t,
with s1 (or s2) balanced. The claim Ξ0 ⊢ s γc? ≍Θ t γc? is justified directly by
SWAPBΘ.

Rule SWAP2: Extension by an incoming return
Analogous to the previous case, preservation of enabledness under swapping
from Lemma A.2.23 gives Ξ0 ⊢ t γr? : wbalanced+.

Case: SWAPBΘ: Ξ0 ⊢ s = r (s1 s2) u ≍̇Θ r (s2 s1) u = t,
where s1 or s2 is balanced. The case follows directly by SWAPBΘ. Note that
in this case of SWAPBΘ, the premise of SWAP2

Θ requiring receiver(s γr?) =
receiver (t γr?) is not a restriction; swapping of a balanced subsequence pre-
serves the receiver of the return (cf. the part of Lemma A.2.28 dealing with
strictly balanced sub-sequences).

Case: SWAPWΘ: Ξ0 ⊢ s = r (s1 s2) u ≍̇Θ r (s2 s1) u = t,
where ⊢ u : wbalanced

− (by alternation), the only interesting case. Unlike in
the case for incoming calls, we cannot immediately conclude that ⊢ u γr? :
wbalanced+. By definition of the receiver and the pop-function (Definition 3.3.4
and 3.3.1), receiver(s γr?) = sender (s′ γc!), where s = s′ γc! s

′′ and where s′′

is the uniquely determined postfix of s with ⊢ s′′ : balanced−. We distinguish
whether γc! is part of r, of s1, of s2, or of u, yielding 4 cases:

1. s = s′ γc!s
′′ = (r′ γc! r

′′) s1 s2 u, with s1, s2, and u balanced.

2. s = s′ γc!s
′′ = r (s′1 γc! s

′′
1 ) s2 u , with s2 and u balanced.

3. s = s′ γc!s
′′ = r s1 (s′2 γc! s

′′
2 ) u with u balanced.

4. s = s′ γc! s
′′ = r s1 s

′
2 (u′ γc! u

′′).

The fact that in the different case the trailing sub-sequence are balanced fol-
lows by the cut Lemma A.2.10 from the premises of rule SWAPWΘ. In case 1,
the claim follows by the swapping rule SWAPBΘ for a balanced subsequence.
Similar in case 2, since again s2 is balanced.
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Interesting is case 3. It is the only case where we use the additional premise
receiver (r s1 s2 u γr?) = receiver(r s2 s1 u γr?), which is the sender of γc!, a
component object. We additionally know by the last premise of SWAPWΘ that
Ξ0 ⊢Θ r ⊲ s1 6⇌ s2. This implies that for the swapped sequence we have

t = r s2 s1 u = r s′2 γc! s
′′
2 s1 u .

The cut Lemma A.2.10 implies again that s1 and u are balanced, and thus
the case follows once more by SWAPBΘ. Case 4 finally follows by directly by
SWAPWΘ, since ⊢ u γr? : wbalanced+.

Rule SWAP3
Θ: Extension by an outgoing communication

We are given that s γ! is weakly balanced and thus alternating. The means, s is
either empty or ends in an incoming communication. For s = ǫ, the case is im-
mediate. Otherwise, s = s′ γ?. Independent of whether Ξ0 ⊢ s ≍̇Θ t is justified
by SWAPBΘ or SWAPWΘ, the traces are of the form r s1 s2 u, resp., r s2 s1 u,
where u = u′ γ?. In case of SWAPWΘ, the fact that ⊢ u : wbalanced+ implies
that also u γ! is weakly balanced (more precisely, ⊢ u γ! : wbalanced−) even in
the case that γ! = γr!. In case of SWAPBΘ, the claim follows straightforward
by SWAPBΘ and the observation that the last interaction (being incoming) of s,
resp., of t, cannot be affected by the swapping.

Note that in SWAP1
Θ, the sender of γc? may be different after s and after t.

This can be understood that a call in isolation makes no observable difference,
since the sender of the call is not transmitted; see Lemma A.2.28, where preser-
vation of the sender of an incoming call is not assured. Note further that the
preservation of the sender (or receiver) does not hold for returns (which why
it is explicitly required in SWAP2

Θ), i.e., it is possible that Ξ0 ⊢ s ≍̇Θ t but
Ξ0 6⊢ s γr? ≍̇Θ t γr?. The smallest illustrating example are the two traces

s = s1 s2 = γ1
c? γ1

c
′
! γ2

c ? γ2
c !′ and t = s2 s1 = γ2

c? γ2
c !′ γ1

c ? γ1
c
′
! .

The equation s ≍̇Θ t is justified by SWAPWΘ, but not by SWAPBΘ, with
the trailing u in the premise of the rule empty. As mentioned for the call, the
sender of and additional incoming return changes comparing the situation af-
ter s with the one after t. The difference between extending the trace by a call,
resp., by a return, is that the trailing u, extended by the additional interaction,
remains weakly balanced in isolation when adding a call, whereas with the ad-
ditional return it might not. Consequently, SWAPWΘ applies to s γc? but not
necessarily to s γr?. Since the swapping with the additional γr? is (in certain
cases) not possible, the sender of an incoming return is preserved by swapping
(see Lemma A.2.28(1b)), in contrast to the sender of incoming calls.

The next lemma is a straightforward extension of Lemma A.2.40 for the
preservation of swapping under an extension by a trace longer than a single
label.

Lemma A.2.41 (Swapping and extension). Assume Ξ0 ⊢ s u : wbalanced , Ξ0 ⊢
t u : wbalanced , and Ξ0 ⊢ u : wbalanced . If Ξ0 ⊢ s ≍̇Θ t, then Ξ0 ⊢ s u ≍̇Θ t u

Proof. By straightforward induction on the length of u, using Lemma A.2.40 in
the induction step and with the help Lemma A.2.28(2b) which assures that the
receiver for incoming returns remains unchanged by the swapping.
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The next lemma allows to reorder the labels in a trace by swapping in such
a way that the ones belonging to a chosen clique are grouped together, unin-
terrupted by labels interacting with other cliques. This will be helpful when
proving equivalence of the tree representation ≍−Θ and the equational repre-
sentation ≍̇−Θ of the swapping and replay relation. The lemma chooses to shift
all interaction of a given clique to the end of the global trace (which is the form
helpful in later lemmas). By the side conditions for weakly balanced, especially
alternating, traces, and assuming that the property is formulated for Θ-cliques,
one cannot move the globally first interaction to the end, if the thread starts
at the component side. Similarly, if the trace ends in an incoming label, i.e., it
is wbalanced+, entering some component clique, one cannot move the interac-
tions of another clique to the end to the trace.

Lemma A.2.42. Assume ∆0 ⊢ ⊙.

1. Let Ξ0 ⊢ t γ! : wbalanced and furthermore Ξ0
t γ!
=⇒ Ξ and [o′] be an arbitrary

component clique after t γ!, i.e., Θ ⊢ o′ and [o′] = [o′]/Ξ
. Assume further

t′2 = t γ! ↓[o′]. Then
Ξ0 ⊢ t γ! ≍̇Θ t′1 t

′
2 , (A.15)

for some trace t′1.

2. For Ξ0 ⊢ t γ? : wbalanced , the property holds only for the component clique of
γ?, i.e. for [o]/Ξ

, where receiver (t γ?) = [o].

If Θ0 ⊢ ⊙, the trace t a more precisely is of the form γ′! t a or just γ′!, where γ′! is
the initial interaction of the trace (a call). Then, equation (A.15) is adapted to Ξ0 ⊢
γ′! t γ! ≍̇Θ γ′! t′1 t

′
2 (i.e., the initial interaction cannot be moved by swapping).

The lemma holds dually for ≍̇∆.

Proof. Proceed by induction on the length of t. For t = ǫ, the statement holds
vacuously.

Case: t = s γ?
The case corresponds to part 2, where we need to consider the clique [o] of γ?.
If the additional γ? creates a new component clique, the result is immediate.
Otherwise, we know about the form of the trace:

s γ? = s1 s2 s3 s4 γ? . (A.16)

The shorter trace s1 s2 s3, if not empty, ends in an outgoing communication,
as s3 and s4 γ? belong to different component cliques. Thus we can apply the
induction hypothesis of part 1, reordering the shorter s1 s2 s3 as follows (if
s1 s2 s3 is empty, we are already done)

Ξ0 ⊢ s1 s2 s3 ≍̇Θ s′1 s
′
2 , (A.17)

where s′2 contains the complete interaction with the component clique [o] of the
last incoming call. Since the projection s′2 is weakly balanced (Lemma A.3.3),
This implies with the prefix Lemma A.2.32 and the extension Lemma A.2.41
that

Ξ0 ⊢ s1 s2 s3 s4 γ? ≍̇Θ s′1 s
′
2 s4 γ? , (A.18)

as required.
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Case: t = s γ!
In part 1 for output, we need to consider all component cliques after t, i.e., the
sender clique [o] of γ! as well as other cliques.

Subcase: sender clique [o] of γ!
If s γ! is of the form s1 s2 γ! where s2 γ! = s γ! ↓[o], the case is immediate.
Otherwise, the trace is of the form

s γ! = s1 s2 s3 s4 γ! , (A.19)

i.e., it corresponds to the one from equation (A.16), and the case follows analo-
gously.

Case: clique [o′] 6= [o]
The trace is of the form s γ! = r u γ!, where u γ! is the last interaction with [o].
The shorter trace r ends in an outgoing communication. Hence, by induction
on part 1, we obtain

Ξ0 ⊢ r ≍̇Θ r′1 r
′
2 . (A.20)

Furthermore, r′2 and u γ! are weakly balanced (see the projection Lemma A.3.3),
i.e., ⊢ r′2 : −wbalanced− and u γ! : −wbalanced−, and the result follows with
SWAPWΘ from Table A.1.

Lemma A.2.43. Assume Ξ0 ⊢ t′1 γ? : wbalanced and Ξ0 ⊢ t′1 γ? : wbalanced .
Furthermore Ξ0 ⊢ t

′
1 γ? ≍Θ t′2 γ?. Then receiver (t′1 γ?) = receiver(t′2 γ?).

Proof. Straightforward by definition of ≍Θ (Definition 3.1.7), which requires
that t′1 γ? = t′2 γ?.

The next two lemma cover the reverse direction of the property from Lemma
A.2.36, both together showing that the tree representation and the equational
representation of the swapping relation coincide.

Lemma A.2.44 (≍Θ implies ≍̇Θ). Assume ⊢ s : wbalanced and ⊢ t : wbalanced . If
Ξ0 ⊢ s ≍Θ t, then Ξ0 ⊢ s ≍̇Θ t. The property holds dually for ≍̇∆ and ≍∆.

Proof. Proceed by induction on the length of s. The base case for s = ǫ is
immediate by reflexivity of ≍̇Θ. In the induction case we distinguish according
to the nature of the last interaction in s = s′ a.

Case: Incoming call: s = s′ γc? ≍Θ t
The trace t is weakly balanced and thus alternating by Lemma A.2.1. Hence
t = t′ γc?, i.e., the last incoming call cannot be swapped inside. Since the
receiver of γc? concerns the same clique after s′ and t′, the definition of ≍Θ

implies that also for the shorter traces we have Ξ0 ⊢ s′ ≍Θ t′. By induction,
therefore, Ξ0 ⊢ s′ ≍̇Θ t′. Furthermore, as weak balance is preserved under
prefixing (Lemma A.2.5), Ξ0 ⊢ s′ : wbalanced+ and Ξ0 ⊢ t′ : wbalanced+. By the
extension Lemma A.2.40, rule SWAP1

Θ, Ξ0 ⊢ s′ γc? ≍̇Θ t′ γc?, as required.

Case: Incoming return: s = s′ γr?
Again, since t is alternating, we have t = t′ γr? for some t′. Furthermore, by
Lemma A.2.43 receiver(s′ γr?) = receiver (t′ γr?). As in the previous subcase,
this implies also for the shorter Ξ0 ⊢ s′ ≍Θ t′ and thus by induction, Ξ0 ⊢ s′ ≍̇Θ

t′. The case follows then by SWAP2
Θ from the extension Lemma A.2.40.
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Case: Outgoing communication: s = s′ γ!
We distinguish the case where there exists one component clique after s, or
more than one. Since s is not empty, there exists at least one clique. First note
that Ξ0 ⊢ s ≍Θ t implies that the number of component cliques implies after t
coincides with the number of component cliques after s.

Subcase: One component clique after s and after t
Now, since we have only one component clique after s and after t, we know
further that t = t′ γ!, i.e., the γ! must occur at the end of t. Furthermore we
know that sender (s′ γ!) = sender(t′ γ!). Hence, Ξ0 ⊢ s′ ≍Θ t′ by definition of
≍Θ and thus by induction Ξ0 ⊢ s′ ≍̇Θ t′. The case then follows by SWAP3

Θ.

Subcase: More than one component clique after s and after t
So consider the component clique of sender(s) = sender(s′ γ!), say [o]. Con-
sider the complete interaction of s with that clique, resp., the rest, i.e., let
s1 = s′ γ! ↓[o], and s2. Analogously, t1 = s′ γ! ↓[o], and t2. By induction,
Ξ0 ⊢ s1 ≍̇Θ t1 and Ξ0 ⊢ s2 ≍̇Θ t2. As the mentioned projections are all
weakly balanced (Lemma A.3.3)), the extension Lemma A.2.41 applies, yield-
ing Ξ0 ⊢ s2 s1 ≍̇Θ t2 t1. Then the result follows by (twice) Lemma A.2.42 and
transitivity of ≍̇Θ:

Ξ0 ⊢ s ≍̇Θ s2 s1 ≍̇Θ t2 t1 ≍̇Θ t .

Corollary A.2.45. Assume s and t being weakly balanced. Then Ξ0 ⊢ s ≍̇Θ t iff
Ξ0 ⊢ s ≍Θ t.

Proof. The conjunction of Lemma A.2.36 and A.2.44.

Next a straightforward observation, connecting the swapping relations ≍∆

and ≍Θ (resp. ≍̇∆ and ≍̇Θ) from the perspective of the environment and from
the component. See Section 3.1 for the definition of t̄, the complementary trace
of t.

Lemma A.2.46 (Dualizing). If Ξ0 ⊢ s ≍Θ t, then Ξ0 ⊢ s̄ ≍∆ t̄. The same holds for
the relationship of ≍̇Θ and ≍̇∆.

Proof. Obvious. All definitions leading to ≍Θ are dually defined for ≍∆. Anal-
ogously for ≍̇Θ and ≍̇∆.

Lemma A.2.47 (Projection and dualizing). Assume two legal traces s and t, i.e.,
Ξ0 ⊢ s : trace and Ξ0 ⊢ t : trace. Let furthermore [o] be an arbitrary component

clique after s and after t, i.e., Ξ0
s

=⇒ Ξ1, such that Ξ0
t

=⇒ Ξ2 and [o] = [o]/Ξ1
=

[o]/Ξ2
. If Ξ0 ⊢ [o]↓ s = [o]↓ t, then Ξ̄0 ⊢ [o]↓ s̄ = [o]↓ t̄ (where in the complementary

trace, [o] becomes an environment clique). The property holds dually for environment
cliques.

Proof. Straightforward. Especially, when dualizing a trace r to r̄, the future
projection from Definition 3.1.3 works on component objects of r the same way
as it works on environment objects of r̄, and vice versa.

The next property is mainly a technical lemma needed to show that un-
der certain conditions, swapping preserves the conditions for the judgment
Ξ0 ⊢ t ⊲ a :ok (cf. Definition A.2.34), which implies that after swapping,
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a is still possible. The lemma is used in Lemma A.2.49 afterwards, which
covers the case of “input enabledness” in Lemma 3.3.26. Note that the men-
tioned Lemma A.2.49 deals with preservation of an output action. The proof
of Lemma 3.3.26, an important part of completeness, uses the 42•-relation from
the perspective of the observer, i.e., 42•

∆ instead of 42•
Θ, and from that perspec-

tive, the output label becomes an input label.

Lemma A.2.48. Assume ∆0 ⊢ ⊙ and two legal traces Ξ0 ⊢ s1 s2 : trace and
Ξ0 ⊢ t1 t2 : trace, where s2 = s′2 γ

′? and t2 = t′2 γ
′? for some incoming label γ′?. Let

[o] be a component clique after s1 s2 as well as after t1 t2. Let furthermore be s2, resp.,
t2 be the complete interaction of s1 s2, resp., of t1 t2 with the component clique [o], i.e.,
s1 s2 ↓[o]= s2 and t1 t2 ↓[o]= t2. Furthermore, assume [o]↓ s1 s2 = [o]↓ t1 t2. Then
Ξ0 ⊢ s1 s2 ⊲ a : ok implies Ξ0 ⊢ t1 t2 ⊲ a : ok . The lemma holds analogously for
Θ0 ⊢ ⊙, and furthermore dually for the situation considering an environment clique
and s1 s2, resp., t1 t2 ending in an outgoing communication.

Proof. First it is easy to see that Ξ0 ⊢ s1 s2 ⊲ a : ok implies that a is an outgoing
communication, since s2 ends in an incoming one, i.e., a = γ!. By the assump-
tion that s2, resp., t2 contains the complete interaction with the component
clique [o], we have that

[o]↓ s1 s2 = [o]↓ s2 and [o]↓ t1 t2 = [o]↓ t2, (A.21)

i.e., the initial sequences s1, resp., t2, are not contained in the future projec-
tions. By Definition 3.1.7, this implies Ξ0 ⊢ s2 ≍Θ t2, i.e., s2 and t2 are
swapping equivalent, using the tree-representation of swapping equality. By
Lemma A.2.44,

Ξ0 ⊢ s2 ≍̇Θ t2 . (A.22)

The fact that Ξ0 ⊢ s1 s2 ⊲ a :ok and the left-hand equation of (A.21) imply

Ξ0 ⊢ s2 ⊲ a : ok . (A.23)

Now, s2 ends with an incoming communication.6 Hence, by equation (A.22)
and Corollary A.2.39, Ξ0 ⊢ t2 ⊲ a : ok . With the right-hand equation of (A.21),
this yields Ξ0 ⊢ t1 t2 ⊲ a : ok , as required.

Lemma A.2.49 (42•
Θ and enabledness). Assume two weakly balanced traces Ξ0 ⊢

s : wbalanced and Ξ0 ⊢ t : wbalanced . If Ξ0 ⊢ t ⊲ os
γ!
→ or and Ξ0 ⊢ s 42•

Θ t, then

Ξ0 ⊢ s ⊲ os
γ!
→ o′r.

Proof. The relation 42•
Θ is given in Definition 3.3.25. We distinguish whether t

is empty or not.
If t = ǫ, Definition 3.3.25 requires —only part 2 applies— that s 42Θ t, which

implies s = ǫ, from which the result follows trivially.
If otherwise t 6= ǫ, we argue as follows. It is easy to see that Ξ0 ⊢ t :

wbalanced
+ and that the last label of t is incoming (it is, e.g., a consequence

of the combination of Lemma A.2.19 and Lemma A.2.1). So t is of the form
t′ γ′? for some label γ′. Furthermore, by Lemma A.2.14, sender (t′ γ′? γ!) =
receiver (t′ γ′?). Let sender(t′ γ′? γ!) = os, a component object (potentially ⊙),

6The trace t2 ends with the same incoming communication, but we don’t need the fact to con-
tinue the argument.
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and let [os]/
Ξ́

, or [os] for short, be its component clique, where Ξ́ is the context

after t′γ′?γ!, i.e., where Ξ́ is given by Ξ0
t′γ′?γ!
=⇒ Ξ́.

Now, by Definition 3.3.25(1), the assumption Ξ0 ⊢ s 42•
Θ t implies

[os]↓ s = [os]↓ t . (A.24)

The trace t is of the form t1 t2, where t2 is the end-piece of t projected to the
component clique [os]. Since t2 = t′2 γ

′? and since the receiver of γ′? is os, the
sequence t2 is non-empty and ends in an incoming interaction, entering the
component clique [os].

As s is weakly balanced and thus alternating (Lemma A.2.1), equation (A.24)
implies that s, too, is of the form s = s1 s2, where s2 is a non-empty interaction
with the clique of os, ending with an incoming communication.

For one of two possible situations, assume ∆0 ⊢ ⊙, i.e., the thread starts ini-
tially in the environment. By Lemma A.2.42, in particular part 2 for traces end-
ing in an incoming communication, we can re-order the two traces via swap-
ping into

Ξ0 ⊢ t1 t2 ≍̇Θ t′1 t
′
2 and Ξ0 ⊢ s1 s2 ≍̇Θ s′1 s

′
2 , (A.25)

where t′2 contains the complete interaction of t1 t2 with the clique of os, and
analogously for s′2.

By the preservation Lemma A.2.38, the assumption Ξ0 ⊢ t1 t2 ⊲ γ! : ok and
the swapping on the left-hand of (A.25) imply

Ξ0 ⊢ t
′
1 t

′
2 ⊲ γ! :ok (A.26)

Note that the receiver of γ! is not preserved by the re-arrangement, but the
sender, a component object, is (see in particular part 1 of Lemma A.2.38). Re-
mains to be argued that γ! is possible after s′1 s2, as well, which in particular
means that the sender remains unchanged.

The two end-traces t′2 and s′2 are given by t′1 t
′
2 ↓[os] and s′1 s

′
2 ↓[os]. By

Lemma A.2.48, equation (A.26) from above implies that

Ξ0 ⊢ s
′
1 s

′
2 ⊲ γ! : ok . (A.27)

Now once again by the preservation Lemma A.2.38 and using the right-hand
judgment of equation (A.25),

Ξ0 ⊢ s1 s2 ⊲ γ! : os
γ!
→ o2r , (A.28)

which finishes the case.

A.2.3 Replay

Next we present an equational characterization of replay, i.e., of the relation
≍−Θ combining swapping and replay. As given in Definition 3.1.8, the relation
≍−Θ is given based on the future projection of a trace to objects or rather cliques
occurring in the trace (cf. Definition 3.1.3 for o↓ t). The phenomenon of replay
(“what can be done once, can be done twice”) was covered in the definition of
Ξ0 ⊢ s ≍−Θ t in that for each component clique of s (i.e., after s), there must
be a corresponding one after t (after potentially renaming t) such that the be-
havior of the clique of s is covered by the behavior of the clique of t, and vice
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versa. Definition 3.1.8 included “swapping” in that it was based, via the future
projection, on the tree representation of the merging clique structure.

Now that we have represented ≍Θ equivalently by an equational charac-
terization ≍̇Θ and since we intend to do the same for ≍−Θ combining swapping
and replay, we cannot (or rather should not) base the characterization of re-
play on the future projection. Instead, we use the past projection (see Defini-
tion A.3.1), which does not represent the swapping or the tree-like structure of
the semantics, but simply contains the part of the global, linear trace relevant
for the clique projected onto.

Definition A.2.50 (Swapping and replay). The relation ≍̇−Θ on traces is given by
the reflexive, transitive, and symmetric closure of the rules of Table A.3. The relation
≍̇−∆ is defined dually.

Ξ0 ⊢ s ≍̇Θ t
SWAPΘ

Ξ0 ⊢ s ≍̇−Θ t

Ξ0 ⊢ s ⊲ γ! sender (s γ!) = o

s γ! ↓[o]4 s′ ↓[o] s =α s′

REOΘ

Ξ0 ⊢ s γ! ≍̇−Θ s

Ξ0 ⊢ s ⊲ γ! receiver (s γ?) = o

s γ? ↓[o]4 s′ ↓[o] s =α s′

REIΘ
Ξ0 ⊢ s γ? ≍̇−Θ s

Table A.3: Swapping and replay

Question A.2.51 (Replay and alternation). In the current definition of replay from
Definition A.2.50, Table A.3, alternation is not covered. Is it a problem, what is the
problem if there is one, and how can we solve it, and is alternation the only problem?

Answer: First of all, the definition is for the sequential, single-threaded case.
Similar problems occur also in the multi-threaded case, of course.

Is it a problem, first of all? I think, yes. The premise currently requires,
that one can simply add γ!, if s γ!, projected to the sender clique of o is a prefix
of a renaming of s, projected to the same clique. If now s itself ends with an
outgoing call, we clearly cannot extend it by another γ! as this would not be
alternating.

One way to remedy it is to require

Ξ0 ⊢ r ⊲ γ!

That’s basically the same as alternation. This is what we need at least. That’s
already required such that the result of sender and receiver is defined.

Other potential problems are

1. typing

2. connectivity

3. determinism

But they seem no problems.
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Rule SWAPΘ incorporates swapping as subset of ≍̇−Θ. As for the replay, i.e.,
repetition of an action already witnessed in the past, we distinguish between
incoming and outgoing labels. For an outgoing label γ! (cf. rule REOΘ), the
sender clique of the communication (a component clique), is relevant. The pro-
jection s γ! ↓[o] in the premise of the rule in particular contains the (projection
of the) label γ!. If that projection s γ! ↓[o] is already contained in the shorter
trace s, then the new γ! constitutes no new behavior. Of course, we cannot ex-
pect the sγ! ↓[o] to occur literally in s. Hence, we rename s to an appropriate
α-variant s′ in the premise of the rule.

For incoming labels, rule REIΘ works analogously, considering the clique
of the receiver of the action, instead of the sender.

Next we have to show that the relation ≍−Θ from Definition 3.1.8 and the
equational definition ≍̇−Θ coincide.

Lemma A.2.52 (≍̇−Θ implies ≍−Θ). Assume s and t to be weakly balanced. Then
Ξ0 ⊢ s ≍̇−Θ t implies Ξ0 ⊢ s ≍−Θ t. The lemma holds analogously for ≍̇−∆ and ≍−∆.

Proof. See Table A.3 for the definition of ≍̇−Θ. We show the implication for
one instance of a rule for ≍̇−Θ. The result then follows by induction/transi-
tivity. For swapping with rule SWAPΘ, the result follows by the corresponding
Lemma A.2.36 for ≍̇Θ.

Case: REOΘ: Ξ0 ⊢ s γ! ≍̇−Θ s
Ξ0 ⊢ s γ! <3Θ s as one half of the claim is immediate by definition. For the
reverse direction we argue as follows. By the premise of the rule, s γ! ↓[o]4
s′ ↓[o], where o is the sender of γ! and s′ an appropriate α-renaming of s. For
component cliques [o′] other than the sender clique [o], we have s γ! ↓[o′]=
s ↓[o′], i.e., in particular s γ! ↓[o′]4 s ↓[o]. By Lemma A.3.12, connecting forward
and backward projection, we therefore have for all component cliques [o′′] that
also for the forward projection [o′′]↓ s γ! 4 [o′′]↓ s. Hence, Ξ0 ⊢ s γ! 42Θ s,
finishing the case.

Case: REIΘ: Ξ0 ⊢ s γ? ≍̇−Θ s
Analogously.

Lemma A.2.53 (≍−Θ implies ≍̇−Θ). Assume s and t to be weakly balanced. Then
Ξ0 ⊢ s ≍−Θ t implies Ξ0 ⊢ s ≍̇−Θ t. The property holds analogously for ≍−∆ and ≍̇−∆.

Proof. For the definition of ≍−Θ, see Definition 3.1.8. Proceed by induction on
the length of s. In the base case, where s is empty, ǫ ≍−Θ t implies by definition
that t = ǫ, and the case follows by reflexivity of ≍̇−Θ. For the induction step, we
are given s = r a and distinguish according to the nature of a.

Case: s = r γc? (incoming call)
We distinguish further, whether the additional label is already a replay wrt. the
shorter r or not.

Subcase: Ξ0 ⊢ r γc? 42Θ r
Since clearly Ξ0 ⊢ r γc? <3Θ r, we immediately get Ξ0 ⊢ r γc? ≍−Θ r . By
induction we get Ξ0 ⊢ r ≍̇−Θ r γc?. Furthermore, by transitivity of ≍−Θ, Ξ0 ⊢
r ≍−Θ t. Hence, again by induction, Ξ0 ⊢ r ≍̇−Θ t, which implies the required
Ξ0 ⊢ r γc? ≍̇−Θ t by transitivity of ≍̇−Θ.
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Subcase: Ξ0 6⊢ r γc? 42Θ r
This means the extension of the component clique by the additional γc? is not
already covered by the behavior of any other component clique. The assertion
Ξ0 ⊢ r γc? ≍−Θ t implies that t is of the form t =α t

′ s.t. t′ = t′1 γc? t
′
2.

We first argue that the subsequence t′2 at the end is empty. If not empty,
the trailing t′2 must be of the form γ! t′′2 for some outgoing label γ!, sent by
the component clique of γc? since all weakly balanced traces are alternating
(Lemma A.2.1). Now, the sender of γ! corresponds to the receiver of γc?, in
particular, γ! belongs to the same clique as the receiver of γc?. This contradicts
the assumption that Ξ0 6⊢ r γc? 42Θ r and the assumption Ξ0 ⊢ r γc? <3Θ t (as
one direction of Ξ0 ⊢ r γc? <3Θ t). Therefore we are given Ξ0 ⊢ r γc? ≍−Θ t′1 γc?.7

Assume that the thread starts in the environment, i.e., ∆0 ⊢ ⊙. As the trace
ends with an input we have ⊢ r γ? : wbalanced+, hence both

Ξ0 ⊢ r γ? ≍̇Θ r1 r2 γ? and Ξ0 ⊢ r γ? ≍Θ r1 r2 γ? ,

(reorganizing the thread with Lemma A.2.42 for the left-hand judgment and
additionally with the help of Lemma A.2.52 for the judgment on the right),
where r2 γ? contains the complete interaction with the receiver clique of γ?. We
can apply the same lemmas to Ξ0 ⊢ t′1 γc?, yielding Ξ0 ⊢ t′1 γc? ≍̇Θ u′1 u

′
2 γc?

and analogously for ≍Θ. Since ≍Θ implies by definition ≍−Θ and analogously
≍̇Θ implies ≍−Θ (rule SWAPΘ), we have by transitivity of ≍−Θ that

Ξ0 ⊢ r1 r2 γc? ≍−Θ u′1 u
′
2 γc? , (A.29)

where neither r1 nor u′1 contains labels belonging to [o]. The situation is sum-
marized in the following diagram:

r γc? ≍−Θ

≍̇−Θ/ ≍−Θ

t′1 γc?

≍̇−Θ/ ≍−Θ

r1 r2 γ? u′1 u
′
2 γc?

Equation (A.29) and the fact that r2 γc?, resp., u′2 γc? contains all the behavior
projected to [o] clearly imply Ξ0 ⊢ r1 ≍−Θ u′1, whence by induction Ξ0 ⊢ r1 ≍̇−Θ

u′1. Furthermore we know by preservation of weak balance by past projection
(Lemma A.3.3) that ⊢ r2 γc? : wbalanced+ and ⊢ u′2 γc? : wbalanced+. Thus,
Ξ0 ⊢ r1r2γ? ≍̇−Θ u′1u

′
2γc? by the extension Lemma A.2.41.

Case: s = r γc!
Analogous to the case for input.

Remark A.2.54. Concerning the proof of Lemma A.2.53, note that the used “exten-
sion” Lemma A.2.41 is formulated for the swapping relation ≍̇Θ, and not for ≍̇−Θ.
Indeed, we do not have an analog of Lemma A.2.41 for ≍̇−Θ. In general, it is difficult
to formulate a corresponding property for ≍̇−Θ. The complication comes from the fact
that ≍̇−Θ has renaming built-in (to formulate replay), whereas ≍̇Θ just reorders the
labels without renaming. Even in the simplest case of just renaming, an “extension
property” like “if s =α t, then s a ≍̇−Θ t a” makes no sense.

7Note that additionally we know Ξ0 ⊢ r ≍−Θ t′1, and thus by induction, Ξ0 ⊢ r ≍̇−Θ t′1. We do
not use this fact. Due to renaming, we cannot generally conclude that extending r ≍̇−Θ t′1 by an
additional γc? preserves ≍̇−Θ.
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Corollary A.2.55. Assume s and t to be weakly balanced. Then Ξ0 ⊢ s ≍−Θ t iff
Ξ0 ⊢ s ≍̇−Θ t. The property holds analogously for ≍−∆ and ≍̇−∆.

Proof. The conjunction of Lemma A.2.52 and A.2.53.

Lemma A.2.56 (Dualizing). If Ξ0 ⊢ s 42Θ t, then Ξ0 ⊢ s̄ 42∆ t̄. The same holds
for the relationship of 4̇2Θ and 4̇2∆, and also for the symmetric variants of the replay
relation, i.e., ≍−Θ and ≍−∆, resp., ≍̇−Θ and ≍̇−∆.

Furthermore, ⊢ t : det∆, then ⊢ t̄ : detΘ; the analogous property holds for ⊢ t :
detΘ.

Proof. Obvious. All definitions leading to 4̇2Θ are dually defined for 4̇2∆ (see
also Lemma A.2.46 for the corresponding property for swapping). Analo-
gously for the other mentioned relations.

A.3 Traces, cliques, and projections

In the following we prove a number facts about traces, the tree structure of
merging cliques, and projections of the global trace onto a local clique. In par-
ticular, we define a past projection of a trace onto a clique.

A.3.1 Past projection

We define the projection of a trace onto a clique as the part of the sequence inter-
acting with that clique. Remember that the clique of a component object Θ ⊢ o
(where o can also represent⊙ or —in the multithreaded setting— ⊙n) consists
of all objects from Θ acquainted with o (dual definitions apply to environment
objects). Thus the equivalence ⇌ partitions Θ into equivalence classes, and
we write [o]/Ξ

for that equivalence class. For simplicity, we often just write [o],
when Ξ is clear from the context.

Earlier, we provided a different notion of projection of a global trace onto
objects and cliques. Both definitions are similar insofar that both take as input
a global, linear trace, keep all labels interacting with the clique being projected
on, and jettison all interaction not interacting with the clique. In short, both
provide a clique-local view of a given, global trace.

There is, however, a crucial conceptual difference between both notions of
projection. In Definition 3.1.3, [o]↓ t is given by recording the interaction of
each single object o′ ∈ [o], taking the tree-like, evolving clique structure into
account. Indeed, the projection was used to formalize the swapping relation
≍Θ (cf. Definition 3.1.7). In contrast, the projection t ↓[o] (see below) does not
take into account the evolving clique structure, but just takes the clique [o] after
t as fixed. This latter implies, that the projection t ↓[o] is linear in nature, it is just
the portion of the linear, global t, that interacts with one chosen, fixed clique.
For distinction, we call [o]↓ t the future or forward projection, t ↓[o], defined
below, the past or backward projection.

The definition of projection of an trace onto a clique of environment objects
is straightforward (and a bit simpler that the future projection from Defini-
tion 3.1.3): One simply jettisons all actions not belonging to that clique. One
only has to be careful dealing with exchange of bound names. The trace to start
from is global and thus scope extrusion of fresh names to the environment is
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accounted for on a global level, namely whether the outside in its entirety has
been told the name or not. From the local perspective of the environment clique
we project onto, a name which has been given before to another clique never-
theless is locally new, since the clique has no way of comparing the name with
the identity previously sent to other cliques.

Given a global trace, its projection onto one particular clique of objects as
given at the end of the trace is defined straightforwardly by induction on the
length of the trace, appending actions at the end (for the definition of sender
and receiver of a label after a history t, see Definition 3.3.4. Remember also the
conventions from Notation 2.6.5):

Definition A.3.1 (Past projection). Assume as trace Ξ ⊢ C
t

=⇒ Ξ́ ⊢ Ć and let

∆́ ⊢ o for some object reference o. Then the projection of t onto the clique [o] according

to ∆́; É∆, written t ↓[o], is defined as follows: t′ = t ↓[o], if there exists a derivation
according to Table A.4 starting with Φ0 ⊢ ǫ ⊲[o] t and with Φ ⊢ t′ ⊲[o] ǫ as axiom.
The projection onto a component clique is defined dually. We use the same definition

P-EMPTY
Φ ⊢ r ⊲[o] ǫ

receiver (t γ!) /∈ [o] Φ ⊢ r ⊲[o] s
P-OUT1

Φ ⊢ r ⊲[o] γ! s

receiver (t γ!) ∈ [o] Φ′
2 = fn(ν(Φ′

1).γ) \Φ Φ, Φ′
1, Φ

′
2 ⊢ r ν(Φ′

1, Φ
′
2).γ! ⊲[o] s

P-OUT2

Φ ⊢ r ⊲[o] ν(Φ′
1).γ! s

sender (t γ?) /∈ [o]

Φ ⊢ r ⊲[o] s
P-IN1

Φ ⊢ r ⊲[o] γ? s

sender(t γ?) ∈ [o]

Φ, Φ′ ⊢ r ν(Φ′).γ? ⊲[o] s
P-IN2

Φ ⊢ r ⊲[o] ν(Φ′).γ? s

Table A.4: Past projection onto an environment clique

analogously for legal traces.

The projection of the empty trace remains empty (rule P-EMPTY). For out-
put actions in P-OUT1 and P-OUT2 we distinguish according to the receiver. If
the receiver is not involved in the communication, the label is “projected out”;
dually for incoming communication. More interesting is P-OUT2: Fresh names
are not only the globally fresh ones Φ′

1, but also the locally fresh ones Φ′
2. The

situation for incoming new names is not symmetric! It is simpler as we need
not distinguish between locally and globally new names: Everything that the
clique has created in isolation is globally new as well as locally new.

Remark A.3.2 (Projection and new identities). The projection uses the sender,
resp., the receiver, of a label. Furthermore, the definition of projection keeps track of
locally new names; in particular in the rule P-OUT2 dealing with names received
freshly by an environment clique. Note that the cliques in the definitions are those at
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the end of the given trace. As a consequence, merging two environment cliques is
not reflected in bound exchange of environment names, even if the names of environ-
ment objects of the cliques being merged are guaranteed to be mutually unknown. A
different way of phrasing it is that the locally new names Φ′

2 mentioned in P-OUT2

concern only component objects, which means that projection does not “introduce”
new occurrences of lazily instantiated objects.

As mentioned, we also define the future projection of a trace onto a clique,
in contrast to Definition A.3.1, which defines the backward projection of a trace,
i.e., the past interaction of a trace with a clique. Technically, the definition of
the forward projection is slightly more complex as one has to take the changing
clique structure into account, while on the past interaction, one simply collects
all interactions with the current clique, irrespective of the past evolution of
the clique structure. Thus the rules of Table 3.2 uses the full contexts includ-
ing connectivity, whereas the rules of Table A.4 can be defined using only the
name contexts. Otherwise, the treatment of new names is analogous as in the
backward projection, i.e., a name which is globally known in the past trace, but
not locally known to the clique onto which it is projected, is counted as new in
the projection.

The following lemma shows that the past projection to a clique is weakly
balanced. Note that the future projection o↓ t of a trace to an object clearly need
not be weakly balanced. What breaks weak balance is the situation, when in the
course of t, the clique of o is merged by a return whose matching call originated
not from the clique of o but from the partner clique being merged.

Lemma A.3.3 (Weak balance and projection). Let t be a weakly balanced trace and
[o] be a component clique after t. Then ⊢ t ↓[o]: wbalanced. The lemma holds dually
for environment cliques.

Proof. Proceed by induction on the rules of Table A.4, showing that for all
judgments Φ ⊢ r ⊲[o] s in the derivation, the r is weakly balanced, using
Φ0 ⊢ ǫ ⊲[o] s as base case. So for r = ǫ, the claim holds trivially. For the induc-
tion step, the only two interesting cases are P-OUT2 and P-IN2 (the induction
step for P-OUT1 and P-IN1 is trivial).

In case of P-OUT2 it is easy to check that the condition sender(t γ!) ∈ [o] of
the rule implies Ξ0 ⊢ r ⊲ γ!. Analogously for P-INT2. So the result follows by
Lemma A.2.19.

A.3.2 Tree structure

The evolving connectivity gives rise to a tree structure (a forest), concerning
the cliques as equivalence classes of objects. The tree structure lies at the core
of the semantics and is important in the completeness construction: The tree
data structure needs to be represented in the code of the observer. This section
proves a few properties concerning the tree-structured cliques.

In particular, it shows invariants of the names and their relationship occur-
ring in a legal trace t, transforming the initial context Ξ0 into a post-context Ξ,

written Ξ0
t

=⇒ Ξ (see Definition A.5.3). Since all traces of a component are legal

(Lemma A.5.9), and since furthermore Ξ0 ⊢ C0
t

=⇒ Ξ ⊢ C implies Ξ0
t

=⇒ Ξ,
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the corresponding lemmas hold analogously also for traces from reductions

Ξ0 ⊢ C0
t

=⇒ Ξ ⊢ C.
The following lemma expresses that during evolution, a given clique only

grows larger, resp., that the object names of separate cliques are disjoint.

Lemma A.3.4 (Tree structure of cliques). Assume Ξ0
r

=⇒ Ξ1 and Ξ0
r u
=⇒ Ξ2. Let

[o1]/Ξ1
(or [o1] for short) be a clique of component objects according to Ξ1, i.e., after r,

analogously for [o2]/Ξ2
(resp. [o2] for short) after r u. Then one of the following three

disjoint cases applies:

1. [o1] ⊂ [o2], or

2. [o1] = [o2], or

3. [o1] ∩ [o2] = ∅.

For environment cliques, the lemma holds dually.

Proof. Note that the equivalence classes contain always a non-empty set of ob-
ject names; hence the three cases are mutually exclusive. Proceed by induction
on the length of u. If u = ǫ, immediately case (2) or (3) applies, sinceEΘ implies
a partitioning of the Θ-objects. In the induction case, u = u′ a for some label a.
An outgoing label only enlarges one existing component clique —the one of the
sender— by scope extrusion, i.e., by adding new object references, and thus pre-
serves the invariant. An incoming label may merge existing cliques and/or add
new references by lazy instantiation. It suffices to consider the binary merge,
the n-ary merge then follows easily (since the operation of adding sets of fresh
names is associative and commutative). So consider two component cliques
[o12] and [o22] being merged by a. If both are disjoint with [o1] according to case
(3), then the combined clique is disjoint. If wlog. [o12] ∩ [o1] = ∅ and [o22] ⊃ [o1],
then after the merge, [o12, o

2
2] ⊃ [o1], i.e., case (1) applies. If both [o12] ⊃ [o1] and

[o22] ⊃ [o1], then clearly [o12, o
2
2] ⊃ [o1]. If wlog. [o12] = [o1] (and consequently

[o22] ∩ [o1] = ∅), then after the merge, case (1) applies.

Corollary A.3.5 (Tree structure of cliques). Assume Ξ0
r1=⇒ Ξ1 and Ξ0

r2=⇒ Ξ2

with r1 4 t and r2 4 t for some legal trace t (Ξ0 ⊢ t : trace). Let [o1]/Ξ1
(or [o1] for

short) be the clique of component objects according to Ξ1 i.e., after r1, analogously for
[o2]/Ξ2

(resp. [o2] for short) after r2. Then one of the following 4 disjoint cases applies:
[o1] ⊂ [o2], [o1] ⊃ [o2], [o1] = [o2], or else [o1] ∩ [o2] = ∅. For environment cliques,
the lemma holds dually.

Proof. A direct consequence of Lemma A.3.4, since r1 4 r2 or r2 4 r1.

Next a few straightforward properties of the (forward and backward) pro-
jections of a trace, relating them with the evolving clique structure. The lemmas
are formulated wrt. component cliques, but the properties apply in dual form
to environment cliques, as well. The next lemma simply states that a clique
consists of all the names of component objects encountered in the past, as pro-
jected to that clique.

Lemma A.3.6 (Projection and names). Assume Ξ0
r

=⇒ Ξ, and let o be a component
object after r, i.e., Θ ⊢ o, where [o]/Ξ

(or [o] for short) denotes o’s clique according to
Ξ. Then

[o] = namesΘ(r ↓[o]) = bnΘ(r ↓[o]) .
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Proof. By induction on the length of r, using Definition A.3.1 and Table A.4
(resp., the dual variant for component cliques). For r = ǫ, i.e., in case of
P-EMPTY, the property is trivially satisfied: with Ξ0 containing only classes,
there is no object reference o with Θ0 ⊢ o. For an incoming communication,
which does not affect the clique under consideration (cf. rule P-OUT1)8 the set
of known object names is not changed and neither is the projection of the trace
prolonged; hence the case follows by induction. In case of (the dual of) rule
P-OUT2 with the trace of the form t ν(Φ′

1).γ? = t a, we are facing the follow-

ing situation: Ξ0
t

=⇒ Ξ
a

=⇒ Ξ́. By induction, the projection t′, as given by
Φ′ ⊢ t′ ⊲[o] a, contains the names of o’s clique according to the assertion Ξ
before the step, i.e.,

[o]/Ξ
= namesΘ(t′) = bnΘ(t′) .

Now the derivation rule dual to P-OUT2 extends Φ′ by all (free and bound)
names of a not yet contained in Φ′. This corresponds to the extension of Ξ to

Ξ́ via Ξ́ = Ξ + or
a
← os wrt. component objects, i.e., wrt. the extension of the

receiver clique (see in particular Definition 2.6.8 for the update of the name
contexts). The cases for outgoing communication, corresponding to (the duals
of) P-IN1 and P-IN2 and dealing with lazy instantiation, are simpler.

The next lemma is a simple consequence. We denote by 4t the “prefix”
relation on trees, i.e., t1 4t t2 means, t1 is a sub-tree of t2. Furthermore, we
need the suffix relation on (linear) sequences which we denote by 3s. We use
≺t and ≻s for the respective “strict” variants of the order relations.

Lemma A.3.7. Assume Ξ0
r1=⇒ Ξ1 and Ξ0

r2=⇒ Ξ2 with r1 4 t and r2 4 t, i.e.,
t = r1 s1 = r2 s2 for some s1, resp., s2. Let [o1]/Ξ1

(or [o1] for short) be the clique
of component objects according to Ξ1 i.e., after r1, analogously for [o2]/Ξ2

(or [o2] for
short).

1. If namesΘ(r1 ↓[o1]) = namesΘ(r2 ↓[o2]) then r1 ↓[o1]4
t r2 ↓[o2] or r1 ↓[o1]3

t

r2 ↓[o2].

2. If namesΘ(r1 ↓[o1]) ⊂ namesΘ(r1 ↓[o1]) then r1 ↓[o1]≺
t r2 ↓[o2].

Proof. Straightforward.

The following lemma relates the forward and the backward projection.

Lemma A.3.8 (Forward and backward projection). Let t be a legal trace, and r s =
t for some r and s. Furthermore, let [o] be a component clique after r. Assume further
s ↓[o] 6= ǫ. Then

r ↓[o]= t− [o]↓ s . (A.30)

Proof. See Definition 3.1.5, equation (3.7), for the definition of t− [o]↓ s. Straight-
forward by induction on the length of r.

The next lemma is a “dynamic” variant of Lemma B.4.10 later. It states the
not too surprising fact that each clique of component objects consists exactly
of the references mentioned in the corresponding subtree, where the subtree is
given by the interaction path to one of the roots which represents the future be-
havior of that clique (cf. Definition 3.1.5). The connection between the cliques

8Remember that the rules of Table A.4 are formulated for the dual case of environment cliques.
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of objects and the future interaction is important for the implementation later:
When realizing a trace t, each object of the implementation will have a repre-
sentation of the futures t − so together with the matching current clique [o],
which identifies a possible current state in the execution of t.

Lemma A.3.9. Let t be a legal trace, and rs = t for some r and s. Furthermore, let
[o] be some component clique [o] after r. Assume further that [o]↓ s 6= ǫ. Then

[o]/Ξ
= namesΘ(t− [o]↓ s) . (A.31)

Proof. By Lemma A.3.8 and Lemma A.3.6.

The next two lemmas connect the past projection, resp. the set of objects of
a clique, with the future projection.

Lemma A.3.10 (Forward and backward). Assume Ξ0 ⊢ C0
r1=⇒ Ξ1 ⊢ C1 and

Ξ0 ⊢ C0
r2=⇒ Ξ2 ⊢ C2 with r1 4 t and r2 4 t, i.e., t = r1 s1 = r2 s2 for some s1

resp. s2. Let [o1]/Ξ1
(or [o1] for short) be the clique of component objects according to

Ξ1 i.e., after r1, analogously for [o2]/Ξ2
(resp. [o2] for short).

1. r1 ↓[o1]= r2 ↓[o2] iff. [o1]↓ s1 = [o2]↓ s2.

2. r1 ↓[o1]≺
t r2 ↓[o2] iff. [o1]↓ s1 ≻

s
[o2]↓ s2.

Proof. Straightforward.

Lemma A.3.11 (Projection and cliques). Assume Ξ0
r1=⇒ Ξ1 and Ξ0

r2=⇒ Ξ2 with
r1 4 t and r2 4 t, i.e., t = r1 s1 = r2 s2 for some s1, resp., s2. Let [o1]/Ξ1

(or [o1] for
short) be the clique of component objects according to Ξ1 i.e., after r1, analogously for
[o2]/Ξ2

(or [o2] for short).

1. (a) If [o1]↓ s1 = [o2]↓ s2 6= ǫ, then [o1] = [o2].

(b) If ǫ 6= [o1]↓ s1 ≺
s

[o2]↓ s2, then [o1] ⊇ [o2].

(c) If not [o1]↓ s1 4
s

[o2]↓ s2 nor [o2]↓ s2 4
s

[o1]↓ s1, then [o1] ∩ [o2] = ∅.

2. (a) If [o1] = [o2], then [o1]↓ s1 4
s

[o2]↓ s2 or [o2]↓ s2 4
s

[o1]↓ s1.

(b) If [o1] ⊃ [o2], then [o1]↓ s1 ≺
s

[o2]↓ s2.

Proof. Straightforward, by the uniqueness of names, and the fact that commu-
nication only adds information to Θ and EΘ.

Part 1a follows by Lemma A.3.10(1) and Lemma A.3.6; part 1b analogously
by Lemma A.3.10(2) and again Lemma A.3.6. Part 2 for the reverse direction
follows by Lemma A.3.7 and Lemma A.3.10. For part 1c, we know (using part
2) that neither [o1] ⊆ [o2] nor [o2] ⊆ [o1] can hold. This leaves [o1] ∩ [o2] = ∅ as
only alternative (cf. Corollary A.3.5).

Part (1) and part (2) of Lemma A.3.11 can be seen as inverse aspects of the
connection between component cliques and the future projection. Note, how-
ever, that neither the implication of part (1) nor of part (2) holds in inverse
direction. In particular, the equality [o1] = [o2] does not imply that the corre-
sponding projections [o1]↓ s1 and [o2]↓ s2 are equal.

We introduced two kinds of projections on a linear trace, the future projec-
tion from Definition 3.1.3 and the projection on the past from Definition A.3.1.
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As mentioned, given a (e.g., component) clique [o] after a trace t, a conceptual
difference between the two projections is that the future [o]↓ t represents the
tree structure of the clique, whereas t ↓[o] just contains the linear subsequence
of t which concerns [o]. So, the past projection contains more global ordering
information than the future projection. Both kinds of projections are needed
in the definition of replay; the future projection is used for ≍−Θ and the past
projection of the equational analog ≍̇−Θ. In the proof that ≍−Θ and ≍̇−Θ coincide,
we need following property. Obviously, the reverse implication does not hold.

Lemma A.3.12 (Forward and backward). Assume two weakly balanced traces s
and t, and let [o] be a component clique after both s and t. Then, if s ↓[o]= t ↓[o], then

[o]↓ s = [o]↓ t. Analogously, if s ↓[o]4 t ↓[o], then [o]↓ s 4 [o]↓ t.

Proof. Straightforward.

A.4 Soundness

A crucial part of the argument is to determine the common behavior of pro-
gram and environment acting complementary concerning the interface behav-
ior, and dually, to determine the complementary external behavior from a given
common reduction. The lemmas and proofs hold analogously in the concur-
rent setting for augmented traces. In this section, we write also t, s1, . . . (instead
of t+, s+1 , . . .) for augmented traces in the concurrent setting. All proofs are
carried through in the more complex setting of augmented traces, but work
analogously when removing the sender augmentation from the respective la-
bels (cf. Definition 5.1.4).

The distinction between component and environment concerns not only
classes and objects, which cleanly split between both sides, but also the thread.
Once the activity of the thread has crossed the interface via a method call, its
code is contained both at both sides. Therefore, in order to define the common
behavior of two parallel components, one must determine a representation of
the common code. After all, a component containing the two parts of the thread
n〈t1〉 ‖ n〈t2〉 is not even well-typed, and also intuitively, the component and
the environment part of a given thread do not “run in parallel”. The merge
n〈t1〉 ! n〈t2〉 is defined in the following section, and used for defining the
behavior composition and decomposition.

A.4.1 Merging

Given two pieces n〈t1〉 and n〈t2〉 of the thread, split between program and
environment, we need to determine the common representation of t1 and t2. A
thread n〈t〉 consists of the stack of method bodies. When split into n〈t1〉 and
n〈t2〉 belonging to the two parts of the program, t1 and t2 are of specific form:
At most one of t1 or t2 may be enabled by an internal operational step, while
all other stack frames are of the form

let x:T = o1 blocks for o2 in(let y : T ′ = t′ in o1 returns y to o3) .

The only exception is the “oldest” stack frame, i.e., the one where the thread
started executing, which is not terminated by a return-statement. See also the
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rules for incoming and outgoing method calls from Table 2.11 (resp. 4.8).9 Now,
t1 and t2 can be merged or “zipped” together into a common thread t1 ! t2 by
canceling out matching block/return pairs in both stacks.

The following definition and the corresponding proofs carry over to a large
extent from the object-based setting [82]. The classes and the connectivity do
not impose much additional complication here. The merge of two components,
resp., threads is defined as follows:

Definition A.4.1 (Merge). For a pair of components, respectively, for a pair of threads,
! is the symmetric, partial operator up-to ≡ defined by Table A.5, where

tblocked = let x:T = blocks for o2 in t1

and furthermore in the last case for tblocked ! t2, the expression e is block/return free
and y /∈ fv(t2). Let furthermore tstop abbreviate stop; t, a thread where the top-most
frame is stopped. The augmentation for the object whose outgoing method call blocked,
is irrelevant, and thus indicated by “ ”. Dually, in the clauses for returns in Table A.5,
the object to return to is not important and either left unspecified.

0 ! C ≡ C
(ν(n:T ).C1) ! C2 ≡ ν(n:T ).(C1 ! C2) n /∈ fn(C2)

(o[c, F ] ‖ C1) ! C2 ≡ o[c, F ] ‖ (C1 ! C2)
(c[(O)] ‖ C1) ! C2 ≡ c[(O)] ‖ (C1 ! C2)
(n〈t〉 ‖ C1) ! C2 ≡ n〈t〉 ‖ (C1 ! C2) n /∈ dom(C2)

(n〈t1〉 ‖ C1) ! (n〈t2〉 ‖ C2) ≡ n〈t1 ! t2〉 ‖ (C1 ! C2)

tblocked ! tstop ≡ tstop
tblocked ! v ≡ v

tblocked ! (let y:T ′ = o2 returns v to ; t′2) ≡ t1[v/x] ! t′2
tblocked ! (let y:T ′ = o2 returns v to ) ≡ t1[v/x]

tblocked ! (let y:T ′ = e in t2) ≡ let y:T ′ = e in

(tblocked ! t2)

Table A.5: Merge

The definition is essentially the same as in [82]. Note that the !-operation
is partial, i.e., it fails when the two participating components and in particular
the two parts of the thread cannot be combined into a common stack.

The rules for C1 ! C2 in the first part of the table are straightforward. For
the empty component, there is nothing to merge. Objects and classes do not
participate in the merging, and likewise the scoping operator is ignored. The
two parts of the thread are merged and the rest of the components are merged
recursively in the last equation. Note that we do not need n /∈ dom(C1) and

9The form of the two stacks is determined by the difference of incoming calls minus outgoing
returns (the component stack) and the difference of outgoing calls minus incoming returns (for the
environment stack). The difference between these two differences ranges always over {−1, 0, 1},
depending on where the thread is currently active. Lemma A.2.7, but also Lemma A.5.2 later,
which connects the balance of a trace with the form of the thread in a component.
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n /∈ dom(C2) as side condition in that last equation. By writing n〈t〉 ‖ C for the
arguments, we implicitly state that n /∈ dom(C).

For two pieces of the thread, the !-operator is defined by case analysis
on the outermost let-construct (if the thread is not completely stopped). This
corresponds to the top-most part of the common stack for both threads. If one
of the threads is stopped, the combination of both is stopped, as well, since the
stopped thread can never return. If a part of a thread is blocked in its topmost
construct, it indicates that it waits for a return of the activity from its partner
(cf. rule CALLO, resp., CALLO0 and RETI). In case the partner is a value (in
Section 2.6.1, the return-syntax is defined as augmentational expression, but
not as value), it means, the return will never happen, and the blocked part can
be discarded. If otherwise the partner is about to perform the return, the value
is handed over, the two topmost let-bindings are thereby popped off, and the
merge-operator recurs through the rest of the two threads. The last equation,
finally, deals with the situation that the partner is not (yet) a value or a return
statement and rearranges the let-binding appropriately.

As far as objects and classes are concerned, merging of two components
behaves like their parallel composition. Note that we assume that the only
thread occurs at most once in C. The same will apply later analogously in the
multi-threaded case for each thread.Thus in the following lemma, the merge of
C1 and C2 does not concern the thread.

Lemma A.4.2 (‖ and !). If Ξ ⊢ C1 ‖ C2, then C1 ‖ C2 ≡ C1 ! C2.

Proof. By induction on the definition of !, i.e., the left-hand sides of the equa-
tions as given in Table A.5. The crucial fact underlying the property and the
proof is that the thread is contained not both in C1 and C2 (in the single-
threaded case this is by convention, in the multithreaded case, the type sys-
tem assures that). This in turn means that the merge-operator is applied only
trivially to threads.

Case: 0 ! C
0 is the neutral element both for ! and for ‖ (cf. Table 2.6 and A.5).

Case: ((νn:T ).C1) ! C2,
where n /∈ fn(C2). The merge is then given by (νn:T ).(C1 ! C2), which by in-
duction is equivalent to (νn:T ).(C1 ‖ C2) which furthermore yields ((νn:T ).C1) ‖
C2) by the rules for structural congruence from Table 2.6, since n /∈ fn(C2).

Case: (o[c, F ] ‖ C1) ! C2, (c[O] ‖ C1) ! C2, and (n〈t〉 ‖ C1) ! C2

All three cases by straightforward induction, using associativity of the ‖-operator.

Case: (n〈t1〉 ‖ C1) ! (n〈t2〉 ‖ C2)
In this case, the component (n〈t1〉 ‖ C1) ‖ (n〈t2〉 ‖ C2) is not well-formed: for
the ‖-operator, we do not allow parallel composition of named threads.

For a thread, occurring on both sides of the !-operator, the respective stack
frames are “zipped” into a common stack, if possible. As a consequence: If
C = C1 ! C2 is defined, then an external step of the thread is enabled for C
exactly if the step is enabled for C1 or for C2. For the special case of barbing,
this is expressed in the following lemma: C1 !C2 strongly barbs on cb if one of
the constituents strongly barbs on cb. We cannot conclude, however, that either
C1 or C2 strongly barbs on cb, as two different threads in C1, resp., C2 may be
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about to report success. In the sequential setting, we know stronger that exactly
one of C1 and C2 barbs on cb, as the other component must be blocked.

Lemma A.4.3 (Merging and barbing). Assume C ≡ C1 ! C2. Then C ↓cb
iff.

C1 ↓cb
or C2 ↓cb

. In the sequential setting, the “or” can be strengthened to an “either-
or”.

Proof. By induction on the definition of C1 ! C2, where we omit symmet-
ric cases. Before we start, recall the definition of barbing in equation (2.3),
stipulating that C ↓cb

if C is structurally congruent to the component Cb ,
ν(~n:~T , b:cb). C

′ ‖ n′〈let x:none in b.succ() in t〉.

Case: C1 ! 0

Since by definition of structural congruence, resp., by assumption, C1 ! 0 ≡
C1 ≡ Cb, the case is immediate.

Case: C = (ν(n:T ).C1) ! C2 ≡ ν(n:T ).(C1 ! C2),
where n /∈ dom(C2). Assume C ↓cb

, i.e., ν(n:T ).(C1 ! C2) ≡ Cb. The case
follows straightforwardly by induction, using the properties of ≡.

Case: C = (o[c, F ] ‖ C1) ! C2 ≡ o[c, F ] ‖ (C1 ! C2)
Assume C ↓cb

, i.e., o[c, F ] ‖ (C1 ! C2) ≡ Cb. This implies that (C1 ! C2) ↓cb
.

Hence by induction, C1 ↓cb
or C2 ↓cb

, and thus (C1 ‖ o[c, F ]) ↓cb
or C2 ↓cb

, as
required.

For the reverse direction, assume (o[c, F ] ‖ C1) ↓cb
, which implies C1 ↓cb

,
and thus by induction (C1 ! C2) ↓cb

, from which the case follows. The argu-
ment for the second alternative, starting from C1 ↓cb

, is similar.

Case: (c[(O)] ‖ C1) ! C2 ≡ c[(O)] ‖ (C1 ! C2)
Analogous.

Case: (n〈t〉 ‖ C1) ! C2 ≡ n〈t〉 ‖ (C1 ! C2),
where n /∈ dom(C1, C2). Analogous.

Case: (n〈t1〉 ‖ C1) ! (n〈t2〉 ‖ C2) ≡ n〈t1 ! t2〉 ‖ (C1 ! C2),
where n /∈ dom(C1, C2). First assume (C1 ! C2) ↓cb

. Then the case follows
by induction, as in the previous cases. The only interesting case is when C′ =
C1 ! C2, i.e.,

n〈t1 ! t2〉 = n〈let x:none in b.succ() in t〉 .

In this case, the last clause of Table A.5 applies, so that

n〈t1〉 = n〈let y:T = o1 blocks for o2 in t′1〉

and
n〈t2〉 = n〈let y:none = b.succ() in t′2〉,

which means (n〈t2〉 ‖ C2) ↓cb
. The reverse direction is analogous.

A.4.2 Trace composition

The communication labels for external behavior are strictly dual, and also each
rule from Table 2.11 (resp. Table 4.8) has a dual counterpart. Since the labeled
transitions describe exactly the interface behavior, two component fitting to-
gether (in the sense of being mergeable and engaging in exactly dual sequences
of external steps) can perform together a sequence of internal steps.
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Lemma A.4.4 (! and -step). Assume C1 ! C2 ≡ C

1. If C1  Ć1, then C  Ć with Ć1 ! C2 ≡ Ć, for some component Ć .

2. If C1
τ
−→ Ć1, then C

τ
−→ Ć with Ć1 ! C2 ≡ Ć for some component Ć.

Moreover, the reduction step C  C′ concerns the same redex as the step C1  C′
1.

The same applies to
τ
−→-steps in part 2. Pictorially:

C1 ! C2

���O
�O
�O

C

��

�O
�O

Ć1 ! C2 Ć .

C1 ! C2

τ

��

C

τ

��
Ć1 ! C2 Ć .

Proof. For  in part 1, by induction on the length of derivation for C1  Ć1,
using the operational axioms from Table 4.5 (resp. 2.5 in the single-threaded
case) and the rules from Tables 2.7 and 2.6, covering structural congruence.
The only interesting case for merging is the one where C1 ≡ n〈t1〉 ‖ C′

1 and
C2 ≡ n〈t2〉 ‖ C′

2, i.e., when the two stacks of the thread, responsible for the
 -step, are actually merged. The fact that both can be merged means, either t1
can do an internal step and t2 is blocked waiting for return, or symmetrically
(where the symmetrical case cannot be true, since a blocked thread cannot do
a -step):

Case: n〈t1〉 = n〈let y:T ′ = e in t′1〉 and n〈t2〉 = n〈let x:T = o1 blocks for o2 in t′2〉
where n〈let y:T ′ = e in t′1〉  n〈let y:T ′ = e′ in t′1〉. The merge n〈t1〉! n〈t2〉 is
given by n〈let y:T ′ = e in ((let x:T = o1 blocks for o2 in t′2) ! t′1)〉, from which

the case follows. The argument for
τ
−→ in part 2 works analogously.

Lemma A.4.5 (! and communication step). Assume Ψ,Ξ ⊢ C1 and Ψ, Ξ̄ ⊢ C2

where C1 ! C2 ≡ C. If Ψ,Ξ ⊢ C1
γ?
−→ ∆́,Ψ, Ξ́ ⊢ Ć1 and Ψ, Ξ̄ ⊢ C2

γ!
−→ Ψ,

¯́
Ξ ⊢ Ć2,

then C ≡ ν(Φ́ \Φ). Ć1 ! Ć2. Pictorially:

Ψ,∆,Σ;E∆ ⊢ C1 : Θ,Σ;EΘ

��

γ? +3 Ψ, ∆́, Σ́; É∆ ⊢ Ć1 : Θ́, Σ́; ÉΘ

��

Ψ,Θ,Σ;EΘ ⊢ C2 : ∆,Σ;E∆
γ! +3

��

Ψ, Θ́, Σ́; ÉΘ ⊢ Ć2 : ∆́, Σ́; É∆

��
C1 ! C2

+3 ν(Φ́ \Φ). (Ć1 ! Ć2) .

Proof. By case analysis on the form of the communication label γ.

Case: rule CALLI0/CALLO, i.e., γ = ν(∆′,Θ′, n: thread).n〈[o]call or.l(~v)〉
i.e., Σ 6⊢ n. This case applies only to the multithreaded setting. By CALLI0 and
CALLO from Table 4.8 (plus the augmentation from Definition 5.1.4) and the
typing rules, the two components are of the following form: C1 as the receiver
does not contain the thread n and C2 is of the form

C2 ≡ ν(n: thread ,∆′,Θ′, ~n:~T ).(C′
2 ‖ n〈let x:T = os or.l(~v) in t〉) .
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Note that the sender augmentation o of the label needs not equal the “actual”
caller os, but some representative of the sender clique such that ∆ ⊢ o from
the perspective of C1. Furthermore, the sender to return to in the callee code
in C2, ⊙n, need not match the os; the connectivity premises of the operational
rules, however, guarantee that o, os, and ⊙n belong to the same clique. By
convention, ∆′ contains objects from C2 and Θ′ those lazily instantiated to be
contained in C1 from this communication step on. After γ?, resp., after γ!, we
get

Ć1 = C1 ‖ n〈let y:T = or.l(~v) in or returns y to ⊙n〉

and
Ć2 = ν(~n:~T ). (C′

2 ‖ n〈let x:T = os blocks for or in t〉) .

and for the contexts after the step ∆́ = ∆,∆′, Θ́ = Θ,Θ′, and Σ́ = Σ, n: thread .
Since the thread n is not contained in C1 before the communication step and
likewise the names from ∆′, Θ′, and ~n are new for C1, we get by definition of
the merge operator: C1 ! C2 ≡

ν(∆′,Θ′, n: thread , ~n:~T ). (C1 ! C′
2 ‖ n〈let x:T = osor.l(~v) in t)〉) ,

as the situation before the step. For the components Ć1 and Ć2 after the com-
mon step, the last two clauses in the definition of merging yield

Ć1 ! Ć2 ≡ ν(~n:~T ).(C1 ! C′
2 ‖ n〈let y:T = o1o2.l(~v) in t[y/x]〉) ,

which means
C1 ! C2 ≡ ν(Φ́ \Φ).(Ć1 ! Ć2) ,

as required. The cases for non-initial calls work similarly.

Case: γ = ν(∆′,Θ′).n〈return(v)〉
Note that unlike the cases for method calls, the thread name cannot be trans-
mitted boundedly. Furthermore, as we only transmit a single (non-compound)
value v and not a vector as for method calls, ∆′ or Θ′ is empty (or both). For
uniformity, we treat them both in one case. By the operational rules for external
steps from Table 4.8 (resp. Table 2.11 in the sequential setting), the components
must be of the following forms:

C1 ≡ ν(~n1:~T1). C
′
1 ‖ n〈t1〉

= ν(~n1:~T1). C
′
1 ‖ n〈let x:T = o1r blocks for os in t′1〉

and

C2 ≡ ν(∆′,Θ′, ~n2:~T2). C
′
2 ‖ n〈t2〉

≡ ν(∆′,Θ′, ~n2:~T2). C
′
2 ‖ n〈let x:T = os returns v to o2r; t

′
2〉

After the step, the components look as follows (cf. rules RETI and RETO):

Ć1 ≡ ν(~n1:~T1). C
′
1 ‖ n〈t

′
1[v/x]〉 and Ć2 ≡ ν(~n2:~T2). C

′
2 ‖ n〈t

′
2〉 .

For the update of contexts, we get ∆́ = ∆,∆′, Θ́ = Θ,Θ′, and Σ containing

the thread names remains unchanged, i.e., Σ́ = Σ. Since the names from ~n2,
∆′, and from Θ′ are new for C1 and ~n1 new for C2, the definition of ! for
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components and for threads (and using symmetry) gives (we assume that !

has a stronger binding power than ‖):

C1 ! C2 ≡ ν(∆′,Θ′, ~n1:~T1, ~n2:~T2). (C
′
1 ! C′

1 ‖ n〈t1 ! t2〉)

≡ ν(∆′,Θ′, ~n1:~T1, ~n2:~T2). (C
′
1 ! C′

1 ‖ n〈t
′
1[v/x] ! t′2〉)

≡ ν(∆′,Θ′). ν(~n1:~T1, ~n2:~T2). (C
′
1 ! C′

1 ‖ n〈t
′
1[v/x] ! t′2〉)

≡ ν(Φ́ \Φ).(ν(~n1:~T1).(C
′
1 ‖ n〈t

′
1[v/x]〉) ! ν(~n2:~T2).(C

′
2 ‖ n〈t

′
2〉))

= ν(Φ́ \Φ). (Ć1 ! Ć2) ,

which concludes the case.

Lemma A.4.6 (Trace composition). Assume Ψ,Ξ ⊢ C1 and Ψ, Ξ̄ ⊢ C2 with C1 !

C2 ≡ C. If Ψ,Ξ ⊢ C1
s

=⇒ Ψ, Ξ́ ⊢ Ć1 and Ψ, Ξ̄ ⊢ C2
s̄

=⇒ Ψ,
¯́
Ξ ⊢ Ć2, then C =⇒ Ć

where Ć ≡ ν(Φ́ \Φ). Ć1 ! Ć2 (remember: Φ is the name-binding part of Ξ, and Φ́

that of Ξ́). Pictorially:

Ψ,∆,Σ;E∆ ⊢ C1 : Θ,Σ;EΘ

��

s +3 Ψ, ∆́, Σ́; É∆ ⊢ Ć1 : Θ́, Σ́; ÉΘ

��

Ψ,Θ,Σ;EΘ ⊢ C2 : ∆,Σ;E∆
s̄ +3

��

Ψ, Θ́, Σ́; ÉΘ ⊢ Ć2 : ∆́, Σ́; É∆

��
C1 ! C2

+3 ν(Φ́ \Φ). (Ć1 ! Ć2) .

Proof. By induction on the length of reduction (cf. Table 3.1), using subject re-
duction from Lemma A.1.1 and the two parts of Lemma A.4.4 dealing with
 -steps resp. τ -steps of one of the partners, and Lemma A.4.5, dealing with
communication between the partners, resolved in a common τ -step.

A.4.3 Trace decomposition

This section contains the opposite property of the previous section: A reduc-
tion sequence of a component consisting of two sub-constituents can be de-
composed or “torn apart” into two complementary reduction sequences. In
the concurrent setting, we are working with augmented traces, and in decom-
position, both partners must agree also in the sender augmentation (as we re-
quired also for trace composition). As for trace composition, the development
is basically equivalent to the one in the object-based setting of [82].

Lemma A.4.7 (Expansion). Let e1 be an expression containing neither block nor
return statements and let t2 be of the form let x2:T2 = o1 blocks for o2 in t′2. If t1 !

t2 ≡ t, then n〈let x1:T1 = e1 in t1〉! n〈t2〉 = n〈let x1:T1 = e1 in t〉.

Proof. Immediate, by inspection of the rules, in particular the last one from the
second part of Table A.5.

Lemma A.4.8 (Expansion). Assume Ψ,Ξ ⊢ C′
1 ‖ n〈t1〉 and Ψ, Ξ̄ ⊢ C2 and let e be

an expression containing neither block nor return statements. If (C′
1 ‖ n〈t1〉) !C2 ≡

C′ ‖ n〈t〉, then C′
1 ‖ n〈let x:T = e in t1〉! C2 ≡ C

′
! n〈let x:T = e in t〉.
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Proof. If C2 does not contain n, then n〈t1〉 ≡ n〈t〉, and the result holds trivially.
Otherwise, C2 ≡ C′

2 ‖ n〈t2〉, where the thread n does not occur in the rest
C′

2. Let furthermore C1 abbreviateC′
1 ‖ n〈t1〉. In this case, the derivation of the

assumption C1 !C2 ≡ C′ ‖ n〈t〉 implies C′
1 !C′

2 ≡ C
′ and n〈t1〉!n〈t2〉 ≡ n〈t〉.

Thus we obtain with the help of Lemma A.4.7

C′
1 ‖ n〈let x:T = e in t1〉! C2 ≡ (C′

1 ‖ (n〈let x:T = e in t1〉) ! (C′
2 ‖ n〈t2〉)

≡ (C′
1 ! C′

2) ‖ (n〈let x:T = e in〉 t1 ! n〈t2〉)
≡ (C′

1 ! C′
2) ‖ n〈let x:T = e in t〉

≡ C′ ‖ n〈let x:T = e in t〉 ,

as required.

Lemma A.4.9 (Decomposition and top redex). If Ψ,Ξ ⊢ C1 and Ψ, Ξ̄ ⊢ C2 where

C1 ! C2 ≡ ν(~n:~T ). (C′ ‖ n〈let x:T = e in t〉), then

Ψ,Ξ ⊢ C1
s

=⇒ Ψ, Ξ́ ⊢ Ć1 and Ψ, Ξ̄ ⊢ C2
s̄

=⇒ Ψ,
¯́
Ξ ⊢ Ć2

(or symmetrically) with

Ć1 = ν(~n1:~T1). C
′
1 ‖ n〈let x:T = e in t1〉 ,

and where ν(Φ́ \Φ).ν(~n1:~T1).(C
′
1 ‖ n〈t1〉) ! Ć2 ≡ ν(~n:~T ). (C′ ‖ n〈t〉), with Φ =

∆,Θ and Φ́ = ∆́, Θ́.

Proof. By induction on the definition of !. We show a few exemplary cases,
especially the one of matching block/return.

Case: C1 ! C2 = C1 ! 0 ≡ C1 = ν(~n:~T ). (C′
1 ‖ n〈let x:T = e in t〉)

In this case, s and s̄ are empty, ~n1 = ~n, and t1 = t.

Case: C1 ! C2 = (ν(n:T ).C̃1) ! C2 ≡ ν(n:T ).(C1 ! C2),
where n /∈ fn(C2). By induction.

Case: C1 ≡ n〈let x1:T1 = o blocks for o2 in t1〉 and
C2 ≡ n〈let x2:T2 = o2 returns v to o′; t2〉 ,

with C1 ! C1 ≡ n〈t1[v/x]〉 ! n〈t2〉 ≡ ν(~n:~T ).(C ‖ n〈let x:T = e in t〉). Note
that o′ and o need not be equal for the merge. By the two complementary
operational rules RETI and RETO of Table 4.8, resp., of 2.11:

Ψ,Ξ ⊢ C1
γr?
−−→ Ψ,Ξ ⊢ n〈t1[v/x]〉 and Ψ, Ξ̄ ⊢ C2

γr !
−−→ Ψ, Ξ̄ ⊢ n〈t2〉 ,

with γr = n〈return(v)〉. Applying the induction hypothesis to the two post-
configurations after the return-step gives:

n〈t1[v/x]〉
s

=⇒ Ψ, Ξ́ ⊢ ν(~n1:~T1).(C
′
1 ‖ n〈let x:T = e in t1〉)

and

Ψ, Ξ̄ ⊢ n〈t2〉
s̄

=⇒ Ψ,
¯́
Ξ ⊢ Ć2 ,

where ν(Φ́ \Φ).ν(~n1:~T1).(C
′
1 ‖ n〈t1〉) ! Ć2 ≡ ν(~n:~T ). (C′ ‖ n〈t〉) (or symmetri-

cally), which yields the result.
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Lemma A.4.10 (Decomposition and -step). If C1 ! C2 ≡ C and C  Ć, then

there exists a trace s such that Ψ,Ξ ⊢ C1
s

=⇒ Ψ, Ξ́ ⊢ Ć1 and Φ, Ξ̄ ⊢ C2
s̄

=⇒ Ψ,
¯́
Ξ ⊢

Ć2, where ν(Φ́ \Φ). Ć1 ! Ć2 ≡ Ć and where Φ = ∆,Σ,Θ and Φ́ = ∆́, Σ́, Θ́.
Pictorially:

C1 ! C2

ss̄

��

C

��
�O
�O
�O

ν(Φ́ \Φ). (Ć1 ! Ć2) Ć .

Proof. We start by looking at the form of the component C. It is able to do an
immediate  -step, which means, some thread in C executes a top-most let-
command:10

C ≡ ν(~n:~T ). (C′ ‖ n〈let x:T = e in t〉) ν(~n:~T , ~n′:~T ′). (C′ ‖ C′′ ‖ n〈t́〉) ≡ Ć .

By Lemma A.4.9 we know that

Ψ,Ξ ⊢ C1
s

=⇒ Ψ, Ξ́ ⊢ C̃1

with C̃1 = ν(~n1:~T1). C
′
1 ‖ n〈let x:T = e in t1〉 and

Ψ, Ξ̄ ⊢ C2
s̄

=⇒ Ψ,
¯́
Ξ ⊢ Ć2

(or symmetrically) and where furthermore ν(Φ́ \Φ).(ν(~n1:~T1)(C
′
1 ‖ n〈t1〉)) !

Ć2 ≡ ν(~n:~T ). (C′ ‖ n〈t〉). Thus by Lemma A.4.8,

ν(Φ́ \Φ).(ν(~n1:~T1).(C
′
1 ‖ n〈let x:T = e in t1〉)) ! Ć2 ≡

ν(~n:~T ). (C′ ‖ n〈let x:T = e in t〉) = C .

Now define Ć1 as the component after performing the redex of the thread
which corresponds to the step C  C′, i.e.,

C̃1 = ν(~n1:~T1). C
′
1 ‖ n〈let x:T = e in t1〉 ν(~n1:~T1, ~n

′:~T ′). C′
1 ‖ C

′′ ‖ n〈t́1〉 , Ć1 ,

and furthermore Ć2 , C′
2. Thus with the help of Lemma A.4.4, Ć1 ! Ć2 = Ć,

as required.

Lemma A.4.11 (Decomposition and τ -step). If C1 ! C2 ≡ C and C
τ
−→ Ć, then

there exists a trace s such that Ψ,Ξ ⊢ C1
s

=⇒ Ψ, Ξ́ ⊢ Ć1 and Ψ,
¯́
Ξ ⊢ C2

s̄
=⇒ Ψ,

¯́
Ξ ⊢

Ć2, where ν(Φ́ \Φ). Ć1 ! Ć2 ≡ Ć. Pictorially:

C1 ! C2

ss̄

��

C

τ

��
ν(Φ́ \Φ). (Ć1 ! Ć2) Ć .

10Note that it is an invariant of the semantics that e is block/return-free. The internal semantics
is formulated without block and return statements, which have been introduced as augmentational
syntax to formulate the external semantics.
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Proof. The component C is able to do an immediate τ -step, which is either a
method call or a field update; in both cases, the τ -step looks as follows (in case
of a method call, F ′ = F ):

C ≡ ν(~n:~T ).(C′ ‖ o[c, F ] ‖ n〈let x:T = e in t〉)
τ
−→ ν(~n:~T ).(C′ ‖ o[c, F ′] ‖ n〈let x:T = e′ in t〉) ≡ Ć .

As in the corresponding proof of Lemma A.4.10 for  -steps, Lemma A.4.9
yields

Ψ,Ξ ⊢ C1
s

=⇒ Ψ, Ξ́ ⊢ C′
1

with C′
1 = ν(~n1:~T1). (C

′′
1 ‖ n〈let x:T = e in t1〉) and

Ψ, Ξ̄ ⊢ C2
s̄

=⇒ Ψ,
¯́
Ξ ⊢ C′

2

and where ν(Φ́ \Φ).(ν(~n1:~T1)(C
′′
1 ‖ n〈t1〉)) !C′

2 ≡ ν(~n:~T ). (C′ ‖ o[c, F ] ‖ n〈t〉).

Now we distinguish, whether the object o belongs to C′
1 or C′

2, i.e., whether
the τ -step in question is an internal step ofC′

1 or whether it is a synchronization
step of both C′

1 and C′
2.

Case: o ∈ dom(C′
1)

Thus, C′′
1 ≡ ν(~n

′′′
1 :~T ′′′

3 ).(C′′′
1 ‖ o[c, F ]), and hence

C′
1 ≡ ν(~n1:~T1, ~n

′′′
1 :~T ′′′

3 ).(C′′′
1 ‖ n〈let x:T = e in t1〉 ‖ o[c, F ]) .

Then define Ć1 as the component after executing the redex of the thread, which

corresponds to the step C
τ
−→ Ć , i.e.,

C′
1 ≡ ν(~n1:~T1). (C

′′
1 ‖ n〈let x:T = e in t1〉)

≡ ν(~n1:~T1, ~n
′′′
1 :~T ′′′

1 ). (C′′′
1 ‖ o[c, F ] ‖ n〈let x:T = e in t1〉)

τ
−→ ν(~n1:~T1, ~n

′′′
1 :~T ′′′

1 ). (C′′′
1 ‖ o[c, F

′] ‖ n〈let x:T = e′ in t1〉)

, Ć1 .

With the help of the composition Lemma A.4.4, Ć1 ! Ć2 ≡ Ć, as required.

Case: o /∈ dom(C′
1)

In this case, a communication step takes place betweenC′
1 and C′

2. Since we do
not allow direct field update across object boundaries, a method update can-
not cross component boundaries and the τ -step must be a method call. Note
also that the common step cannot be a return communication: Originally per-
formed by the global component C, values are not returned by τ -steps. There-
fore, the τ -step of C looks in particular as follows:

C ≡ ν(~n:~T ).(C′′ ‖ o[c, F ] ‖ c[(F ′′,M)] ‖ n〈let x:T = o′ o.l(~v) in t〉)
τ
−→ ν(~n:~T ).(C′′ ‖ o[c, F ] ‖ c[(F ′′,M)] ‖ n〈let x:T = M.l(o)(~v) in t〉) ≡ Ć .

We further distinguish whether the thread entersC′
2 for the first time by the

method call or not.
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Subcase: n ∈ dom(C′
2)

In this case, corresponding to a CALLI1-step, resp., CALLI2 for C′
2, the thread

is already contained blocked, resp., stopped within C′
2, i.e., C′

2 ≡

ν(~n2:~T2). (C
′′′
2 ‖ o[c, F ] ‖ c[(F ′′,M)] ‖ n〈let x2:T2 = o2 blocks for o3 in t2〉) ,

(A.32)
which corresponds to the case for CALLI1. The one for CALLI2, when the
thread is stopped within C′

2 is analogous. Now, the component C1 can per-
form the following trace:

Ψ,Ξ ⊢ C1
s

=⇒

Ψ, Ξ́ ⊢ C′
1

ν(Φ′).n〈call o.l(~v)〉!
−−−−−−−−−−−−→

Ψ, Ξ́′ ⊢ Ć1

with Φ′ 6⊢ n, and

Ć1 ≡ ν(~n
′′
1 :~T ′′

1 ). (C′′
1 ‖ n〈let x:T = o′ blocks for o in t1〉)

where (~n′′
1 :~T ′′

1 ) = (~n′
1:~T1) \Φ′, and where the contexts of Ξ́′ are determined by

the context update according to CALLO from Table 2.11. For the communica-
tion partner C2, using CALLI2 in the last step, we furthermore obtain the trace:

Ψ, Ξ̄ ⊢ C2
s̄

=⇒

Ψ,
¯́
Ξ ⊢ C′

2

ν(Φ′).n〈call o.l(~v)〉?
−−−−−−−−−−−−−→

τ
−→

Ψ,
¯́
Ξ′ ⊢ Ć2 ,

where
Ć2 ≡ ν(~n2:~T2). (C

′′′
2 ‖ o[c, F ] ‖ c[(F ′′,M)] ‖ n〈t́2〉

and with
t́2 = let x′2:T = M.l(o)(~v) in o returns x ′

2 to o3;
let x2:T2 = o2 blocks for o3 in t2 .

(A.33)

Note that the input rule CALLI1 is dual to CALLO as far as the update of the
assumption and commitment contexts is concerned. As for the role of the call-
ing object, in this case o′: Being not transmitted from the caller to the callee as
part of the (augmented) label, the code augmentation do not agree on the exact
identity of the caller (o′ vs. o3), the corresponding premises of the call-rules as-
sure that o′ and o3 belong to the same clique. Thus, the above step is possible

where the assumption and commitment contexts of Ć2 match the ones for Ć1.

As in the previous case, one can show Ć1 ! Ć2 ≡ Ć, as required.

Subcase: n /∈ dom(C′
2)

Analogous. This corresponds to a combination of CALLO (as in the previous
subcase) and CALLI0. The call label then is augmented

ν(Φ′).n〈[o′′]call o.l(~v)〉!

resp. the dual input label. The component C′
2 does not contain the thread n yet

(cf. equation (A.32), and t́2 looks as follows (cf. equation (A.33)):

t́2 = let x′2:T = M.l(o)(~v) in o returns x ′
2 to⊙n; stop . (A.34)
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Note that o′′ in the call label augmentation corresponds neither to the actual
sender o′ nor the sender ⊙n as stored in the code of the receiver. However,
both L-CALLI0 and L-CALLO can guess the same o′′, as representative of the
clique of o′ and ⊙n.

Lemma A.4.12 (Trace decomposition). Assume Ψ,Ξ ⊢ C1 and Ψ, Ξ̄ ⊢ C2 with
C1 ! C2 ≡ C. If C =⇒ C′, then

Ψ,Ξ ⊢ C1
t

=⇒ Ψ,Ξ′ ⊢ C′
1 and Ψ, Ξ̄ ⊢ C2

t̄
=⇒ Φ, Ξ̄′ ⊢ C′

2 ,

for some augmented trace s where C′ ≡ ν(Φ′ \Φ). C′
1 ! C′

2.

Proof. The property follows directly by induction on the number of internal
steps from Lemma A.4.10 and A.4.11.

A.4.4 Soundness

In the proof, as well as the one for completeness, a component is interacting
with a surrounding program context, i.e., both do complementary actions. See
Section 3.1 for the definition of t̄, the complementary trace of t.

Complementary traces describe the situation where component and envi-
ronment can act together and where the complementary communication steps
cancel out into internal behavior. When putting together two components,
their respective domains are disjoint wrt. named objects and classes. This dis-
jointness does not hold, however, for the code of the thread, since each half
of the program contains its share of the thread, with all the blocked method
bodies (except one) “stacked” one upon the other with the let construct.

To compose two components into a common one, the two “halves” of each
stack must be merged (“zipped”) to form one combined stack. Given two com-
ponents, we write C1 ! C2 for the result of the merging. Informally, C1 ! C2

can be understood as C1 ‖ C2, with the exception of the thread, where the par-
allel composition n〈t1〉 and n〈t2〉 is resolved into a single stack n〈t1 ! t2〉. The
definition is basically equivalent to the one in [82]

Proof of Soundness (Lemma 3.2.1). We have to show that if Ξ0 ⊢ C1 ⊑trace C2,
then Ξ0 ⊢ C1 ⊑obs C2.

Assume Ξ0 ⊢ C1 ⊑trace C2 and Ξ̄0, cb:barb ⊢ C0 as observer for C1, resp.,
for C2, where Ξ̄0 denotes Ξ0 with the roles of assumption and commitment
exchanged. We further assume (C1 ‖ C0) ⇓cb

, i.e., (C1 ‖ C0) =⇒ C′ ↓cb
for

some component C′. The parallel composition C1 ‖ C0 is well-typed (justified
by T-PAR; in particular, the initial configuration contains exactly one mention-
ing of the thread n, and not two). Hence the merging Lemma A.4.2 gives that
C1 ‖ C0 ≡ C1 !C0. Further by decomposition (Lemma A.4.12), C0 and C1 can
perform complementary traces, i.e.,

Ξ0, cb:barb ⊢ C1
t1=⇒ Ξ′, cb:barb ⊢ C′

1 (A.35)

and

Ξ̄0, cb:barb ⊢ C0
t̄1=⇒ Ξ̄′, cb:barb ⊢ C′

0 (A.36)
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whereC′ ≡ ν(Φ′ \Φ).C′
0!C′

1. By Lemma A.4.3, C′ ↓cb
implies that either C′

1 or
C′

0 strongly barbs on cb. Assume that Ξ0 ⊢ t1 : det∆, otherwise there is nothing
to show.11

Case: C′
1 ↓cb

The case, where the component itself reports success, cannot occur: C1 is well-
typed in a context without cb, i.e., Ξ0 ⊢ C1. This means, C1 cannot itself in-
stantiate an object of class cb. Neither is it possible that its partner C0 transmits
to C1 a reference to such an object in the trace t1, which would allow C1 it
invoke the success-method and report success thereby.12 To transmit the ref-
erence from C0 to C1 would require that C1 contained a method whose type
would mention cb (either as argument or as return type), which cannot be the
case.

Case: C′
0 ↓cb

, i.e., Ξ̄′, cb:barb ⊢ C′
0

succ
−−−→

where (in abuse of notation) the success-reporting external label succ is of the
form ν(b:cb).n〈call b.succ()〉!. Since C1 is well-typed in Ξ0, the reduction of

(A.35) can be carried out also in the tightened context Ξ0, i.e., Ξ0 ⊢ C1
t1=⇒ Ξ′ ⊢

C′
1. Hence the definition of Ξ0 ⊢ C1 ⊑trace C2 (cf. Definition 3.1.11) gives

Ξ0 ⊢ C2
t2=⇒ Ξ′′ ⊢ C′′

2 .

for some trace t2 with Ξ0 ⊢ t2 ≍−∆ t1 and with ⊢ t2 : det∆. Dualizing with
Lemma A.2.56 yields Ξ̄0 ⊢ t̄2 ≍−Θ t̄1 with ⊢ t̄2 ⊢: detΘ with Ξ̄0 ⊢ t̄2 : detΘ.
Since neither t1 nor t2 can mention cb, we obtain Ξ̄0, cb:barb ⊢ t̄2 ≍−Θ t̄1 with
Ξ̄0, cb:barb ⊢ t̄2 : detΘ. Therefore, the reduction (A.36) implies with the closure

Lemma C.2.2 Ξ̄0, cb : barb ⊢ C0
t̄2=⇒, and further by composition (Lemma A.4.6)

C2 ‖ C0 =⇒ C′′,

where C′′ ≡ ν(Φ′′ \Φ).C′
1 ! C′

2. Since additionally, C′′ ↓cb
, the result follows.

A.5 Completeness

For completeness, we start by proving a number of properties about the legal
trace system, before proving definability.

A.5.1 Legal traces

For the representation of the legal traces, cf. Section 3.3.2. The lemmas of this
section add up to show that the legal trace system is sound wrt. the opera-
tional semantics (cf. Lemma A.5.9). The term “soundness” as used here does
not compare the observational preorder ⊑obs (or ⊑may) and the trace-induced
order ⊑trace , but states that each interface behavior in the form of a trace pro-
duced by a concrete component is legal. In this sense, the legal trace system

11We could argue here, that Ξ0 6⊢ t1 : det∆ cannot be true, t1 must be deterministic from the
perspective of the observer, and furthermore we know Ξ0 ⊢ t1 : detΘ. We don’t need these facts
for soundness, however.

12Note that transmission does not imply instantiation. Objects of type cb are lazily instantiated
external to C1 ‖ C0.
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provides a sound approximation or abstraction of the interface behavior of a
component. As stressed throughout, an important part is the sound overap-
proximation of the heap in the form of the connectivity contexts.

An important side result of this section is that components are input-enabled
(Lemma A.5.5), i.e., a component accepts an incoming communication uncon-
ditionally (provided that according to the prior interface trace, the communi-
cation is possible).

The following lemma states a simple “invariant” about the form of the
graphs encoded by E∆ and EΘ for legal traces. The lemma is the analog to
Lemma A.1.3 for the operational semantics.

Lemma A.5.1 (Invariants). Derivations for legal traces, with Ξ0 ⊢ ǫ ⊲ s : trace at
the conclusion, preserve the following invariants for all subgoals Ξ′ ⊢ r′ ⊲ s′ : trace:

1. E′
∆ ⊆ ∆′ × (∆′ + Θ′) and E′

Θ ⊆ Θ′ × (Θ′ + ∆′).

2. dom(∆′) ∩ dom(Θ′) = ∅.

Proof. By straightforward induction on the rules from Table 3.5, using the def-
initions of context update (Definition 2.6.8 and 2.6.9).

Lemma A.5.2 (Soundness of balance). If Ξ0 ⊢ C and Ξ0 ⊢ C
t

=⇒, then ⊢ t :
wbalanced .

Proof. By straightforward induction on the length of t, using the characteriza-
tion of the number of calls and returns in a weakly balanced trace from Lemma
A.2.17.

Let the natural numbers kΘ and k∆ be defined as in Lemma A.2.7. First
it is clear from looking at the operational rules, that t is alternating, covering
one requirement of Lemma A.2.17. Thus is suffices to show by induction that
kΘ ≥ 0 and k∆ ≥ 0. As additional induction hypothesis we use: The number k♮

of stack-frames in ♮ equals kΘ. To pick one concrete case, assume that ∆0 ⊢ ⊙;
the argument for Θ0 ⊢ ⊙ is dual. For the base case, the claim holds trivially. In

the induction case, we are given Ξ0 ⊢ C0
t′

=⇒ Ξ ⊢ C
a

=⇒, and we distinguish
according to the nature of a.

Case: Incoming call: t = t′ γc?
By induction, t′ is weakly balanced, i.e., ⊢ t′ : wbalanced

−, and the length of t′

is even (since t′ is alternating and by ∆0 ⊢ ⊙). By Lemma A.2.7, k∆ ≥ 0 and
kΘ ≥ 0. The incoming call increases kΘ by one, preserving the invariant.

Case: Outgoing return: t = t′ γr!
Rule RETO requires that k♮ > 0. Hence, executing the return and thus decreas-
ing kΘ and k♮ both by 1 preserves the invariants.

Case: Outgoing call: t = t′ γc!
Straightforward. Note that both k♮ and kΘ remain unchanged.

Case: Incoming return: t = t′ γr?
Since t′ is weakly balanced we know stronger that ⊢ t′ : wbalanced−, since t
is alternating and (in the considered case of ∆ ⊢ ⊙) that the length of t′ is
even. Furthermore, to have rule RETI applicable, k♮ ≥ 1. By Lemma A.2.7(4),
kΘ = k∆, i.e., also k∆ ≥ 1, using kΘ = k♮ as induction hypothesis. Hence,
the incoming return, decreasing k∆ by 1 and leaving kΘ and k♮ unchanged,
preserves the invariants.
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The case for Θ0 ⊢ ⊙ is similar. The only critical case is the one for incoming
returns. Now, the length of t′ is odd instead of even. Hence, part 1b of Lemma
A.2.7 applies, yielding that after t′, k∆ = kΘ + 1, as the last label of t′ must be
outgoing. Therefore, also in this situation, the invariants hold after the step.

To capture the possible reorderings of traces, the replays, etc., which all de-
pend on the connectivity after executing a trace, we use Definition 3.1.1 analo-
gously for legal traces:

Definition A.5.3 (Acquaintance after a trace). Assume a legal trace Ξ0 ⊢ rs :

trace. We write Ξ0
r

=⇒ Ξ, if the derivation for Ξ0 ⊢ r s : trace uses Ξ ⊢ r ⊲ s : trace

as intermediate goal. Furthermore we write Ξ0 ⊢ r ⊲ o1 ⇌ o2 for Ξ0
r

=⇒ Ξ and
Ξ ⊢ o1 ⇌ o2. The notation is used analogously for⇌→֒.

Note that in the definition of Ξ0
r

=⇒ Ξ, the post-configuration Ξ is deter-
mined by Ξ0 and the trace r; there is only one legal trace derivation of Ξ0 ⊢
rs : trace. Furthermore, the “future” s does not influence Ξ. The next lemma
formalizes the observation that the transformation of context by the external
semantics coincides with the transformation by the rules of the legal traces.
Note that we cannot prove the reverse direction of LemmaA.5.4(1) at this stage,

where by reverse direction we mean: Given Ξ0
t

=⇒ Ξ, then there exits a compo-

nent Ξ0 ⊢ C0 such that Ξ0 ⊢ C0
t

=⇒ Ξ ⊢ C. This property is a crucial ingredient
for definability, i.e., also of completeness, and is shown later.

Lemma A.5.4.

1. If Ξ0 ⊢ C0
t

=⇒ Ξ ⊢ C, then Ξ0
t

=⇒ Ξ.

2. If Ξ0
t

=⇒ Ξ1 and Ξ0 ⊢ C
t

=⇒ Ξ2 ⊢ C, then Ξ1 = Ξ2.

In the concurrent setting, the lemma holds analogously for augmented traces.

Proof. By inspection of the rules from Table 2.11 and 3.5: Both sets of rules use
the same premises to check and update the contexts.

Next we characterize the configuration of an input-enabled component.
An enabled incoming return is a special case of that situation. Cf. Defini-
tion 3.3.3 respectively Definition 3.3.4 and equation (3.15) for the definition of

Ξ0 ⊢ t ⊲ os
a
→ or (enabledness of a as next interaction after trace t with sender

os and receiver or). Note that we do not need (nor have) an analogous charac-
terization for output-enabledness. One difference between a input enabled and
an output enabled component, relevant in this context, is that if the component
is input enabled, it is itself inactive and thus, the thread is at some definite
point, as characterized by the lemma. An output enabled component is itself
active, i.e., it is performing (if not deadlocked) internal actions before doing a
next outgoing communication. Hence we cannot expect a characterization as
precise as in the case of input-enabledness.

Lemma A.5.5 (Input enabled components). Assume Ξ0 ⊢ C
t

=⇒ Ξ́ ⊢ Ć, starting
from an initial configuration.
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1. If Ξ0 ⊢ t ⊲ or
γ?
← os, the component Ć is of one of the following three forms:

(a) If t = ǫ, then the thread ♮ is not contained in Ć.

(b) If t is not balanced, then Ć = ν(Φ)(C′ ‖ ♮〈let x:T = o′r blocks for os in t〉).

(c) If t 6= ǫ is balanced, then Ć = C′ ‖ ♮〈stop〉.

2. If γ is a return, only part (1b) is possible.

Proof. The property follows straightforwardly from the previous lemmas. Note
that the three subcases of part 1 are mutually exclusive, as the empty trace
is balanced. Note further that, since t is weakly balanced (Lemma A.5.2),

Ξ0 ⊢ t ⊲ or
γ?
← os is well-defined (Definition 3.3.4 insists on a weakly bal-

anced trace to assure that sender os and receiver or are defined). First it follows
by straightforward induction on the length of the trace t that the number kΘ

(as defined in Lemma A.2.7) equals k♮, the number of stack-frames in ♮. Fur-
thermore, by Lemma A.2.19, t γ? is weakly balanced. Since by Lemma A.2.1,
t γ? is alternating, either t is empty, or the last label of t is outgoing. If t = ǫ,

Ξ0 ⊢ ǫ ⊲: or
γ?
← os implies ∆0 ⊢ ⊙ (and os = ⊙), i.e., the threads starts in

the environment and case 1a applies. Otherwise, as said, the last label of t
must be outgoing. For outgoing calls, i.e., t = t′ γ′c! = t′ ν(Φ′)〈call o′r.l(~v〉!,
the sender of γ? equals the receiver of γ′c! (cf. Definition 3.3.4), i.e., o′r = os.
Note that in this case, t is not balanced. The rules from Table 2.11 directly give
that the component is of the form as required by part 1b. If the last action of
t was an outgoing return, i.e., t = t′ γr!, we argue as follows. If t is balanced,
kΘ = k♮ = 0 (Lemma A.2.7(2)). Hence the thread is of the form ♮〈stop〉, as re-
quired by part 1c. If t is not balanced, kΘ = k♮ > 0 (Lemma A.2.7(3)), i.e., the
call stack in ♮ is not empty and the thread is of the form as required by 1b. We
need to check still, that the identity of os matches with the identity mentioned
in the block-syntax, which follows from the definition of sender and receiver
and the pop-function (Definition 3.3.4).

Remains the special case for returns, i.e., γ? = γr?. In this case, t is not
balanced. Hence, with the same argument as in the corresponding situation
above, the thread is of the form as required by part 1b. That the sender os

matches the identity as mentioned in the code is again a consequence of Defi-
nition 3.3.4.

The following lemma expresses that whether or not a component does an
input step is determined only by the environment in the following sense: After
having performed a trace t, an incoming communication step is possible, if the
action is enabled after the history t, and checking input enabledness consults
the environment contexts, only, plus the history of interaction (cf. the notations
from equation (3.15) and from (2.17). In particular, the form of the thread inside
in the component is such that the input step is possible (note that the different
rules for input from Table 2.11 impose different restrictions on the form of the
thread). This means that the restriction imposed on the possibility of taking an
input step by the form of the component thread, which is an internal represen-
tation detail, is adequately represented by checking input enabledness after a
trace at the interface (cf. Lemma A.5.5) plus the context checks in the premises
of the rule.
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Lemma A.5.6 (Input enabledness). Assume Ξ0 ⊢ C
t

=⇒ Ξ ⊢ C. If Ξ0 ⊢ t γ? :

trace, then Ξ ⊢ C
γ?
−→.

Proof. By Lemma A.5.5 on page 208, after trace t, thread ♮ of the component is
of one of the forms (absent, blocked, or stopped) as stipulated by the respective
cases of that lemma. In case, t is empty, case 1a applies, i.e., the thread is not
contained in the component. Thus, Ξ0 ⊢ C0 can do the input by CALLI0, where
the premise for context check is covered by the premise of L-CALLI0. The
premise ∆0 ⊢ ⊙ follows from the assumption that the thread is input-enabled
after the empty trace (cf. Definition 3.3.3 for the definition of enabledness, using
also Lemma A.2.13 on page 159 and the fact that the empty trace is balanced;
note that for t = ǫ, os = ⊙).

If t is non-empty, only parts 1b or 1c of Lemma A.5.5 apply, depending on
whether t is balanced or not. The assumption Ξ0 ⊢ t γ? : trace implies with

Lemma A.5.4(1) that Ξ0
t

=⇒ Ξ
γ?

=⇒. By the premise of rule L-CALL1, L-CALL2,

or L-RETI, the thread is input-enabled after t, i.e., Ξ0 ⊢ r ⊲ or
a
← os.

Assume first that a is a call. If t is not balanced (but weakly balanced),
the thread is blocked, with Lemma A.5.5(1b), waiting for os. This means,
rule CALL1 applies, allowing Ξ ⊢ C to perform the input. If otherwise t is
balanced, the thread is stopped in C, according to part 1c of the lemma. By
Lemma A.2.13, pop t is undefined. Hence, the definition of call enabledness,
especially equation (3.12), gives ∆0 ⊢ ⊙. Hence, CALLI2 applies, allowing the
required input step.

If, alternatively, the label a is a return, the thread can only be blocked, i.e.,
of the form as stated by part 1b of the lemma. This means, RETI applies, which
concludes the case.

The following easy lemma characterizes the change of enabledness when a
trace is extended by a communication label.

Lemma A.5.7 (Enabledness: forward). Assume a legal trace Ξ ⊢ r : trace accord-
ing to Table 3.5.

1. If γc? is an input-call label and r is input-call enabled, then r γc? is output-
return enabled. Analogously, with sender and receiver mentioned: If Ξ ⊢ r ⊲

or
γc?
← os, then Ξ ⊢ r γc? ⊲ or

γr!
→ os, for some return label γr.

2. If γr is a return label and r is input-return enabled, then r γr? is output enabled.

Analogously, with sender and receiver mentioned: If Ξ ⊢ r ⊲ or
γr?
← os, then

Ξ ⊢ r γr? ⊲ or
γ!
→ o′.

The situation in both cases is dual for output labels.

Proof. Cf. the definition of the pop-operation and of enabledness (Definition 3.3.1
and Definition 3.3.3). Both parts of the lemma follow directly from the defini-
tion of enabledness. Especially, pop (r a) = a (when a is a return label) is a
direct consequence of the definition of pop and balance.

Lemma A.5.8 (Legal trace: forward). Assume Ξ0 ⊢ t : trace . If

1. Ξ0 ⊢ t ⊲ or
γ?
← os and
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2. Ξ0
t

=⇒ Ξ and additionally Ξ́ = Ξ + or
γ?
← os with Ξ́ ⊢ or

⌊a⌋
← os : T ,

then Ξ0 ⊢ t γ? : trace. If additionally Ξ0 ⊢ t : det∆ and Ξ0 ⊢ t ⊲ γ? : det∆, then
Ξ0 ⊢ t γ? : det∆. The latter implication holds for detΘ, as well. The lemma holds
dually for γ!.

Proof. Straightforward.

The following lemma states that the type system for legal traces yields a
sound over-approximation of the actual behavior of the transition relation.

Lemma A.5.9 (Soundness of legal traces). If Ξ0 ⊢ C and Ξ0 ⊢ C
t

=⇒, then
Ξ0 ⊢ t : trace.

Proof. By straightforward induction on the length of t, with additional help of
subject reduction (cf. Lemma A.1.1) and Lemma A.5.5.

Lemma A.5.10 (Trace duality). If Ξ0 ⊢ t : trace, then Ξ̄0 ⊢ t̄ : trace.

Proof. Obvious: Each rule of Table 3.5 has a dual counterpart.

A.5.2 Definability

The next lemmas show some properties of the replay relation 42Θ from Def-
inition 3.1.8. The lemmas hold in dual form for 42∆, as well. Clearly, 42Θ is
reflexive and transitive, and ≍−Θ symmetric. Furthermore, by definition, we
have the duality Ξ0 ⊢ s 42Θ t iff Ξ̄0 ⊢ s̄ 42∆ t̄ (cf. Lemma A.2.56).

Lemma A.5.11 (Swapping). Assume two legal traces Ξ0 ⊢ t u v : trace and Ξ0 ⊢

t v : trace . Assume further Ξ0
tuv
=⇒ Ξ́, and that u and v belong to different cliques.

Then Ξ0 ⊢ t v u ≍−Θ t u v.

Proof. For the reduction relation Ξ0
tuv
=⇒ Ξ́, cf. Definition A.5.3. For all compo-

nent objects o from the clique of v, we have o↓ tuv = o↓ tvu = o↓ tv. Analo-
gously for all component objects o′ from the clique of u, o′↓ tuv = o′↓ tvu =

o′↓ tu. Hence Ξ0 ⊢ tuv ≍−Θ tvu, as required.

Note that the two trace segments being swapped occur at the end of the
global trace. Indeed, the equality t1v u t2 ≍−Θ t1 u v t2 does in general not hold
(for unaugmented traces).

Lemma A.5.12. Assume two legal traces Ξ0 ⊢ t u v : trace and Ξ0 ⊢ t v : trace.

Assume further Ξ0
tuv
=⇒ Ξ́, and that u and v belong to different cliques. Then Ξ0 ⊢

t v 42Θ t u v.

Proof. A straightforward consequence of the swapping Lemma A.5.11.

Proof of Lemma 3.3.23 on page 75 (total correctness). We show Ξ0 ⊢ Ct
r

=⇒ Ξ ⊢ C
for all prefixes r 4 t. Let t = r s. As usual, Ξ = ∆;E∆ ⊢ Θ;EΘ . The proof
proceeds by induction on r, using the following induction hypotheses:

1. Ξ ⊢ C :: s (cf. Definition 3.3.22).
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2. Depending on the enabledness condition after trace r, the thread in Ct is
of the form as shown in Table A.6. This is meant as follows: if, after r, the
thread is

• input-return enabled, clause tire applies.

• input-call enabled but not input-return enabled, clause tie applies.

• output-return enabled, clause tore applies.

• output-call enabled, but not output return-enabled, toe applies.

The clause ǫ for tie denotes the absence of the thread in the component.

tie ::= ǫ | stop | tire
tire ::= tibody ; tie | tiblocked
tibody ::= let y:T ′ = or blocks for os

in ( let x:T = tisync ; t
o
sync in or returns x to o′)

tiblocked ::= let y:T ′ = or blocks for os in tisync ; t
o
sync

tore ::= tobody ; tie
tobody ::= let x:T = tosync in os returns x to or

toe ::= tosync

Table A.6: Input and output enabled threads

Case: r = ǫ
In this case Ξ0 ⊢ Ct

ǫ
=⇒ Ξ0 ⊢ Ct, and part 1 is trivially satisfied, since there are

no component objects (cf. equation (3.49)).

First it is clear that the component cannot be return enabled after the empty
trace: The empty trace is balanced (cf. rule B-EMPTY+ resp. B-EMPTY− of Ta-
ble 3.3). Hence, pop ǫ = ⊥ (cf. Lemma A.2.13 and Definition 3.3.1 for pop).
Hence the condition for return-enabledness does not apply (cf. Definition 3.3.3).

Assume then that the component is initially input enabled after ǫ (but not
input-return enabled, as just argued). As just mentioned, pop ǫ = ⊥, and ∆0 ⊢
⊙ (by equation (3.12) for input-call enabledness). Therefore, by construction,
Ct does not contain the thread (Definition 3.3.20) and hence, condition of input-
enabled threads in part 2 is met (with tie = ǫ).

If otherwise the component is output-enabled (but not output-return en-
abled), we have analogously Θ0 ⊢ ⊙, which means according to equation
(3.48), the initial thread code is of the form ♮〈t0〉 = ♮〈let x:ci = new ci in x.start()〉
for some component class ci. The initial configuration thus starts as follows (cf.
the operational rules from Table 2.5, in particular NEWOi for instantiation and
CALLIi for the internal call to start . For the definition of the start-method, see
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Definition B.2.17.):13

Ξ0 ⊢ C′
0 ‖ ci[(Fi, Mi)] ‖ ♮〈t0〉 =⇒

Ξ0 ⊢ C′
0 ‖ ci[(Fi, Mi)] ‖ ν(o⊙ :ci).(o⊙ [Fi, ci] ‖ ♮〈o⊙ .start()〉) =⇒

Ξ0 ⊢ C′
0 ‖ ci[(Fi, Mi)] ‖ ν(o⊙ :ci).(o⊙ [Fi, ci] ‖ ♮〈Mi.start(o⊙ )()〉) =⇒

Ξ0 ⊢ C′
0 ‖ ci[(Fi, Mi)] ‖ ν(o⊙ :ci).(o⊙ [Fi, ci] ‖ ♮〈to

sync()〉) .

Hence, the thread is of the form as required by part 2.

Case: r = r′a

By induction, Ξ0 ⊢ Ct
r′

=⇒ Ξ ⊢ C. We distinguish according to the nature of
the next label a.

Subcase: Incoming call: a = ν(∆′,Θ′).〈call or.l(~v)〉?
As prefix of the legal trace t, also r′a is legal. Hence, by the premise of one of
the L-CALLI-rules (depending on the situation, only one of the two L-CALLI-
rules apply) , r′ is input-enabled, i.e., Ξ ⊢ r′ ⊲ a. By induction, the thread is
of the corresponding form tie from Table A.6 (in case that a is stronger input-
return enabled, the thread is of the from tire , which is subsumed under tie in
the grammar of Table A.6). For the reduction, we obtain:

Ξ ⊢ C =

Ξ ⊢ ♮〈tie〉 ‖ C′ a
−→

Ξ́ ⊢ ♮〈let x:T = or.l(~v) in or returns x to os; tie〉 ‖ C′ ‖ C(Θ′)
τ
−→

Ξ́ ⊢ ♮〈let x:T = Mr.l(or)(~v) in or returns x to os; tie〉 ‖ C′ ‖ C(Θ′) =

Ξ́ ⊢ ♮〈let x:T = tbody [or/s][~v/~x] in or returns x to os; tie〉 ‖ C′ ‖ C(Θ′) =

Ξ́ ⊢ ♮〈let x:T = ti
sync(~v); to

sync in or returns x to os; tie〉 ‖ C′ ‖ C(Θ′) .

The reduction is again justified by the rules from Table 2.5 and 2.11, where
tbody is the body of the invoked method labeled l. The external step a is is jus-
tified by CALLI1 or CALLI2, depending on whether the thread is input-return
enabled after r′ (CALLI1) or not input-return enabled but only input-call en-
abled (CALLI2). Remember: C(Θ′) are the lazily instantiated objects created
in the input step. The rule CALLI0 does not apply. The τ -step is justified by
the rule CALLi for internal calls, where C′ = C′′ ‖ cr[(Fr ,Mr)] and where Mr

in the step refers to the methods of the class of the receiver or. The premise

Ξ0 ⊢ r′ ⊲ or
a
← os : ~T → , (determining sender and receiver plus the ex-

pected argument types) of the respective L-CALLI rule assures together with

the premise Ξ́ ⊢ or
⌊a⌋
← os : ~T → asserting well-typedness, that or is a compo-

nent object (cf. equation (3.15) and Definition 3.3.4 for the definition of sender
and receiver of a label and Definition 2.6.11 for well-typedness of labels, in
particular LT-CALLI). See further equation (3.47) from Definition 3.3.20 for the
definition of the method body of l, which is a public method.

The code tisync(~x) for input synchronization is given in equation (B.3) in

Definition B.2.2, where tisync contains as free variables the formal parameter of
the method it resides in, here ~x. In the above reduction, the formal parameters
~x are replaced by ~v, the actual parameters. Note that tisync(~x) is the only part
of tbody containing free occurrences of ~x, in particular, tosync does not contain ~x,
and hence the substitution tosync [~v/~x] is without effect.

13The object o⊙ created initially is not identical to the symbol ⊙ used in the contexts; of course it
is meant to represent the initial clique in the code. Note, however, that o⊙ will never be exported
to the environment. Hence, it is also not important, which class/interface it possesses; any class of
the component can be used.
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The preconditions of the lemma for input synchronization apply at this
point —the lazily instantiated component objects C(Θ′) are yet undefined, the
data structures of the pre-existing objects are yet unchanged; cf. the input syn-
chronization Lemma B.3.1— hence, the reduction continues, executing tisync(~v):

Ξ́ ⊢ ♮〈let x:T = ti
sync(~v); to

sync in or returns x to os; tie 〉 ‖ C′ =⇒

Ξ́ ⊢ ♮〈let x:T = to
sync in or returns x to os; tie〉 ‖ C′′ =

Ξ́ ⊢ Ć ,

with Ξ́ ⊢ Ć :: s, as required by part 1.
As for enabledness in part 2: As stated at the beginning of this subcase,

the thread is input-enabled after r′. By Lemma A.5.7(1), r′a is output-return
enabled. Thus, at the end of the reduction, the thread at is of the required form
(cf. the clause for tore for output-return enabledness).

Subcase: Incoming return: a = ν(∆′,Θ′).〈return(v)〉?
By the analogous arguments as in the previous subcase, the thread is input-
return enabled, i.e., Ξ0 ⊢ r′ ⊲ a. By induction, the thread is of the correspond-
ing form tire ; in particular the thread is blocked. In one of the cases, tire is of
the form tibody ; tie (the alternative tiblocked for tire works similarly). The reduc-
tion then looks as follows:

Ξ ⊢ C = Ξ ⊢ C′ ‖ ♮〈tire〉 =

Ξ ⊢ C′ ‖ ♮〈let y:T ′ = or blocks for os in (let x:T = ti
sync(y); to

sync in or returns x to os); tie〉
a
−→

Ξ́ ⊢ C′ ‖ C(Θ′) ‖ ♮〈(let x:T = ti
sync [v/y]; to

sync in or returns x to os); tie 〉 =⇒

Ξ́ ⊢ C′′ ‖ C(Θ′) ‖ ♮〈(let x:T = to
sync in or returns x to os); tie〉 =

Ξ́ ⊢ Ć .

The first, external step is justified by RETI from Table 2.11. Note that the let-
bound variable y to receive the return value occurs free only in the code tisync

for input synchronization (cf. Definition B.2.2, where tisync for returns, there

written tisync(return, y) as meta-mathematical notation, mentions the return-
variable y).

As in the previous subcase, Ξ́ ⊢ Ć :: s follows by Lemma B.3.1 for input
synchronization. For enabledness: The thread in C is input-return enabled.
Hence by Lemma A.5.7(2), the thread is output enabled after r′a, i.e., output-

call enabled or stronger output-return enabled. Thus, Ξ́ ⊢ Ć is of the required
form tore . In the mentioned alternative case where tire = tiblocked , the reduction
yields toe , which conforms to the requirements from Table A.6, as well.

Subcase: Outgoing call: a = ν(∆′,Θ′).〈call or.l(~v)〉!
By analogous arguments as in the previous subcases, the thread is output en-
abled or stronger output-return enabled after r′, and thus of the form toe or tore .
In either case, the code starts with output synchronization, where the code for
tosync is given in equation (B.11) in Definition B.2.11. In case of output-return
enabledness, the reduction sequence looks as follows:

Ξ ⊢ C =

Ξ ⊢ C′ ‖ ♮〈tore〉 =

Ξ ⊢ C′ ‖ ♮〈to
body ; tie 〉 =

Ξ ⊢ C′ ‖ ♮〈let x:T = to
sync in os returns x to o′; tie〉 =⇒

Ξ ⊢ C′′ ‖ ♮〈let y:T ′ = or.l(~v) in (let x = ti
sync(y); to

sync) in os returns x to o′; tie〉
a
−→

Ξ́ ⊢ C′′ ‖ ♮〈let y:T ′ = os blocks for or in (let x:T = ti
sync(y); to

sync) in os returns x to o′; tie〉 .
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The reduction sequence, executing tosync , and part 1 of the lemma follows by
Lemma B.3.2 for output synchronization. Furthermore, the thread code of in
the post-configuration complies to requirements of part 2, being input-return
enabled.

Subcase: Outgoing return: a = ν(Θ′,∆′).〈return(v)〉!
The case for outgoing return works similarly, using again the Lemma B.3.2 for
output synchronization.

The next lemma says, the the known objects and names are stored appro-
priately in the scripts data structure. Remember also Notation 3.3.18.

Lemma A.5.13. Let t be a legal trace and Ξ0 ⊢ Ct given by Definition 3.3.20. Assume

further Ξ0 ⊢ Ct
s

=⇒ Ξ ⊢ C, and the following two sets of object identities: O1 = {o′ |
Ξ ⊢Θ o ⇌ o′} and O2 = {o′ | Ξ0 ⊢Θ o ⇌; →֒ o′}. Note that O1 contains only
component objects and denotes the clique of o, i.e., O1 = [o]/Ξ

(or [o] for short), and
O2 contains only environment objects. Let furthermore (σ, š) an arbitrary script from
[o].script . Then O1 = ranΘ(σ) and O2 = ran∆(σ).

Proof. By induction on the length of trace s. For the base case s = ǫ, the prop-
erty holds vacuously: O1 and O2 are empty, and furthermore, there does not
exist any component object yet. The induction step for output steps is covered
by the code of stepo from Definition B.2.10, for input steps by the code of stepi

from Definition B.2.8.

Proof of Lemma 3.3.24 on page 75 (Exactness/partial correctness). So assume Ξ0 ⊢

Ct
r

=⇒. We need to show that Ξ0 ⊢ r 42Θ t.
According to Definition 3.1.8 of42Θ, we need to show that for all component

cliques [o]/Ξ
(or [o] for short) after r, there exists a renaming t′ of t such that

[o]↓ r 4 [o]↓ t
′, i.e., that for all component object names o ∈ [o]/Ξ

, o↓ r 4 o↓ t
′.

Note that r is legal, i.e., Ξ0 ⊢ r : trace, using soundness of legal traces from
Lemma A.5.9. I.e., r and t are legal in the same context Ξ0. In the following, we
abbreviate [o]/Ξ

by [o], analogously for [o′], . . .

Assume Ξ0 ⊢ Ct
r

=⇒ Ξ ⊢ C. The invariant of Lemma B.4.12, equation (B.43)
gives for the reduction of Ct, that for all component cliques [o′] according to Ξ,
for all scripts (σ, š) from [o′].scripts and for all component objects o ∈ ranΘ(σ):

řxσ = o↓ r and š = šx and ťx = řxšx where x = σ−1(o) . (A.37)

The ťx corresponds to the projection of ť to the role x, i.e., the “static” variant
of the projection o↓ t of t to a component object o, when x is the role for o
(cf. Definition 3.1.3 for the definition of projection). The řx is a prefix of ťx,
and šx the remaining postfix. For the abbreviations ťx, řx, and šx, see also the
mentioned Lemma B.4.12. Informally, (A.37) means that the actual past o↓ r of
an object o corresponds to the some “static” past řx of ťx, where o is interpreted
to play the role x, stipulated by x = σ−1(o). Furthermore, the still open future
in scripts corresponds to the rest of ťx.

Independent from the informal interpretation: For the (arbitrary) clique [o′]
we have [o′] = ranΘ(σ) (Lemma A.5.13). I.e., for all objects o from the compo-
nent clique [o′], the above equation (A.37) holds. Now, řxσ = o↓ r and řx 4 ťx
implies that for all objects o from [o′], that o↓ r 4 t, as required.
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A.5.3 Completeness argument

Proof of Lemma 3.3.26 on page 76. See Definition 3.3.25 for the relations42•
∆, resp.,

42•
Θ, and ⊑nondet

trace . Assume Ξ0 ⊢ C1
t1=⇒, and distinguish according to the form

of trace t1.

Case: t1 = ǫ

Choosing t2 = ǫ gives immediately Ξ0 ⊢ C2
t2=⇒, as required, and furthermore,

the two parts of Definition 3.3.25 for 42•
∆ are satisfied, relating t1 and t2.

Assume then a non-empty trace t1 with Ξ0 ⊢ C1
t1=⇒, and let [o1] be an arbi-

trary observer clique after t1. Note that the replay relation is considered from
the perspective of the environment: The observer cannot distinguish certain
orders or whether one behavior is done once or more than once.

Case: t1 = r1 γ!
We start with part 2 and dealing with the case where the last interaction of
the clique [o1] is an output (from the perspective of C1. So for the observer,
it is an input). Consider the dual trace t̄1, i.e., the trace from the perspective
of the receiver and observer. As t1 is legal (using soundness of the legal trace
system from Lemma A.5.9), the complement is legal, too (by trace duality from
Lemma A.5.10), i.e.,

Ξ̄0 ⊢ r̄1γ? : trace .

It is easy to see —there are no arguments to the succ-call and hence there is no
connectivity information involved; furthermore, extending a weakly balanced
trace by the call does not break the balance conditions— that also the trace
extended by one outgoing success-reporting action is legal, i.e.,

Ξ̄′
0 ⊢ r̄1 γ? succ! : trace,

where succ abbreviates (νb:cb).〈call b.succ()〉!, and where the context Ξ̄′
0 is given

by extending the environment ∆̄0 to ∆̄0, cb:barb. Note that the sender clique of
the call succ! is the receiver of γ? (Lemma A.2.14(2)).

Consider the component Ξ̄′
0 ⊢ Ct̄1succ! and let us abbreviate the observer

Ct̄1succ! as CO , and furthermore let Ξb stand for the context cb:barb. Since ini-
tially, C1 and CO are static, C1 ! CO = C1 ‖ CO . By total correctness of
CO (Lemma 5.2.8) and composition (Lemma A.4.6), Ξb ⊢ C1 ‖ CO =⇒ Ξb ⊢

Ć1,O ↓cb
, or more explicitly:

Ξb ⊢ C1 ‖ CO
t1=⇒
t̄1

Ξb ⊢ Ć1,O ↓cb
,

where the internal reduction =⇒ is decorated by the two complementary traces

and where furthermore Ć1,O = ν(Φ́ \Φ).Ć1 ! ĆO (= ν(Φ́).Ć1 ! ĆO since Φ
contains no bindings for object names). As Ξ0 ⊢ C1 ⊑may C2, we can replace
C1 by C2 and still observe success (Definition 2.5.1), i.e., Ξb ⊢ C2 ‖ CO =⇒↓cb

.
By trace decomposition (Lemma A.4.12),

Ξb ⊢ C2 ‖ CO
t2=⇒
t̄2

Ξb ⊢ Ć2,O ↓cb
(A.38)

for some trace t2, more precisely:

Ξb,Ξ0 ⊢ C2
t2=⇒ Ξb, Ξ́2 ⊢ Ć2 and Ξb, Ξ̄0 ⊢ CO

t̄2=⇒ Ξb,
¯́
Ξ2 ⊢ ĆO , (A.39)
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with C2,O = ν(Φ́2)Ć2 ! ĆO. For the observer, this means

Ξb, Ξ̄0 ⊢ CO
t̄2succ

′!
=⇒ (A.40)

Note that succ′! may be an α-variant of succ!. By partial correctness from
Lemma 3.3.24,

Ξb, Ξ̄0 ⊢ t̄2succ′! 42Θ t̄1succ! (A.41)

Since succ, resp., succ′ is unique, i.e., no α-variant occurs in t̄2 or in t̄1, by the
shortening Lemma C.2.1

Ξb, Ξ̄0 ⊢ t̄2 42Θ t̄1 . (A.42)

Without the trailing label succ, we can strengthen that statement to

Ξ̄0 ⊢ t̄2 42Θ t̄1. (A.43)

By Lemma A.2.56, this is equivalent to the dual judgment Ξ0 ⊢ t2 42∆ t1, cov-
ering part 2 from Definition 3.3.25.

For part 1, we argue as follows. Still, [o1] is the clique of the last action of
t1, i.e., a clique of the observer, which is also the sender clique of succ! after
t̄1. Equation (A.41) from above means by Definition 3.1.8 of 42Θ, that for all
component cliques14 [o′2]/Ξ̄′

2

after t̄2succ′!, there exists an α-renaming v̄1succ′!

of t̄1succ! such that

Ξb, Ξ̄0 ⊢ o′↓ t̄2 succ′! 4 o′↓ v̄1 succ′! , (A.44)

for all objects o′ from [o′2]/Ξ̄′
2

(after t̄2 succ′!). Considering specifically the success-

reporting clique [o1], we have o↓ t̄2 succ′! 4 o↓ s̄1 succ′! for some renaming
s̄1 succ′! of t̄1 succ′!, and for all objects of that clique. Since the label succ′ is
unique, Ξb, Ξ̄0 ⊢ o↓ t̄2 = o↓ s̄1 for all o of [o1], which can be strengthened to
Ξ̄0 ⊢ o↓ t̄2 = o↓ s̄1 since the type/class cb is neither mentioned in s̄1 nor in t̄2.
Dualizing the projection (Lemma A.2.47) gives

o↓ t2 = o↓ s1 , (A.45)

from which the result follows.

Case: t1 = r1 γ?
This case follows from the previous one for a trace ending with an output by
the following argument, basically exploiting the fact that a component is in-
put enabled and cannot refuse to take an input, where the crucial preservation
property is provided by Lemma A.2.49.

By soundness of the legal trace system from Lemma A.5.9, the behavior
t1 of C1 is legal, i.e., Ξ0 ⊢ t1 : trace , in particular, t1 is weakly balanced
(Lemma A.2.21). Hence by Lemma A.2.14(2), sender(r1 γ?) = receiver (r1),
if r1 is non-empty, i.e., the sender environment clique of label γ? is the receiver
of the last (outgoing) label in r1; in case, r1 is empty, i.e., where receiver(r1)
is undefined, sender(r1 γ?) = sender (γ?) is ⊙ (by the same Lemma A.2.14(2)).

Clearly, Ξ0 ⊢ C1
r1=⇒, and the shorter r1 is legal, as well. Hence, by the previous

subcase,
Ξ0 ⊢ C2

u1=⇒ and Ξ0 ⊢ u1 42
•
∆ r1 , (A.46)

14Component cliques from the dual perspective of Ξb, Ξ̄0, i.e., the cliques of the observer CO .
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for some trace u1 (cf. condition 1 and 2 from Definition 3.3.25). By once again
soundness of the legal trace system (Lemma A.5.9), also Ξ0 ⊢ u1 : trace . The
fact that r1 γ? is legal yields with Lemma A.2.35 that

Ξ0 ⊢ r1 ⊲ γ? : ok . (A.47)

Combining this with the right-hand side of (A.46) gives with Lemma A.2.49

Ξ0 ⊢ u1 ⊲ γ? : ok . (A.48)

By Lemma A.5.8, Ξ0 ⊢ u1 γ? : trace , and finally, by using input enabledness

from Lemma A.5.6 and setting t2 = u1 γ?, we get Ξ0 ⊢ C2
γ?
−→, i.e., Ξ0 ⊢ C2

t2=⇒,
as required.

Proof of Lemma 3.3.28 on page 77 (individual determinism). We show by induction
on the length of u1, that Ξ0 ⊢ u2 ≍−∆ u1 for some trace u2.

Case: Base case: u1 = ǫ
Immediately, for u2 = ǫ and reflexivity: Ξ0 ⊢ ǫ ≍−∆ ǫ.

Case: Induction case: u1 = u′1 a
We distinguish according to the nature of action a.

Subcase: u1 = u′1 γ? (input)
This case is covered by input enabledness: Extending the trace from the in-

duction hypothesis by an input gives Ξ0 ⊢ C2
u′
2γ?

=⇒. Furthermore we are given
Ξ0 ⊢ u′2 ≍−∆ u′1 and assume wlog. that the sender clique of γ?, an environ-
ment clique, is not affected by the renaming possible when using the relation
≍−∆. Thus Ξ0 ⊢ u′1 γ? ≍−∆ u′2 γ?, as required. Note that (from the perspec-
tive of ∆) u′2 γ? is legal (in particular deterministic) since u′1 γ? is, and since
Ξ0 ⊢ u′2 ≍−∆ u′1.

Subcase: u1 = u′1 γ! (output)
Let [o] be the receiver environment clique of γ!. There are two cases to dis-
tinguish. If γ! is a replay-action from the perspective of the observer, i.e., if
Ξ0 ⊢ u′1 γ! ≍−∆ u′1, the case is immediate by induction and by transitivity of≍−∆.

So assume Ξ0 ⊢ u′1 γ! 6≍−∆ u′1. This is the only case where something inter-
esting happens, namely when we need the observer to enforce progress. Using
induction on the shorter u′1, we get

Ξ0 ⊢ v
′′
2 ≍−∆ u′1 . (A.49)

for some trace v′′2 . Rename v′′2 to v′2, such that the names from from the clique
[o] after u1 are identical with the names after v′2, i.e., Ξ0 ⊢ v′2 ↓[o]≍∆ u′1 ↓[o]

and v′2 =α v′′2 , where [o] is the receiver clique of γ!. Since ≍−∆ is closed under
renaming, we have also

Ξ0 ⊢ v
′
2 ≍−∆ u′1 . (A.50)

Note that the projection u′1 ↓[o] might be empty, namely in the situation, were
the environment clique [o] projected onto is created in the last step of u′1 γ!.

Additionally, by assumption, there exists a legal trace and thus a ∆-de-
terministic trace u2 such that the two conditions of Definition 3.3.25 for Ξ0 ⊢
u2 42•

Θ u′1 γ! hold, i.e.,
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1. o↓u2 = o′↓ u′1 γ! for all ∆-objects o′ ∈ [o], where [o] is the receiver clique
of γ!, and

2. Ξ0 ⊢ u2 42∆ u′1 γ! and

Using this information, the induction hypothesis, and the assumption of deter-
minism, the goal now is

Ξ0 ⊢ u2 <3∆ u′1 γ! ,

since, together with condition 2, this gives Ξ0 ⊢ u2 ≍−∆ u′1 γ!, as required.
Condition 1 gives that u2 is of the form u′2 γ!, since we project on the clique

of the receiver of label γ!. Note that u2 indeed ends with γ!, since it is an outgo-
ing communication and we project onto the environment clique of its receiver.

Furthermore, the assumption that both the trace v′2 from the induction hy-
pothesis and trace u′2 γ! are in the set T = {u′ | u′ 4α u or u′ 3α u} of traces
(for some u) implies that v′2 is a (not necessarily proper) prefix of u′2 γ!, or vice
versa. Thus we distinguish:

Subsubcase: u′2 γ! ≻ v
′
2, i.e., u′2 γ! = v′2 w γ! for some w 3 ǫ

We first argue that condition 1 together with the fact that we use v′2 from equa-
tion (A.50) as an appropriate renaming of v′′2 from equation (A.49) from above
gives, that w does not concern the clique [o]. Assume for a contradiction, that a
non-empty subsequencew2 ofw = w1 w2 w3 concerns the component clique [o].
This implies that the non-empty w2 occurs (without renaming) both in v′2 w γ!
(as part of w) and in v′2, both times interacting with [o], which is impossible.

By (the dual variant of) Lemma A.5.12,

Ξ0 ⊢ u
′
2 γ! <3∆ v′2 γ! . (A.51)

Furthermore we know that receiver (v′2 γ!) = receiver (u′1 γ!)(= [o]). So from the
induction hypothesis Ξ0 ⊢ v′2 ≍−∆ u′1 in equation (A.50), we get

Ξ0 ⊢ v
′
2 γ! ≍−∆ u′1γ! , (A.52)

and hence by transitivity of the 42∆-relation, Ξ0 ⊢ u
′
2 γ! <3∆ u′1 γ!, as required.

Subsubcase: u′2 γ! 4 v
′
2, i.e., v′2 = u′2 γ! w, for some w.

Again, by condition 1, w does not concern the clique [o], which together with
the induction hypothesis implies that already Ξ0 ⊢ v′2 <3∆ u′2 γ!.

Proof of completeness (Theorem 3.3.29 on page 77). Assume Ξ0 ⊢ C1
t1=⇒. Since

the set of traces of C1 is prefix closed, clearly Ξ0 ⊢ C1
u1=⇒ for all prefixes

u1 4 t1. Lemma 3.3.26 therefore gives that for all u1 4 t1, there exists a u2 with

Ξ0 ⊢ C2
u2=⇒ and Ξ0 ⊢ u2 42• u1.

We have not yet used the fact that closed programs are deterministic. It is
easy to see that the series of u2 are all contained in the set T = {u′2 | u

′
2 4α

u or u′2 3α u} for some u. Hence by 3.3.28 Ξ0 ⊢ u2 ≍−∆ t2, as required by
Definition 3.1.11 of ⊑trace .
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APPENDIX B

Coding

This chapter is concerned with the realization of the observer. Thus it con-
tains the missing pieces of the code and the corresponding properties used in
the proofs for completeness, more precisely, in the construction and the corre-
sponding proofs for Propositions 3.3.23 and 3.3.24 in the sequential case and
Corollary 5.2.11 in the multithreaded case. The core of the construction and
the corresponding proofs are identical, and thus most of the definitions and
properties apply to both the sequential and the concurrent setting. We start in
Section B.1 with an overview.
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B.1 Overview

The construction of Ct from a legal trace contained, what we called, synchro-
nization code. We start with an abstract description of what it is good for.

The pieces of synchronization code in the construction of the component
Ct from Definition 3.3.20 (resp. Definition 5.2.7) come in two flavors, input and
output synchronization code, and flank the corresponding external transition
steps at the interface. Output synchronization code precedes the corresponding
output, and dually, input synchronization trails the input action.

The commitment contexts of the judgments Ξ ⊢ C are nothing else than
an interface specification of the component wrt. the existence of objects (and
threads) plus their connectivity. Thus the implementation requirements can be
understood by looking at the change of the Ξ ⊢ C- judgments in external steps
(cf. Tables 2.11 and 3.5, resp., Tables 4.8 and 5.1 for the concurrent case.) The
changes are always additive, i.e., the contexts only grow larger. To implement
the extension of the typing context Θ in an output step, the component must
create corresponding objects, whose references are then published. Likewise
the component must cater for lazily instantiated objects of the environment,
which lead to an extension of E∆ in an output step, and in the multithreaded
setting for new threads exported to the outside by an outgoing call. On the
other hand, the component is not responsible for extensions of Θ by incoming
lazy instantiation.

As a manner of speaking, the commitment context Σ,Θ;EΘ for a judgment
Ξ ⊢ C specifies the static (in the sense of “current”) requirements to be imple-
mented in C, whereas the (remaining part of) the given legal trace specifies the
dynamic or behavioral part of the coding requirement (cf. Definition 3.3.22). The
programming task for Ξ0 ⊢ Ct amounts to implement an interpreter that works
off the given trace t step by step.

For connectivity as specified by EΘ, we adopt a “distributed” implementa-
tion, where the information must be distributed or broadcast to all members of
the clique, when the connectivity context EΘ is enlarged.

We split the synchronization task into the following sub-problems:

1. create new objects to be made known or exported to the outside (cf. Defi-
nition B.2.13),

2. broadcast connectivity information to keep the component fully connected
and in sync wrt. the future behavior (cf. Definition B.4.8), and

3. serialize the component’s actions to exhibit exactly the behavior prescribed
by the trace, at least up to the closure conditions on the set of traces.1

4. In the multithreaded setting, provide mutual exclusion to avoid concur-
rent access to the common data structures, and furthermore,

5. new threads are spawned, before their name is exported to the environ-
ment.

1Of course, the component cannot completely enforce the given behavior, for various reasons.
Especially, separate cliques cannot enforce a particular order of their respective events.
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The first point is straightforward: The synchronization code for output con-
tains appropriate new -statements. The second one will be done by traversing
the clique, updating the connectivity knowledge of all of its members.

The serialization task mentioned in point 3 is not implied by the previous
discussion about how the commitment contexts and their change specify the
implementation task. It is mandated by the completeness proof in general.
Anyway, the task is to ensure that the actions and reactions of the component
follow the prescribed order.

For instance, consider (in the multithreaded setting) that the trace contains
the following sequence of two actions γ? γ′!

n1〈call o1.l1()〉? n2〈call o2.l2()〉! , (B.1)

where n1 6= n2. In this situation, the implementation must enforce the given
order, i.e., it is necessary to assure that thread n2 does not issue the second call
before the first incoming call has been accepted.2 Note that if the component
had to realize the opposite order

n2〈call o2.l2()〉! n1〈call o1.l1()〉? , (B.2)

this order cannot be enforced, the order of equation (B.1) is unavoidable, as
well. Cf. also the switching rules, in particular rule O-OI, for ⊑Θ of Table 5.2.

To achieve “serialization”, each object of the clique must be aware and kept
up-to date of the current status wrt. the sequence of interactions at the clique’s
interface. In the situation of equation (B.1), for instance, the caller object of
the second, outgoing call, must be aware whether or not the first call γ? has
already occurred.

In the concretely constructed component, the objects do not keep a history
of past interaction. Rather the current state is characterized by the future in-
teraction the component still has to realize. We call such a linear description
of the future of an object (plus an abstraction of the already witnessed past) a
script (cf. the interface type in Definition B.2.1 and also the informal discussion
in Section 3.3.3 and equation (3.45)).

Whereas the scripts are kept in instance variables of each object, conceptu-
ally they describe the future of the whole clique. The values of the scripts for
each object will be kept in sync, i.e., we maintain the invariant that all members
of a clique agree upon their potential futures. Note further that whereas traces
of a component can be thought of as are tree-structured, the futures are linear;
the trees branch into the past, since cliques only merge, but never split. The
constructed component equips each object with the possible future behavior.
Since the instances of the class may have to behave differently according to the
given legal trace, the class contains a set of possible linear futures.

Concretely, the future behavior is implemented by an instance variable script

containing one sequence of actions, while the class collects all possible futures
in the scripts (plural) instance variable. We refer to c.scripts to the (static) code
of scripts in c (cf. also Definition B.2.1). We maintain as invariant that all objects
of a clique agree on the common future.

2Assuming, the two actions concern the same clique, otherwise the order cannot be enforced.
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To avoid data corruption due to concurrent access, all the described book-
keeping is done under mutual exclusion, at least per clique.3 We use the syn-
tax (|t|) to indicate that the code t is executed without interference from other
threads. Intuitively, the opening parenthesis (| takes a lock (if available) which
ensures undisturbed access to the whole clique.4 The dual |) releases the lock
again.

B.2 Abstract sync code

This section describes at an abstract level the “synchronization code” which
has been used in the proofs of definability (partial and total correctness). The
code works with the data structures mentioned above and illustrated in the
examples of Section 3.3.3.

Definition 3.3.16 sketched the interface of each component class of the con-
structed Ct, concentrating on the two main methods taking care of external
output steps and of external input steps and the core scripts data structure.
Those two methods stepo and stepi are accompanied by a number of auxiliary
method definitions, dealt with in the following. Definition B.2.1 shows them
in overview, i.e., presenting a more detailed view on Definition 3.3.16. Apart
from the fact that the “type” of labels and thus scripts are a bit more complex
(containing additionally the thread name, for instance) and the methods (| and
|), Definition B.2.1 is identical for the concurrent and the deterministic setting.

Definition B.2.1 (Data structures (2)). Each class contains fields init and scripts

containing the future. In overview and ignoring “overloading”, the interface type for
each component class is of the form:

[( scripts , init : set of script

Θ : set of object

stepi : label× (set of object)→ Unit

stepo : Unit→ Unit

initialize : label→ Unit,Unit→ Unit

create : label→ assoc

pickrepresentative : label→ set of object

collectroles : assoc× (set of object)→ set of assoc

broadcast : scripts→ Unit

interpret : label→ Unit

start , spawn : Unit→ Unit

(|, |) : Unit→ Unit

l : ~T → T
...

)] .

The methods above the horizontal line are private, i.e., hidden from the environment via

3Two different cliques cannot be coordinated, of course, as they are unconnected by definition
and enforcing mutex would require at least some bit of shared information.

4Locking the whole, distributed network of the clique objects looks harder than it is. As we are
after may-testing, only, we need not worry about deadlock, let alone loosing liveness or fairness.
It suffices that any failed attempt to obtain the lock simply blocks or diverges, thus foiling success.
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subtyping. The publicly available methods, i.e., those mentioned in the type interface
of the component, are below that line: l,. . . .

B.2.1 Input and output synchronization

The code operates on the scripts (later implemented as a statically determined
number of instance variables) containing the current future(s) of an object,
resp., clique, relying on further auxiliary operations performing initialization,
broadcasting of information, updating the set of known references, and short-
ening the still open futures, etc. The behavior of the corresponding methods,
shown below, should be clear at an intuitive level, looking at the code; their
properties and implementations are presented later. In this section, we concen-
trate on the two kinds of code, responsible for synchronization at the top-level,
namely tisync and tosync for input and output. Top-level in the sense that this is
the code, which appeared in the Definition 3.3.20 resp. 5.2.7 of Ct.

Input

We start with the code for input, executed immediately after each incoming
communication. At an abstract level, given the current futures of a clique, it
shortens the available future in accordance with the (input) action a just oc-
curred, potentially merging a number of cliques. If new component instances
are created, they are properly initialized. If the current incoming communica-
tion is not consistent with any possible future, the thread blocks.

Definition B.2.2 (Synchronization: Input (cf. Lemma B.3.1)). The code for syn-
chronization at the beginning of a method l with formal parameters ~x and inside a

component class c of type [(. . . , l:~T → T, . . .)] is given as:

tisync(l, ~x) , (| a := label l(~x);
initialize(a);
let ~o : set of object = pickrepresentative(a)
in self .stepi(a,~o)

self . spawn();
~o.broadcast(self .scripts)|) .

(B.3)

In the single-threaded setting, the self .spawn() is absent. We use tisync(l, ~x) as meta-
mathematical notation and not to indicate that l and ~x receive values by argument
passing in a reduction step.5 For incoming returns, the definition is used analogously.
However, the method label is unimportant, and we write tisync(return, x) in that case,
where x is the let-bound local variable used to receive the return value (cf. the opera-
tional rule RETI).

The a := label l(~x) remembers the label in the local instance state, using
the formal parameters of the method plus the method name l in case of a call;
for returns, the label is determined by a := label return(x). The label, with the
references filled in, is then referred to as self .a or a for short in the method
body. Note that the code of label l(~x) (resp., of label return(x)) is the only part

5As ~x represents the formal parameters of the method l and as the variables ~x occur free in
tisync , there is some form of “parameter passing”, however, by the substitution which is part of the
parameter passing of method calls.
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of the code of tisync mentioning the formal parameters ~x (resp., x). After been
stored in the instance state, the passed values are looked up from the fields of
the resp. object.

After assigning the value to the instance variable a, the initialize-method,
invoked on an (uninitialized) component object, initializes the scripts data struc-
ture, filling in the identity of the newly created objects into all roles. After-
wards, the futures of all objects in the clique are shortened (if possible) ac-
cording to current incoming action a. In more detail, the target object of the
communication —the “self” object— is responsible for shortening. However,
it needs to consult the partner cliques being merged in the current step. The
consultation concerns for instance the local “view” on the future and on the in-
volved object identities. For each of the partner cliques, the target object needs
the information only once; hence it chooses one representative for each clique,
via the pickrepresentative-method. Once the future has been shortened and the
data structures have been locally updated (i.e., after having executed the stepi-
method), the new state is broadcast to all object of the (now merged) clique. At
that point, in the multithreaded setting, an appropriate number new threads is
spawned, which start to run asynchronously.

In the multithreaded setting, all data manipulation is done under mutual
exclusion (at component clique level), enforced by (| and |). In the sequential
setting, the bracketing (| |) is absent (or implemented via some skip-statement).
Indeed, it would do no harm if (| and |) were functionally present in the single-
threaded setting, as well.6

Remark B.2.3 (Initialization). The initialization in equation (B.3) is invoked on all
incoming arguments referring to component objects, not just on those yet uninitial-
ized. Invoked on an already initialized object, the method is without effect. The reason
for this strategy is that the receiver of an identity has no means to detect, that the object
is globally new and thus not yet initialized. In case of merging cliques, the received
identity is locally new to the receiving clique; however, the object had a prior, indepen-
dent existence and history, and is already initialized. Cf. the handling of binders in the
definition of projection in Definition 3.1.3, where similar considerations are relevant,
albeit at the more abstract level of traces, not at the level of code. The parallel is that
the code of initialize implements ν-binders occurring in the (local projection of a)
trace.

Definition B.2.4 (Initialization). Each class c is equipped with a method initialize

of type Unit→ Unit. Assume that y1, . . . , yn are the roles of type c. Then

initialize , if self .scripts 6= ⊥
then ()
else σ1 := σ1[y1 7→ self ];

...
σn := σn[yn 7→ self ] .

(B.4)

The initialize-method of type label → Unit, as used in tisync (equation (B.3)), invokes
o.initialize() from equation (B.4) on all component references of a.

6The reason why it would do no harm is: The implementation of the synchronization code
avoids recursion and thus we do not need re-entrant calls to the monitors.
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Definition B.2.5 (Spawn). The method spawn of type Unit→ Unit is given as

spawn() , new〈self .start(); . . . ; self .start()〉 , (B.5)

where the number of new -expressions if given by the number of component-generated
threads in the given trace t.

The next method collectroles is part of input synchronization, i.e., part of
the code of stepi (cf. Definition B.2.8).7 From the perspective of one particular
role association (the σ of the argument) of one object as representative of its
clique, it collects from a number of (still) separate cliques the matching combi-
nations of associations. As precondition, we assume that the argument objects
are members of pairwise disjoint component cliques, which in addition are
disjoint from the clique invoking the method which is the object to which the
argument association belongs to.

Since the domains of the associations σ correspond to (the static represen-
tation of) the cliques, the collectroles-method correspond to finding matching
(disjoint) cliques to merge. It combines the current role association σ with com-
binations of associations of other cliques.

Definition B.2.6 (Collect roles). The method collectroles is of type:

assoc× (set of object)→ set of assoc . (B.6)

Its code is given as

collectroles(σ,~o) , {σ′ | σ′ = σ ⊕
⊕

o∈~o

σ′′ ∈ o.Σ} . (B.7)

The operation ⊕ on associations is defined as follows:

σ1 ⊕ σ2 =

{

σ1 ∪ σ2 if dom(σ1) ∩ dom(σ2) = ∅
⊥ else .

(B.8)

Most of the work for input synchronization is done in the method stepi.
Abstractly and for one object, namely the one on which it is invoked —the
target object of the communication— stepi checks whether the next action a
is possible, i.e., whether it appears as next step in the still open futures (there
might be more than one matching continuation). If so, the respective futures
are shortened by one; if there is no continuation, the code blocks.

More concretely, the implementation is a bit more complex due to the fact
that the step a under consideration may be a merging step. This makes it more
complex in that the object which executes the code (as representative of the
target clique of the communication) may not have the full information wrt. al-
ready taken roles. The taken roles, the static analogs to object identities, are
kept in the domain of the associations σk. Before the merge, the still separate
cliques are guaranteed to have disjoint ranges in all their associations as far as
identities of component objects are concerned, since the ranges correspond to
the dynamic set of identities in the actual trace. The roles in the domains of
the association, however, are in general not disjoint, since the so far separate

7Newly created component objects during output synchronization need not be initialized; they
simply adopt the data structures of the creating clique.
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cliques may have (and in general will have) associated the same roles with
their so far encountered component object identities. Of course, a role cannot
be associated with two different identities. The code of collectroles thus com-
bines the role associations from the futures of the partner cliques, weeding out
impossible combinations.

After combining the associations, for each remaining open future, the next
action is checked against the current one, and the respective future is shortened
accordingly, or invalidated.

Remark B.2.7 (Association domains). As the roles in the domain of the associations
correspond to the evolving clique structure of the original trace, the domains of two
associations σ1 and σ2 of two separate cliques are either disjoint, or else in subset
relation (cf. Corollary A.3.4). If disjoint, they can be combined via collectroles , using
⊕, if not, no common future is possible.

Definition B.2.8 (Input step). Each component class is equipped with a method stepi

of type label× set of object→ Unit. Its code is given as

stepi(a:label, ~x:set of object) ,
∀ (σi, ǎiši) ∈ self .scripts .

let {σ1
i , . . . σ

m
i } = collectroles(σi, (~x \ self ))

in if ∃σj
i . ǎiσ

j
i = a

then self .scriptsi := (σj
i , ši)

else stop .

(B.9)

Output

Next the code of output synchronization, executed immediately before each out-
put. The task here is to use the scripts to determine an output reaction, i.e.,
whether to respond with a return or to fire another call, and in each case deter-
mine the run-time values. If there is no future left, the thread must terminate.

The code is shown in Definition B.2.10 and Definition B.2.11 below. The
function picks from all the still active futures in self .scripts one representative;
in the code, the representative is denoted by σ for the role association and ǎ
for the first action of chosen future (the rest of the future is not needed for
performing the next step. Thus, the value is represented by the -wildcard in
the definition).

Remark B.2.9 (Deterministic/non-deterministic setting). Note that the next (out-
put) actions ǎi and ǎj of two different scripts may indeed be literally different even in
the deterministic setting.

This fact should come as no surprise in the non-deterministic, multithreaded set-
ting: After a given history, an object may show different reactions. In the determinis-
tic setting, where the scripts are derived from a deterministic trace, this indeterminacy
wrt. the next action has a different reason, which additionally is present in the mul-
tithreaded case, of course. For a deterministic program, the reaction of a clique of
objects is determined by the past interaction, but only up-to renaming. The “sur-
viving” scripts in the state of the (dynamic) clique reflect the fact, that the actual and
unique history of the current clique corresponds to the simultaneously executed static
sequences of actions encoded from the original trace.8 So if still two different scripts

8The static pasts (and the actual dynamic past) are not remembered; what is stored is the role
association of actual identities with the static roles.
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are open at a current state, it means that in the original trace there exist, at the corre-
sponding point in the trace, two component cliques in the same state up-to renaming.
Cf. Definition 3.1.10 for the definition of deterministic trace.

Due to determinism, their output reaction must be equivalent, implying that the
static analogs ǎi and ǎj are equivalent up-to different uses of roles. Even stricter, ǎiσi

and ǎjσj must be equivalent up-to different roles mentioned “boundedly”.
To sum up: Determinism of the original trace allows to just “pick” one represen-

tative ǎ and a corresponding association σ, if there is more than one available. The
chosen representative ǎ is used to create new component and environment instances
and storing the association temporarily in σ′. This association reflects the choice of
roles as in ǎ, i.e., it assumed that the newly generated references will from now on take
the roles according the ν-bound roles mentioned in ǎ. An alternative script, starting
with ǎ′ instead of ǎ, will store the same freshly created references in different roles.
For instance, if ǎ and ǎ′ are of the forms

ν(x0, x1).〈call x0.l(x1, x2)〉! and ν(x′0, x
′
1).〈call x

′
0.l(x

′
1, x

′
2)〉!

respectively, then the newly created association σ′ = create(ǎ) is if the form [xo 7→
o0, x1 7→ o1], where o1 and o2 are freshly created references.9 For the alternative ǎ′,
however, the created references o0 and o1 are the same —even if the implementation
executes all possible scripts simultaneously, the dynamic references need to be shared
between the scripts— but take the roles x′0 and x′1 instead, i.e., the corresponding
additional role association is [x′0 7→ o0, x

′
1 7→ o1]. This “renaming” of the roles is done

by iterating over all still active scripts, where σ′ ◦ π(ǎ, ǎi) calculates the permutation
of the roles.

After the post-state for each script has been determined in that way for the
communication’s source object, the information of the corresponding clique is
brought up-to date via broadcast. With the script data structures shortened,
finally the corresponding output must be actually performed, as well. This is
done by the interpret-function (cf. Definition B.2.12).

Definition B.2.10 (Output step). Each component class is equipped with a method:

stepo() , let (σ, ǎ ) ∈ self .scripts
in let σ′ = create(ǎ)
in ∀(σi, ǎiši) ∈ self .scripts

let σ́i = σi ⊕ σ′ ◦ π(ǎ, ǎi);
in scriptsi := (σ́i, ši);

self .broadcast(self .Σ);
let a = ǎ(σ ⊕ σ′)
in self .interpret(a) .

(B.10)

The code for output synchronization invokes stepo, after locking the clique
using (|. Note that lock-release (|)) is not mentioned directly in (B.11), but is
part of the interpret-method (via stepo and executed at the end of tosync).

Definition B.2.11 (Synchronization: Output (cf. Lemma B.3.2)). The code for
output synchronization of type Unit→ Unit is defined as follows:

tosync() , (| self .stepo() . (B.11)

9For environment objects, e.g. for o0, only the references are generated; the corresponding in-
stance will be created later lazily when the name extrudes to the environment. For o0, this will be
the case, when the actual call is issued.
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The interpret method is used for output synchronization, in particular in
stepo of equation (B.10). It can be seen as the dual to label l(~x) and label return(x).
When handed over a return label, it simply extracts the value and gives it back
which then will be returned to the environment. In case of an outgoing call
label, it similarly extracts the relevant information and fires that call, with trail-
ing synchronization code appropriately added so to handle a possible return
from the environment and a possible next output action afterwards. If no label
is handed over, the method terminates the thread.

Definition B.2.12 (Interpret). Each component class is equipped with an private
method interpret given as follows:

interpret(a : label) , case a
⊥ then stop

n〈return(v)〉! then |); v
n〈call or.l(~v)〉! then |);

let y = or.l(~v)
in tisync(return, y); tosync()

esac .
(B.12)

Part of performing output is the creation of the entities, which are new
to the environment. This is done quite at the beginning of stepo in Defini-
tion B.2.10. The creation concerns environment objects exported by lazy in-
stantiation, component objects exported by scope extrusion, and new threads.
The create-operation is responsible for the creation only, but not for initializa-
tion. Newly created environment objects are not initialized, of course; internal
objects are initialized, i.e., equipped with the appropriate values for the scripts
variable only after creation, as part of stepo.

Definition B.2.13 (Object creation). Each component class is equipped with a pri-
vate method create of type label→ assoc, given as follows:

create(ν(Φ̌).⌊ǎ⌋) , σ⊥ [~̌o 7→ new ~c]; where Φ̌ = ~̌o:~c, Σ̌ (B.13)

i.e., ~̌o:~c contains all the (static representation of) new objects in the label. The actual
creation of new is left implicit in the 7→-expression.

Remark B.2.14 (Reflection). Note create from equation (B.13) uses “reflection” in
some sense. In interpreting the binding part of the label, it interprets a “binding”
ǒ:c listed in Φ̌ as instruction to execute new c (and store the result appropriately).
This means that in the static encoding of labels ǎ, traces ť, etc., we need an internal
representation for each class c in the system (which we denoted here by c itself).

Spawning new threads

The create of Definition B.2.13 creates no new threads. Its code might be of
course executed by a newly created thread as part of its first external activity,
i.e., as part of its output synchronization in preparation of the first outgoing
call. Thread creation is different from object creation: The input and output
synchronization is executed by an already existing thread which interprets the
scripts such that it creates new objects at the current point in the script. When



Chapter B Coding 231

a new thread crosses the interface, it means a new thread must have been
spawned. For incoming threads, this is not a problem; it is the responsibil-
ity of the environment to generate them. When a new thread is exported to the
environment, the component must create that thread and let it run. The code
for creation must be executed by another thread, and the corresponding new〈t〉
statement must ultimately be contained in some method.

In general, the implementation deals with thread creation as follows: It
simply creates enough threads as soon as possible. Upon creation, the new thread
remains hidden; it only becomes visible when it starts executing and starts in-
terpreting the script data structure. In principle, the implementation could let
loose all the threads at the very beginning, if it were not for the connectivity and
the heap structure. As expressed in the corresponding rules L-CALLO0 and
L-CALLI0 of the legal trace system, the new thread is connected to one already
existing clique and is acquainted with the references of that clique; if there is
more than one candidate clique as originator, the rules non-deterministically
guess one.

Thus, Ct cannot start all threads at the beginning and irrespective of the
clique structure, but must start enough threads per component clique. Since
new cliques can be created only by incoming communication, the correspond-
ing spawning of new threads is part for input synchronization, only.

After a new thread is created, the spawning thread continues asynchronously;
both threads execute their respective code independently, apart from potential
shared access to (parts of) the heap. The new thread has connection to the
clique in which the spawning thread is executing the new -expression. In par-
ticular the new thread can access the corresponding clique via self .10 However,
the guessing of the sender at a given point in the trace does not determine when
the thread has been as been created nor which thread has spawned the new one.
Indeed, the creation can have taken place at any point in time from the cre-
ation of the (first object in the) guessed clique till the new thread appears at the
interface.

Example B.2.15 (Thread creation). Consider the following trace

ν(o1r).n〈call o
1
r.l1()〉? n〈return()〉! ν(o2r).n〈call o

2
r.l2()〉? n〈return()〉!

ν(n′
1:thread).n′

1〈call or.l()〉! ν(n
′
2:thread).n′

2〈call or.l()〉! .
(B.14)

The environment, using a thread n, creates two component cliques, represented by
o1r and o2r. After the interaction with the two cliques, the component reacts with 2
outgoing calls, where without further information, for both the sender is unknown,
it can be either of both cliques. The corresponding rules for legal traces, L-CALLO0

guesses the origin of the first outgoing call by either Θ ⊢ o1r or Θ ⊢ o2r in the premise,
and analogously when guessing the sender of the second outgoing call, when Θ is the
corresponding commitment context.

If the senders are o1r and o2r for the two outgoing calls respectively, the static scripts
look as follows:

ν(ǒ1r).ň〈call ǒ
1
r.l1()〉? ň〈return()〉! ν(ň′

1.:thread).ň′
1〈call ǒr.l()〉!

ν(ǒ2r).n〈call ǒ
2
r.l2()〉? ň〈return()〉! ν(ň′

2:thread).ň′
2〈call ǒr.l()〉! .

(B.15)

10In a setting with thread classes, one needs constructors to pass on arguments to the new thread.
Otherwise it would execute independently of already existing part of the heap. See e.g. [12].
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In that case, the execution of the method body of l1 spawns two new thread, i.e., it
executes new〈self .start()〉 twice as part of the spawn-method. (cf. Definition B.2.5).
Only one of the two will be able to actually perform the outgoing call later.

Remark B.2.16 (Thread creation and mutual exclusion). The spawning of new
threads is part of the input synchronization code, which is executed under mutual
exclusion, i.e., protected by (| and |). Being spawned inside the protected region does
not grant the new thread access to the data structures of the clique of the spawner. The
new thread starts executing outside the monitor and needs to acquire the lock before
accessing the data structures. Cf. Definition B.2.17 for the start-method.

Remains the code to actually start a thread. This is already needed in the
sequential setting where it is invoked exactly once, namely at the very begin-
ning in case the initial threads starts executing in the component. In the mul-
tithreaded setting, the start method is invoked additionally for every thread
created by the component. The implementation is simple: It just triggers the
code for output synchronization, which then starts interpreting the script(s).

Definition B.2.17 (Start). The start-method of type Unit→ Unit is given by

start() , tosync() . (B.16)

B.2.2 Mutual exclusion

In the multithreaded setting we must assure that the data-handling is done un-
der mutual exclusion to avoid data corruption. In the may-testing setting, we
do not need to solve the general mutual exclusion problem, i.e., we do not need
to worry about the more complex requirements [48][49][89][119] like liveness,
fairness, non-starvation, etc. The concentration on the core safety requirement,
namely absence of interference, simplifies the implementation. Basically we
have to implement a rudimentary monitor- or lock-mechanism, which assures
mutual exclusion per clique. It suffices to detect, when mutual exclusion is vio-
lated and then stop executing.

On the other hand, the implementation task is complicated by the fact that
our language is rather restricted. In particular, the calculus does not offer built-
in synchronization capabilities such as Java’s synchronizedmethods or syn-
chronized blocks, which at least can assure mutual exclusion on a per-object
basis. Worse still, the calculus offers nothing but object references as native
data. On the level of references, the calculus allows atomic update (via rule
FUPDATE of Table 2.5), atomic read, and to a limited extent atomic compari-
son (via the two CONDi-rules). The comparison, however, is atomic only if the
entities being compared are already evaluated to references, i.e., a redex of the
form if o1 = o2 then t1 else t2 reduces in an atomic step, as justified by one of the
two CONDi-rules.

More realistically, one would be interested in executing

if self .x1 = self .x2 then t1 else t2 ,

i.e., comparing the values of instance variables, and on this level, atomicity is
not assured. In particular, we do not have an atomic test-and-set operation (or
similar luxury) on instance variables. Moreover, all more high-level data (e.g.,
booleans) is to be encoded by groups of instance variables, in particular the
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lock-mechanism needs to be implemented by instance variable(s), and so the
question is:

How to use object references to implement the safety aspects of mu-
tual exclusion on a per-clique basis?

Remark B.2.18 (Reentrant monitor locks). The lock mechanism must assure mu-
tual exclusion between concurrent threads per clique. The calculus allows recursion,
so in principle we need to consider situations where a thread owning the (to be imple-
mented) lock re-enters the monitor via a recursive call. A mechanism allowing such a
behavior is called a reentrant monitor [73][31] and needs a more complex data struc-
ture than a simple binary flag to realize the locking mechanism. Basically, it needs to
remember the thread that owns the lock and how many recursive calls deep this thread
resides in the monitor. This is needed to detect when to release the lock again, namely
when the recursion depth of the lock-owner has reached zero again. If the maximal re-
cursion depth cannot be statically determined —and in general it can of course not—
this calls for an unbounded data structure. This means, our standard data encod-
ing trick, putting everything in a statically predefined ensemble of instance variables,
would fail.

We need, however, the lock mechanism only for the observer we construct during
the completeness proof. In that chosen implementation, we do not need locks counting
the recursion depth, since we only protect the protect the book-keeping associated with
each individual label (after incoming communication, resp., before outgoing communi-
cation), but not protect whole method calls (from the call till the matching return). In
this sense, we do not need to implement reentrant monitors: A thread that has entered
a component clique leaves the clique only by leaving into the environment, and at that
point it releases the lock with all data in consistent condition. If the thread reenters
the same clique later, it needs to re-acquire the lock.

However, for convenience, we implement slightly more complex locks than simple
binary flags. Besides the fact whether the lock is taken or not, we remember the name
of the thread which owns the lock (without counting how deep the recursion depth of
the thread inside the monitor is, as just explained).

Before presenting the implementation of the lock in Definition B.2.20 and
B.2.21, we show how to implement its core, namely a boolean flag. Apart from
testing for definedness of an instance variable, conceptually and implicitly, the
only built-in boolean expression in our language is the equality-test on identi-
ties. Thus it suggests itself to represent the “boolean” value on the comparison
of references.11

Definition B.2.19 (Boolean flag). Given a class c, a boolean flag for instances of that
class is a pair of instance variables x1 : c and x2 : c, both initially carrying the code
⊥, i.e., as all instance variables, being “undefined” initially.

The “value” false corresponds to x1 = o and x2 = o′ for two object references with
o 6= o′; correspondingly true when o′ = o, i.e., checking for the flag being true in a
conditional is encoded as follows, where oself is the object the code is executed in:

if xflag then t1 else t2 , ς(s:c).λ(). let y1:c = s.x1 in let y2 = s.x2

in if y1 = y2 then t1 else t2 .
(B.17)

11The comparison o1 = o2 is a boolean expression only implicitly, since it is by itself not
an expression, but occurs only as part of the conditional expression. Note also testing for
(un)definedness using the “expression” undef (v.l) does not implement a boolean flag, because
one cannot reset a defined value to the native ⊥c.
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Setting the flag to false is defined as

xflag := false , ς(s:c).λ(). let y1 = new c in let y2 = new c
in s.x1 := y1; s.x2 := y2 .

(B.18)

Definition B.2.20 (Lock (cf. Lemma B.2.22)). Each class c contains as lock the
following triple of instance variables: x1 : c, x2 : c, and owner : thread .

As mentioned, the reading and writing of the boolean flag is not atomic. We
need to be careful, therefore, when acquiring the lock. We use the uniqueness of
freshly generated names for our mutex protocol. When successful, the instance
variable owner is set to the identity of the thread then holding the lock. Note
that, unlike many of the constructions so far, the code of Definition B.2.21 is na-
tive calculus code.12 Assuring mutual exclusion is a detail, however, a crucial
one, and thus we show the implementation only using the bare means of the
language, in particular, using only object references as data, and without fur-
ther layer of abstraction. Once, mutual exclusion is guaranteed, we are dealing
“only” with sequential and finite data structures and operations thereon.

Definition B.2.21 (Lock handling (object level)). The lock is manipulated by two
operations, acquiring and releasing the lock, written (| and |).13 The operations are
coded as follows:

(| , ς(s:c).λ(). let xlocal
1 : c = s.x1 in

let xnew
1 : c = new c in s.x1 := xnew

1 ;

let xlocal
2 : c = s.x2 in

if xlocal
1 6= xlocal

2 then stop;
else let y1:c = s.x1 in

if y1 = xnew
1

then owner := currentthread

else stop .

(B.19)

|) , ς(s:c).λ(). let x:c = new c
in s.owner := ⊥; s.x2 := x; s.x1 := x .

(B.20)

Lock handling is illustrated in Figure B.1. The pair of instance variables
encoding the flag are shown in the middle (as circles) of the picture. The two
values are initially equal, indicating that the lock is free. The thread on the left
succeeds in finishing the protocol and thus acquires the lock, in that it replaces
the value of x1 by a freshly generated identity (the diamond shape). After
the assignment self .x1 := xnew

1 , the values of self .x1 and self .x2 are unequal,
which means, a second thread, which reads self .x1 into its local store after this
assignment, will not succeed in entering the critical section. The convention
interpreting x1 = x2 as free lock and x1 6= x2 as lock taken is thus not arbitrary
in this protocol, the interpretation is not symmetric.

12Well, the only deviations are the following two: We use the (1) sequencing operator ; and the
negated comparison (2) x 6= y in the comparison. Both are instances of trivial syntactic sugar.

13Using standard jargon, we call (|t|) also an atomic region or a bracketed section. When using
this notation we assume that t neither contains further interaction with the lock of the concerned
object, in particular not nested calls of (| and |), nor interaction with the environment. Note the
new threads can be spawned in t (in the multithreaded setting) but they start running “outside”
the monitor.
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A thread enters the “trying section” of the protocol, i.e., it expresses its wish
to acquire the lock, by setting x1 atomically to a fresh reference, which renders
x1 6= x2. This setting itself is atomic; if we used x1 6= x2 to represent a free lock,
an atomic entering of the trying section would not be possible, as it would
involve updating both x1 and x2.14 As there is an unbounded number of fresh
references available, the protocol works for an arbitrary number of threads.

xnew
1

xnew
2

x̂new
10

1

2

=

=

newnew locallocal

Figure B.1: Acquiring a lock

Of course, the reading and subsequent comparison of x1 and x2 is not atomic.
Thus, obviously, xlocal

1 = xlocal
2 in the code of equation (B.19) can not be taken as

sign to enter the critical section; the opposite xlocal
1 6= xlocal

2 , however, is taken
as sign to give up and stop. Thus, x1, the variable of the two, which is up-
dated first in the trying section, is read for a second time. If still unchanged,
the thread can safely enter the critical section.

Considering the assignment self .x1 := x̂new
1 of a second thread, it cannot

successfully happen in position (1) of the figure, as this would prevent the suc-
cess of the thread on the left-hand side. If the assignment happens at position
(2), the corresponding thread on the right will not be able to finish the code of
(|, since independent of which value of x1 it has copied into its local memory,
x2 will contain a different reference, which terminates the thread. The same
happens, if the thread on the right executes the assignment at point (0). Again,
the unbounded reservoir of fresh references plays a crucial role.

A remark about the initialization of object locks for new objects. Upon cre-
ation, the value of the lock is “undefined”. However, the creation of a new
component object is done within a critical section for some clique. When fin-
ished with the corresponding synchronization code, |) is executed for all objects
of that clique, including the newly created ones, setting the lock to the status
“free”. Thus, locks yet uninitialized are never accessed by (|.

Lemma B.2.22 (Mutex). The implementation of (|t|) guarantees mutual exclusion at
object level.

Proof. It goes without saying that we assume that t does not contain further
instances of (| and |) (concerning the same object) or other fiddling with the in-
stance variables x1 and x2 implementing the lock. Note that in the constructed

14This does not mean that an implementation using x1 6= x2 to denote the free lock is impossible.
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observer, t contains code that spawns new threads. The new threads, however,
apply for the lock before they can access any shared data.

Assume an arbitrary number of parallel threads inside an object o, with
the lock free, i.e., with o.x1 = o.x2. If the lock is not free from the beginning,
obviously no thread can enter the critical section. So assume for a contradiction
that two threads succeed in entering the critical section, i.e., a situation

n1〈t1|)〉 and n2〈t2|)〉

after some reduction. As, by assumption, both threads reach the end of (|, the
sequence n1〈o.x1 := xnew

1 . . . . . . let y1:c = o.x1〉 of equation (B.19) occurs com-
pletely before the analogous sequence n2〈o.x1 := xnew

1 . . . . . . let y1:c = o.x1〉 in
thread n2 (or vice versa); otherwise, for (at least) one of the two threads, the
respective local variable y1 contains afterwards a different reference than xnew

1 ,
which prevents the completion of (|.

Assume then wlog. that the mentioned sequence of n1 precedes the one of
n2. After n1〈o.x1 := xnew

1 . . . . . . let y1:c = o.x1〉 of n1, o.x1 6= o.x2 is guaranteed;
hence the comparison xlocal

1 = xlocal
2 in thread n2 fails, which prevents n2 to

complete (| and to enter its critical section t2, which contradicts our assumption.

The next lemma is a variant of the above mutex lemma. If differs in that
now we assume that the critical regions of threads accessing the same lock are
executed successfully. Lemma B.2.22 showed the basic safety property of mu-
tual exclusion, namely that never the critical sections are executed at the same
time, where obviously one possibility of assuring this is to stop within (| (in the
code of equation (B.19), there are two points where this may happen). Now
we explore the consequences for the reductions assuming that especially the
(|-code does not fail. This additional knowledge gives a finer view on which
code is executed under mutual exclusion. To formulate the lemma, we intro-
duce the following abbreviations. The two relevant atomic, elementary steps
—the points of no return— in the code of (| (cf. equation (B.19)) are

• the first copying of s.x1 into the local store by a
τr−→-step, i.e., the xlocal

1 :c =
s.x1 in the first line, and

• the replacement of s.x1 by a fresh identity by a
τw−−→-step, i.e., the s.x1 :=

xnew
1 in the second line.

We denote by (|r the code of (| starting in front of the read-step, and (|w the code
starting in front of the write-step. Concerning the end |) of a critical region,
there is no such uncertainty. The very last action of |), i.e., the update of s.x1

to the newly generated value which coincides afterwards with s.x2 marks the
exact end of the code executed under mutual exclusion. Note that in |), first
s.x2 is assigned the new reference, and afterwards s.x1, which is the reverse
order in which the variables s.x1 and s.x2 are read in (|. The finer knowledge
about mutual exclusion is needed for “disentangling” the atomic regions.

Lemma B.2.23 (Mutex). Assume Ξ0 ⊢ Ct =⇒ Ξ ⊢ C =⇒ Ξ́ ⊢ Ć, where in
the reduction sequence, two threads n1 and n2 both execute (| successfully on the lock
of the same object o. Assume that initially the lock is free (i.e., initially, x1 and x2

contain the same value, and the owning thread is undefined). The implementation of



Chapter B Coding 237

(| |) guarantees that the sequences (|1w t1 |)1 and (|2r t
2 |)2 are executed under mutual

exclusion.

Proof. The code for (| and |) is given in Definition B.2.21, equations (B.19) and
(B.20).

Assume for a contradiction, that mutual exclusion in the form as stated in
the lemma is violated, i.e., there is an overlap in the execution of

t1w = (|1w ; t1 |)1 and t2r = (|2r t
2 |)2 .

There are two cases to consider, namely whether in the overlapping execution,
t1w does the first step, or t2r.

If t1w is first, then from its first
τw−−→-step until the very last step of |)1, a

τw−−→-
step, as well, the value of s.x1 equals o11, a value generated freshly by n1, the
first thread. By the assumption, that t2r comes after t1w and overlaps, n2 neces-
sarily reads o11 into its local variable xlocal

1 . Since thread n1 successfully com-
pletes its atomic region, its comparison of xlocal

1 and y1 must evaluate to the
same reference such that y1 = xnew

1 (in line 6). Therefore, the competitor n2

performs its s.x1 := xnew
1 after n1 reads s.x1 for a second time into its local

variable y1 (line 5). I.e., n2’s mentioned update occurs at point 2 or later in
Figure B.1. This further implies for thread n2 that xlocal

2 6= xlocal
1 : Either, xlocal

2

reads the value of s.x2 as it was at very beginning, i.e., before t1w started —the
value of s.x2 is read but not changed by the code of (|— or it already reads
a value after the completion of |), when s.x1 and s.x2 are overwritten by the
same, freshly generated reference (cf. equation (B.20)). Because of the fresh-
ness of the generated references, in both situations, xlocal

2 6= xlocal
1 for n2, i.e.,

the thread fails to enter the critical region, contrary to our assumption.
Alternatively, t2r is first and again there is an overlap of t1w and t2r. Now, the

reading xlocal
1 = s.x1 of n2 copies the original value of s.x1 (say o0) to n2’s local

space (line 1). If then n2’s first write action s.x1 := xnew
1 (line 2) is so early that

it precedes n1’s first read action xlocal
1 = s.x1, the situation is symmetric to the

one just discussed, i.e., it leads to a contradiction. In order that n2 succeeds in
entering its critical section, its comparison y1 = xnew

1 in line 6 must evaluate
to true. This implies that n1 performs its update to s.x1 after the point where
n2 re-reads the value of s.x1 into its local space (using y1), i.e., n1’s mentioned
update occurs at point 2 or later in Figure B.1. But at that point, the value of
s.x1 is already different from the original value o0 and will never be o0 again
even after n2 has completed its critical section. Therefore, n1’s first comparison
xlocal

1 = xlocal
2 necessarily yields false, and hence n1 cannot enter its critical

section, contradicting our assumptions.

Using this knowledge, we can disentangle the critical sections of two threads.

Lemma B.2.24 (Mutex disentangling). Let Ξ0 ⊢ Ct be given by Definition 5.2.7

and assume Ξ0 ⊢ Ct =⇒ Ξ ⊢ C =⇒ Ξ́ ⊢ Ć. Assume that the threads n1 and n2

perform their critical section in total, i.e., n1 performs the sequence (|1 t1critsec |)
1 and

analogously for n2, where both lock-handling codes refer to the same lock and where

neither t1critsec nor t2critsec (of course) access the lock. Then also Ξ ⊢ C =⇒ Ξ́ ⊢ Ć
such that

Ξ ⊢ C =⇒
(|1

=⇒
t1
critsec

=⇒
|)1

=⇒
(|2

=⇒
t2
critsec

=⇒
|)2
, (B.21)
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or the other way around. In the reduction sequence, we indicate the executed code
below the arrow.

Proof. The code (| for acquiring a lock and |) for release is given in Defini-
tion B.2.21, equation (B.19) and (B.20).

In Ξ ⊢ C =⇒
n1,n2

Ξ́ ⊢ Ć, both n1 and n2 perform their critical section from the

beginning of (| till the end of |). In detail, the reduction for (|; tcritsec looks as
follows, where o is the target object whose lock is concerned and c its class. We
show only the steps of the thread itself, not the whole component C.

(|; tcritsec = ς(s:c).λ().(|body ; tcritsec
τm

r−−→
(|body [o/s]; tcritsec =

let xlocal :c = o.x1 in t′; tcritsec
τr−→

let xlocal :c = o1 in t′; tcritsec  ∗

(let xnew
1 = onew in o.x1 := xnew

1 ; t′′); tcritsec
τw−−→

t′′; tcritsec −→∗

tcritsec .

(B.22)

A lock-release performs the following steps:

|); t = ς(s:c).λ().|)body ; t
τm

r−−→
|)body [o/s]; t −→∗

let x:c = o in o.x2 := x; t
τw−−→

let x:c = o in o.x1 := x; t
τw−−→

t .

(B.23)

Note that a lock release |) can never deadlock and that the very last step of |),

the
τw−−→, is the first point where another thread has the chance to enter.

By the mutex Lemma B.2.23, the code of (|1w t1critsec |)
1 (with

τw−−→ as the
first step) and (|2r t2critsec |)

2 are executed under mutual exclusion, i.e., with-
out overlap (and vice versa). In particular the shorter t1w = (|1w t1critsec |)

1 and
t2w = (|2w t2critsec |)

2 are executed under mutual exclusion. Assume wlog. that t1w
precedes t2w. This implies (Lemma B.2.23) that also t1w precedes t2r, i.e.,

=⇒
(|1w=⇒

t1
=⇒

|)1

=⇒=⇒
(|2r=⇒

t2
=⇒

|)2

=⇒ . (B.24)

We now argue that all internal steps of n2 can be completely ordered after n1

has left its critical region, i.e., after |)1. According to equation (B.22), the re-
duction from the beginning of (|2 to (|2r consists of a single τm

r -step, replacing
the self-parameter by the the actual identity of the object by rule CALLi. By
the non-interference Lemma C.2.4, the τm

r -step for the method call can be post-
poned, yielding

=⇒
(|1

=⇒
t1

=⇒
|)1

=⇒=⇒
(|2

=⇒
t2

=⇒
|)2

=⇒ , (B.25)

as required.

Next we generalize the lemma to deal with external labels, as well. At the
same time, we generalize the lemma also to deal with mutual exclusion for
whole cliques; Lemma B.2.24 dealt with the critical section for one single object,
only.
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Lemma B.2.25 (Disentangling). Let Ξ0 ⊢ Ct be given by Definition 5.2.7 and as-

sume Ξ0 ⊢ Ct
r

=⇒ Ξ ⊢ C
a1a2=⇒ Ξ́ ⊢ Ć , where the labels a1 and a2 are performed

by the threads n1 and n2. Assume further that the critical sections (|1 t1sync |)
1 and

(|2 t2sync |)
2 belonging a1 resp. a2 are performed completely. Then Ξ ⊢ C

b1b2=⇒ Ξ́ ⊢ Ć

by a clean reduction, where Ξ0 ⊢ r a1 a2 ⊑switch
Θ r b1 b2.

Proof. First note that in case of an incoming label, the corresponding atomic
region is executed after the external step; for an outgoing label, the execution
of the critical section precedes the labeled step. By the definition of switching
(cf. Table 5.2), either b1 b2 equals a1 a2 or equals the reversed order a2 a1. See
also the discussion on page 105.

We show the argument for one single object. The generalization to disen-
tangle the steps of a whole clique is straightforward, using the non-interference
Lemma C.2.4, in particular switching the order of steps belonging to different
objects.

We show the case where a1 = γ1? and a2 = γ2!, which corresponds to the
switching rule O-OI (which is the rule where the reverse direction is not cov-
ered). All other combinations of inputs and outputs work similarly. Projected
to thread n1, the interactions for a1, resp., for a2, projected to n2, look as fol-
lows:

γ1? +3
(|1t1sync |)

1

+3 and
(|2t2sync |)

2

+3 γ2! +3 , (B.26)

where t1sync is part of the input synchronization code tisync and t2sync of output
synchronization tosync (cf. Definition B.2.2 and B.2.11). By Lemma B.2.24, the

reduction from C to Ć can be reordered such that there is no overlap between
the critical sections, i.e., that

γ1? γ2!

(|1t1sync |)
1 (|2t2sync |)

2

+3 or
γ1? γ2!

(|2t2sync |)
2 (|1t1sync |)

1

+3 . (B.27)

The second reduction, where the order of the critical sections is opposite of
the order of the labels, is not clean. By the non-interference Lemma C.2.4, the
atomic, external γ1?-step does not interfere with the steps of (|2 t2sync |)

2 of
thread n2, and neither γ2! with the steps of (|1 t1sync |)

1. Since furthermore by
the same lemma, γ2? and γ2! do not interfere with each other, the reduction on
the right-hand of (B.27) can be reordered (reversing the switching rule O-OI)
into

or
γ2!γ1?

(|2t2sync |)
2 (|1t1sync |)

1

+3 , (B.28)

as required.

The lock grabbing (| and the lock release |) from Definition B.2.21 assure
mutual exclusion on the level of single objects. The implementation, however,
needs interference free execution per clique, since the data structures of all mem-
bers of a clique are updated in the synchronization code. With (| |) on object
level, the implementation is fairly simple, since again we can ignore liveness
properties; basically when failing to get hold of all locks of a clique —another
thread might try to collect the locks of the same clique starting the traversal
from a different entry point— the algorithm is free to give up.
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We need to be careful in one respect: The implementation of Definition B.2.20
and Definition B.2.21 realizes a simple binary lock mechanism but no reentrant
locks (cf. also Remark B.2.18). In the implementation we need to refrain there-
fore from recursive traversal schemes of acquiring locks on the object level; oth-
erwise the traversal will block.

Definition B.2.26 (Lock handling (clique level)). Given an object with known ob-
jects self .Θ, then the lock handling on clique level is simply defined as

(| , Θ.(| , (B.29)

i.e., as loop15 over all (defined) objects from Θ. Analogously for |). In abuse of notation,
we will write for the lock-handling on the clique level simply (| and |).

Remark B.2.27 (Mutual exclusion and merging). As the clique structure is dy-
namic, in particular, component cliques may merge, the code for input synchronization
must obtain the lock not just for the clique of the target object of the communication as
given by the connectivity before the step, but for all cliques which are in the process
of being merged.

To formulate the properties of the lock-handling code, we use the following
assertions.

Notation B.2.28 (Lock ownership). Given a well-typed, fully-connected component
as constructed in Definition 5.2.7 and equipped with locks as just described. By writing
Ξ ⊢ C : o ←֓ n (“in component C, thread n owns the lock of object o”) we mean that

C ≡ ν(Φ).(C′ ‖ o〈lock = n, . . .〉) , (B.30)

where xlock is the triple of instance variables as given in Definition B.2.20. When
writing Ξ ⊢ C : [o] ←֓ n (“in component C, thread n owns the lock of clique [o]”) we
mean that the assertion of equation (B.30) holds for all objects o′ with Ξ ⊢ o⇌ o′.

B.3 Properties of the synchronization code

In Section B.2 we allowed ourselves a number of “higher-level” data structures
and operations to concentrate on the core of the construction. As they are not
supported by the core calculus, we describe in the following how to implement
them. In most cases, the implementation is straightforward, if a bit tedious. We
follow a top-down approach, i.e., first we state the relevant lemmas about the
synchronization code tisync and tosync from the definitions from Section B.2.

For synchronization for incoming communication, see Definition B.2.2. The
lemma below basically states, that the code preserves (or rather re-establishes)
the invariants as expressed by the commitments. Remember that the synchro-
nization code for inputs comes after the actual external input step. In particular,
the commitments are temporarily violated. The execution shortens the future
of the affected clique by the corresponding input label (in case it is an expected
one), where the clique may be merged from previously separate ones during
the execution of the code, and where new objects may be created in the corre-
sponding communication. In effect, being executed directly after an incoming

15An iteration, not a recursion. As always, an upper bound on the number of iterations is stati-
cally determined.
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communication, the new objects themselves are already instantiated, which is
done “automatically” by the semantics. In case a new thread name enters the
component in the input —this can happen only in an incoming call— also the
thread itself is already present in the component in the pre-condition of the
lemma.

We can handle the concurrent framework in the same way as the single-
threaded one. “Cleaning up” a multithreaded reduction (cf. Definition C.4.1
on page 259 for clean reduction) allows to treat the synchronization for each
interaction without interference of other threads.

Lemma B.3.1 (Synchronization: Input (cf. Definition B.2.2)). Let a = ν(Φ′).γ?
be an incoming label with Φ′ = ∆′,Σ′,Θ′, and where ∆′ contains the environ-
ment objects transmitted by scope extrusion, Θ′ the lazily instantiated component ob-
jects, and Σ′ potentially a new thread name (in the multithreaded setting). Assume

∆́, Σ́; É∆ ⊢ C : Θ,Θ′, Σ́;EΘ = ∆́, Σ́; É∆ ⊢ C′ ‖ n〈tisync(); t〉 : Θ,Θ′, Σ́;EΘ.
Furthermore

∆́, Σ́; É∆ ⊢ C : Θ́, Σ́;EΘ :: [o] 3 [o]↓ as
′ (B.31)

for all object cliques [o] according to EΘ and where Θ ⊢ o, and furthermore

∆́, Σ́; É∆ ⊢ C : Θ́, Σ́;EΘ :: [o′] 3⊥ (B.32)

for all object cliques [o′] with Θ′ ⊢ o′ (see Definition 3.3.22). Then

∆́, Σ́; É∆ ⊢ C : Θ́, Σ́; ÉΘ =⇒ ∆́, Σ́; É∆ ⊢ C
′′ ‖ n〈t〉 : Θ́, Σ́; ÉΘ = Ξ́ ⊢ Ć (B.33)

and
Ξ́ ⊢ Ć :: s′ . (B.34)

In the multithreaded setting, we assume further that the lock of the clique is free.

Proof. Note that in the specification of the pre-condition, the newly created

component instances are already present, as asserted by Θ́ = Θ,Θ′. They are,
however, not yet appropriately connected and also they do not yet have the
future behavior initialized appropriately. This is asserted by the connectivity

context EΘ (as opposed to ÉΘ) and by equation (B.32) for the future of the
lazily instantiated, new objects.

The code of tisync is given in equation (B.3) and does the following steps:
Storing the label, initialization, stepping forward, and broadcasting (plus lock-hand-
ling in the multithreaded setting). Let us abbreviate tisync ; t as t0, the thread at
the control point after initialization t1, and after returning from the invocation
of stepi as t2. Finally, t3 corresponds to t, the remaining code after synchro-
nization.

After obtaining the lock (in the multithreaded setting) and storing the label
a in the instance state, initialize is invoked on all component objects (includ-
ing potentially self)16 which mentioned in a. Iterated application of the ini-
tialization Lemma B.4.6) yields that for all freshly instantiated objects Θ′ ⊢ o′

we are given Ξ́ ⊢ C1 ‖ n〈t1〉 :: [o′] 3 o′↓ t (part (2) of the Lemma), where
t is the given trace. Since by assumption, it is the first appearance of o′ in

16Note that it is possible that the target of the communication, which corresponds to the object
that executes the synchronization code, is lazily instantiated itself in the communication and hence
is uninitialized at that point immediately after the communication.
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the trace, this implies Ξ́ ⊢ C1 ‖ n〈t1〉 :: o′ 3 [o′]↓ as
′ and furthermore Ξ́ ⊢

C1 ‖ n〈t1〉 :: [o′] 3 [o′]↓ as
′. By part (1) of the same lemma, the initialization

method leaves all previously existing cliques [o] with Θ ⊢ o unchanged, i.e.,

Ξ́ ⊢ C1 ‖ n〈t1〉 :: [o] 3 [o]↓ as
′ as in the pre-configuration.

So, considering both new component objects and old ones, we have for all

objects o from Θ́ = Θ + Θ′

Ξ́ ⊢ C1 ‖ n〈t1〉 :: [o] 3 [o]↓ as
′ ,

after executing initialize , and where [o] are the cliques according to EΘ.17

This means, the pre-condition of the step Lemma B.4.7 for input is given.

Thus, Ξ́ ⊢ C1 ‖ n〈t1〉 =⇒ Ξ́ ⊢ C2 ‖ n〈t2〉 such that Ξ́ ⊢ C2 ‖ n〈t2〉 :: or 3

[o]↓ s
′, where or is the receiver of the input action a. Finally, by the broadcast

Lemma B.4.9, Ξ́ ⊢ C2 ‖ n〈t2〉 =⇒ Ξ́ ⊢ C3 ‖ n〈t〉with Ξ́ ⊢ C3 ‖ n〈t〉 :: [o]3 [o]↓ s
′

for all component cliques [o] according to Ξ́, which means Ξ́ ⊢ C3 ‖ n〈t〉 :: s′

(cf. Definition 3.3.22), as required.

For output, the statement of the pre- and post-assertions is simpler than
for input, since no merging of cliques is involved. So the following lemma ex-
presses that the output synchronization code from Definition B.2.11 does the
expected job, i.e., it creates the required internal objects mentioned in Θ′, initi-
ates the objects to be lazily instantiated in the external step to follow from ∆′,
and shortens the future behavior.

Lemma B.3.2 (Synchronization: Output (cf. Definition B.2.11)). Let a = ν(Φ′).γ!
be an outgoing label with Φ′ = (∆′,Σ′,Θ′) where ∆′ be the lazily instantiated envi-
ronment objects and ∆′ be the identities of component objects transmitted by scope
extrusion. Assume Ξ ⊢ C with C = C′ ‖ n〈tosync(); t〉. If Ξ ⊢ C :: a s, then

Ξ ⊢ C
a

=⇒ Ξ́ ⊢ Ć and Ξ́ ⊢ Ć :: s, where Ć = C′′ ‖ n〈t′〉 where t′ either blocked
before performing input synchronization, or stopped. In the multithreaded setting, we
assume further that the lock of the clique is free.

Proof. The code for output synchronization is given as (|; stepo() in equation (B.11)
in Definition B.2.11 (see also Definition B.2.10).

C′ ‖ n〈to
sync ; t〉 = C′ ‖ n〈(|; stepo; t〉 =⇒

C′ ‖ n〈stepo; t〉 =

C′ ‖ n〈let (σ, ǎ ) ∈ scripts in t1〉 .

According to the assumption Ξ ⊢ C :: as for the pre-configuration (cf. Defi-
nition 3.3.22). Assume first that the code is executed in a clique known to the
outside, say [o]/Ξ

(or [o] for short) with Θ ⊢ o. By equation (3.49) and (3.50),
there exists at least one open future (σ, ǎ ) in scripts . Thus, the reduction con-
tinues:

. . . C′ ‖ n〈let σ′ = create(ǎ) in t2〉 =⇒

C′ ‖ ν(Φ′).(C(Φ′) ‖ n〈t′2〉)

where C(Θ′) equals o1[c1, F1], . . . , ok[ck, Fk], i.e., it contains the freshly created
component objects in their initial state, and σ′ = [ǒ1 7→ o1, . . . , ǒm 7→ om], when
ǒi are the roles mentioned bound in the label ǎ.

17And not ÉΘ, which means, still reflecting the clique structure before the merge and especially
with the lazily instantiated new objects forming singleton cliques.



Chapter B Coding 243

Let now (σi, ǎiši) be an arbitrary element of type script from the set scripts .
Note that there exists at least one such element, namely the (σ, ǎš) mentioned
above. If ǎi is a renamed variant of ǎ wrt. the roles occurring bound in ǎ, resp.,
in ǎi, then the association σ′ ◦ π(ǎ, ǎi) is defined and of the form [. . . ǒπ(i) 7→

oi, . . .].
18 Let abbreviate the association by σ′

i. Note that either dom(σ′) =
dom(σ′

i) (exactly when ǎi = ǎ and π corresponds to the identity) or dom(σ) ∩
dom(σ′

i) is empty (in all other cases). Note further that dom(σ′
i) ∩ dom(σi) is

empty, since σ′
i contains the bindings exactly for those roles which are new wrt.

the ith script, and which are mentioned as new in the binding part of ǎi. With
the domains of σ′

i and σi disjoint, σ′
i ⊕ σi is defined (cf. Definition B.2.6, equa-

tion (B.8)). Thus, for σ́i, the association for the ith script after evaluating ǎi, we
have

o.script i = (σ́i, ši) such that [o]↓ s . šiσ́i , (B.35)

where o is the object which “executes” the code (cf. also Definition 3.3.22).

If ǎ is not a renamed variant of ǎi, the corresponding script script i is deleted
from the set scripts .

This means, after executing the loop ∀(σi, ǎi, ši) ∈ self .scripts in the code
of stepo (cf. equation (B.10)), for all scripts remaining in the set self .scripts ,
equation (B.35) holds. Note that there survives at least one script after the loop,
satisfying (B.35), which corresponds to the script where ǎi = ǎ.

Note that the pick of (σ, ǎš) in the first line of stepo represents the exact point
where non-determinism in the reaction of Ct occurs. In the sequential, determin-
istic setting, we cannot non-deterministically pick one element of self .scripts .
However, the definition of a deterministic trace (cf. Definition 3.1.10) assures
that all ǎi in the loop are renamings of each other. This means, all scripts “sur-
vive” the loop starting in line 3 of stepo! In both the deterministic and the
non-deterministic case, for all surviving scripts we have ǎiσ́i = a, since we as-
sumed for the pre-configuration [o]↓ as . (ǎiši)σi and since all roles mentioned
ν-bound in ǎ are instantiated create(ǎ).

Given (B.35) for all scripts, executing self .broadcast(Σ) establishes o′.script i =
(σ́i, ši) for all objects in o’s clique, including the newly created objects, i.e., it

establishes [o]/
Ξ́
.scripti = (σ́i, ši), where Ξ́ is the context updated by the label

a. As mentioned, the label a of the trace corresponds to the one in the code of
stepo, handed over to self .interpret (cf. Definition B.2.12).

In case of a return, interpret gives back the corresponding value and the
reduction continues as follows (not that the value v must be an object reference
o′, and that Φ′ either is empty or contains the binding for the object reference
o′):

. . . Ξ ⊢ ν(Φ′′).(C′ ‖ ν(Φ′).(C(Φ′) ‖ n〈let x:T = (|); v) in o returns x to or; t3〉)) =⇒

Ξ ⊢ ν(Φ′′).(C′ ‖ ν(Φ′).(C(Φ′) ‖ n〈o returns v to or; t3〉))
a
−→

Ξ́ ⊢ ν(Φ′′).(C′ ‖ C(Φ′) ‖ n〈t3〉) .

18The π(ǎ, ǎi) is meant as renaming from the roles of ǎ to the roles of ǎi.
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In case of a call, interpret issues the call; the reduction continues as follows:

. . .

Ξ ⊢ ν(Φ′′).(C′ ‖ ν(Φ′).(C(Φ′) ‖ n〈 let x:T = (|); let y:T ′ = or .l(v)

in ti
sync(return, y); to

sync())

in o returns x to or ; t3〉)

=⇒

Ξ ⊢ ν(Φ′′).(C′ ‖ ν(Φ′).(C(Φ′) ‖ n〈 let y:T ′ = or.l(v)

in let x:T ′ = ti
sync(return, y); to

sync())

in o returns x to or; t3〉)

a
−→

Ξ ⊢ ν(Φ′′).(C′ ‖ ν(Φ′).(C(Φ′) ‖ n〈 let y:T ′ = o blocks for or

in let x:T ′ = ti
sync(y); to

sync())

in o returns x to or; t3〉) .

Example B.3.3 (Input and output synchronization). Let us illustrate the working
of input and output synchronization. Consider the following (balanced) trace t,

ν(o1).n〈call o1.l1()〉? ν(o2).n〈call o2.l2()〉! n〈return()〉? n〈return()〉! , (B.36)

abbreviated as a1 a2 a3 a4 and where we omit typing information for simplicity. Let
further C0 for Ct according to Definition 3.3.20 resp. 5.2.7. Then the execution of
the first two actions of the trace, the incoming followed by the outgoing call, works as
follows. The reduction sequence is simplified in that we omit the types, and that in the
reduction, we keep the let x = . . . in o1 returns x to⊙ syntactically at the outermost
level and reduce the thread inside. In full detail, there are additionally LET-steps to
move the active redex to the front.

Ξ0 ⊢ C0

a1−−→

Ξ1 ⊢ C0 ‖ o1[c1, F ] ‖ n〈let x = o1.l1() in o1 returns x to ⊙〉
τ
−→

Ξ1 ⊢ C0 ‖ o1[c1, F ] ‖ n〈let x = M1.l1(o1)() in o1 returns x to ⊙〉 =

Ξ1 ⊢ C1 ‖ n〈let x = ti
sync(l); to

sync() in o1 returns x to ⊙〉 =⇒ (init., pick repres.)

Ξ1 ⊢ C′
1 ‖ n〈let x = o1.stepi(o1, a1)|); to

sync() in o1 returns x to ⊙〉 =⇒ (shorten future)

Ξ1 ⊢ C′′
1 ‖ n〈let x = to

sync() in o1 returns x to ⊙〉 =⇒

Ξ1 ⊢ C′
1 ‖ n〈let x = o1.stepo() in o1 returns x to ⊙〉 =

Ξ1 ⊢ C′
1 ‖ n〈 let x = ( let (σ, ǎš) ∈ o1.scripts in . . .)

in o1 returns x to ⊙〉

=⇒ (det. next action)

Ξ1 ⊢ C′
1 ‖ n〈 let x = ( let σ′ = create(ǎ2) in . . .)

in o1 returns x to ⊙〉

=⇒ (create o2)

Ξ1 ⊢ C′
1 ‖ n〈 let x = ( let σ́ = σ ⊕ σ′ in . . .)

in o1 returns x to ⊙〉

=⇒ (extend assoc.)

Ξ1 ⊢ C′
1 ‖ n〈 let x = ( scripts := (σ́, š); . . .)

in o1 returns x to ⊙〉

=⇒ (update future)

Ξ1 ⊢ C′
1 ‖ n〈 let x = ( let a = ǎ3(σ ⊕ σ′) in o1.interpret(a))

in o1 returns x to ⊙〉

=⇒ (det. next action)

Ξ1 ⊢ C′
1 ‖ n〈 let x = ( o1.interpret(a2))

in o1 returns x to ⊙〉

=⇒ (exec. a2)

Ξ1 ⊢ C′
1 ‖ n〈 let x = ( |); let y = o2.l2() in ti

sync(return, y); to
sync())

in o1 returns x to ⊙〉

a2=⇒ (call)

Ξ3 ⊢ C3 ‖ n〈 let x = ( let y = o1 blocks for o2 in ti
sync(return, y); to

sync())

in o1 returns x to ⊙〉

In the example, there is only one component object involved, namely o1. Consequently,
the scripts data structure only contains one single static future which is being worked
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off. After the two calls, the thread n is blocked and waiting for return and there remain
still the two calls ǎ3ǎ4 to be executed in the script. Continuing with the incoming
a3, the input synchronization would shorten the future to ǎ4 (without creating new
objects, assigning new roles, or merging), and the trailing output synchronization will
take care that the return a4 happens by passing over the return value to the let-bound
variable x and shortening the future to the empty sequence.

B.4 Data structures and operations

In this section we show in a more detail the implementation of the data struc-
tures and the code we used in Section B.2. Furthermore we prove the lemmas
corresponding to the code which we used in Section B.3. In particular, we show
how to encode the references occurring in the given trace in Ct.

B.4.1 Objects and connectivity

A crucial point concerns the data dynamically created during the run, in particu-
lar the identities. Created freshly, their values cannot be fixed at compile-time.
As each legal trace is finite, the values can be represented in a statically deter-
mined number of instance variables. We furthermore assume, that the ν-bound
identities in the trace are alphabetically renamed so that two different identities
do not literally carry the same name.

The instance variables ǒ are needed to store the references once they are
created or received from outside. Analogously ň to store thread names, in
the multithreaded setting and at the beginning of the run, the values are not
yet available. Since the language does not contain fully functional native nil-
references, we need to provide them ourselves.

Remark B.4.1 (Undefined). To fill in some static “value” in the fields of a class, we
used ⊥c as notation for an instance variable of type c yet undefined. Note that ⊥c is
not a value of the calculus, it rather denotes the absence of a value. In particular,
⊥c cannot be “copied” into another instance variable and it cannot be handed over as
argument. Operationally, it behaves as ς(s:c).λ(). stop. This design choice is taken to
avoid to define ⊥c = ⊥c, or ⊥c = o . . . .

As we decided that trying to access the undefined value leads to an error (rep-
resented as just deadlock), we need the additional operation to test for being unde-
fined.

Definition B.4.2 (Object identities). Given a legal trace t justified by Ξ ⊢ t : trace.
For each object reference o of type c occurring in the trace, ǒ denotes an instance vari-
able of type c contained in all classes of Θ. Initially, the value of the instance variable
representing one instance of type c is ⊥c.

xflag := false , ς(s:c). let x, y:c = new c,new c
in self .x1 = x; self .x2 := y .

(B.37)

We refer to the pair of instance variable and the flag as ǒ (the static analog of o), and to
its type as object.
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Definition B.4.3 (Operations). We denote by ⊥c a “pair” of stop and boolean value
false , which we also refer to as nil value. We write ǒ := o′ for allocating a pair, i.e. for

ǒ := o′ , xo := o;xisallocated
o := true .

Furthermore we write for the comparison of the instance variable (pair) with a nil-
pointer:

ǒ = ⊥c , if isallocated (ǒ) then false else true

where isallocated refers to the boolean allocation flag.

The variable ǒ (or rather the pair) is set to a non-nil value exactly once;
afterwards it is accessed in read-only manner, only. The implementation of the
above operations and their “soundness” wrt. the intended meaning is obvious.

To represent its connectivity, each object maintains the set of all identities it
knows, or rather all references it as ever heard of. We refer to the set of objects
as self .Θ. This set corresponds to clique of objects of the instance at hand, i.e.,
all objects acquainted to the current one according to EΘ.

Definition B.4.4 (Set of objects). We refer to a collection of allocated objects of type
object as of type set of object. In particular, we refer to the ensemble of instance vari-
ables ǒ of type object, which are allocated, by self .Θ, and to its type as set of object.

Definition B.4.5 (Checking for containment). Checking whether an object refer-
ence is already known is done as follows:

o ∈ self .Θ , if o = ǒ1 then true;
. . .
if o = ǒn then true else false .

ǒ1, . . . , ǒn are all instance variables introduced in Definition B.4.2.

B.4.2 Labels and scripts

A core data structure for the observer Ct is the list containing t (respectively
projections thereof), which we called the scripts that need to be realized. To rep-
resent it we used the data types of lists and of sets (cf. Definition B.2.1). Indeed,
the definition seems even to use set and list as type constructors in a parametric
or generic way. A closer look at Ct and its behavior shows, however, that we
are in a more comfortable position. First of all, we do not need dynamic data
structures. The mentioned structures are needed to represent (and together
with appropriate method code to enforce) a given trace t, as part of the com-
pleteness proof. With this trace finite and given, the encoding need not provide
a general implementation of sets or lists, i.e., an implementation of the types
set and list used in Definition B.2.1; it suffices to implement the particular t in
the script -variable, and the given ensemble of various behaviors of instances
of a class in the scripts-variable.

Next we encode traces, i.e., sequences or lists of labels (cf. again Defini-
tion B.2.1). The form of the labels as used in the semantics is given in Table 2.8
resp. 4.6, more precisely the version of the labels augmented with a caller iden-
tity. Again, it is the finiteness of the given trace, mentioning only a finite num-
ber of references and values and method names, which allows to encode all
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required labels in a statically determined arrangement of instance variables.
Given a label a, we denote by ǎ the instance variable (or rather the collection
of instance variables) used to store the label a. A label a needs to be stored in a
structured way, since we need to refer to the constituent parts, in particular, the
object identities, for comparison. Furthermore, we assume a status of being un-
defined, written again ⊥, implemented the same way as for object references.

B.4.3 Synchronization code

Next we describe the implementation of the algorithms operating on the data.
On an abstract level, we have made use of the properties of the algorithms
already in Section B.2 and Section B.3.

The next lemma characterizes the behavior initialization code (cf. Defini-
tion B.2.4 and also Example 3.3.14), which is part of the input (but not for out-
put) synchronization. Basically, the initialization establishes the invariants for
a freshly created component object, treating it as a (perhaps only momentarily)
isolated clique of its own. We start with the lemma that deals with one single
component object. The code is given in Definition B.2.4. Note that we must
assume that the object o on which the initialization is performed is a compo-
nent object, otherwise the call would be visible at the interface or the program
would be ill-typed, since in general, the initialization method is not offered by
objects at the interface.

Lemma B.4.6 (Initialization). Let Ξ0 ⊢ Ct be given as usual. Assume Ξ́ ⊢ C = Ξ́ ⊢

C′ ‖ n〈o.initialize(); t〉 with Θ́ ⊢ o. Furthermore assume that equation (B.31) (from

the input synchronization lemma B.3.1 holds.19Then Ξ́ ⊢ C =⇒ Ξ́ ⊢ C′′ ‖ n〈t〉 s.t.:

1. If Ξ́ ⊢ C :: [o] 3w, then Ξ́ ⊢ C′′ ‖ n〈t〉 :: o3w (where w 6= ⊥ and C′′ = C′).

2. If Ξ́ ⊢ C :: [o] 3⊥, then Ξ́ ⊢ C′′ ‖ n〈t〉 :: o3 [o]↓ t.

Proof. For the code of the initialize-method, see Definition B.2.4. There are two
cases to distinguish. In case (1), when the object is already initialized, we are
given o.scripts 6= ⊥ (cf. equations (3.49) and (3.50)) and the claim follows di-
rectly from the code; the execution of the initialization code has no effect.

In case (2), we are given Ξ́ ⊢ C :: [o] 3 ⊥, i.e., o.scripts = ⊥ (cf. equation
(3.51)). Since the object o is new, it is not yet connected to any other object
and [o]↓ t = o↓ t. Let ťǒ abbreviate ǒ↓ ť. By construction, the instance variable
scripts of class c of o contains (potentially among other futures) the pair,

(σ⊥ , ťǒ)

which is the static representation of o’s behavior in the given t. According to
the code of initialize in equation (B.4), σǒ is set to σǒ[ǒ 7→ o], which means that

o↓ t . ťǒσǒ = ťǒ[ǒ 7→ o] after executing initialize . Hence Ξ́ ⊢ C′ ‖ n〈t〉 :: o3 o↓ t.

Therefore, for all cliques [o] we have Ξ́ ⊢ C′ ‖ n〈t〉 :: [o] 3 o↓ t, as required.

The next lemma specifies the behavior of the step-method, used during in-
put synchronization.

19I thought, I might need additionally that the conditions of Lemma B.3.1 hold, in particular
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Lemma B.4.7 (Input step). Let Ξ́ ⊢ C abbreviate Ξ́ ⊢ C′ ‖ n〈o.stepi(a,~o); t〉,
where ~o is a set of object references containing one representative for each component
clique. Furthermore

Ξ́ ⊢ C :: [o] 3 [o]↓ as
′ (B.38)

for each component clique [o]. Then Ξ́ ⊢ C =⇒ Ξ́ ⊢ C′′ ‖ n〈t〉 such that

Ξ́ ⊢ C′′ ‖ n〈t〉 :: o3 [o]↓ s
′ .

Proof. The code of the stepi-method is shown in equation (B.9) in Definition B.2.8.

Let s = as′. By assumption, Ξ́ ⊢ Ć :: o′ 3 [o′]↓ s for all component objects o′,
which means (Definition 3.3.22) there exists (σ′, šo′) ∈ o′.scripts where

[o′]↓ s . šo′σ′ . (B.39)

If o′ (resp. its clique) is involved in the communication, i.e., [o′] is the target of
the communication and/or being merged in the current step, the current future
šo′ of o′ is of the form ǎiši, as [o′]↓ as

′ starts with (the projection of) the label
a (cf. rule P-IN2 from Table 3.2). Let ao′ denote the first label of the projection

[o′]↓ as
′. By definition of projection, ao1

6= ao2
for two different component

cliques o1 and o2, in case a merges the two: The difference concerns the ν-
binders, as the local projection adds ν-binders to names which are locally new.

Now consider a20 combination σ1, . . . σk of associations from the involved
component cliques [o1], . . . , [ok], such that for each σi, equation (B.39) holds. In
particular, we have for the next action a,

[oi]↓ a . ǎoi
σi . (B.40)

We first need to argue that the combination
⊕

σi (which is contained in the
result of collectroles , cf. equation (B.7)) is defined. Note that code of collectroles

in line 3 of equation (B.9) combines all currently open associations, one σ′′ from
one of the still open futures from each component clique. Each participating
component has, as consequence of the assumption (B.38), at least one still open
future; however, not all combinations σ′′

i ⊕ σ′′
j from the open scripts of two

objects oi and oj are defined. The mentioned assumption guarantees, that there
exists such a valid combination.

As⊕ is associative and commutative, we concentrate on the combination of
the associations of two cliques, say [o1] and [o2]. By the invariant of Lemma B.4.11,
the domains of σ1 and σ2 are non-empty and furthermore that dom(σ1)∩dom(σ2) =
∅ or dom(σ1) ⊆ dom(σ2) or vice versa. Furthermore, since σ1 and σ2 belong to
two different component cliques, i.e., are taken from o1.scripts and o2.scripts
where o1 and o2 belong to two different cliques, ran(σ1) ∩ ran(σ2) = ∅. Finally,
since a merges the two cliques, a mentions an object from [o1] as well as from
[o2], i.e., ⌊ǎ1⌋ = ⌊ǎ2⌋ = ⌊ǎ⌋ contains a variable from dom(σ1) as well as from
dom(σ2) (because of equation (B.40)), where ⌊ǎ⌋ is the core of label ǎ. Hence
by Lemma B.4.15, σ = σ1 ⊕ σ2 is defined and furthermore ⌊ǎ⌋σ . ⌊ǎ⌋ and

[o]↓ s
′ . š′σ. Since for each all free roles x of ⌊ǎ⌋, x ∈ dom(σ1) or x ∈ dom(σ2),

ǎσ = ǎ, as required by the code of collectroles from the 4th line of equation
(B.7).

20There may indeed be more than one in case the overall static script ť contains different versions
of the same behavior due to replay.
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The broadcast method, used in the code for performing the output synchro-
nization as well as for input (cf. equation (B.10) and (B.3)), is rather straightfor-
ward. It simply updates the scripts data structure of all component objects its
current clique with the value the current objects has stored for itself. Remem-
ber that by self .Θ we refer to the component references that the object under
consideration is currently aware of.

Definition B.4.8 (Broadcast). Each component class is equipped with a private method
broadcast of type scripts→ Unit given as follows

broadcast(scripts : scripts) , self .(Θ́.scripts) := scripts . (B.41)

Lemma B.4.9 (Broadcast). Assume Ξ ⊢ C = Ξ ⊢ C′ ‖ n〈~o.broadcast(Σ); t〉,
where ~o contains one representative of each component clique according to Ξ, and Σ
the value of the scripts data structure of the executing object o. If Ξ ⊢ C :: o3 s, then

Ξ ⊢ C′′ =⇒‖ n〈t〉 and Ξ ⊢ Ć :: [o] 3 s.

Proof. Straightforward: the broadcast-method simply copies self .scripts to all
objects to the current clique of the receiving method.

The following lemma shows a central invariant of the implementation. The
scripts-variable for each clique contains sets of pairs

(σi, ši) ,

where š represents one open future and σ the abstraction of the witnessed past,
in the form of a variable-reference association. The still open future ši is part
of the globally given static trace (by way of projection) ť and determines ex-
actly the state up-to which the predefined script has been “played”. The past
interaction, in the static representation, is kept as domain of the corresponding
association σi. The invariant states, that for each still open script, the past σi

and the future si “fit together” in that they correspond to a state in the given
behavior t to be realized. So the invariant of equation (B.42) corresponds to the
property of equation (A.31) for dynamic traces.

Lemma B.4.10. Let t be the given, legal trace, ť the static analog, and Ξ0 ⊢ Ct the pro-

grammed component, as before. Assume Ξ0 ⊢ Ct
r

=⇒ Ξ ⊢ C. Then for all component
cliques [o] according to Ξ, we have that for all elements (σi, ši) of [o].scripts

dom(σi) = ˇnames(ť− ši) . (B.42)

Proof. Straightforward, by induction on the number of reduction steps. The
data structures are changed in the synchronization code, the core is to show,
that tisync and tosync maintain the invariant.

In the base case, in the initial configuration Ξ0 ⊢ Ct, the invariant trivially
holds, as there are no component cliques. In case of output, we must show
that that tosync , in particular stepo (cf. Definition B.2.11 and B.2.10) preserve the
invariant. Before the step, the scripts are of the form (σi, ǎiš

′
i). According to

line 2 of equation (B.10), dom(σ′) contains the roles occurring bound in ǎ (filled
in by the create-operation). Let σ′

i denote the additional bindings added to σi

in those roles mentioned bound in ǎi from the loop of line 3 — 5 of stepo. Since
the permutation π(ǎ, ǎi) is defined exactly if ǎi is a “renaming” of the bound
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roles of ǎ, dom(σ′
i) contains exactly the roles mentioned bound in ǎi. Thus, the

extension σ́i = σi ⊕ σ′
i maintains the invariant.

For input, cf. Definition B.2.2 and especially B.2.8 for stepi. The update of

scripts (locally for one object) is done by the assignment self .scriptsi := (σj
i , ši

in line 5 of equation (B.9). For the association σj
i , we have the equation a =

ǎiσ
j
i , i.e., σj

i contains at least the bindings for the roles mentioned new in ǎi.
For all cliques participating in the merged, the invariant holds before the step,
i.e., for all σ′′ summed up in collectroles of equation (B.7), there is dom(σ′′) =

ˇnames(ť− ǎj
i š

j
i ), where ǎj

i is the local version of ǎ. Therefore, collectroles gives

back a set of associations where for all σj
i in that set s.t. dom(σj

i ) =
⋃

k dom(σk),
where k ranges over all cliques being merged, and were for dom(σk) the induc-
tion hypothesis applies, i.e., dom(σk) = ˇnames(ť − b̌š′), where b̌š′ is the open
future corresponding to σk. Note that collectroles may give back associations
σk, whose corresponding next step b̌ does not match with the actual label a to

process. In line 4 of equation (B.9), it is checked that ǎoσk = a (σk is called σj
i in

the actual code of stepi), which means dom(σk) ⊇ ˇnames(ǎi), from which the
result follows.

Lemma B.4.11. Let t be a legal trace and Ξ0 ⊢ Ct given as in Definition 3.3.20.

Assume Ξ0 ⊢ Ct
r

=⇒ Ξ ⊢ C. Then for all

dom(σ1) ∩ dom(σ2) = ∅ or dom(σ1) ⊆ dom(σ2) or dom(σ1) ⊇ dom(σ2) .

Proof. By Lemma B.4.10 on the previous page, for all component cliques [o] and
for all pairs (σi, ši) in Ξ ⊢ C, that dom(σi) = ˇnames(ť− ši) where ˇnames(ť− ši)
refers to the instances variables not object identities in ť − ši (cf. also Defini-
tion 3.1.5). Translated into the original traces t and si, names(t−si) corresponds
to a component clique, from which the result follows (cf. Lemma A.3.9).

For the next lemma, we use the following notations. The static represen-
tation ť incorporated in Ct consists of a finite set of linear traces, one for each
name of a component object mentioned in t (cf. the value of init from Defini-
tion 3.3.20). We abbreviate the future projection o↓ t by to. Analogously we
write ťx for the static analog, i.e., ťx corresponds to to with all references re-
placed one-to-one by their roles, and where in particular x is the role of o, i.e.,
ǒ = x. Furthermore, during the run of Ct, we refer with rx to the already
past part of tx, and sx the still open future. Note that sx is represented in the
program code as part of the pairs of type script = assoc× future in the scripts-
variable, whereas the corresponding rx is not remembered in the code; it is
used for the induction in the proof, only. Remembered from the past in the
code is only the association from roles to identities.

Lemma B.4.12. Let t be a legal trace and Ξ0 ⊢ Ct given as in Definition 3.3.20.

Assume Ξ0 ⊢ Ct
r

=⇒ Ξ ⊢ C. Let [o] be an arbitrary component clique according to Ξ
and (σ, š) and arbitrary elements from [o].scripts . Furthermore, the lock of [o] is free.
Then for all o ∈ ran(σ):

řxσ = o↓ r and řxšx = ťx and š = šx where x = σ−1(o) . (B.43)

An alternative formulation (σ is one-to-one for component objects) of equation (B.43)
reads: for all x ∈ dom(σ),

řxσ = o↓ r and řxšx = ťx and š = šx where o = σ(x) . (B.44)
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Proof. Straightforward.

B.4.4 Substitutions

The implementation is centered around a static representation of the behavior
of a given trace t and executes this representation, the scripts, step by step. Part
of the current state of execution is an abstraction of the past, already executed
script, matched against the actually happened trace. This abstraction is kept,
per script, as an association from instance variables (the static “roles”) to object
identities. We can consider the associations also as substitutions from roles to
identities. With this intuition in mind, we will assume in particular, that the
substitutions are injective —two different roles cannot be taken by the same
object— and that the domain and the ranges of the substitutions are separate:
the substitutions do not rename variables, but assign values to them. Following
conventional usage, we write ϕσ for applying the substitution σ to a formula
ϕ.

Definition B.4.13 (Matching). We write ϕ . ψ if there exists a substitution σ s.t.,
ϕ = ψσ (“ψ matches ϕ”). When we need to be explicit about the substitution, we also
write ϕ .σ ψ.

The next lemma states a simple fact about substitutions. Remember that
the definition of ⊕ requires the two substitutions being added to be of disjoint
domain (cf. equation (B.8) from Definition B.2.6).

Lemma B.4.14 (⊕). Assume two substitutions σ1 and σ2. If ϕσ1 . ψ and ϕσ2 . ψ,
then ϕσ . ψ, where σ = σ1 ⊕ σ2.

Proof. Straightforward.

Lemma B.4.15. Assume two substitutions σ1 and σ2 with non-empty domain, s.t.

dom(σ1) ∩ dom(σ2) = ∅ or dom(σ1) ⊆ dom(σ2) or dom(σ1) ⊇ dom(σ2) ,

and ran(σ1) ∩ ran(σ2) = ∅. Let ϕ further be a formula which contains at least
one variable x1 ∈ dom(σ1) and one x2 ∈ dom(σ2). If ϕσ1 . ψ and ϕσ2 . ψ,
then σ = σ1 ⊕ σ2 is defined and ϕσ . ψ. If additionally for all variables x of ϕ,
x ∈ dom(σ1) or x ∈ dom(σ2), then ϕσ = ψ.

Proof. If dom(σ1) ∩ dom(σ2), σ = σ1 ⊕ σ2 is clearly defined and ψ . ϕσ is
immediate with Lemma B.4.14. Now assume wlog. that dom(σ1) ⊆ dom(σ2).
By assumption, there exists at least one x1 ∈ dom(σ1) that appears in the free
variables of ψ. Since additionally, x1 ∈ dom(σ2) and since the ranges of σ1

and σ2 are disjoint, clearly ϕσ1 . ψ and ϕσ2 . ψ cannot be true, yielding a
contradiction to dom(σ1) ⊆ dom(σ2).

The second point of the lemma is an immediate consequence.

Overview over the code

We conclude by providing an overview of the pieces of code we used to pro-
gram the observer Ct for a given trace t. The notations are given in Table B.1.
We have not given the code of those definitions to the lowest level, since, once
having assured mutual exclusion, the data manipulations are straightforward,
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data type explanation notation used
assoc update of assoc σ := σ[y 7→ self ] B.2.4
assoc ⊕,

L

,∪ B.2.6,B.2.10
assoc domain if dom(σ1) ∩ dom(σ2) = ∅ B.2.6
assoc set comprehension {. . . | . . .} B.2.6

init initialize B.2.4
empty assoc σ⊥ B.2.13

all being undef x = ⊥ or 6= B.2.4
skip () B.2.4,B.2.8

set of script iterator ∀(σ, š) ∈ B.2.8
assoc subst. ǎσ B.2.8
label equality a1 = a2 B.2.8
set of assoc iterator ∃σ ∈ B.2.8
script match/shorten B.2.8,B.2.10
set of script ∃-iterator ∃(σ, š) ∈ B.2.10
assoc/label creation create(ǎ) B.2.10

wildcard B.2.10
self .Σ B.2.10
broadcast B.2.10

app. of permutation ◦ π(ǎ1, ǎ2) B.2.10
interpret B.2.10

mutex locks (|/|) B.2.10/B.2.12
output step (reaction) stepo

input step stepi

output sync. code to
sync

input sync. code ti
sync

case/pattern matching case/esac B.2.12
comprehension “where” B.2.13
compound return value B.2.13
multiple declaration let x, y:c = . . . B.2.19

lock undefined ⊥ B.2.19
known objects self .Θ B.2.26
iteration Θ.(| B.2.26

Table B.1: Overview

if tedious, and the object calculus is Turing complete. See for instance [2, Sec-
tion 6.3] for an encoding of the untyped λ-calculus into the untyped object
calculus. The encoding presented there uses only field update, even if the ob-
ject calculus used for the encoding features also method update. Note also that
Definition B.2.21 provides the code for lock-handling, i.e., to assure mutual ex-
clusion, in the native calculus.

Ultimately, the encoding of Ct rests on the fact that the trace t is a finite
sequence mentioning only a finite number of identities, which are represented
in a finite number of instances variables, the roles (cf. Definition 3.3.17). See
also Remark 3.3.19 on page 74 about the encoding of the associations σ. The
operations shown in Table B.1 do not operate on dom(σ) as a “set” of instance
variable, rather they access, i.e., query and update, the instance variable con-
stituting dom(σ).
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Multithreading

This chapter collects the proofs concerning the multi-threaded language. A
number of proofs directly correspond to the ones in the sequential setting; in
those cases we do not repeat them.
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C.1 Operational semantics

The properties of the corresponding Section A.1 carry over to the multithreaded
setting. We show only the generalization of the invariants of Lemma A.1.3.

Lemma C.1.1 (Invariants). Assume Ξ0 ⊢ C
t

=⇒ Ξ́ ⊢ Ć. Then Ξ́ ⊢ Ć = ∆́, Σ́ ⊢
Ć : Θ́, Σ́ with

1. É∆ ⊆ ∆́ × (∆́ + Θ́) and ÉΘ ⊆ Θ́ × (Θ́ + ∆́).

2. dom(∆́) ∩ dom(Θ́) = ∅, for all object and class references.

3. for thread identifiers n we have: Σ́ ⊢ n : thread iff exactly one of the two

assertions ∆́ ⊢ ⊙n or Θ́ ⊢ ⊙n holds.

Proof. Analogous to the proof of Lemma A.1.3.

C.2 Closure

The closure relation ⊑Θ is given in Section 5.2.2 on page 100. An important
part is the relation 42Θ from Definition 3.1.8, embodying the tree-like structure
of the merging cliques plus the replay. In the concurrent setting, it additionally
contains the uncertainty of observations by concurrent threads (“switching”)
due to the fact that interface interaction are themselves not atomically observ-
able since they are side-effect free. In this section, we show the “soundness” of
the closure relation.

C.2.1 Traces as trees

Lemma C.2.1 (Shortening). Assume Ξ0 ⊢ sa 42Θ ta′ : trace, where a′ is a renam-
ing of a, and where the labels a resp. a′ are unique in the following sense: neither a nor
a renaming occurs in s or in t. Then Ξ0 ⊢ s 42Θ t : trace .

Proof. The property follows straightforwardly from the definition of 42Θ (Def-
inition 3.1.8) and the uniqueness of label a; in particular, a is not a renaming
of any label occurring in t, for otherwise, label a in sa on the left-hand side of
Ξ0 ⊢ sa 42Θ ta : trace could be justified by a renaming of a variant occurring in
ta on the right-hand side.

Lemma C.2.2. If Ξ ⊢ C
t+

=⇒ and Ξ ⊢ s+ 42Θ, t
+, then Ξ ⊢ C

s+

=⇒.

Proof. Straightforward.

C.2.2 Switching

Switching is defined in Section 5.2.2. We start with a simple fact about the
switching relation: when changing the perspective from the component side to
the environment side, the direction of the switching relation reverses.

Lemma C.2.3 (Switching & duality). Ξ ⊢ s ⊑switch
Θ t iff. Ξ ⊢ s ⊒switch

∆ t (resp.
Ξ̄ ⊢ s̄ ⊒switch

Θ t̄).
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Proof. Straightforward from the switching rules of Table 5.2, and using the fact
that dualization preserves legality (Lemma A.5.10 on page 211). In particular,
the direction of the inequation O-OI reverses when dualizing.

Next we justify the switching rules from Table 5.2 as part of the trace clo-
sure. We start by the basic commutativity properties of the basic internal and
external reduction (resp. congruence) steps. The only two actions which access
the state, i.e., the values of the field variables of objects, are method update and
internal method call/field lookup (cf. rules CALLi, FLOOKUP, and FUPDATE

of Table 4.5). All other steps are satisfying a diamond property, respectively a
commuting diamond property. We formulate the independence of those steps
as a commutation property for steps of two different threads.

For the properties in relation with lock handling (in particular for analyzing
the code of (| and |) from Definition B.2.21) we need to be more fine-grained: we
distinguish read-access and write-access to the instance state by distinguishing
between τr- and τw-steps: τr-steps are justified by rule CALLi and τw-steps by
FUPDATE.1 Furthermore we write τm

r when CALLi is used for a method call,
not for a field access. When writing τ , we mean either τr, τw, or τm

r .

Lemma C.2.4 (Non-interference). Assume Ξ ⊢ C −→1−→2 Ξ́ ⊢ Ć , where −→1 and
−→2 are each an instance of one of the relations

τ
−→,  ,

a
−→, and ≡. If not both of the

relations −→1 and −→2 are
τ
−→-steps and if they are not performed by the same thread

(where a ≡-step is not performed by any thread), then Ξ ⊢ C −→2−→1 Ξ́ ⊢ Ć.
Furthermore, τ1 and τ2 can be switched, if both are executed by two different

threads, and if both are τr-steps or if one of them is a τm
r -step, or of both are executed

in different instances.

Proof. Straightforward.

Lemma C.2.5 (Switching). If Ξ0 ⊢ C0
r

=⇒ Ξ ⊢ C
a1−→=⇒

a2−→ Ξ́ ⊢ Ć, then also the
following reductions are possible:

1. Ξ0 ⊢ C0
r

=⇒ Ξ ⊢ C
a2−→

a1−→=⇒ Ξ́ ⊢ Ć , where a1 = γ1? and a2 = γ2?.

2. Ξ0 ⊢ C0
r

=⇒ Ξ ⊢ C =⇒
a2−→

a1−→ Ξ́ ⊢ Ć , where a1 = γ1! and a2 = γ2!.

3. Ξ0 ⊢ C0
r

=⇒ Ξ ⊢ C
a2−→

a1−→=⇒ Ξ́ ⊢ Ć and also Ξ0 ⊢ C0
r

=⇒ Ξ ⊢
C =⇒

a2−→
a1−→ Ξ́ ⊢ Ć, where a1 = γ1! and a2 = γ2?.

Proof. First note that in all three cases, Ξ0 ⊢ C0
r

=⇒ Ξ ⊢ C
a1−→=⇒

a2−→ im-
plies that a1 and a2 are labels concerning two different threads. Let us denote
the thread of a1 as n1 and the one of a2 as n2. The underlying reason for the

property of the lemma is that the steps
a1−→ and

a2−→ themselves are side-effect
free, and that a thread is inactive once it has left the component or before it
(re-)enters a component (cf. also Lemma C.2.4).

Case: Ξ ⊢ C
γ1?
−−→=⇒ Ξ′ ⊢ C′ γ2?

−−→ Ξ́ ⊢ Ć

None of the steps in Ξ ⊢ C
γ1?
−−→=⇒ Ξ′ ⊢ C′ is done by thread n2, and thus the

result follows by iterated application of Lemma C.2.4.

1The rule NEWOi for instantiation from Table 4.5 accesses the state as kept in the classes, as
well. Since classes are “read-only”, those steps do not interfere with any others, and we used a
 -step in the internal semantics.
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Case: Ξ ⊢ C
γ1!
−−→ Ξ′ ⊢ C′ =⇒

γ2!
−−→ Ξ́ ⊢ Ć

Analogous to the previous case with Lemma C.2.4, except that here we use that

none of the steps in Ξ′ ⊢ C′ =⇒
γ2!
−−→ Ξ́ ⊢ Ć is executed by n1.

Case: Ξ ⊢ C
γ1!
−−→=⇒

γ2?
−−→ Ξ́ ⊢ Ć

Analogous to the previous cases.

Note that switching of the fourth combination (a1 = γ1? and a2 = γ2!) is

not possible. The reason is that in the reduction Ξ ⊢ C
γ1?
−−→=⇒ there might

be side-effects that make the second interaction impossible, in other words, the
second γ2! might be causally dependent on γ1?.

C.2.3 Closure

The following lemma for information order closure justifies the definition of
the ⊑Θ-relation: If a component realizes a trace s, all traces in the closure, i.e.,
all traces ⊑Θ s, are also possible.

Lemma C.2.6 (Closure). If Ξ0 ⊢ C
t

=⇒ and Ξ0 ⊢ s ⊑Θ t : trace, then Ξ0 ⊢ C
s

=⇒.

Proof. By induction on the length of the derivation for Ξ0 ⊢ s ⊑Θ t : trace

(cf. Table 5.2 on page 100). The cases for reflexivity and transitivity are trivial,
resp., by straightforward induction.

Case: O-INPUT: Ξ0 ⊢ tγ? ⊑Θ t : trace

We are given Ξ0 ⊢ C
t

=⇒ Ξ́ ⊢ Ć. By assumption, tγ? is legal, i.e., Ξ0 ⊢ tγ? :
trace, and we distinguish two subcases:

Subcase: γ? = ν(Φ′).n〈call or.l(~v)〉?
In this case, legality is justified by one of the L-CALLI-rules from Table 5.1 on
page 99 in the last step. Inverting any of these rules yields that the component

is input enabled, i.e., Ξ0 ⊢ t ⊲ or
⌊γ?⌋
← os, and furthermore that the incom-

ing values meet the typing assumptions. By definition of enabledness (Defi-
nition 3.3.3 on page 57) applied to thread n, either Θ ⊢ ⊙ and pop n t = ⊥,
or pop n t = γ′!, which implies using the subcases of Lemma A.5.5(1) that

either n is not contained in C, or Ξ́ ⊢ Ć is of the form C′ ‖ n〈let x′:T ′ =
o blocks for os in t〉 or C′ ‖ n〈stop〉. Depending on the situation, Ξ́ ⊢ Ć accepts
the incoming call by one of the CALLI-rules from Table 4.8.

Subcase: γ? = ν(Φ′).n〈return(v)〉?
Inverting rule L-RETI gives that n is input-return enabled after t, i.e., Ξ0 ⊢

t ⊲ or
⌊γ?⌋
← os, where γ is a return. By Definition 3.3.3 of enabledness, this

means pop n t = ν(Φ′′).n〈call os.l(~v)〉!, and by Lemma A.5.5(2), Ć is of the
form C′ ‖ n〈let x:T = or blocks for os in t〉, hence the step can be taken by rule
RETI.

Case: O-SWAPREPLAYΘ

The relation 42Θ is dealt with by Lemma C.2.2.

Case: O-II
With the switching Lemma C.2.5(1). The steps for rules O-OO and O-OI are
covered similarly by the other parts of Lemma C.2.5 on the preceding page.
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C.3 Soundness

Proof of Soundness (Lemma 5.2.1 on page 98). We have to show that if Ξ0 ⊢ C1 ⊑trace

C2, then Ξ0 ⊢ C1 ⊑obs C2.
So assume Ξ0 ⊢ C1 ⊑trace C2 and an observer Ξ̄0, cb:barb ⊢ C0 such that

(C1 ‖ C0) ⇓cb
, i.e., (C1 ‖ C0) =⇒ C′ ↓cb

. The context Ξ̄0 corresponds to Ξ0

with the roles of assumptions and commitments exchanged. Since cb:barb ⊢
C1 ‖ C0 : () (cf. rule T-PAR and subsumption), the merging Lemma A.4.2 and
decomposition (Lemma A.4.12) yield

Ξ0, cb:barb ⊢ C1
t+1=⇒ Ξ′, cb:barb ⊢ C′

1 (C.1)

and

Ξ̄0, cb:barb ⊢ C0
t̄+1=⇒ Ξ̄′, cb:barb ⊢ C′

0 , (C.2)

where C′ ≡ ν(Φ′ \Φ).C′
0 ! C′

1. By Lemma A.4.3, C′ ↓cb
implies that either C′

1

or C′
0 strongly barbs on cb. Due to the typing assumptions, as in the sequential

setting, only C′
0 ↓cb

is possible, i.e.,

Ξ̄′, cb:barb ⊢ C′
0

succ
−−−→ ,

where, in abuse of notation, the success-reporting external label succ is of the
form ν(b:cb) n〈[osucc]call b.succ()〉! with osucc as the representative of the success-
reporting clique.By weakening and by definition of⊑trace (Definition 5.1.6), we

have, in particular for [osucc], that Ξ0, cb:barb ⊢ C2
t+2=⇒ Ξ′′, cb:barb ⊢ C′′

2 for
some trace t+2 such that

1. Ξ0 ⊢ o↓ t
+
2 = o↓ t

+
1 , for all environment objects o ∈ [osucc] and

2. Ξ0, cb:barb ⊢ t+2 42∆ t+1 : trace.

Since neither t+1 nor t+2 mention the additional class name cb, the latter state-
ment can be strengthened to Ξ0 ⊢ t

+
2 42∆ t+1 : trace, and dualized to Ξ̄0 ⊢ t̄

+
2 42Θ

t̄+1 : trace, which implies Ξ̄0, cb:barb ⊢ t̄+2 42Θ t̄+1 : trace . Hence by the closure

Lemma C.2.2 for 42Θ, Ξ̄0, cb:barb ⊢ C0
t̄+2=⇒. Further by the composition Lemma

A.4.6
C =⇒ C′′ ,

where C = C0 ! C2 = C0 ‖ C2 and C′′ ≡ ν(Φ′′ \Φ).C′
0; !C

′′
2 . Since addition-

ally, C′′ ↓cb
due to condition 1, the result follows.

C.4 Completeness

Proof of Lemma 5.2.8 on page 104 (total correctness). Almost identical to the proof

in the deterministic setting (cf. Lemma 3.3.23). We show Ξ0 ⊢ Ct
r

=⇒ Ξ ⊢
C for all prefixes r 4 t. So let t = r s. As usual, Ξ abbreviates the pair of
∆,Σ;E∆ and Θ,Σ;EΘ . The proof proceeds by induction on the prefix r, using
the following induction hypotheses, where the last one concerning the locks is
added compared to the sequential setting.
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1. Ξ ⊢ C :: s (cf. Definition 3.3.22).

2. Depending on the enabledness condition after trace r, the thread in Ct is
of the form as shown in Table A.6.

3. All locks are free.

Case: r = ǫ
Without initial component objects, part 1 is trivially satisfied. When Ct is ini-
tially input enabled, ∆0 ⊢ ⊙. By the construction from Definition 5.2.7, Ct

contains no thread in this situation, i.e., the condition of input-enabled threads
in part 2 is met (with tie = ǫ). If otherwise Θ0 ⊢ ⊙, i.e., the empty trace is
output-enabled, the initial code contains

n〈t0〉 = n〈let x:ci in x.|);x.start()〉 , (C.3)

for some class ci, where the named thread n is hidden via a ν-binder. Thus,
the initial configuration starts as follows, where in the reduction, the let-bound
variable x is omitted after the second step, as it is never referenced other than
in the calls of |) and start :

Ξ0 ⊢ ν(n:thread).(C′
0 ‖ n〈t0〉) =⇒

Ξ0 ⊢ C′
0 ‖ ν(o⊙ :ci, n:thread).(o⊙ [Fi, Mi] ‖ n〈o⊙ .|); o⊙ .start()〉) =⇒

Ξ0 ⊢ C′
0 ‖ ν(o⊙ :ci, n:thread).(o⊙ [Fi, Mi] ‖ n〈o⊙ .start()〉) =⇒

Ξ0 ⊢ C′
0 ‖ ν(o⊙ :ci, n:thread).(o⊙ [Fi, Mi] ‖ n〈Mi.start(o⊙)()〉) =⇒

Ξ0 ⊢ C′
0 ‖ ν(o⊙ :ci, n:thread).(o⊙ [Fi, Mi] ‖ n〈to

sync()〉) .

Hence, after this initial reduction, n is of the form as required by part 2. The
lock of the only object o⊙ is set to be free by |), covering part 3. Note that the
above initial reduction is deterministic (up-to structural congruence, of course).
Note also that the object o⊙ is not the same as the symbol ⊙.

Case: r = r′ a

We are given Ξ0 ⊢ Ct
r′

=⇒ Ξ ⊢ C, and distinguish according to the nature of the
next label a.

Subcase: a = ν(∆′,Σ′,Θ′).n〈call or.l(~v)〉?
Different from the single-threaded case, the incoming call can be caused by a
new thread, in which case Σ′ ⊢ n, and where the incoming label is justified by
L-CALLI0 in the legal trace system.2

Subsubcase: L-CALLI1,2, i.e., a = ν(∆′,Θ′).n〈call or.l(~v)〉?,
and Σ′ is empty. In this case the thread n is input enabled (or stronger input
return enabled) after r′. Thus the named thread is of one of the correspond-
ing forms of Table A.6, i.e., either blocked or stopped. The reduction looks as

2As we do not allow to send thread names as arguments of method calls and returns, Σ′ either
is empty, or Σ′ = n:thread . If we allowed the sending of thread names, the theory would not
change in crucial ways. Of course, connectivity assertions of the form o →֒ n (“object o may have
knowledge of the thread name n”) would have to be considered, but that would be a mild gener-
alization. In particular, since objects do not “communicate with” threads —objects communicate
with each other by executing threads— nor do threads communicate with each other —other than
via storing values in objects— there would be no evolving clique structure of thread names. In
[12], we considered this generalization.
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follows:

Ξ ⊢ C =

Ξ ⊢ n〈tie〉 ‖ C′ a
−→

Ξ́ ⊢ n〈let x:T = or.l(~v) in or returns x to os; tie〉 ‖ C′ ‖ C(Θ′)
τ
−→

Ξ́ ⊢ n〈let x:T = Mr.l(or)(~v) in or returns x to os; tie〉 ‖ C′ ‖ C(Θ′) =

Ξ́ ⊢ n〈let x:T = tbody [or/s][~v/~x] in or returns x to os; tie〉 ‖ C′ ‖ C(Θ′) =

Ξ́ ⊢ n〈let x:T = ti
sync ; to

sync in or returns x to os; tie 〉 ‖ C′ ‖ C(Θ′) .

The external a-step is justified by CALLI1 or CALLI2 of the external semantics.
Note that the rule CALLI0 for calls by a new thread does not apply here, The
code of tbody is part of the definition of Ct (cf. Definition 5.2.7, equation (5.11)).
The code tisync for input synchronization is given in Definition B.2.2 on page 225.
At this point, the preconditions of the lemma for input synchronization are
satisfied, and we can continue as in the sequential case. In addition to the se-
quential case, the lock is free after the reduction after tisync , by executing |), as
required by part 3.

Subsubcase: L-CALLI0, i.e. a = ν(∆′,Σ′,Θ′).n〈call or.l(~v)〉?,
with Σ′ = n:thread . Similar.

The remaining cases work similar, too.

C.4.1 Definability: disentangling

To get a grip on the complications due to concurrency, we define a clean reduc-
tion of the observer as a strict alternation between the synchronization steps of
different threads. For the code of the synchronization code, see Definition B.2.2
on page 225 and B.2.11 on page 229.

Definition C.4.1 (Clean reduction). Let Ct be the component given by Defini-

tion 5.2.7. A clean reduction Ξ0 ⊢ Ct
s

=⇒ is defined by induction on the length of
s.

1. If s is the empty trace, the empty reduction sequence is clean.

2. Assume Ξ0 ⊢ Ct
s

=⇒ Ξ ⊢ C is a clean reduction, and let n be the thread of γ?,
resp. of γ!.

(a) Then Ξ0 ⊢ Ct
s

=⇒ Ξ ⊢ C
γ?
−→=⇒

n
Ξ́ ⊢ Ć is clean, where the sequence

from C to Ć consists of the incoming communication followed by all of
the corresponding input synchronization code tisync , but no steps of other
threads.

(b) Then Ξ0 ⊢ Ct
s′

=⇒ Ξ ⊢ C =⇒
n

γ!
−→ Ξ́ ⊢ Ć is clean, where the sequence from

C to Ć consists of all of the corresponding input synchronization code tosync

followed by the outgoing communication, but no steps of other threads.

The next lemma states that, given an arbitrary reduction sequence s of the
programmed Ct, one can always come up with a different clean sequence pos-
sible by Ct, obtained from s by switching labels in reverse order. In some sense,
the lemma therefore is the opposite to the switching Lemma C.2.5.
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Lemma C.4.2 (Disentangle). Let Ct be the component as given by Definition 5.2.7.

If Ξ0 ⊢ Ct
s

=⇒ Ξ ⊢ C, then there exists a clean reduction Ξ0 ⊢ Ct
s′

=⇒ Ξ ⊢ C with
Ξ0 ⊢ s ⊑switch

Θ s′.

Proof. With the help of the Lemma B.2.25, which allows to disentangle the s
step by step.

For clean traces, we can prove exactness analogous to the sequential case.

Lemma C.4.3 (Exactness/partial correctness). Let t be a legal trace and Ξ0 ⊢ Ct

given by Definition 5.2.7.

If Ξ0 ⊢ Ct
s

=⇒ is a clean reduction, then Ξ0 ⊢ s 42Θ t : trace . (C.4)

Proof. Analogous to the proof of Lemma 3.3.24 on page 75.

Proof of Lemma 5.2.10 on page 107 (exactness/partial correctness). Given Ξ0 ⊢ Ct
s

=⇒,

then by disentangling (Lemma C.4.2), also Ξ0 ⊢ Ct
s′

=⇒ by some clean reduc-
tion, with Ξ0 ⊢ s ⊑switch

Θ s′. Exactness for clean reductions from Lemma C.4.3
gives, Ξ0 ⊢ s′ 42Θ t, and hence Ξ0 ⊢ s ⊑Θ t by transitivity of ⊑Θ, as re-
quired.

Proof of Corollary 5.2.11 on page 107. There are two directions to show. We are
given the legal trace Ξ0 ⊢ t : trace. Construct Ct according to Definition 5.2.7

on page 103. By total correctness of Lemma 5.2.8, Ξ0 ⊢ Ct
t

=⇒.

Case: ⇐
By the closure Lemma C.2.6, immediately Ξ0 ⊢ Ct

s
=⇒, as required.

Case: ⇒
The reverse direction follows by exactness from Lemma 5.2.10.

Proof of completeness (Theorem 5.2.12 on page 107). In the sequential setting, the
proof that resembles this one is not the proof of completeness (Theorem 3.3.29,
proof at page 219), but the proof for the corresponding property for ⊑nondet

trace

(Lemma 3.3.26, proof at page 216).

Assume an augmented trace t+1 with Ξ0 ⊢ C1
t+1=⇒, and let [o1] be an arbi-

trary clique of the observer after t+1 . According to Definition 5.1.6 we need to

show that Ξ0 ⊢ C2
t+2=⇒ for some trace t+2 , s.t.

1. Ξ0 ⊢ o↓ t
+
1 = o↓ t

+
2 , for all o ∈ [o1], and

2. Ξ0 ⊢ t
+
2 42∆ t+1 : trace.

Note that the replay relation is considered from the perspective of the environ-
ment: the observer cannot distinguish whether one behavior is done once, or
more than once.

First assume that t+1 is empty. The result follows by choosing t2 = t+2 = ǫ.
So assume t+1 6= ǫ. We start with part 2 and concentrate on the case where

the last interaction of the clique [o1] is an output (from the perspective of C1, so
for the observer, it is an input), i.e.,

t+1 = r+1 γ! s+1 . (C.5)
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Consider the dual trace t̄+1 , i.e., the trace from the perspective of the receiver
of the communication and the observer. As t+1 is legal (using soundness of the
legal trace system from Lemma A.5.9), the complement is legal, too (by trace
duality from Lemma A.5.10), i.e.,

Ξ̄0 ⊢ r̄
+
1 γ? s̄+1 : trace . (C.6)

It is easy to see —there are no arguments to the succ-call and hence there is no
connectivity information involved; furthermore, extending a weakly balanced
trace by a call of a new thread does not break the balance conditions— that also
the trace extended by one outgoing success-reporting action is legal, i.e.,

Ξ̄′
0 ⊢ r̄

+
1 γ?s̄

+
1 succ! : trace,

where succ abbreviates (νb:cb, n:thread).n〈[o1]call b.succ()〉!, and where the con-
text Ξ̄′

0 is given by extending the environment ∆̄0 to ∆̄0, cb:barb. Note that the
sender clique of succ! is the receiver of γ?.

Consider the component Ξ̄′
0 ⊢ Ct̄+1 succ!, and let us abbreviate the observer

Ct̄+1 succ! as CO, and furthermore let Ξb stand for the context cb:barb. Since ini-

tially, C1 and CO are static, C1 ! CO = C1 ‖ CO . By total correctness of
CO (Lemma 5.2.8) and composition (Lemma A.4.6), Ξb ⊢ C1 ‖ CO =⇒ Ξb ⊢

Ć1,O ↓cb
, or more explicitly:

Ξb ⊢ C1 ‖ CO
t+
1=⇒

t̄+1

Ξb ⊢ Ć1,O ↓cb
, (C.7)

where the internal reduction =⇒ is decorated by the two complementary traces

and where furthermore Ć1,O = ν(Φ́ \Φ).Ć1 ! ĆO (= ν(Φ́).Ć1 ! ĆO since Φ
contains no bindings for object or thread names). As Ξ0 ⊢ C1 ⊑may C2, we
can replace C1 by C2 and still observe success (Definition 5.1.7), i.e., Ξb ⊢ C2 ‖
CO =⇒↓cb

. By trace decomposition (Lemma A.4.12),

Ξb ⊢ C2 ‖ CO
t+2=⇒
t̄+2

Ξb ⊢ Ć2,O ↓cb
(C.8)

for some trace t+2 , more precisely:

Ξb,Ξ0 ⊢ C2
t+2=⇒ Ξb, Ξ́2 ⊢ Ć2 and Ξb, Ξ̄0 ⊢ CO

t̄+2=⇒ Ξb,
¯́
Ξ2 ⊢ ĆO , (C.9)

with C2,O = ν(Φ́2).Ć2 ! ĆO. Disentangling the reduction on the right for the
observer with Lemma C.4.2, we obtain a clean reduction

Ξb, Ξ̄0 ⊢ CO
ū+
2=⇒ Ξb,

¯́
Ξ2 ⊢ ĆO where Ξb, Ξ̄0 ⊢ t̄

+
2 ⊑

switch
Θ ū+

2 . (C.10)

Duality for switching from Lemma C.2.3 yields Ξb,Ξ0 ⊢ t+2 ⊒
switch
Θ u+

2 , and
hence the reduction for C2, the left reduction of (C.9), can be reordered as fol-
lows, using the switching Lemma C.2.5:

Ξb,Ξ0 ⊢ C2
u+
2=⇒ Ξb, Ξ́2 ⊢ Ć2 . (C.11)
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Using the composition Lemma A.4.6 again, (C.10) and (C.11) together yield

Ξb ⊢ C2 ‖ CO
u+
2=⇒

ū+
2

Ξb ⊢ Ć2,O ↓cb
, (C.12)

i.e., a variant of (C.8) where ū+
2 is clean. Note that Ć2,O is not affected by re-

ordering t+2 , resp., t̄+2 to u+
2 , resp., ū+

2 . For the observer, this means

Ξb, Ξ̄0 ⊢ CO
ū+
2 succ′!
=⇒ (C.13)

by a clean reduction. Note that succ′! may be an α-variant of succ! (which is
defined as (νb:cb, n:thread).n〈[o1]call b.succ()〉!). By partial correctness for clean
reductions from Lemma C.4.3,

Ξb, Ξ̄0 ⊢ ū
+
2 succ′! 42Θ t̄+1 succ! . (C.14)

Since succ, resp., succ′ is unique, i.e., no α-variant occurs in ū+
2 or in t̄+1 , we can

shorten the two traces with the help of Lemma C.2.1:

Ξb, Ξ̄0 ⊢ ū
+
2 42Θ t̄+1 . (C.15)

Without the trailing label succ, we can strengthen that statement to

Ξ̄0 ⊢ ū
+
2 42Θ t̄+1 . (C.16)

By definition, this is equivalent to Ξ0 ⊢ u
+
2 42∆ t+1 , covering part 2 of ⊑trace .

For part 1, we argue as follows. Still, [o1] is the arbitrarily chosen envi-
ronment clique after t+1 , i.e., a clique of the observer, which is also the sender
clique of succ! after t+1 . Equation (C.14) from above means by Definition 3.1.8
of 42Θ, that for all component cliques3 [o′2]/Ξ̄′

2

after ū+
2 succ′!, there exists an

α-renaming v̄+
1 succ′! of t̄+1 succ! such that

Ξb, Ξ̄0 ⊢ o′↓ ū+
2 succ′! 4 o′↓ v̄+

1 succ′! , (C.17)

for all objects o′ from [o′2]/Ξ̄′
2

(after ū+
2 succ′!). Considering specifically the success-

reporting clique [o1], we have Ξb, Ξ̄0 ⊢ o↓ ū
+
2 succ′! 4 o↓ v̄

+
1 succ′! for some

renaming v̄1succ′! and for all objects of that clique. Since the label succ′ is
unique, Ξb, Ξ̄0 ⊢ o↓ ū

+
2 = o↓ v̄

+
1 for all o of [o1], which can be strengthened

to Ξ̄0 ⊢ o↓ ū
+
2 = o↓ v̄

+
1 since the type/class cb is neither mentioned in v̄+

1 nor in
ū+

2 . By dualizing we obtain

Ξ0 ⊢ o↓u
+
2 = o↓ v

+
1 , (C.18)

as required.

3Component cliques from the dual perspective of Ξb, Ξ̄0, i.e., the cliques of the observer CO .
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