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Introduction to Statecharts

Everything you wanted to know about Statecharts
but were afraid to ask

Abstract: The notion of a reactive system and the language
Statecharts are introduced. The rationale behind the design
decisions of Statecharts is explained in relation to the specific
nature of reactive systems.

Literature: Introduction to Design Choices in the Semantics
of Statecharts, C. Huizing, W.-P. de Roever, Information
Processing Letters 37, p. 205-213, 1991
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0.1 What are reactive systems?

e There is a fundamental dichotomy in the analysis of reactive
systems; namely, the dichotomy between
— transformational and
— reactive systems.

e Transformational systems are described by the relation
between initial and corresponding final states; they have a
linear structure, because only the initial and corresponding
final states are of interest.

Examples include: sorting algorithms, compilers, and other
algorithms computing a function as discussed in your data
structures and complexity of algorithms course.

e Reactive systems do not compute a function, but are in
continuous interaction with their environment.
Examples: your tv set, digital watches, chips, interactive
software systems, game programs s.a. trackman, monkey
island, tomb raider, and other interactive computer games,
but also one’s heart monitor at an intensive care unit.

e Transformational systems are well-studied; for their
programming and analysis many good languages and theories
exist.

e \We explain why the language Statecharts is a good candidate
for specifying and programming reactive systems.
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0.2 Why not use transformational description
techniques?

e If transformational systems are so well studied, why doesn’t
one consider a reactive system as a transformational one?

Simply say that a reactive system transforms a sequence of
inputs to a sequence of outputs.

e This doesn't work, because of “feedback”, as illustrated by
the Brock-Ackermann paradox.

e Consider two systems, a one-place buffer and a two-place
buffer. If you consider these transformationally, they display
the same initial-final state behavior.

But if the output of these systems is fed back, and merged
with their input they behave differently. (See transparency)

e Conclusion: The relative order of output events relative
to the input events needs to be specified, in order to
characterize the semantics of a system with interaction
with its environment through feedback.

(One needs to know when an output is produced)
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in: abc. ..
out: 1. e.g. abac. ..
2. e.g. abca . ..
not abac. ..
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0.3 Graphical languages

e Transformational systems have a linear structure, and so have
the conventional languages for specifying and programming
them. What one describes is how a final state is produced
from an initial one. The relative time when intermediate
states are computed is not important, and neither is their
identity as long as the corresponding final state is known!

e For reactive systems this is completely different:

— The “"moment” a new input arrives is relevant to the
behavior of the system —-

— The internal state of the system at the time of input is
important for the systems reaction.

— Reactive systems may not even have a final state!

e So, in reactive systems there is no main sequential flow of
control (as in transformational systems) and statements can
have several entry and exit points.
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Graphical formalisms for reactive systems

There exist graphical formalisms for describing reactive systems:

e E.g., state diagrams for finite state machines (FSMs):
a 53
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S
Fig. 1.

For each state, the possible reactions to input that arrives in
that state is specified by a transition to other states.
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e However, these don't serve our purpose: The only output a
FSM produces is a signal that it has reached its final state.
A reactive system, however, may produce output at any time
of its execution —

e Use Mealy machines: these can produce an output whenever
a transition is made.
Example: A lamp having two bulbs — one of 50 W and one
of 100 W — which can be lighted separately and together.
Note that in this example the data flow # control flow:

o[
Pull
turn 50 W on
Pull @@ Pull
turn 50 W off;
turn 100 W on turn 50 W off;
turn 100 W off
200w
Pull
turn 50 W on
150 W
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Disadvantages of Mealy machines for describing
reactive systems

e They have no structure. There is no strategy for their
top-down or bottom-up development.

e They are not economical w.r.t. transitions, when one event
has all transitions as a starting point as in case of interrupts:

\ Q Interrupt state

e They are not economical w.r.t. parallel composition:
Exponential growth in the number of states when composed
in parallel.

—> We need a formalism for the hierarchical development and
refinement of Mealy machines.
This is provided by Statecharts, invented by David Harel.
Statecharts display hierarchy and structure, and enable
hierarchical development.
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0.4 Hierarchy and Structure

The concepts of hierarchy and structure in Statecharts are
introduced using a quite familiar example of a reactive system:
that of a television set with remote control.

10
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0.4.1 First concept: Hierarchy

Hierarchy or depth in states, and interrupts. This is achieved by
drawing states as boxes that contain other boxes as sub-states.

e The television set can be in two states: on and standby.

Switching between them is done by pushing the on and off
buttons, generating the on and off events:

ON

\.\

off

(STANDBY

on

Fig. 2.

%
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e In state on the tv set can be in two sub-states: normal and

videotext:

7 ON

NORMAL

\s

txt

~

off

/STANDBY

txt

waEOTxTJ
X ;

on

A

Fig. 3.

X

The — arrow leading to normal specifies which sub-state
should be entered when the higher level stateon is entered,

namely normal.

e When in on an event off is generated, this acts like an
interrupt and state on (incl. all its sub-states) is left, and

control switches to state standby.

In this way interrupts

are handled without cluttering the picture with arrows as on
transparency no. 9.

12
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0.4.2 Second concept: Orthogonality

e Two independent components can be put together into an
AND-state, separated by a dotted line

[ON]
[
IMAGE | SOUND ™\
|
txt d on
NORMAL VIDEOTXT ]| MUTE SO ON STANDBY
txt | mute off
[
|
| o
Fig. 4.

e Being in an AND-state means being in all of its immediate
sub-states at the same time. This prevents the exponential
blow-up familiar from composing FSMs in parallel.

13
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0.4.3 Third concept: Broadcast

® In our case we split state normal in two orthogonal
components channel, for selecting channels, and sm for
switching to mute:

e NORMAL |

1/sm CHANNELS

2/sm

g 5,

e When a channel button (1 or 2, for simplicity) is pressed,
one switches to that channel and the internal event sm is
generated. This causes the event mute by a transition in sm
to state mute, and the sound will be turned off.

e After one second the event sound is generated to turn the

sound on, again. This is done by the special time-out event
tm(1).

14
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Thus one sees that orthogonal components can communicate
by generating events which are broadcast, and that this can be
done in a time-dependent manner: introducing the generation
of events e¢/ay; ... ;a, and time-out events tm(1), ...

In general the label of a transition consists of two parts: a trigger
that determines if and when a transition will be taken, and an
action that is performed when a transition is taken. This action
is the generation of a set of events.

15
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0.4.4 Fourth concept: Compound events

e When in state standby, dependent on whether one presses
button 1 or 2 one makes sure to switch to states chl or ch2
in on. This is indicated as follows:

on 1v2 standby
off

e In general one can label transitions by compound events s.a.
(mna Ab)Vec,aANb,cVd, a, etc
e Eg., in:

Ao

a can be replaced by a A —b to express priority of event b
over event a.

Fig. 7.

16
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In a nutshell, one may say with David Harel:

Statecharts = Mealy Machines + depth

+ orthogonality 4+ broadcast + data

17
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0.5 Time

e The elementary unit of observation in a reactive system is the
event

e The environment sends events to the system to trigger
computations, the system reacts to the environment by
sending, or generating, events.

e Events are also means of communication between parts of a
system.

e Because one wants to specify reactive systems at the highest
level of abstraction in a discrete fashion, events are discrete
signals, occurring at a point in time.

19
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e Events have no duration; they are generated from one state
to another. Hence, transitions have a discrete uninterruptable
nature and all time is spent in states.

e This has an important reason:
In a reason system new inputs may arrive at any moment.
Therefore the current state it is in should be always clear.
Since transitions have no duration, there are no “transient”
periods in between states.

Therefore, the reaction on a possible input is always well
defined.

e Of course this is an abstraction from reality. (At deep levels
of electronic implementations, one encounters levels where
discrete reasoning makes no sense anymore)

Statecharts is meant to be a high level specification language,
where this abstraction can be maintained and is appropriate.

20
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How long is the reaction time?

e \We know that transitions have no duration, but when do they
take place, relative to the trigger? And:

How LONG DOES IT TAKE THE SYSTEM TO COMPUTE A
REACTION UPON AN EXTERNAL EVENT?

e For transformational systems this is easy — the only important
distinction is between finite and infinite values (corresponding
to a final state or no final state)

e For reactive systems this is not enough:

We have to know when an output occurs relative to the events
in the input sequence (see Brock-Ackermann paradox)
—

One has to determine what the reaction time of a sequence
is.

21
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What'’s the reaction time of a reactive systems upon an
external event in the high level Specification Language
Statecharts?

Possibility 1 : Specify a concrete amount of time for each
situation. This forces us to quantify time right from the
beginning. Clumsy, and not appropriate at this stage of
specification where one is only interested in the relative order
and coincidence of events.

Possibility 2 :  Fix reaction time between trigger a and
corresponding action a within e/a (the label of a transition)
upon 1 time unit.

Doesn’t work: Upon refining question/answer to a
question /consult and a consult/answer transition, there's a
change of time, which may have far reaching effects (because
of tm(n)-events, e.g.)

—

A fixed execution time for syntactic entities (transitions,
statements, etc.) is not flexible enough.

Possibility 3 : Leave things open: say only that execution of
a reaction takes some positive amount of time, and see at a
later stage (closer to the actual implementation) how much
time things take.

Clumsy, introduces far too much nondeterminism.

22
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Reaction time of a system (2)

Summary : We want the execution time associated to reactions
to have following properties:
e |t should be accurate, but not depending on the actual
implementation.
It should be as short as possible, to avoid artificial delays.
It should be abstract in the sense that the timing behavior
must be orthogonal to the functional behavior.

pr—
Only choice that meets all wishes is zero reaction time.

As a result all objections raised w.r.t. the possibilities mentioned
on the previous page are met!

e Now, for instance, upon refining transition question/answer
from previous page into two transitions, the reaction time of
this refinement is the same as that of the original transition.

e Objection 3 on the previous transparency is resolved, too.

e Finally, also objection 1 (on previous transparency) is met,
because 0 + 0 = 0!

23



Statemate 2000-06-09

This choice, that the reaction time between a trigger and its event
is zero, is called Berry’s synchrony hypothesis.

Is this implementable? No, a real computation takes time. But
in actual implementation this means:

The reaction comes before the next input arrives,

or, so to say,

Reactions are not infinitely fast but fast enough.

See the following figure:

P

) ED

i |
1 |
| |
a/b : b/d i aAd/e
5 : ih : ta)
A2 | | B2 \ | l C2 |
\ | | /
Fig. 6.

A consequence is that transition t3 is taken!!

24
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Negations and paradoxes

e Idea of immediate reaction works fine as long as transitions
only triggered by primitive events, or or conjunctions and
disjunctions of them.

e However, one also needs negations of events to trigger a
transition. E.g.: to specify priority:

h b
J by

Fig. 7.

25
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e Problem: What semantics to give to Statecharts in the next
figure?

4 D)

CH R G

|
|
|
|
—-a/b | b/a
|
f
|
l

If ais absent, i.e., = a holds as condition, transition ti is
taken, i.e., b is generated, and hence t5, i.e., b/a is taken,
generating a within the same time unit, i.e., in zero time,
hence transition ¢ should not be taken.

But that means that event b is not generated, and hence event
a is not generated, so transition ¢ should be taken, etc.

— PARADOXON!

26
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Negations and paradoxes (2)

Solution : Introduce two levels of time
e Macro steps, for counting time, (these are observable)
time steps, and
e Micro steps, which describe the causal chain within
reactions.
Every macro-step is then divided in an arbitrary but finite
number of micro-steps.

This sequence of micro-steps has only an operational meaning.

27
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Alternative approaches

e Problem with introducing macro-steps only within our
formalism (and no micro-steps) is that the semantics is no
longer globally consistent in case of the following statechart:

4 D)

CH R G

|
|
|
|
—-a/b | b/a
|
f
|
l

28
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e Another problem is: What semantics to give to the statechart

in the following figure?
| Bl

|
|
|
|
a/b 1 b/a
|
|
|
|

A

Causality dictates that no such transitions are “triggered
themselves”: there should be a causally acceptable chain of
reaction steps.

e Responsiveness: reactions are simultaneous with their
triggers.

It can be proved that no semantics can be both globally consistent,
causal, and responsive.

E.g., in the synchronous language ESTEREL, programs are
disallowed which violate causality. The compiler detects these,
and refuses to compile them.

29
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Conclusion

Reactive systems are fundamentally different from
transformational systems

We explained the design decisions behind Statecharts in
relation to the specific nature of reactive systems

Time is passed in states, transitions are instantaneous

To avoid accumulation of time in reactive chains, the reaction
time should be zero
We pointed out that several semantic problems arise when
reaction time is zero, and how to circumvent these problems.
For solutions the reader is referred to the literature, see the
paper by Huizing and Hooman, and the book by David Harel
and Michal Politi:
David Harel and Michal Politi. Modeling Reactive
Systems with Statecharts. McGraw-Hill, 1998.

30
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Introduction to Statemate

Abstract

The notion of a reactive system and the language
Statecharts were introduced in the last session. We
explained the rationale behind the design decisions of
Statecharts in relation to the specific nature of reactive
systems.

This time, the role of models in a system development
life cycle is described. We introduce three languages to
characterize reactive systems from different views. This
yields to a brief description of the STATEMATE toolset.

Literature: David Harel and Michal Politi.  Modeling
Reactive Systems with Statecharts. McGraw-Hill, 1998.
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Last Session

We wanted to describe reactive systems:

ENVIRONMENTH

(" SysSTE

—_—

Solution

Statecharts

-

M\

- =ENVIRONMENT

)

= Mealy Machines + depth

+ orthogonality 4+ broadcast + data
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0.6 Specification in a systems life cycle

e lIdentify several phases in the development life cycle of a system

e Classic waterfall model: requirements analysis, specification,
design, implementation, testing, and maintenance.

e Other approaches center around prototyping, incremental
development, reusable software, or automated synthesis.

e Most proposals contain a requirements analysis phase.
Specification errors and misconceptions should be discovered
in that early phase.

e Correcting errors in later stages is extremely expensive.

e Special languages are therefore used in the requirements
analysis phase to specify a model of the system, and special
techniques are used to analyze it extensively.

33
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System’s life cycle

MODERN STRUCTURED AMALYSIS THE PROJECT LIFE CYCLE 89
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Figure 5.4: The structured project life cycle

34



Statemate 2000-06-09

System model

e A good model is important for all participants in the system'’s
development.

e Having a clear and executable model the functionality and
behavior can be approved before investigating heavily in the
implementation stages.

e The specification team uses modeling as the main medium for
expressing ideas.

35
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0.7 Methodology

A methodology provides guidelines for performing the processes
that comprise the various phases.

Concentrating on the modeling and analysis phase, a methodology
consists of the following components:

e The methodology’s underlying approach and the concepts it
uses.

e The notation used, that is, the modeling languages with their
syntax and semantics.

e The process prescribed by the methodology, that is, which
activities have to be carried out to apply the methodology and
in what order.

e The computerized tools that can be used to help in the process.

Here, we focus on notation and describe the STATEMATE toolset.

36
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0.8 Reactive systems

The Statecharts language is especially effective for reactive
systems.

A typical reactive system exhibits the following distinctive
characteristics:

e It continuously interacts with its environment, using inputs
and outputs that are either continuous in time or discrete.

e It must be able to respond to interrupts, i.e., high-priority
events.

e Its operation and reaction often reflect stringent time
requirements.

e It is very often based on interacting processes that operate in
parallel.

Examples

On-line interactive systems : e.g., automatic teller machines,
flight reservation systems

Computer-embedded systems :avionics, automotive, and
telecommunication systems

Control systems : such as chemical and manufacturing systems.

37
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Example: The early warning system A system model
constitutes a tangible representation of the system’s conceptual
and physical properties and serves as a vehicle for the specifier
and designer to capture their thoughts.

commands

{r £dara  |BHB O

COMPUTER

FREINTER

p=——1

OFERATOR

alacm
[Py i

EL A

G measages £

OCRERATOR

printed reporca

SENEOR

Figure 1.1 The early warning syetem (EWS).
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0.9 Characteristics of models

Beside for communication, systems models should also be used
for inspection and analysis.

When the model reflects some preexisting descriptions, such as
requirements written in natural language, it is useful to keep track
of how the components of the developing model are derived from
the earlier descriptions.

The modeling languages used in STATEMATE have been designed
with several important properties in mind:

e to be intuitive and clear
e to be precise
e to be comprehensive

e to be fully executable

39
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How to achieve these properties?

e To achieve clarity, elements of the model are represented
graphically wherever possible.

e For precision, all languages features have rigorous
mathematical semantics

e Comprehension comes from the fact that the languages have
the full expressive power needed to model all relevant issues,
including the what, the when, and the how.

e For executability, the behavioral semantics is detailed and
rigorous enough to enable the model to be executed (or be
used to generate code).

40
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0.10 Modeling Views

Building a model can be considered as a transition from ideas and
informal descriptions to concrete descriptions that use concepts
and predefined terminology.

Here, the descriptions used to capture the system specification
are organized into three views: the functional, the behavioral,
and the structural

functional view

behavioral view

=
capabilities & s
flow of information control & timing

structural view

modules/cbjects &
communication links

Figure 1.2 The three specification views.
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The three views

Functional view : The functional view captures the “what”. It
describes the system’s functions, processes, or objects, also
called activities, thus pinning down its capabilities. This view
includes the inputs and outputs of the activities.

Behavioral view : The behavioral view captures the “when”.
It describes the system’s behavior over time, including the
dynamics of activities, their control and timing behavior, the
states and modes of the system, and the conditions and events
that cause modes to change and other occurrences to take
place.

Structural view : The structural view captures the “how”. It
describes the subsystems, modules, or objects constituting the
real system and the communication between them.

While the two former views provide the conceptual model of the
system, the structural view is considered to be its physical model.

The main connection between the conceptual and physical models
is captured by specifying the modules of the structural view that
are responsible for implementing the activities in the functional
view.
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Modeling heuristics

Modeling heuristics are guidelines for how the notation should be
used to model the system.

e The mapping between the methodology’s concepts and the
elements allowed in the notation.

e The type of decomposition to be used: e.g., function based,
object based, mode based, module based, or scenario based.

e The step-by-step order of the modeling process: bottom-up or
top-down
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0.11 The Modeling Languages

The three views of a system model are described in our approach
using three graphical languages.

e Activity-charts for the functional view,

e Statecharts for the behavioral view,

e and Module-charts for the structural view.

e Additional non-graphical information related to the views
themselves and their inter-connections is provided in a Data

L] L]
Dictionary
Activity-charts
e .m Wy Statecharts
e R e
i Activity: "
b-l.f.x-xi;sp-c: } : 1
. , P
- State:
Module-charts 3= .
JDageription:
i
'-——?l'-.l | I 1 "—-; Dﬁlc.r.'iptiun:
Fl
i

Figure 1.3 The modeling languages.
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0.11.1 Activity-charts

Activity-charts can be viewed as multilevel data-flow diagrams.
They capture functions, or activities, as well as data-stores, all
organized into hierarchies and connected via the information that
flows between them.

EWS_ACTIVITIES

EL
WY o POWER_|oN
PRESSING | | ger R ’[f“ CONTROL ]._ ........ OPERATOR
[ L ki e e i -
E INPUT COMMANDS -
T i RANGE QUT_OF RANGE
OPERATOR | || .\ v =
| N — NOTIFICTION
i § : FAULT 3
: SET UP |e—— i LEGAL .
SET_UP_MSGS | RANGE comAroe|
OUT_OF_RANGE_DATR :
_.....___.1 <
PROCESS _ s COMPARE PRINT
SIGHAL SAMFLE FPAULT FAULT_ REPORT
3
SIGNAL
SENSOR |
| R

Figure 1.4 An activity-chart.
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0.11.2 Non-graphical information

In addition to the graphical information, each element in the
described has an entry in the Data Dictionary, which may contain
non-graphical information about the element.

For example, the activity entry contains fields called mini-spec
and long description, in which it is possible to provide formal and
informal textual descriptions of the activities workings.

..............

Activity: IRDL'EEE _SIGNAL i P B
Defined in Chart: EWS_ACTIVITIES |

Termination Type: Reactive Controlled
Mini-spec: 8t /TICK; ;
TICK/ $SIGNAL ?ALDE*-SIML
SAMPLE : « COMPUTE ($SIGNAL _VALUE) ;
Bc! (TICK, SAMPLE  INTERVAL)

IIIIIIIIIII \"“—"""“""'_"""'*--..,_,..--'"""*-L_....--r-'-'"‘.#.r_- N"--,__,..---—-""’-J
Figure 1.5 An activity entry in the Data Dictionary.
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0.11.3 Statecharts

Statecharts constitute an extensive generalization of state-
transition diagrams. They allow for multilevel states decomposed
in an and/or fashion, and thus support economical specification
of concurrency and encapsulation. They incorporate a broadcast
communication mechanism, timeout and delay operators for
specifying synchronization and timing information, and a means
for specifying transitions that depend on the history of the system'’s
behavior.

[in(CONNECTED)] [ \
/OPERATE || COMPARING I
OUT_OF RANGE
/HALT
v
: sp (SET_UP) e
GENERATING_
SETTING_UP ALARM_TIME_PASSED ALARM
/8t (PRINT_FAULTA_ i,
PROCESSING
(" commEcTED
|SENSOR_CONNECTED) '}
DISCONMECTED D st OPERATING
- IDLE L
[SENSOR_DISCONNECTED]

\\ S

Figure 1.6 A statechart.
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0.11.4 Module-chart

A module-chart can also be regarded as a certain kind of data-flow
diagram or block diagram. Module-charts are used to describe
the modules that constitute the implementation of the system,
its division into hardware and software blocks and their inner
components, and the communication between them.

{ OPERATOR
POWER_ON
EWS ALARM_SIGNAL
MONITOR e
user_1nNpur | ©CU 2
KEY_PRESSING ' —— =
XEYBOARD EYSTEN
2 _ T
{ OPERATOR MSGS_TO_DIBPLAY Rt O T | OPERATOR
i, e = i
i i SAMPLE l y
SCREEN EIGNAL_ PRINTER
DISPLAYED MsGs|| - PROCRESOR FAULT_REPORT
SIGNAL
SENSOR

... T

Figure 1.7 A module-chart.
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0.12 Relationship between the languages

The relationship between the concepts of the three views are
reflected in corresponding connections between the three modeling
languages.

Most of these connections are provided in the Data Dictionary,
and they tie the pieces together, thus yielding a complete model
of the system under development.

ST
J"A\LH"-\‘_ T g R e e
o - apa bt Rl

| State: COMPARING
Defined in Chart: EWS _ CONTROL

Activities in State:
COMPARE (Throughout)

¥ -—F""_.‘ iy D S E o - I“"n._.---"_ .......

Module: EWS
| Defined in Chart; EWS

Described by Activity-Chart: EWS_ACTIVITIES

B =, ol

s

Figure 1.9 An activity-chart describing a module.
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Handling large-scale systems

e The languages allow to split large hierarchical charts into
separate ones:

1
|
|
] AB
[ =
i ! 3
x Y :
El = @A »| BL B2 uEE
//’, ) - b
P e -
.I-I“\‘H“"'n. -,
activity-chart A
' a
p jm L2 » AL 2 ]z B
i

Figure 1.10 Splitting up- charts.

e Also, coping with visibility and information hiding by setting
scoping rules of elements in the model.

e Moreover, generic charts and user-defined types.
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The STATEMATE toolset

STATEMATE has been constructed to “understand” the model
and its dynamics. The user can then execute the specification by
emulating the environment of the system under development and
letting the model make dynamic progress in response.

i

-y Sk
Configuration | _ STATEMATE Extraction
Management . Model : Functions

Code Synthesis

' 1C, Ada, VHDL & Verilog
7 Translators ¢ ©

Figure 1.11 The STATEMATE toolset.
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0.13 A larger example: Alarm watch

As an example of a statechart we use that of a simple digital
watch with four buttons A, B, C' and D like in the below picture:

w J ©
" [ )

12:31 an /7
D

The watch can show the time or date, has the possibility to beep
every hour, an alarm, a stopwatch, a light and an indication that
the battery must be replaced.

The following events are considered as external:

e A, B,C and D describe the pushing of the four buttons and
B _up the release of button B.

e Theevents Bt_In, Bt_Rm, Bt_Dy and Bt_W k describe

respectively the putting in, removal, drop dead and weakening
of the battery.

o I'_hits_Hr describes that the internal time has reached a
whole hour and T'_H 1ts_T'm describes that the internal time
has reached the alarm time.

e T'_M1in describes that there are two minutes passed since for
the last time a button has been pushed.
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Display control

The below statechart shows the display state of the watch.
There is a special state up — alarm for the changing of the
internal state of the alarm. Note that 7,,72n takes care of the
resetting of a state, except the stopwatch, to the default state
ttme if nothing has happen since the last two minutes.

-

DI SPLAY
( UPDATE
! SEEE—

TMN

b N[ not i n( STOPWATCH) ]

Ny

C
CAOUR )

I
L

DATE

R

~—

STOPWATCH
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0.13.1 History of states

A frequently used way to enter a group of states is by the history
of that group. The most simple example of this is the one where
you enter the most recently visited state of a group. In the
watch example this happens in the zoom-in of the alarm state
with two substates on and of f. The problem is that the initial
default is the of f state but when we put on the alarm we want
to get back the next time in state on. In the next statechart this
described by the H connector.

C

TI ME ALARM UP_AL
. B
ON D[ OFF
D
C

N
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The following statecharts sums up the till now developed
watch. It contains a beep state that is entered when event
T_Hits_T'm occurs, provided the alarm is on (the condition
alarm_enabled shall be explained later), and is left when event
Beep_Rt occurs. This event Beep_Rt is an abbreviation of
(A or B or C or D or tm(en(beep), 30)) wherein tm
stands for ‘timeout’ and en for ‘entered’. This means that the
watch returns to the previous state (because of H") when one
of the four buttons is pushed or 30 seconds are passed since the
entering of beep.

/" ALARM WATCH BT _RM dc! ( MAI N) N\
" MAIN )
("~ DI SPLAY )
s a
UPDATE 7
] GL)
M N[ not i n( SYORWATCHY ]
HOUR SEC
C
BEEA DATE ! ALARM >
BEI ‘K_w J c
A UP_ALW ‘{
A C
( sToPwaTCH A (HowRr (mn]
T_H TS_TM ALARM ENABLED] C
:
& J
\ J
\ J
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The watch contains also orthogonal states on different levels. On
the higher levels there are besides the state main of the above
statechart also four other and-components as is illustrated in the
next statechart:

The

tm(en(c_enab.beep),2) what

s, [ de! (VAN
BT_IN

/~ MAIN POVER I
L BT DY
(" DI SPLAY A
=55 ) BEEP_R] f-o
BT WK
T H TS TM i n(ENAB)] e
[ l B [ ]
\- J B_UP
CHIVE ST

ALARM ST D[ i n( ALARM ]
VA

[ENAB ] [ DI SAB]

7
\_ D[ i n( ALARM ]

C ENAB
[ H Ts_Hd
_J

D1 n(CH VD) )

event Beep_st is

stops after 2 seconds.

an abbreviation for

means that the

beeping
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The complete statechart for the watch is:

4 )

ALARM WATCH

(IKD-YRN’I ST
'\MI N D r
T H TS_TM i n( ENAB)]
@l SPLAY
D I n( DI SPLAY: Y: CHI ME) |
ALARM S 0

D[ i n( DI SPLAY: ALARM) ] = —
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-

DI SPLAY

Ve

UPDATE

—

T_M N not in(STOPWATCH) ]
/
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We finish the description of statecharts with an overview of the
syntax for events, conditions and actions. The general form for a
label of a transition is E[C']/A with E an event, C a condition
and A an action.
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0.13.2 Events

The basic events and condition are external, for example for
the watch the pressing of a button is an external event and
T_H:its_T'm is an external condition. Besides the external
events the following internal events are allowed:

entered(S), abbreviation
exit(S), abbreviation
timeout(E, X), abbreviation
true(C), abbreviation

false(C), abbreviation

en(S),
ex(S),
tm(E, X),
tr(C),
fs(C).
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0.13.3 Actions

An action can be an uninterpreted event symbol, called primitive
event, and causes then other transitions in the statechart.
Furthermore actions can turn on or off uninterpreted condition
symbols. The following primitive actions are allowed:

make_true(C'), abbreviation
make_false(C), abbreviation
history_clear(S), abbreviation

deep_clear(S), abbreviation

tr1(C),
fsi(C),
hel(S),
dc!(S).
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Activity-Charts

Literature: Chapters 2 and 3 of “Modeling Reactive
Systems with Statecharts”, by David Harel and Michal
Politi. McGraw-Hill, 1998.
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1 Describing the functional view of a system

e Activity-charts are used to depict the functional view of a
system under development (SUD), “what the SUD does".
e This view of a system is specified by
— a hierarchy of functional components, called activities,
— what kind of information is exchanged between these
activities and is manipulated by them,
— how this information flows,
— how information is stored, and
— how activities are started and terminated, i.e,
controlled, if necessary, and whether activities are
continuous, or whether they stop by themselves.

e Activity-charts are kind of hierarchical data flow diagrams:

EWS_ACTIVITIES

EL
WY o POWER_|oN
PRESSING | | ger R ’[f“ CONTROL ]._ ........ OPERATOR
[ L ki e e i -
E INPUT COMMANDS -
T i RANGE QUT_OF RANGE
OPERATOR | || .\ v =
| N — NOTIFICTION
i § E ; FAULT 3
: BET UP |e—, i LEGAL ! :
SET_UP_MSGS | RANGE comAroe|
OUT_OF_RANGE_DATR :
4 Mk
PROCESS _ s COMPARE PRINT
SIGHAL SAMFLE FPAULT FAULT_ REPORT

E

SIGHNAL

SENEOR |
e IAP IR

Figure 1.4 An activity-chart.
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1.1 Functional decomposition of a System

The functional view of a system specifies the system’s
capabilities.

e It does so in the context of the system's environment, that
is, it defines the environment with which the system interacts
and the interface between the two:

OPERATOR
OPERATOER
EWS alarm
(k commatids & data \>
B nazsacas
privted reports
——p

signal
SENSOR

Figure 21. The context of the EWS
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e This functional view does not address the physical and
implementation aspects of the system; the latter is done
in its structural view, i.e., its module-chart:

{ OPERATOR |
POWER_ON
EWS ALARM SIGNAL
MONTTOR pr——
user_1npur [ ©C7 (i
KEY PRESSING : B 7 i
= XEYBOARD SYSTEM
= | v
{ OPERATOR MSGS_TO_DIFPLAY e Rt o | OPERATOR
i e = 2 i
ry 1|r SAMPLE l y
SCREEN SIGNAL PRINTER
DISPLAYED MSGS| | - PROCESSOR FAULT_REPORT
SIGNAL
SENSOR

A ]

Figure 1.7 A module-chart.
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e Moreover it separates the dynamics and behavioral aspects of
the SUD from its functional description. The former is done
by its behavioral view, in its controlling Statecharts:

ALARM_TIME_PASSED ALARM
/st (PRINT_FAULTA_

A

PROCESSING

(" comuecTED
[SENSOR_CONNECTED) ‘;
DISCONNECTED T ki OPERATING
- IDLE s
[SENSOR_DISCONNECTED]

el J

Figure 1.6 A statechart.
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Example

The functional view tells whether a medical diagnosis
system can monitor a patient’s functions, and, if so, where
it gets its input data and which functions have access to
the output data.

The behavioral view tells under which conditions
monitoring is started, whether it can be carried out parallel
to temperature monitoring, and how the flow of control of
the process of monitoring develops.

The structural view deals with the sensors, processors,
monitors, software modules and hardware necessary to
implement the monitoring system
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The three views

functional view

capabilities &
flow of information

behavioral viaw

control & timing

gtructural view

modules/objects &
communication links

Figure 1.2 The three specification views.

Activity-charts

Lot Statecharts

Jactiviey: i

Juini-spec: | : T

Module-charts

Figure 1.3 The modeling languages.

A Description:

4 Module:

] Description:

i
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1.1.1 Functional Decomposition

e In the Statechart approach, the functionality of a system
is described by functional decomposition, by which a
system is viewed as a collection of interconnected functional
components, called activities, organized into a hierarchy.

e E.g., in the activity-chart EWS_ACTIVITIES, the SET_UP
components can be decomposed leading to a multi-level
decomposition of EWS_ACTIVITIES:

EWS_RCTIVITIES
SET_UP
PROMPT _ VALIDRTE
BANGE BANGE
DISPLAY DISPLAY
SU_EFRROB FRAVLT
PEDCRSS COMPRRE PERINT_
STIGNAL FRULT

Figura 2.3, Multl-level decompesition of an activity

e Each of the activities may be decomposed into subactivities
repeatedly until the system is specified in terms of basic
activities.

There are specified using textual description (formal or
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informal), or code in a programming language, inside the
Data Dictionary.

e The intended meaning of the functional decomposition is that
the capabilities of the parent activity are distributed
between its subactivities.

e The order in which these subactivities are performed, and the
conditions that cause their activation or deactivation are
not represented in the functional view and are specified in the
behavioral view, i.e., in the (one) statechart associated with
the parent activity-chart.

e Please observe that a functional component may very well be
reactive in nature (cfr. the first session lecture).

e Activities can represent objects, processes, functions,
logical machines, or any other kind of functionally distinct
entity.

e In the following sections we'll confine ourselves to function-
based decomposition of an activity-chart. We shall not
discuss object-based decomposition (see Section 2.1.3 of
Harel & Politi)

70



Statemate 2000-06-09

1.1.2 Function-based decomposition of
activity-charts

e In function-based decomposition, the activities are (possibly
reactive) functions.

e As an illustration consider the EWS example.

e lts first description is in natural language:

The EWS receives a signal from an external sensor. When
the sensor is connected, the EWS processes the signal and
checks if the resulting value is within a specified range. If
the value of the processed signal is out of range, the system
issues a warning message on the operator display and
posts an alanm. If the operator does not respond to this
warning within a given time interval, the system prints a
fault message on a printing facility and stops monitoring
the signal. The range limits are set by the operator. The
system becomes ready to start monitoring the signal only
after the range limits are set. The limits can be re-defined
after an out-of-range situation has been detected, or after
the operator has deliberately stopped the monitoring,
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e Next we decompose this narrative to describe its functionality:

# The EWS receives a signal from an external zenaor.

= It samples and processes the signal continuously, producing some
result.

= [t checks whether the value of the result is within a specified range
that is set by the operator.

# [f the value is out of range, the system issues a warning message on
the operator display and posts an alarm.

@ If the operator does not respond within a given time interval, the
system prints a fault message on a printing facility and stops moni-
toring the signal.

e Thirdly, we identify the various functions that are described
by there requirements:
SET_UP: receives the range limits from the operator.
PROCESS_SIGMAL: reads the “raw” signal from the sensor and
performs some processing to yield a value that is to be

compared to the range limits.

COMPARE: compares the value of the processed signal with the
range limits.

DISPLAY FAULT: issues a warning message on the operator
display and posts an alarm,

PRINT_FAULT: prints a fault message on the printing facility.
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e Notice that this description also contains info about handled
data. An activity may transform its input into output to be
consumed by other functions, which are internal or external

to the system:

EWE_ACTIVITIES

EL
= Ble s Et
PRESSING | | ggT S *[ EWE CONTROL jaoomrmmfomee OPERATOR
i INPUT COMMANDS 'L..u
g I RAN OUT_OF _RANGE
OPERATOR | LIM??E =
= i »| D1sPLAY NOTIFICTION
- FAULT il
: BET UP |y i LEGAL :
ET UP MS5GS — i :
R He { RANGE OPERATOR |
OUT_OF_RANGE_DATR :
—j 'y
PROCEBS _ COMPARE PRINT
SIGHAL SAMFLE FAULT FAULT REPORT
3
SIGNAL
SENBOR |
RIS

Flaure 1.4 An activity-chart.

e The interface of an activity is described in terms of input and
output signals, both data and control, see last figure.
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1.1.3 System context

One of the first decisions to be made when developing a system
involves its boundaries, or, context. l.e., one must determine
which entities are part of the environment of a system, and how
they communicate with the system. The latter are called external
activities of the system.

OPERATOR

OPERRTOR
EWS alarm

<—’ conmstids & data . \,>
B Bessagas

printed reports
f——————

Figure 2.1, The context of the EWS

Notice that for the EWS one might have chosen for the printer to
be external, leading to printer as external activity.

Different occurrences of the same entity (here: operator) denote
the same entity; these are multiplicated of ease of drawing.
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1.1.4 Decomposition process

The functional view is specified by Activity-charts,
together with a Data Dictionary that contains additional
information about the elements appearing in the charts,
e.g., about their basic activities.
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1.2 Activities and their representation

We continue the functional decomposition

with:

of the EWS, started

EWS_ACTIVITIES

SET UD DISPLAY
= FRULT

PEDCESS ST PEINT

SIGNAL FAULT

This activity chart contains one top-level box, representing the
top-level activity of the chart.
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On their turn, the activities appearing above can be decomposed
themselves, as SET_UP:

EWS ACTIVITIES
SET UP
PROMPT _ VALIDATE
BANGE RANGE
DISPLAY DISPLAY
SU_EEROR FAVLT
PROCES 5_ COMDPREE PHHT_
SIGNAL FRAULT
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Some terminology

e EWS_ACTIVITIES is called top-level activity

e EWS_ACTIVITIES is also called parent activity of SET_UP,
COMPARE, etc., which are called descendants of
EWS_ACTIVITIES, as are the subactivities PROMPT_RANGE
etc. of SET_UP, who have SET_UP and EWS_ACTIVITIES as
ancestor.

Each activity has a corresponding item in the Data Dictionary,
which may contain additional information.
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1.3 Flow of Information between Activities

e Consider the following chart:

EWS_ACTIVITIES
C OMMANDS
———————————————————— EWS_CONTROL
: _ . BHNSOR CRINECTED |~ —
o iy
: i PANGE e : 0UT_OF BRFCE ALATI
1 9 -
R Sy e e LIOIITS i s | DISPLAYT NOTIFICTION
i o =
 OVERREOR.. i | gy yup JS05 i o e l— -
__________ * LEGAL ,
i I I
LANCE : 0UT OF RANGE DATAE rl:ll’EfR'I‘fll'd.'lE J.
1
# : P T
:mms *| COMPRRE Em:hw;_
EGNAL o | e 3 FAITLT HEPORT
OUT_0OF_RANGE DATA
STCHAL
et | pti ey
! SENSOR

——————————

OPERATOR and SENSOR are external activities, drawn using
dotted lines.

Different occurrences of OPERATOR refer to the same entity.
Solid arrows denote data-flow-lines between activities.

Control of EWS_ACTIVITIES is handled in its control activity
chart EWS_CONTROL, a statechart (drawn using rounded
corners).

Dotted arrows denote control-flow-lines, carrying info or
signals used in making control decisions.
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1.3.1 Flow lines

A label on a flow line denotes:

e FEither a single information element that flows along the line,
I.e., a data-item, condition, or event.
e Or a group of such elements, as in, e.g.:

e el = L ey
Ty A m

ata-Item: SIGHAL
efined in Chart Ews
ata-Type. bit—array 23 downto 0

ab TR

haort DESEﬁpti{:gLSyﬂte-’s input; comes from the sensor.

Dictionary

s T i ememmmamaa=T A i

User-Defined Type: RANGE
Defined in Chart: EWS

Data-Type record
Field Name: LOW LIMIT Field Type: real

Field Name: HIGH LIMIT  Field Type: real

Data-ltem: LEGAT. RAHGE
Defined in Chart: EWs
Data-Type: RANGE

Data-letn: FAULT REPORT
Defined in Chatt EwWs

Data-Type: record
Field Name: PAULT TIME Field Type: TIME

Field Mame: FAULT VALUE Field Type: real
Field Name: FAULT RAWGE Field Type: RANGE

=y ST PR
I - ol — P
B

Figure 3.5. User-defined lype RANGE in the Data
Dictionary

Such a group is called information-flow.
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e A flow-line originates from its source activity, and leads to
its target activity:

Bl ¥ Bl

' 2
2 Az 4 B2

¥

e An arrow can be connected to a non-basic box, meaning it
relates to all the subboxes within the box in question, see
above the data flow lines labeled v and z.

e Information flow SIGNAL in Figure 2.5 is declared in the Data
Dictionary as in Figure 3.2 and is used in data processing.
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e Information flow COMMANDS in the Data Dictionary declared
as below, is used to denote control issues.

- = o

i e
it = EOTR i A 1
- - O s .

Information-Flow: COMMARDS
Defined in Chart. EARLY WARNING SYSTEM
Consists of:  SET up

EXECUTE
RESET

Figure 2.7. Information-flow COMMANDS in Data
Dictionary

e Flow lines may represent, e.g.,
— parameter passing to procedures
— passing of values of global variables
— messages transferred in distributed systems
— queues between tasks in real-time applications
— signals flowing along physical links in hardware systems

e Flows can be continuous or discrete in time.
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1.3.2 Flowing elements

e Three types of information elements flow between activities:
events, conditions, data-items.

e Their differences are in their domain of values and timing
characteristics:

Events are instantaneous signals used for synchronization
purposes, e.g., OUT_OF_RANGE in Figure 2.5.

Conditions are persistent signals that are either true or false,
e.g., SENSOR_CONNECTED in Figure 2.5.

Data-item are persistent and may hold values of various
types and structures, e.g., SIGNAL, a bit-array, or
LEGAL_RANGE, a record with two fields of type real,
HIGH_LIMIT and LOW_LIMIT.

e All three types of information elements can be arranged in
array and record structures:
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1.3.3 Information Flows

The number of lines in an activity chart can be reduced by
grouping information elements into an information-flow,
used to label a common flow line, see e.g. COMMANDS
in the following figure, consists of SET_UP, EXECUTE,

RESET.

_______

Information-Flow: COMMARDS
Defined in Chart. EARLY WARNING SYSTEM
Consists of:  SET up

EXECUTE
RESET

Figure 2.7. Information-flow COMMANDE in Data

Dictionary
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1.3.4 Data Stores

e There are no restrictions on the time that data reside on a
flow line. Nevertheless it is often more natural to incorporate
an explicit data store in the chart:

e A data item is defined in the Data Dictionary with the same
name as the data store. Any structure given to a data item is
inherited by the data store.
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1.4 The Behavioral Functionality of Activities

e The behavior of subactivities of an activity chart is described
by its control activity, whose function is to control their
sibling activities (i.e., the other subactivities in the chart).

e A control activity may explicitly start and stop its
sibling activities, i.e., EWS_CONTROL controls SET_UP,
PROCESS_SIGNAL, and COMPARE:

EWS_RACTIVITIES

SET WP EWS CONTEIL DISPLAY
£ FAULT

PEOCESS COMPRRE PRINT

STENRL FAVLT

e Each activity may have at most one control activity.

e The control activity, depicted as a rectangle with rounded
corners, cannot have subactivities. Rather its specification is
that of a Statechart, see next slide.
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o
| |
EEY_ EWE_ACTIVITIES e
| PRESSING |
| F——— - |
el =t e |
| cPERATCR | B AR
| | | LIMITS 1 |- ﬂu;i:ur_ MoOTTIFICATION ]I
W= asmr up FX

| L _ = 4 SU_HSG_'F_DAR.F_.-A‘.{ ~ | *

| DISELAYED. =T o
| SU_MSG DISELAY ! | | owr_or_mance_ndms | oremazom | |
| 8_MEQS> ILDEM.._ : | N A |
| ; | |

FROCEBS_ |
l SIGHALS | e FAULT_REPORT |
| COMPARE > FRULT I
| 4 |
| Jsrc—m.:.. |
| r s |
i | SENSCR I |
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Activity-chart EWS_ACTIVITIES

ﬁ:; CONTROL
[ POVEE,_ON]

O~
BRI [not BERTY]
fn  [READY]/OFERATE ( [cmnlmr'.:» ] \
s ol
"
sgr e T AT o, OUT_OF_RANGE
SHALT
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s =p | SET_UTP) GENEFATING
SETTING UP > ALAFM TIME P RIREH =
= /=t ! (PRINT FAULT)
PHOCES STHE
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[ SENSO0F, CONMECTED] '\' SRR
e o g
IILE

\& [net SENE0T DISCOMNECTED]

Statechart BEWS_CONTROL
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1.4.1 Activities in the Data Dictionary

e Every activity can be described more extensively in the Data
Dictionary using textual information.

e Basic activities are described in the Data Dictionary by
executable textual descriptions, specifying patterns of
behavior. These patterns are:

i ) e -y
-
- ——— e o e

" Activity: PROCESS _ “STGNAL oo gl
Defined in Chart: EWS ACTIVITIES
Mini-spec: st /TICK ; ;

TICKS §SIGHAL VALUE:=SIGHAL
SAMPLE : =COMPUTE (S5 1G6HAL VALUE)

___________

{a) Event-dnven activity descnbed by a mini-spec

o = - P S T 2 L -

- bo ) -

AEH‘IIW ‘i.mI.ID!.TE E.EHGE i
Defined in Chart SET - UP

Mini-spec: if (LOW LIMIT < HIGH LIMIT)
then SUCCESS
Else FATIURE end if

B T e g e T S ATLTTY & ot ol 1oy o comoh g O It

- - L El
------ P ol e

(b chedwc—lﬂse activity described by a muni-spec

- . - e
- - - - - -——-r " -
L " - -- -

ﬂcﬁmy COMPUTE TH | RANGE Y
Defined in Chart: COMPARE

Combmational Assignments:
IN RANGE :={SAMPLE>LEGAL RANGE,LOW LIMIT)
and (SEMPLE>LEGAL RANGE.HIGH LIMIT)

-
. £
[

e = = - -

{c) Data-driven actrvity deccrbed by ::_u_mhmatmnat ASSIZTHTIENLS

JJJJJ

Figure 2,10, Data Dictionary entries describing
activities
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1.5 Connectors and Compound Flow-Lines

e The data flow lines leaving activity COMPARE in Figure 2.5
can be drawn with a joint connector as below:

|

: DISPLAY

| p| FAULT

L

I

I

7 PRINT

______________ i, OUT DF RANGE DATA| FWVLT
Figure 11. A joint
connector {a fork

construct)
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Junction connectors

ni
b
A2 ¥
z
A3

Figure 2.12. Junction connectors

Bl

B2

B3
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Diagram connectors

e Diagram connectors are used when the source of a flow line
is far from its target:

Figure 2.14. A diagram connactor

........................ = m mow m W e b T
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Connections between Activity-Charts and
Statecharts

Abstract: We discuss the actions used by a statechart to control
activities, and the events and conditions used by it to sense
their status.

Literature: Chapters 7 and 8 of “Modeling Reactive
Systems with Statecharts”, by David Harel and Michal
Politi. McGraw-Hill, 1998.



Statemate 2000-06-09

1.6 Dynamics in the Functional Decomposition

The activities participating in the functional decomposition are
not necessarily always active. In most kinds of systems many of
the activities have limited periods in which they are active.

Some examples with different dynamics:

e Procedures and functions in software programs start when
they are “called” and stop upon completion.

e In multi-tasking or multi-processing systems, tasks are
invoked, do their job, and then are “killed” or “kill” themselves.

e Tasks with lower priority maybe interrupted or delayed when
a mission of higher priority arrives.

e Interactive wuser interface is specified by “callback
functions” .
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EWS Example

EWS_ACTIVITIES

SET P DISPLAY
ey FRILT

PPOCESS COMPRARE PRINT

SIGMAL FRULT

Dynamic and timing issues related to the activities in the EWS
example:

SET_UP: activated by an explicit request of the operator,
terminates on its own.

COMPARE: starts with the EXECUTE command and stops with
the OUT_OF_RANGE event or the RESET command.

PROCESS_SIGNAL: active when the COMPARE activity is
active.

DISPLAY_FAULT: starts with the OUT_OF_RANGE event and
is stopped by the operator or after a predefined time period.

PRINT_FAULT: starts when the time period is passed and
terminates on its own.
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Specifying the Dynamics

e Obviously, merely listing the activities and their connections,
as is done in the functional view, is not sufficient. We have to
specify the dynamics of controlling these activities, including
the starting and stopping of the subactivities of a non-basic
activity.

e The order in which the functional and behavioral views and
their connections are developed depends on the nature of the
system and on the specification methodology.

e One can start by carrying out a functional decomposition in
activity-charts, and then add the timing and other dynamic
information i statecharts to capture behavior.

e In contrast, it is possible to start by using statecharts to
describe the system’s modes of operation and/or a collection
of use-cases, and then construct an activity-chart from the
activities performed in these modes or scenarios.
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1.7 Dynamics of Activities

In order to capture the dynamic behavior of non-basic activities,
our models employ control activities that are associated with
statecharts.

1.7.1 Statecharts in the functional view When a non-basic
activity that contains a control activity starts its execution, the
statechart associated with that control activity becomes active,
i.e., the system enters the top level state of this statechart.

5 /[EHI'BIEETBEH]L:EE 1
b

-

#
# -
' b
’

[statecharc CNTEL SC ;I

fe==

Cteatemernte AAA AT TR
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Control Activities

An activity with a reactive behavior pattern can be described by
a statechart even though it is not further decomposed, so that it
has no subactivities to control:

DIVIDE_PULSE BRETE

CLOCE_IN CLOCK OUT
GOPER_SC

o -

[_Stata:hart PR 5C

CLOCE_INH

EYEN CLOCK IN/CLOCK OUT | o |

In some cases, the control behavior of an activity can be captured
by static reactions alone. Then, the controlling statechart will
consist of a single top-level state with the static reactions given
in its Data Dictionary entry.

Note: While the controlling statechart may consume and produce
external (control and data) information, its interface does not
appear in the statechart itself.
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1.7.2 Termination Type of an Activity

We distinguish between activities that have self-termination and
those that have controlled-termination.

If a self-terminating activity has a control activity, then the
corresponding statechart must contain a termination connector.
It is considered a final state; in particular it has no exits:

SET WP STETES \\
DATA ENTERED

WEIT FOE_
RENGE DATR

statachart

Upon entering this connector, the statechart “stops”, its parent
activity becomes deactivated, and the event STOPPED(A) occurs.

When a non-basic activity stops, all its subactivities stop
immediately too.
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1.7.3 Perpetual Activities

Sometimes there is no control activity needed:

DISPIAY FRAULT

DISPLAY FRULT PRODUCE
MESSIGE ALAEM SOUND

All the subactivities start when the parent activity starts, and they
all stop when it stops.
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1.8 Controlling the activities

How does the controlling statechart affect and sense the status of
its sibling activities?

1.8.1 Starting and Stopping Activities The main mechanism
that statecharts use to control activities is the ability to start and
stop them explicitly:

ALLFM TIME PASSELD/
st | (PRINT FAULT)
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Examples

[NO_STGHAL]

[STCHAL EMISTE]

SOPETATE
¥ C) »| COMPRRTNG
RESET/HALT
R OUT_OF PARCE/HALT
COMPLET FM TIME DASSED/S e It
% o st | (PRINT_FAULT) GENERATING
e RESET NLRAEM-
PROCES STHG
(e CONNECTED ™
[ SENS0F, CONNECTED] ol ‘1- OPERATE
DISCONNE E | OPEERTTNG>
i ) e
[SENSOR_DISCOMNECTED] - HALT "

Figure 7.6. States marked as having entering and
exiting reactions

The control activity can control only its sibling activities.

Therefore, all actions that appear in its statchart may refer
to the sibling activities only.
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1.8.2 Sensing the status of Activities

The statchart that describes a control activity is not limited to
causing activities to start and stop. It can also sense whether
such happenings have indeed taken place. Specifically, the control
activity can sense the events STARTED(A ) and STOPPED(A ), and
the condition ACTIVE(A).

The events and conditions in the describing statechart are allowed
to refer only to the sibling activities.
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1.8.3 Activities Throughout and Within States

Often, we wish an activity A to start when a certain state S is
entered, and to stop when S is exited.

This can be specified by associating the action ST!(A) with the
entering event NS and SP!(A) with the exiting event XS in the
Data Dictionary.

Another more compact way is to specify that A is active
throughout s:

- [ _,l'-"l - - [ i
-~ = 5 - y =

State: COMPARING b e
Defined in Chart: EWS CONTROL

Activiies 1n State:
COMPARE (throughout)

State: OPERATINHG
Defined in Chart: EWS CONTROL

Activities in State:
PROCESS SIGHAL (throughout)

Figura 7.8. Activities active throughout states in the
Crata Dictionarny

Another similar association is active within, which represents a
looser connection between an activity and a state.
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1.8.4 Suspending and Resuming Activities

In addition to being able to start and stop activities, control
activities can cause an activity to “freeze”, or suspend, its
activation, and to later resume from where it stopped.

The relevant actions are SUSPEND(A) and RESUME(A).
Associated with these actions is the condition HANGING(A).

Suspension may be used, for example, when we want to interrupt
the progress of an activity in favor of another activity with higher
priority:

[

2, =

£ R B =

.-"'r
T N
S LAY
'\'1' E/sdl (A) ;st | (B)
| BEN i =p (B} /s | (A) REE
= ot
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The event E causes A to be suspended, while the preferred activity
B is carried out to completion, at which time A is resumed.
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Comparison with History Entrance

- ™

FE- SR Y
E/st! (B)
>
RC & @_‘_ | spiB) AC B

L% " o

When A is active throughout AC_A the action is started again.

On the other hand, not stopping A would allow A to react on
events while B is active.
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1.9 Specifying Behavior of Basic Activities

When carrying out functional decomposition, the lower building
blocks of the description are the basic activities, those that require
no further breakup.

Basic activities may have additional textual descriptions in the
Data Dictionary and are marked by a “>".

1.9.1 Reactive Mini-Specs

In some cases the behavior of a basic activity can be described by
a collection of reactions, consisting of triggers and their implied
actions.

A reactive mini-spec is a list of reactions of the form
TRIGGER/ACTION, separated by a double semi-colon (;;).

i -
e - i
- -
- e &
- o T, F R, e T
- o Ll

Actvity: PROCESS SIGHAL TR
Defined in Chart EWS_ACTIVITIES
Termmation Type: Reactive Controlled
IMini-spec: st /TICK : ;
TICK/ SSIGHAL VALUE :=SIGHAL :
SAMPLE : =COMPUTE (55 IGHAT. VALUE) :
scl (TICK, SAMPLE INTERVAL)

DHctionary
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A reactive mini-spec can be attached to both self-terminating or
controlled-terminating activities.

o -y
-
- - - -
r s =3
- % g T S A n g

Actvity! PROCESS STIGHAL " B S
Defined in Chart EWS ACTIVITIES i
Termination Type: Reactive Controlled
Mini-spec: et fTICK ; ;

TICK/ SSIGHAL VALUE:=5IGHAL;

if (SSIGHAL VALUE # 0) then

SAMPIE : =COMPUTE(§SIGNAL VALUE) ;
sol (TICK,SAMPLE INTERVAL)
else =
spl
end if

-
-

It is important to remember that states and activities cannot be
referred to in the mini-spec. All the activities and states of the
model are beyond the scope of an individual mini-spec.
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1.9.2 Procedure-Like Mini-Specs

Often an activity can be described as a sequence of actions,
possibly with conditional branching and iterations. Such activities
are called procedure-like. They are active for a single step only.
Therefore, such activities are always self-terminating.

SET_UP
[Em_mr_mms ]
F
RM'I[E_LII'ETS PEOMPT
N syt FAILURE LEGALL DANGE
SUCCESS e
DISPLAY VELIDRTE
— i 4ET
SU_ERROR ‘ g ‘ |BAT. I mete
/ SET_UP_STRIES \
DATA ENTERED
WALT FOR =

BRANGE DRTR>

SUCCESS/WRITE Ad

FAILURE/st! (DESFLAY SU ERROR)
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- - - ny T

- w -
b
-

Activity: VALIDATE RANGE g
Defined in Chart: SET up
Terrmnation Type: Procedure-Like

Mint-spec. if LOW LIMIT < HIGH LIMIT then
EUCCESE

el=e
FATTURE

end if

Figure 7.15. A procedure-like mini-spec in the Data
Dictionary
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1.9.3 Combinational Assignments

Another typical behavior for an activity is that of a data-driven
pattern. The activity is continuously ready to perform some
calculations whenever the input changes its value.

Activity: COMPUTE IH RANGE 3
Defined in Chart; COMP ARE
Termunation Type; Reactive Controlled

Combinational Assignments:
IN RANGE:= (SAMPLE > LEGAL RANGE.LOW LIMIT) and
(SAMPLE < LEGAL RANGE.HIGH LIMIT)

....................................

Figure 7.76. Combinational assignments in the Data
Dictionary
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3 Communication between Activities

Specifying the communication between activities consists
of the what and the when, just like for other parts of the
specification.

The what is described by the flow-lines in the activity-
charts and relevant parts of the Data Dictionary. The
when is to be specified by the behavioral parts of the
model, i.e., the statecharts and mini-specs.
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3.1 Communication and Synchronization Issues

Functional components in systems communicate between
themselves in order to pass along information and to help
synchronize their processing. A number of attributes characterize
the various communication mechanisms.

Communication can be

e instantaneous , meaning that it is lost when not consumed
immediately, or
persistent , meaning that it stays around until it gets
consumed.

e synchronous , i.e., the sender waits for an acknowledgment,
or
asynchronous , i.e., there is no waiting on the part of the
sender

e directly addressed |, i.e., the target is specified, or sent by
broadcasting
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3.2 Controlling the Flow of Information

In the following figure X is specified to flow between activities A
and B:

ngu;re & 1. An information element flowing
between activities

If X is an event we may have the following situation:

n B
X
BR_SC e BB _SC
Fa
Ea
' ~ & e el N PN "
M statechert WS —| T statechart B _SC —|

If X is a condition or data-item modified by A, B could sense the
value or the change of the value (X, TR(X), WR(X)).
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3.3 Examples of Communication Control

sp(COMPUTE) fwr | (SANPLE}

WALT FOE
e tw{ TICK, N} / TICK NEXT
{(b) The statechart of rrOCESS ST@@L
CMPR CTEL
wr( SAMNPLE)
WRLT_FOR_ =pICHECK) /it (not 1N TAWGE) | CHECKING
SAMPLE then OUT_OF BANGE end if
(c) The statechart of coyeans

Flgure 8.4. Communication batween periodic
activities
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Message Passing

e SERVER MEG. TYPE
CLIRMT —aT BERIR._SC

MEG.DATA.D1 HEG _DARTL DE .I MEG_DaTh DS

ori opz m

statechar: SEVR SC E

[MEG.TYPE=1]/=c! {0P1

[MEC.TTPE=2]/=c! (OF3}
(&)

FJ:I':.'I'U.I"E 85 Serve r-rés'ﬁt;:n'dlng to three service
reguests
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3.4 Activities Communicating Through Queues

Queuing facilities for messages are virtually indispensable in
modeling multi-processing environments, and especially multiple
client-server systems.

We want to have:

e ability to sent unlimited number of messages to the same
address, while the receiver is not always in a position to
accept them,

e no message is consumed before one that was sent earlier,

e possibility for concurrently active components to write
messages to the same address at the same moment

e possibility for concurrently active components to read different
messages to the same address at the same moment
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3.4.1 Queues and their operations

A queue is an ordered, unlimited collection of data-items, all of
the same data type. The queue is usually shared among several
activities, which can employ special actions to add elements to
the queue and read and remove elements from it.

e q_put(Q,D) add the value of expression D to the queue

e q_urgent_put(Q,D) add the value of expression D to the
head of the queue

e q-get(Q,D,S) extract the element at the head of Q and place
itin D

e q_peek(Q,D,S) same as above without removing the element
from Q

e q_flush(Q) clears Q totally

The following figure illustrates the order in which operations on a
queue are performed during a step:

retrieve , :
q_length g get Operations = g _put Operabons i q_flush

Figura 8.6. Dperations on a queue during a step
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Combination with Data Stores

Queues can be associated with data stores just like data-items of
other types can.

PEODUCER . CONSHMER
put ! {0, P ESG) . | get | (0, P_MSG)
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Example

EWE 1

| PEINT FRULT i\

PEINTER. 1

s 2
I §

WS 3 /
|PIINT_ZEI1ILT J——

0S4
| PREINT FAULT Iz

PRINTING 0

PEINTER 2

Figure 8.8. Multiple clients served by multiple servers
via a quaus

T ey

" CONSTRUCT FAULY MESSACE ; i
' put | (PRINTING_Q, FAULT_MSG)
]

e i L L

(a) Min:-spec of PRINT FAULT activity

PETHNTER

e il {enmn_nm. li, PEINT

=

PELNTER CTRL

wr i MEE) f= | (PRINT)
PEINTEE =p { PRIKT) PRINTING

L3

: enteringfget | (PFRINTING O, M3G);; :
1 wr (PEINTING Q) /get | (PRINTING Q,M5G) :
1

(b} The description of the PRINTER

Figure 8.8, Writing and reading messages from a
queus
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5 Statechart Language (cont’d)

5.1 Conditions and Events Related to States

/'ﬁrmn:m; [ inDISCOMNEC TED ] \

. [in (CONNECTED ) |
TING FOE * COMPRRTNG
mtﬂ] J
-~ RESET

OUT_OF_RANGE

N

PROCES SING

¢ CoNNECTED

91 en { COMPARING)
Cmmn R IDLE ﬂhxmnm.mm 'Emm r

Frgure# 15 D:}nditlnns and E.'l.rents relatad il:| statas
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5.2 Connectors

5.2.1 Condition Connector

Figure 4,17, A condition connactor and compound
transitions
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5.2.2 Switch Connector

Figure 4.18. A switch connactor
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5.2.3 Junction Connector

[ g1 ] El and EZ 7 ALl;AZ E]

Figure 4.20. Two equivalent transition constructs
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5.2.4 Diagram Connector

AL TIME PASSED
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5.3 Transitions to and from And-States

BL/AL C]w

=0 O
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Asymmetric Cases

£ %

b

Figure 4.25. A transition from an and-stata
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Module-Charts

Abstract: Module-charts describe the structural view —
sometimes called the architectural view — of the system under
development. Module-charts are typically used in the high-
level design stage of the project.

Literature: Chapters 9 and 10 of “Modeling Reactive
Systems with Statecharts”, by David Harel and Michal
Politi. McGraw-Hill, 1998.
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6 Structural Description: High-Level Design

The structural view captures the system’s high-level design. A
structural description of the system specifies the components
that implement the capabilities described by the functional and
behavioral views.

These components may be:

e hardware,

e software,

® or even humans.
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CCU (control and computation unit): The central CPU, within
which the main control of the system and the basic
computations take place.

SIGNAL_ PROCESSOR: [he subsystem that processes the signal
produced by the sensor and computes the value to be checked,
It consists of an analog-to-digital unit, and a high speed
processor that works at the required checking rate.

MONITOR: The subsystem that communicates with the operator,
[t consists of a KEYBOARD for commands and data entry, and a
SCREEN for displaying messages,

ALARM SYSTEM: The subsystem that produces the alarm, in
visual and /or audible fashion.

PRINTER: The subsystem that receives the messages (text and
formatting instructions) and prints them.

Sometimes There is a clear correspondence between the top-level
activities in the functional view and the top-level subsystems in
the structural view, e.g., SIGNAL_PROCESSOR implements the
activity PROCESS_SIGNAL.

In other cases the structural decomposition is quite different
from the functional decomposition. E.g., the cCcU subsystem
carries out both the EWS_CONTROL and COMPARE activities,
whereas the DISPLAY_FAULT activity is divided into subactivities
that are distributed among the ALARM_SYSTEM and MONITOR
subsystems.
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6.1 Internal and External Modules

The structural view is represented by the language of Module-
charts.

e There exist two types of internal modules:
— execution modules
— storage modules

e And there exist external modules

e Execution modules may be submodules of other external
modules only.

e Storage modules may be submodules of other storage modules
or of execution modules.

e External modules are always external to an execution module
or storage module, and there is no hierarchy of external
modules.
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EWS-Example

The next figure shows the structural decomposition of the EWS,
including a storage module DISK, that stores the fault messages:

Evs
MONTTOR | RLAEM
I i SYSTEY l
|| KETEORED Y . OPEERTOR,
R o ' o PEINTER '-"'}"“'
 DPERRTOR. | .|,
= Speen e .- J —,—i‘
I i L}
|—__ SCRERN SIGHAL i i
PREOCES SOF, : BIE :
= e
I SENS0OR
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Data Dictionary Entry

The Data Dictionary contains a special field, DESCRIBED BY
AcCTIVITY-CHART, which is used to connect modules with their
functional description:

-
- T e — -

- -— = -
- = - ot
- =

Module: STEHAT, PROCESSOR “aasS
Defined in Chart EWs

Synonym: FET548

Description

High speed FFT that processes the sensor’s signal.

Described by Activity-Chart:

Attributes:
Mame WValue
IMPIEMENTATION HAPDWLRE

Long Descnption;
This subsystem processes the analog signal coming
from the sensor. It is a standard FFT, that al=so

containse an ASD wnit.

_____

133



Statemate 2000-06-09

6.2 Communication Between Modules

As in Activity-charts we use labeled arrows between modules to
denote communication between them. They are called flow-lines
or m-flow-lines to emphasize that they connect modules.

A flow-line may denote information flowing between modules:

S ALATM SICHAL
25D i r____+mmm
MONTTOR USER_}ipur P
KEY_PRESSING | oy SYSTEN
{ " |KEYEORED - l
--------- HSGS TO PRINT . J
' | e S S
OPERATOR ' DOPERRTOR
| V| [ M8GE TO|DISPLAY &AM PLE l_ !
e === == - : | S PR SR I, T B
T r STIGRAL_ PRINTER T
et kit hiede FAULT BEPOERT
DISPLAYED MSGS i T =
SIGHNAL
| =t —I‘ e —':
| BENSOR i

__________

Here, USER_INPUT contains the information-flow
COMMANDS, the data-item RANGE_LIMITS and the condition
SENSOR_CONNECTED.
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Physical Links Between Modules

Arrows in a module-chart may also denote physical communication
links, or channels, between modules:

EWS ooz

LIOMITOR TO0L
KET_FPRESSING |

__l_ KEYBORTD ]

i L ' * l
; - = ; ol oo F=———— -
\OPERRTOR | 4002 | OPERRTOR |
: : LT E i !
_— » I . | T, S S i I [ == S d

A Lh P

3

T i R oo [ I |
: PROCES SOE, =
DISPLAYED MSGS = FallLT BEPORT
W006
T
i SENSOR '
I 1
Figure 9.4, Physical links among modules
e h"u.-a-""_l‘a___,.—-' ''''' ‘-_h'\-.,"'"——__ -
Information-Flow: w005 .0

Defined in Chart: EWS
Description: The bus linking SP to the CCU

Consists of
SAMPLE
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6.3 Connectors and Compound Flow-Lines

Connectors and compound flow-lines are allowed in module-charts

exactly as in activity-charts:

CONTEOLLER

MEGS

DEU1

nEVZ

DEY3

Figure 9.6, Communication Iin'k:"rn::u -s'eﬁeral devices
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7 Connections Between the Functional and
Structural Views

e The functional view provides a decomposition of the system
under development into its functional components, i.e., its
capabilities and processes.

e The structural view provides a decomposition of the system
into the actual subsystems that will be part of the final system,
and which implement its functionality.

There are three types of connections between the functional and
structural views:

1. describe the functionality of a module by an activity-chart:
Activity-chart Describing a Module

2. allocate specific activities in an activity-chart to be

implemented in a module: Activities Implemented by
Modules

3. map activities in the functional description of one module to
activities in that of some other module: Activities Associated
with a Module’s Activities
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In conclusion, we may wish to attach functional descriptions, i.e.,
activity-charts, to modules on different levels of the structural

decomposition:

':m

description of
~._ the CCU __F_.x”

EWS
cocw ALARM
SYSTEM
SIGNAL PEINTEER
PROCES SOF.

functional
description of the
HONITOR

Figure 10.1. Functional descriptions attached 1o

ditferent modules

2000-06-09

descriprion ::j/

_ the EW3
T —
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7.1 Activity-chart Describing a Module

The activity-chart EWS_ACTIVITIES

FSS_ACTIVITIES
C OMMANDS
-------------------- EWS CONTROL
: - . SRNSOR CORNECTED e
i 1
i I
| 1
, |0UT_OF DIEGE
: ! RANGE_ [ ,OUT_OF_ ALARI
SR SRR 2 ] o : DISPLAY NOTIFICT LON
I L i
| OFERRTOR 1 |z yp noce : o e J'
__________ < LEGAL i
. i ]
x| OUT_OF_RANGE DATA| |OPERATOR |
1
PROCESS cmullm. PALI. T
STENAL » FAULT
R 7 FAULT REPORT
OUT_OF_RANGE DATA
STCHAL
P i
' SENSOR :
1

describes the functionality of the module EWS
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MONTTOR RLABM l

i SYSTEM
|| KEYBORED ry | OPERATOR |

G | o Kol M =
e [ :
E i L]
;__ SCRTEN STIGHAL 0
PEOCES SOE. v BLTR :
L] |
| SENSOR ;

IModule: EwWs
Defined in Chart: EWS

Described by Actvity-Chart: EWS ACTIVITIES

Notice that the connection is between an activity-chart and a
module!
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Top-Down Approach

One may now want to specify an activity-chart CCU_AC for the
module CCU:

EWG I
Fes e |
S T 1 | S =" O i B I
.-'-. 1 : :
I___ ! l -‘r.l | |i | | |
- d
L x - |
_,‘J’ h'— -l'l = o
i A " "
= " cassiviey-chare EWS ACTIVITIES

activdty-chart COU A > describing the nodule EWS =
_ddscribing the module COU P N—

T ] = .

I e e | 5
S — N | ok
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There must be a correspondence between the functional and
structural decompositions of a module in terms of the environment

and the interface

module—chart EE

with it:

EVS
MONTTOR
KETBIAED ccu
el
[} ¥
[P SIGHAL
i PROCESSOR

________

- =

......

Figure 10.4. External activities Eﬁrrespc}nding o

maciules
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Since also the flow-lines have to be correct we have to introduce an
activity GET_INPUT which will be implemented by the MONITOR
module:

EVS ACTIVITIES
HEY_ SENS0R COMNECTED POWER DRl
PLIESSING P LR o SR OPERRTOR.
________ - GET | commms | EWS_CONTROL ! ,
i INPUT e | iememasias s
pom b e SR ' OUT_OF_RANGE i LA T
[ ' [nancE B : R =
|OPEERTOR. | —|  SBT-DF_DONE . PIOT IFICTIOM
WA T ' | LIHITS ; T TS, DISFLAY RIS SR
T . ' LEGAL_ 1 « [ *|FRULT l
— % REMGE ;| it
SET UP_MECE SET_UP ' 1\ OUT OF DEANGE DATA | | DFERRTOR :
I = e T | i
g ! ! £
BOCESS _,E:mrpm PEINT |
S IGHAL SEMPLE | FRULT FAULT_REPORT
Jsrcﬁ.-u.
TR it L
| SENSOR

EWs modula
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7.2 Activities implemented by Modules

When the module described by the activity-chart is eventually
decomposed into submodules, we may be more concrete and
allocate the relevant activities and data-stores to the submodules:

e T - - = e

- - - e - 5 = -
- - -

- - CIRI—

Activity: PROCESS SIGHAL gl
Defined 1n Chart: EWS ACTIVITIES

Is Activity;
Implemented by Module: STIGNAL PROCESSOR

- Ty ———
o . - el
- - = e o == -

Ff,cjliré 10.6. An activity implementad by a module
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A single activity or data-store cannot be distributed among several
modules.

Therefore, one has to decompose such activities (or data-stores)
into subactivities that can each be allocated to a single module:

EET WP actiwitcy

SET_UP
PEOMPT _ r@SET_W_MTES ]
RFNGE
DISPLRY VALIDATE
5U_ERROR RANGE
F 7
__ji___ —_
module-chart EWs
I Y EWS
| MONTTOR
I ccy (AR |
| [FEVEORED SYSTHL
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|
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7.3 Activities Associated with a Module’s
Activities

On the one hand, there is the EWS_ACTIVITIES describing the
functionality of the whole system. On the other hand, also the
submodules implement activities:

Et ivity—chart MONTTOR AC

| MONTTOR:
2 | | IR - o

| e PREZEING USER INPUT | -

: *|GET_INPUT g

i OPEERTOR N T [ 11 J
| i

]

: ! 9GS TO
| | R DISPLAY  H
i . [ : '

_______ P MES SREE ik
| HSGS

Figure 1008, Activity-chart of MONITOR

Then, one wishes to associate subactivities of EWS_ACTIVITIES
with those implemented by a submodule:

n~ . e
- = =2 M
i - - - = = - -

-
- -

Activity: DISPLAY SU ERROR s
Defined i Chart: SET P

Is Activity: DISPLAY MESSAGE
Implemented by Module: MONITOR
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Figure 10.9. i'-."lapj:uin'g- n-f-a-c:ﬁ':fiiiés' hg, ihe is
activity relation
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Session VI

Semantics of Statecharts

Abstract: We discuss the central concepts and decisions for

various possible semantics for Statecharts (and the “real”
implemented one).

Literature: Dissertation Kees Huizing: “Semantics of reactive
systems:  comparison and full abstraction”, Eindhoven
University of Technology, 1991.

In particular the following pages are relevant:

e “Everything vyou always wanted to know about
Statecharts”, Huizing and de Roever.

e “On the semantics of reactive systems”, Huizing and Gerth.

And:

Chapter 6 of “Modeling Reactive Systems with
Statecharts”, by David Harel and Michal Politi.
McGraw-Hill, 1998.
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8 Semantics of Statecharts

8.1 Summary of previously discussed material
(cfr. first lesson)

e There is a fundamental dichotomy between transformational
systems described by the relation between initial and
corresponding final states, i.e., their input/output behavior,
and

e Reactive systems, whose only purpose is to maintain an
ongoing relationship with their environment.

: ";W’QwS’EJf‘ma}{‘am{ | - }
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Brock-Ackermann Paradox

The Brock-Ackermann paradox explains why reactive systems
cannot be characterized by a function mapping sequences of
inputs to sequences of outputs.

e Consider two systems, a one-place buffer and a two-place
buffer. If you consider these transformationally, they display
the same initial-final state behavior.

STy T »‘a‘" e e vy h:g
ﬂéé?f‘tmzrz pafaqfax :

SO0y nuth -

in: abc. ..
out: 1. e.g. abac. ..
2. e.g. abca. ..
not abac. ..
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But if the output of these systems is fed back, and merged
with their input they behave differently. (See transparency)

e What's needed to characterize a reactive system is recording
the relative order of inputs and outputs, i.e., the way they
are interleaved.
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Central Decisions for a Statecharts Semantics

e Semantics of reactive systems is state-based

e Observations are sequences of pairs of inputs I and
corresponding outputs O, i.e., of pairs of the form (I, O).
In practice a reactive system is therefore described by
sequences of the following form:

01 Og LO3___
Sl :>Il 52 :>Iz 53 ,>13 =S

e Transitions don't take time, time is spent in states.
This has a simple reason: the reaction of a reactive system
to environmental inputs should be always well-defined. As a
consequence, state-changes shouldn’t take time,
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Berry’s synchrony hypothesis

Reaction time between input (i.e., trigger) and corresponding
output (i.e., response) is zero.

Why?

e Recall that individual reaction times are too complicated to
handle, abstractly, on the high level of specification Statecharts
are aiming at.

e a fixed non-zero reaction time wouldn’'t allow transition
refinement.

e Unspecified reaction times lead to chaos, and is not desired at
a high level of abstraction.

— Only one reaction time satisfies all criteria: zero! For:
e Now transition can always be refined

e specific

e deterministic
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Detailed Argumentation from Lesson |

Possibility 1 : Specify a concrete amount of time for each
situation. This forces us to quantify time right from the
beginning. Clumsy, and not appropriate at this stage of
specification where one is only interested in the relative order
and coincidence of events.

Possibility 2 :  Fix reaction time between trigger a and
corresponding action a within e/a (the label of a transition)
upon 1 time unit.

Doesn’'t work: Upon refining question/answer to a
question /consult and a consult/answer transition, there's a
change of time, which may have far reaching effects (because
of tm(n)-events, e.g.)

—

A fixed execution time for syntactic entities (transitions,
statements, etc.) is not flexible enough.

Possibility 3 : Leave things open: say only that execution of
a reaction takes some positive amount of time, and see at a
later stage (closer to the actual implementation) how much
time things take.

Clumsy, introduces far too much nondeterminism.
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Reaction time of a system (2)

Summary : We want the execution time associated to reactions
to have following properties:
e |t should be accurate, but not depending on the actual
implementation.
It should be as short as possible, to avoid artificial delays.
It should be abstract in the sense that the timing behavior
must be orthogonal to the functional behavior.

pr—
Only choice that meets all wishes is zero reaction time.

As a result all objections raised w.r.t. the possibilities mentioned
on the previous page are met!

e Now, for instance, upon refining transition question/answer
from previous page into two transitions, the reaction time of
this refinement is the same as that of the original transition.

e Objection 3 on the previous transparency is resolved, too.

e Finally, also objection 1 (on previous transparency) is met,
because 0 + 0 = 0!
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Berry’s Synchrony Hypothesis

e Is Berry's synchrony hypothesis implementable?
Yes, if the input frequency is low w.r.t. the time required for
computing response.

e However, this hypothesis leads to a number of counterintuitive
consequences, if carried through.

Careful: the following example does not describe the
Statecharts semantics as implemented in Statemate.

P

| |
Al I Bl |
par ) a. ()
a/b : b/d i aAd/e
Iy : iz : ta,
|A2 | I |BZ | lC? '
A ' ' P
Fig. 6.

A A D is a generated trigger, since we assume the reaction time
to be zero. A consequence is that transition t3 is taken!!
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Combination with Negation

The synchrony hypothesis leads to problems if combined with
the possibility of checking the absence of signals (the latter is
customary in the synchronous world, and a possibility not offered
in the asynchronous world):

4 D)

T

|
|
|
|
—-a/b | b/a
|
f
|
l

Fig. 8.

If a is absent, i.e., — a holds as condition, transition ¢ is taken,
i.e., b is generated, and hence t9, i.e., b/a is taken, generating a
within the same time unit, i.e., in zero time, hence transition
t1 should not be taken.
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This is called the “Grandfather paradox”.

It's solution is to order event occurrences causally, with later
events not influencing earlier events:

—|a<b<a

Note here: this causal order has nothing to do with the

passage of time; it merely refers to causal chains within
one time step.
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The new semantics

e This leads to a semantics of the following form:

Micro-steps

expressing
causal order

Time, measured by  Macro-steps,

where a macro-step is a sequence of
micro-steps which cannot be prolonged

e Macro-steps are observable steps :>?

e Each macro-step is a sequence of micro-steps, that are ordered
causally; one micro-step can never influence previous micro-
steps.

e In Statecharts as implemented by Statemate causality is
trivially obtained because in Statemate events generated in
one step are only available in the next step, and only for that
one. l.e., there is no causality within one step.
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Problems with this new semantics

e The problem with macro-steps is that they lead to a globally
inconsistent semantics, i.e., transitions are taken in one
macro-step which aren’t generated globally.

4 D)

b ) ED

|
|
|
|
—-a/b | b/a
|
f
|
l

Sq 28 Sy 22 Sg

Here absence of triggers generates presence of triggers, which
violates their absence within the same step (not globally
consistent).
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e These considerations lead to the fundamental question:

Is a semantics for such languages possible which satisfies
all “reasonable” assumptions? l.e., which is both good

for program development and for program composition?
The answer is NO.

e This is a serious problem. As it turns out, the semantics with
macro-steps indicating passage of time, and refined by causally
ordered micro-steps is a basis for a compositional semantics for
Statecharts in which the semantics of a construct is a function
of the semantics of its parts. But this semantics turns out to
be too difficult to handle for the engineers of I-Logix, and of
Israeli Aircraft Industries, its main customer for the Statemate
system.

e Hence looking for a “best” semantics makes a lot of sense.
What our theorem below says is that, in a certain sense, there
iIs no best semantics. However, it does leave some room for
the search for ever better semantics!!
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There is no “best” semantics for Statecharts

Let's list a couple of desirable properties of such a semantics:

Responsiveness: Reactions are simultaneous with their triggers
— this facilitates refinement of transitions from a high to a
lower level.

Causality: Without a causal order of the micro-steps inside a
macro-step, charts s.a.:

Bl

A2

/
| A1 |
a/b
(&

would trigger each other, which makes no causal sense. Such
charts are excluded imposing causality.

Modularity: Modules can be composed on the basics of their
macro-steps, i.e., the external interface of a (parallel)
composition of modules is of the same nature as their mutual
interface w.r.t. each other. (This is inspired by a paper by
Pnueli and Shalev)
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Impossibility of a Semantics being Causal,
modular, and responsive

Modularity, causality, and responsiveness can be mathematically
expressed; the impossibility of all three being satisfied

simultaneously becomes a theorem, proved in the paper by Huizing
and Gerth.

However, also intuitively this is clear:

e Causality and responsiveness leads to

-

=)

|
|
|
|
-a/b | b/a
|
|
|
|

examples in which both a and its absence —a occur within
the same macro-step = no global consistency =—> no
modularity

e Modularity and responsiveness imply there exists no
satisfactory semantics for the example above. This choice
is made in the synchronous language ESTEREL, in which
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examples as the one above are excluded on syntactic grounds
by a compiler.
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8.2 Classification of possible semantics for
Statecharts

Next we list a few possible semantics for Statecharts, semantics
A — E, of which E is closest to the one actually implemented in
Statemate, and discuss the anomalies allowed by them (including
those of the implemented semantics of Statecharts).

Semantics A

Events generated as a reaction to some input can only be sensed
in the step following that input. (This is a choice made in the
implemented semantics of Statecharts.)

Anomaly: no simultaneity of action and reaction, i.e., no
responsiveness.

In semantics A the trigger a A ¢ will not occur:

| |
Al | m o [a
I I
a/b : b/d I| and/e
# : i : ta
A2 | B2 | cz2
CED N CHB I CHD
Fig. 6.

This example makes clear that in semantics A the moment of
generation of an event is too important — a too detailed analysis
of charts is required for adopting it.
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Semantics B

In order to overcome the problem with semantics A, absence of
responsiveness, micro-steps are introduced, with events sensed in
the next micro-step.

Then, in the previous example the third transition is taken.

Consider now the trigger b A —c for the third transition; the
transition is taken, because in the second micro-step, event c is
not yet sensed. This example also works for semantics A.

Disadvantage: Semantics B is too subtle to be of any practical
use; same objection as to semantics A.
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Semantics C

Requires global consistency of every micro-step. The reaction of
the system to an input should

e not only be enabled by events generated in previous micro-
steps

e but also by events generated in the full macro-step.

As a consequence, the b A —c transition is not taken.

~

i

|
|
|
|
-a/b | b/a
|
|
|
|

This example is excluded in semantics C, leads to contradiction.
|.e., syntactical means must be found to exclude it, as done in

ESTEREL by a compiler.

This makes a lot of sense, as evidenced by the considerable success
of ESTEREL of Gérard Berry.
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However, this semantics is not modular. This implies that a
modular development of the system is cumbersome, since every
developer has to know the detailed micro-behavior of the other
processes. Hence, this semantics is appropriate for top-level guys
only, and that's what Gérard Berry's crowd consists of.
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Semantics D

All events generated during some macro-step considered as if they
were present right from the beginning of the macro-step.

Semantics D allows

5

Bl

L1
T
o

b/a
iy
[ B2
i

Fig. 9.

to be taken: reactions may trigger themselves. l.e., semantics D
Is not causal.

Note: In semantics D, the external world does not generate an a
event!

Conclusion: This example should be rejected!
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Semantics E

Events are generated at the next step, but no input from the
environment is possible before the reaction of the system has
completely died out.

This semantics is heavily non-modular, since one macro-step may
contain several steps of the A semantics. Events remain active
only for the duration of such a step, hence, in one macro-step
an event can be activated and deactivated several times, thus
leading to a much more complex interface between subsystems,
than between the system and its environment.

(OO0

Generation of event a leads the system eventually to state Ss.

N alb
b/a
In semantics E, as in the implemented semantics of Statecharts,

this example leads to an infinite loop (the so-called: “go repeat”
mode): try it out yourself!
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Situation

No “best” semantics = still room for better ones

The situation is summarized in the following figure, showing how
each semantics is an attempt to improve on the other one:

A responsiveness B C modularity D

modularity responsiveness

causalit

What to do? The search is now on for better semantics

1. Several cleaner semantics have been proposed, notably by
Florence Maraninchi. She opts for semantics D, in which both
charts such as example C and D are excluded, resulting in
Argos semantics:

ae e bhvr
handler

Generation of event a leads to exit transition e being taken.
This is called non-preemptive interrupts.
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The Argos semantics leads to a cleaner concept of state-
hierarchy in which inter-level transitions are not allowed.
Probably a too heavy investment in their “old” semantics,
manyear-wise, prevented |-Logix from adopting the cleaner
Argos semantics of Maraninchi in Statemate.

2. Huizing and Gerth propose a compositional semantics in which
the causal chains inside a module are hidden from its external
behavior. This proposal has not yet caught on.
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8.3 Statecharts as Implemented

This leaves us with the semantics of Statecharts as it is
implemented in Statemate. Computing that semantics is a fairly
involved algorithm, only recently (1996) published in a paper by
David Harel and A. Naamad.

Operational semantics

We describe the contents of the system status, and the algorithm
for executing a step.

The status includes:

e a list of states in which the system currently resides;
e a list of activities that are currently active;
e current values of conditions and data-items;

e a list of regular and derived events that were generated
internally in the previous step;

e a list of timeout events and their time for occurrence:
e a list of scheduled actions and their time for execution;

e relevant information on the history of states.
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The input to the algorithm consists of:

e the current system status;
e a set of external changes that occurred since the last step;

e the current time
The step execution algorithm works in three main phases:

1. e calculate the events derived from the external changes and

add them to the list of events;

e perform the scheduled actions whose scheduled time has
been exceeded, and calculate their derived events;

e update the occurrence time of timeout events if their
triggering events have occurred;

e generate the timeout events whose occurrence time has
been exceeded;

2. e evaluate the triggers of all relevant transition reactions;
prepare a list of all states that will be exited and entered;
e evaluate the triggers of all static reactions

3. e update the history of states;
e carry out all computations prescribed by the actions in the
list produced in the second phase;
e carry out all updates called for by the actions
update the list of current states.
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Synchronous/Asynchronous Semantics

Synchronous Semantics: Environment interacts with the
system after each step and time advances. This is conceptually
quiet easy and appropriate for synchronous hardware. But,
the system’s reaction on the external input has to be simple
(compare with semantics A).

Asynchronous Semantics: Synchrony Hypothesis: system may
react with a chain reaction. External input only in stable
states. [Easier to model complex systems, abstraction from
real-time. But, the implementation has to be shown to satisfy
the assumptions of zero reaction time.
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