
Statemate Course

Statemate/SDL | Teletea
hing Vorlesung

W.-P. de Roever

K. Baukus

CAU Kiel

D. Hogrefe

H. Neukir
hen

MU L�ube
k



Session I

Introdu
tion to State
harts

Everything you wanted to know about State
harts

but were afraid to ask

Abstra
t: The notion of a rea
tive system and the language

State
harts are introdu
ed. The rationale behind the design

de
isions of State
harts is explained in relation to the spe
i�


nature of rea
tive systems.

Literature: Introdu
tion to Design Choi
es in the Semanti
s

of State
harts, C. Huizing, W.-P. de Roever, Information

Pro
essing Letters 37, p. 205-213, 1991



Statemate 2000-06-09

0.1 What are rea
tive systems?

� There is a fundamental di
hotomy in the analysis of rea
tive

systems; namely, the di
hotomy between

{ transformational and

{ rea
tive systems.

� Transformational systems are des
ribed by the relation

between initial and 
orresponding �nal states; they have a

linear stru
ture, be
ause only the initial and 
orresponding

�nal states are of interest.

Examples in
lude: sorting algorithms, 
ompilers, and other

algorithms 
omputing a fun
tion as dis
ussed in your data

stru
tures and 
omplexity of algorithms 
ourse.

� Rea
tive systems do not 
ompute a fun
tion, but are in


ontinuous intera
tion with their environment.

Examples: your tv set, digital wat
hes, 
hips, intera
tive

software systems, game programs s.a. tra
kman, monkey

island, tomb raider, and other intera
tive 
omputer games,

but also one's heart monitor at an intensive 
are unit.

� Transformational systems are well-studied; for their

programming and analysis many good languages and theories

exist.

� We explain why the language State
harts is a good 
andidate

for spe
ifying and programming rea
tive systems.

2



Statemate 2000-06-09

3



Statemate 2000-06-09

0.2 Why not use transformational des
ription

te
hniques?

� If transformational systems are so well studied, why doesn't

one 
onsider a rea
tive system as a transformational one?

Simply say that a rea
tive system transforms a sequen
e of

inputs to a sequen
e of outputs.

� This doesn't work, be
ause of \feedba
k", as illustrated by

the Bro
k-A
kermann paradox.

� Consider two systems, a one-pla
e bu�er and a two-pla
e

bu�er. If you 
onsider these transformationally, they display

the same initial-�nal state behavior.

But if the output of these systems is fed ba
k, and merged

with their input they behave di�erently. (See transparen
y)

� Con
lusion: The relative order of output events relative

to the input events needs to be spe
i�ed, in order to


hara
terize the semanti
s of a system with intera
tion

with its environment through feedba
k.

(One needs to know when an output is produ
ed)

4



Statemate 2000-06-09

in: ab
 : : :

out: 1. e.g. aba
 : : :

2. e.g. ab
a : : :

not aba
 : : :

5



Statemate 2000-06-09

0.3 Graphi
al languages

� Transformational systems have a linear stru
ture, and so have

the 
onventional languages for spe
ifying and programming

them. What one des
ribes is how a �nal state is produ
ed

from an initial one. The relative time when intermediate

states are 
omputed is not important, and neither is their

identity as long as the 
orresponding �nal state is known!

� For rea
tive systems this is 
ompletely di�erent:

{ The \moment" a new input arrives is relevant to the

behavior of the system =)

{ The internal state of the system at the time of input is

important for the systems rea
tion.

{ Rea
tive systems may not even have a �nal state!

� So, in rea
tive systems there is no main sequential 
ow of


ontrol (as in transformational systems) and statements 
an

have several entry and exit points.

6



Statemate 2000-06-09

Graphi
al formalisms for rea
tive systems

There exist graphi
al formalisms for des
ribing rea
tive systems:

� E.g., state diagrams for �nite state ma
hines (FSMs):

For ea
h state, the possible rea
tions to input that arrives in

that state is spe
i�ed by a transition to other states.

7



Statemate 2000-06-09

� However, these don't serve our purpose: The only output a

FSM produ
es is a signal that it has rea
hed its �nal state.

A rea
tive system, however, may produ
e output at any time

of its exe
ution =)

� Use Mealy ma
hines: these 
an produ
e an output whenever

a transition is made.

Example: A lamp having two bulbs | one of 50 W and one

of 100 W | whi
h 
an be lighted separately and together.

Note that in this example the data 
ow 6= 
ontrol 
ow:

OFF

50 W

100 W

150 W

Pull

Pull

Pull

turn 50 W off;

turn 100 W off

turn 50 W off;
turn 100 W on

turn 50 W on

Pull

turn 50 W on

8



Statemate 2000-06-09

Disadvantages of Mealy ma
hines for des
ribing

rea
tive systems

� They have no stru
ture. There is no strategy for their

top-down or bottom-up development.

� They are not e
onomi
al w.r.t. transitions, when one event

has all transitions as a starting point as in 
ase of interrupts:

Interrupt state

� They are not e
onomi
al w.r.t. parallel 
omposition:

Exponential growth in the number of states when 
omposed

in parallel.

=) We need a formalism for the hierar
hi
al development and

re�nement of Mealy ma
hines.

This is provided by State
harts, invented by David Harel.

State
harts display hierar
hy and stru
ture, and enable

hierar
hi
al development.

9



Statemate 2000-06-09

0.4 Hierar
hy and Stru
ture

The 
on
epts of hierar
hy and stru
ture in State
harts are

introdu
ed using a quite familiar example of a rea
tive system:

that of a television set with remote 
ontrol.

10



Statemate 2000-06-09

0.4.1 First 
on
ept: Hierar
hy

Hierar
hy or depth in states, and interrupts. This is a
hieved by

drawing states as boxes that 
ontain other boxes as sub-states.

� The television set 
an be in two states: on and standby.

Swit
hing between them is done by pushing the on and o�

buttons, generating the on and o� events:

11



Statemate 2000-06-09

� In state on the tv set 
an be in two sub-states: normal and

videotext:

The �! arrow leading to normal spe
i�es whi
h sub-state

should be entered when the higher level stateon is entered,

namely normal.

� When in on an event o� is generated, this a
ts like an

interrupt and state on (in
l. all its sub-states) is left, and


ontrol swit
hes to state standby. In this way interrupts

are handled without 
luttering the pi
ture with arrows as on

transparen
y no. 9.

12



Statemate 2000-06-09

0.4.2 Se
ond 
on
ept: Orthogonality

� Two independent 
omponents 
an be put together into an

AND-state, separated by a dotted line

� Being in an AND-state means being in all of its immediate

sub-states at the same time. This prevents the exponential

blow-up familiar from 
omposing FSMs in parallel.

13



Statemate 2000-06-09

0.4.3 Third 
on
ept: Broad
ast

� In our 
ase we split state normal in two orthogonal


omponents 
hannel, for sele
ting 
hannels, and sm for

swit
hing to mute:

� When a 
hannel button (1 or 2, for simpli
ity) is pressed,

one swit
hes to that 
hannel and the internal event sm is

generated. This 
auses the event mute by a transition in sm

to state mute, and the sound will be turned o�.

� After one se
ond the event sound is generated to turn the

sound on, again. This is done by the spe
ial time-out event

tm(1).

14



Statemate 2000-06-09

Thus one sees that orthogonal 
omponents 
an 
ommuni
ate

by generating events whi
h are broad
ast, and that this 
an be

done in a time-dependent manner: introdu
ing the generation

of events e=a

1

; : : : ; a

n

and time-out events tm(1), ...

In general the label of a transition 
onsists of two parts: a trigger

that determines if and when a transition will be taken, and an

a
tion that is performed when a transition is taken. This a
tion

is the generation of a set of events.

15



Statemate 2000-06-09

0.4.4 Fourth 
on
ept: Compound events

� When in state standby, dependent on whether one presses

button 1 or 2 one makes sure to swit
h to states 
h1 or 
h2

in on. This is indi
ated as follows:

on standby1 v 2

off

� In general one 
an label transitions by 
ompound events s.a.

(:a ^ b) _ 
; a ^ b; 
 _ d;:a; et


� E.g., in:

a 
an be repla
ed by a ^ :b to express priority of event b

over event a.

16



Statemate 2000-06-09

In a nutshell, one may say with David Harel:

State
harts = Mealy Ma
hines + depth

+ orthogonality + broad
ast + data

17



Statemate 2000-06-09

18



Statemate 2000-06-09

0.5 Time

� The elementary unit of observation in a rea
tive system is the

event

� The environment sends events to the system to trigger


omputations, the system rea
ts to the environment by

sending, or generating, events.

� Events are also means of 
ommuni
ation between parts of a

system.

� Be
ause one wants to spe
ify rea
tive systems at the highest

level of abstra
tion in a dis
rete fashion, events are dis
rete

signals, o

urring at a point in time.

19



Statemate 2000-06-09

� Events have no duration; they are generated from one state

to another. Hen
e, transitions have a dis
rete uninterruptable

nature and all time is spent in states.

� This has an important reason:

In a reason system new inputs may arrive at any moment.

Therefore the 
urrent state it is in should be always 
lear.

Sin
e transitions have no duration, there are no \transient"

periods in between states.

Therefore, the rea
tion on a possible input is always well

de�ned.

� Of 
ourse this is an abstra
tion from reality. (At deep levels

of ele
troni
 implementations, one en
ounters levels where

dis
rete reasoning makes no sense anymore)

State
harts is meant to be a high level spe
i�
ation language,

where this abstra
tion 
an be maintained and is appropriate.

20



Statemate 2000-06-09

How long is the rea
tion time?

� We know that transitions have no duration, but when do they

take pla
e, relative to the trigger? And:

How long does it take the system to 
ompute a

rea
tion upon an external event?

� For transformational systems this is easy | the only important

distin
tion is between �nite and in�nite values (
orresponding

to a �nal state or no �nal state)

� For rea
tive systems this is not enough:

We have to know when an output o

urs relative to the events

in the input sequen
e (see Bro
k-A
kermann paradox)

=)

One has to determine what the rea
tion time of a sequen
e

is.

21



Statemate 2000-06-09

What's the rea
tion time of a rea
tive systems upon an

external event in the high level Spe
i�
ation Language

State
harts?

Possibility 1 : Spe
ify a 
on
rete amount of time for ea
h

situation. This for
es us to quantify time right from the

beginning. Clumsy, and not appropriate at this stage of

spe
i�
ation where one is only interested in the relative order

and 
oin
iden
e of events.

Possibility 2 : Fix rea
tion time between trigger a and


orresponding a
tion a within e/a (the label of a transition)

upon 1 time unit.

Doesn't work: Upon re�ning question/answer to a

question/
onsult and a 
onsult/answer transition, there's a


hange of time, whi
h may have far rea
hing e�e
ts (be
ause

of tm(n)-events, e.g.)

=)

A �xed exe
ution time for synta
ti
 entities (transitions,

statements, et
.) is not 
exible enough.

Possibility 3 : Leave things open: say only that exe
ution of

a rea
tion takes some positive amount of time, and see at a

later stage (
loser to the a
tual implementation) how mu
h

time things take.

Clumsy, introdu
es far too mu
h nondeterminism.

22



Statemate 2000-06-09

Rea
tion time of a system (2)

Summary : We want the exe
ution time asso
iated to rea
tions

to have following properties:

� It should be a

urate, but not depending on the a
tual

implementation.

� It should be as short as possible, to avoid arti�
ial delays.

� It should be abstra
t in the sense that the timing behavior

must be orthogonal to the fun
tional behavior.

=)

Only 
hoi
e that meets all wishes is zero rea
tion time.

As a result all obje
tions raised w.r.t. the possibilities mentioned

on the previous page are met!

� Now, for instan
e, upon re�ning transition question/answer

from previous page into two transitions, the rea
tion time of

this re�nement is the same as that of the original transition.

� Obje
tion 3 on the previous transparen
y is resolved, too.

� Finally, also obje
tion 1 (on previous transparen
y) is met,

be
ause 0 + 0 = 0!

23



Statemate 2000-06-09

This 
hoi
e, that the rea
tion time between a trigger and its event

is zero, is 
alled Berry's syn
hrony hypothesis.

Is this implementable? No, a real 
omputation takes time. But

in a
tual implementation this means:

The rea
tion 
omes before the next input arrives,

or, so to say,

Rea
tions are not in�nitely fast but fast enough.

See the following �gure:

A 
onsequen
e is that transition t

3

is taken!!

24



Statemate 2000-06-09

Negations and paradoxes

� Idea of immediate rea
tion works �ne as long as transitions

only triggered by primitive events, or or 
onjun
tions and

disjun
tions of them.

� However, one also needs negations of events to trigger a

transition. E.g.: to spe
ify priority:

25



Statemate 2000-06-09

� Problem: What semanti
s to give to State
harts in the next

�gure?

If ais absent, i.e., : a holds as 
ondition, transition t

1

is

taken, i.e., b is generated, and hen
e t

2

, i.e., b/a is taken,

generating a within the same time unit, i.e., in zero time,

hen
e transition t

1

should not be taken.

But that means that event b is not generated, and hen
e event

a is not generated, so transition t

1

should be taken, et
.

=) Paradoxon!

26



Statemate 2000-06-09

Negations and paradoxes (2)

Solution : Introdu
e two levels of time

� Ma
ro steps, for 
ounting time, (these are observable)

time steps, and

� Mi
ro steps, whi
h des
ribe the 
ausal 
hain within

rea
tions.

Every ma
ro-step is then divided in an arbitrary but �nite

number of mi
ro-steps.

This sequen
e of mi
ro-steps has only an operational meaning.

27



Statemate 2000-06-09

Alternative approa
hes

� Problem with introdu
ing ma
ro-steps only within our

formalism (and no mi
ro-steps) is that the semanti
s is no

longer globally 
onsistent in 
ase of the following state
hart:

28



Statemate 2000-06-09

� Another problem is: What semanti
s to give to the state
hart

in the following �gure?

Causality di
tates that no su
h transitions are \triggered

themselves": there should be a 
ausally a

eptable 
hain of

rea
tion steps.

� Responsiveness: rea
tions are simultaneous with their

triggers.

It 
an be proved that no semanti
s 
an be both globally 
onsistent,


ausal, and responsive.

E.g., in the syn
hronous language ESTEREL, programs are

disallowed whi
h violate 
ausality. The 
ompiler dete
ts these,

and refuses to 
ompile them.

29



Statemate 2000-06-09

Con
lusion

� Rea
tive systems are fundamentally di�erent from

transformational systems

� We explained the design de
isions behind State
harts in

relation to the spe
i�
 nature of rea
tive systems

� Time is passed in states, transitions are instantaneous

� To avoid a

umulation of time in rea
tive 
hains, the rea
tion

time should be zero

� We pointed out that several semanti
 problems arise when

rea
tion time is zero, and how to 
ir
umvent these problems.

For solutions the reader is referred to the literature, see the

paper by Huizing and Hooman, and the book by David Harel

and Mi
hal Politi:

David Harel and Mi
hal Politi. Modeling Rea
tive

Systems with State
harts. M
Graw-Hill, 1998.

30



Session II

Introdu
tion to Statemate

Abstra
t

The notion of a rea
tive system and the language

State
harts were introdu
ed in the last session. We

explained the rationale behind the design de
isions of

State
harts in relation to the spe
i�
 nature of rea
tive

systems.

This time, the role of models in a system development

life 
y
le is des
ribed. We introdu
e three languages to


hara
terize rea
tive systems from di�erent views. This

yields to a brief des
ription of the Statemate toolset.

Literature: David Harel and Mi
hal Politi. Modeling

Rea
tive Systems with State
harts. M
Graw-Hill, 1998.



Statemate 2000-06-09

Last Session

We wanted to des
ribe rea
tive systems:

ENVIRONMENT ENVIRONMENT

SYSTEM

Solution

State
harts = Mealy Ma
hines + depth

+ orthogonality + broad
ast + data

32



Statemate 2000-06-09

0.6 Spe
i�
ation in a systems life 
y
le

� Identify several phases in the development life 
y
le of a system

� Classi
 waterfall model: requirements analysis, spe
i�
ation,

design, implementation, testing, and maintenan
e.

� Other approa
hes 
enter around prototyping, in
remental

development, reusable software, or automated synthesis.

� Most proposals 
ontain a requirements analysis phase.

Spe
i�
ation errors and mis
on
eptions should be dis
overed

in that early phase.

� Corre
ting errors in later stages is extremely expensive.

� Spe
ial languages are therefore used in the requirements

analysis phase to spe
ify a model of the system, and spe
ial

te
hniques are used to analyze it extensively.

33



Statemate 2000-06-09

System's life 
y
le

34



Statemate 2000-06-09

System model

� A good model is important for all parti
ipants in the system's

development.

� Having a 
lear and exe
utable model the fun
tionality and

behavior 
an be approved before investigating heavily in the

implementation stages.

� The spe
i�
ation team uses modeling as the main medium for

expressing ideas.

35



Statemate 2000-06-09

0.7 Methodology

A methodology provides guidelines for performing the pro
esses

that 
omprise the various phases.

Con
entrating on the modeling and analysis phase, a methodology


onsists of the following 
omponents:

� The methodology's underlying approa
h and the 
on
epts it

uses.

� The notation used, that is, the modeling languages with their

syntax and semanti
s.

� The pro
ess pres
ribed by the methodology, that is, whi
h

a
tivities have to be 
arried out to apply the methodology and

in what order.

� The 
omputerized tools that 
an be used to help in the pro
ess.

Here, we fo
us on notation and des
ribe the Statemate toolset.

36



Statemate 2000-06-09

0.8 Rea
tive systems

The State
harts language is espe
ially e�e
tive for rea
tive

systems.

A typi
al rea
tive system exhibits the following distin
tive


hara
teristi
s:

� It 
ontinuously intera
ts with its environment, using inputs

and outputs that are either 
ontinuous in time or dis
rete.

� It must be able to respond to interrupts, i.e., high-priority

events.

� Its operation and rea
tion often re
e
t stringent time

requirements.

� It is very often based on intera
ting pro
esses that operate in

parallel.

Examples

On-line intera
tive systems : e.g., automati
 teller ma
hines,


ight reservation systems

Computer-embedded systems :avioni
s, automotive, and

tele
ommuni
ation systems

Control systems : su
h as 
hemi
al and manufa
turing systems.

37



Statemate 2000-06-09

Example: The early warning system A system model


onstitutes a tangible representation of the system's 
on
eptual

and physi
al properties and serves as a vehi
le for the spe
i�er

and designer to 
apture their thoughts.

38



Statemate 2000-06-09

0.9 Chara
teristi
s of models

Beside for 
ommuni
ation, systems models should also be used

for inspe
tion and analysis.

When the model re
e
ts some preexisting des
riptions, su
h as

requirements written in natural language, it is useful to keep tra
k

of how the 
omponents of the developing model are derived from

the earlier des
riptions.

The modeling languages used in Statemate have been designed

with several important properties in mind:

� to be intuitive and 
lear

� to be pre
ise

� to be 
omprehensive

� to be fully exe
utable

39



Statemate 2000-06-09

How to a
hieve these properties?

� To a
hieve 
larity, elements of the model are represented

graphi
ally wherever possible.

� For pre
ision, all languages features have rigorous

mathemati
al semanti
s

� Comprehension 
omes from the fa
t that the languages have

the full expressive power needed to model all relevant issues,

in
luding the what, the when, and the how.

� For exe
utability, the behavioral semanti
s is detailed and

rigorous enough to enable the model to be exe
uted (or be

used to generate 
ode).

40



Statemate 2000-06-09

0.10 Modeling Views

Building a model 
an be 
onsidered as a transition from ideas and

informal des
riptions to 
on
rete des
riptions that use 
on
epts

and prede�ned terminology.

Here, the des
riptions used to 
apture the system spe
i�
ation

are organized into three views: the fun
tional, the behavioral,

and the stru
tural

41



Statemate 2000-06-09

The three views

Fun
tional view : The fun
tional view 
aptures the \what". It

des
ribes the system's fun
tions, pro
esses, or obje
ts, also


alled a
tivities, thus pinning down its 
apabilities. This view

in
ludes the inputs and outputs of the a
tivities.

Behavioral view : The behavioral view 
aptures the \when".

It des
ribes the system's behavior over time, in
luding the

dynami
s of a
tivities, their 
ontrol and timing behavior, the

states and modes of the system, and the 
onditions and events

that 
ause modes to 
hange and other o

urren
es to take

pla
e.

Stru
tural view : The stru
tural view 
aptures the \how". It

des
ribes the subsystems, modules, or obje
ts 
onstituting the

real system and the 
ommuni
ation between them.

While the two former views provide the 
on
eptual model of the

system, the stru
tural view is 
onsidered to be its physi
al model.

The main 
onne
tion between the 
on
eptual and physi
al models

is 
aptured by spe
ifying the modules of the stru
tural view that

are responsible for implementing the a
tivities in the fun
tional

view.

42



Statemate 2000-06-09

Modeling heuristi
s

Modeling heuristi
s are guidelines for how the notation should be

used to model the system.

� The mapping between the methodology's 
on
epts and the

elements allowed in the notation.

� The type of de
omposition to be used: e.g., fun
tion based,

obje
t based, mode based, module based, or s
enario based.

� The step-by-step order of the modeling pro
ess: bottom-up or

top-down

43



Statemate 2000-06-09

0.11 The Modeling Languages

The three views of a system model are des
ribed in our approa
h

using three graphi
al languages.

� A
tivity-
harts for the fun
tional view,

� State
harts for the behavioral view,

� and Module-
harts for the stru
tural view.

� Additional non-graphi
al information related to the views

themselves and their inter-
onne
tions is provided in a Data

Di
tionary

44



Statemate 2000-06-09

0.11.1 A
tivity-
harts

A
tivity-
harts 
an be viewed as multilevel data-
ow diagrams.

They 
apture fun
tions, or a
tivities, as well as data-stores, all

organized into hierar
hies and 
onne
ted via the information that


ows between them.

45



Statemate 2000-06-09

0.11.2 Non-graphi
al information

In addition to the graphi
al information, ea
h element in the

des
ribed has an entry in the Data Di
tionary, whi
h may 
ontain

non-graphi
al information about the element.

For example, the a
tivity entry 
ontains �elds 
alled mini-spe


and long des
ription, in whi
h it is possible to provide formal and

informal textual des
riptions of the a
tivities workings.

46



Statemate 2000-06-09

0.11.3 State
harts

State
harts 
onstitute an extensive generalization of state-

transition diagrams. They allow for multilevel states de
omposed

in an and/or fashion, and thus support e
onomi
al spe
i�
ation

of 
on
urren
y and en
apsulation. They in
orporate a broad
ast


ommuni
ation me
hanism, timeout and delay operators for

spe
ifying syn
hronization and timing information, and a means

for spe
ifying transitions that depend on the history of the system's

behavior.

47



Statemate 2000-06-09

0.11.4 Module-
hart

A module-
hart 
an also be regarded as a 
ertain kind of data-
ow

diagram or blo
k diagram. Module-
harts are used to des
ribe

the modules that 
onstitute the implementation of the system,

its division into hardware and software blo
ks and their inner


omponents, and the 
ommuni
ation between them.

48



Statemate 2000-06-09

0.12 Relationship between the languages

The relationship between the 
on
epts of the three views are

re
e
ted in 
orresponding 
onne
tions between the three modeling

languages.

Most of these 
onne
tions are provided in the Data Di
tionary,

and they tie the pie
es together, thus yielding a 
omplete model

of the system under development.

49



Statemate 2000-06-09

Handling large-s
ale systems

� The languages allow to split large hierar
hi
al 
harts into

separate ones:

� Also, 
oping with visibility and information hiding by setting

s
oping rules of elements in the model.

� Moreover, generi
 
harts and user-de�ned types.

50



Statemate 2000-06-09

The Statemate toolset

Statemate has been 
onstru
ted to \understand" the model

and its dynami
s. The user 
an then exe
ute the spe
i�
ation by

emulating the environment of the system under development and

letting the model make dynami
 progress in response.

51



Statemate 2000-06-09

0.13 A larger example: Alarm wat
h

As an example of a state
hart we use that of a simple digital

wat
h with four buttonsA;B;C andD like in the below pi
ture:

D

C

BA

am12:31

The wat
h 
an show the time or date, has the possibility to beep

every hour, an alarm, a stopwat
h, a light and an indi
ation that

the battery must be repla
ed.

The following events are 
onsidered as external:

� A;B;C and D des
ribe the pushing of the four buttons and

B up the release of button B.

� The events Bt In;Bt Rm;Bt Dy and Bt Wk des
ribe

respe
tively the putting in, removal, drop dead and weakening

of the battery.

� T hits Hr des
ribes that the internal time has rea
hed a

whole hour and T Hits Tm des
ribes that the internal time

has rea
hed the alarm time.

� T Min des
ribes that there are two minutes passed sin
e for

the last time a button has been pushed.

52



Statemate 2000-06-09

Display 
ontrol

The below state
hart shows the display state of the wat
h.

There is a spe
ial state up � alarm for the 
hanging of the

internal state of the alarm. Note that T

m

in takes 
are of the

resetting of a state, ex
ept the stopwat
h, to the default state

time if nothing has happen sin
e the last two minutes.

DISPLAY

UPDATE

T_MIN

HOUR

DATE

MIN

SEC

DAY

DATE

TIME

ALARM

CHIME

STOPWATCH UP_ALARM

HOUR

T_MIN

MIN

C

CC

C

C

C

C

B
D

D

A

T_MIN[not in(STOPWATCH)]

A

A
A

C

CC

C B

53



Statemate 2000-06-09

0.13.1 History of states

A frequently used way to enter a group of states is by the history

of that group. The most simple example of this is the one where

you enter the most re
ently visited state of a group. In the

wat
h example this happens in the zoom-in of the alarm state

with two substates on and off . The problem is that the initial

default is the off state but when we put on the alarm we want

to get ba
k the next time in state on. In the next state
hart this

des
ribed by the H 
onne
tor.

TIME ALARM H

ON OFF

UP_ALARM
C

B

C

D
D

A

54



Statemate 2000-06-09

The following state
harts sums up the till now developed

wat
h. It 
ontains a beep state that is entered when event

T Hits Tm o

urs, provided the alarm is on (the 
ondition

alarm enabled shall be explained later), and is left when event

Beep Rt o

urs. This event Beep Rt is an abbreviation of

(A or B or C or D or tm(en(beep); 30)) wherein tm

stands for `timeout' and en for `entered'. This means that the

wat
h returns to the previous state (be
ause of H

�

) when one

of the four buttons is pushed or 30 se
onds are passed sin
e the

entering of beep.

ALARM_WATCH DEAD

MAIN

BEEP

DISPLAY

H

UPDATE

T_MIN

HOUR

DATE

MIN

SEC

DAY

TIME

DATE

ALARM

UP_ALARM

HOUR

T_MIN

MIN

CHIME

STOPWATCH

BT_RM/dc!(MAIN)

BT_IN

T_HITS_TM[ALARM_ENABLED]

C

C

C

C
C

C

C

B D

A

T_MIN[not in(STOPWATCH)]

CB

C

C
C

A

A
A

BEEP_RT

55



Statemate 2000-06-09

The wat
h 
ontains also orthogonal states on di�erent levels. On

the higher levels there are besides the state main of the above

state
hart also four other and-
omponents as is illustrated in the

next state
hart:

DEAD

POWER

WEAK OK

ALARM_ST

ENAB DISAB

CHIME_ST

C_ENAB

BEEP QUIET C_DISAB

MAIN

BEEP

DISPLAY

LIGHT

ON OFF

BEEP_RT

T_HITS_TM[in(ENAB)]

BT_WK

BT_RM

BT_DY

/dc!(MAIN)

BT_IN

B

B_UP

D[in(ALARM)]

D[in(ALARM)]

BEEP_ST

T_HITS_HR

D[in(CHIME)]

D[in(CHIME)]

The event Beep st is an abbreviation for

tm(en(
 enab:beep); 2) what means that the beeping

stops after 2 se
onds.

56



Statemate 2000-06-09

The 
omplete state
hart for the wat
h is:

ALARM_WATCH

DEAD

ALARM_ST
POWER

WEAK OK

ALARM_ST

ENAB DISAB
CHIME_ST

C_ENAB

BEEP QUIET C_DISAB

MAIN BEEP

@DISPLAY 1

LIGHT

ON OFF

BT_RM

BT_DY

BT_WK

/dc!(MAIN)

B

B_UP

BT_IN

T_HITS_TM[in(ENAB)]
BEEP_RT

D[in(DISPLAY:CHIME)]

D[in(DISPLAY:CHIME)]
BEEP_ST

T_HITS_HR
D[in(DISPLAY:ALARM)]

D[in(DISPLAY:ALARM)]

57



Statemate 2000-06-09

1

DISPLAY
H

UPDATE

T_MIN

HOUR

DATE DAY

SEC

MIN

STOPWATCH
HZERO

RUN

ON

OFF

DISP

C
REG

LAP

UP_ALARM

HOUR MIN

T_MIN

DATE

ALARM

CHIME

TIME
D

D

A

A

BA

B

C
C

C

C

C
C

C

A

BBDD
[in(ON)]

C

C

C

C

B[in(OFF)]

T_MIN[not in(STOPWATCH)]

58



Statemate 2000-06-09

We �nish the des
ription of state
harts with an overview of the

syntax for events, 
onditions and a
tions. The general form for a

label of a transition is E[C℄=A with E an event, C a 
ondition

and A an a
tion.

59



Statemate 2000-06-09

0.13.2 Events

The basi
 events and 
ondition are external, for example for

the wat
h the pressing of a button is an external event and

T Hits Tm is an external 
ondition. Besides the external

events the following internal events are allowed:

entered(S), abbreviation en(S),

exit(S), abbreviation ex(S),

timeout(E;X), abbreviation tm(E;X),

true(C), abbreviation tr(C),

false(C), abbreviation fs(C).

60



Statemate 2000-06-09

0.13.3 A
tions

An a
tion 
an be an uninterpreted event symbol, 
alled primitive

event, and 
auses then other transitions in the state
hart.

Furthermore a
tions 
an turn on or o� uninterpreted 
ondition

symbols. The following primitive a
tions are allowed:

make true(C), abbreviation tr!(C),

make false(C), abbreviation fs!(C),

history 
lear(S), abbreviation h
!(S),

deep 
lear(S), abbreviation d
!(S).

61



Session III

A
tivity-Charts

Literature: Chapters 2 and 3 of \Modeling Rea
tive

Systems with State
harts", by David Harel and Mi
hal

Politi. M
Graw-Hill, 1998.



Statemate 2000-06-09

1 Des
ribing the fun
tional view of a system

� A
tivity-
harts are used to depi
t the fun
tional view of a

system under development (SUD), \what the SUD does".

� This view of a system is spe
i�ed by

{ a hierar
hy of fun
tional 
omponents, 
alled a
tivities,

{ what kind of information is ex
hanged between these

a
tivities and is manipulated by them,

{ how this information 
ows,

{ how information is stored, and

{ how a
tivities are started and terminated, i.e.,


ontrolled, if ne
essary, and whether a
tivities are


ontinuous, or whether they stop by themselves.

� A
tivity-
harts are kind of hierar
hi
al data 
ow diagrams:

63



Statemate 2000-06-09

1.1 Fun
tional de
omposition of a System

The fun
tional view of a system spe
i�es the system's


apabilities.

� It does so in the 
ontext of the system's environment, that

is, it de�nes the environment with whi
h the system intera
ts

and the interfa
e between the two:

64



Statemate 2000-06-09

� This fun
tional view does not address the physi
al and

implementation aspe
ts of the system; the latter is done

in its stru
tural view, i.e., its module-
hart:

65



Statemate 2000-06-09

� Moreover it separates the dynami
s and behavioral aspe
ts of

the SUD from its fun
tional des
ription. The former is done

by its behavioral view, in its 
ontrolling State
harts:

66



Statemate 2000-06-09

Example

The fun
tional view tells whether a medi
al diagnosis

system 
an monitor a patient's fun
tions, and, if so, where

it gets its input data and whi
h fun
tions have a

ess to

the output data.

The behavioral view tells under whi
h 
onditions

monitoring is started, whether it 
an be 
arried out parallel

to temperature monitoring, and how the 
ow of 
ontrol of

the pro
ess of monitoring develops.

The stru
tural view deals with the sensors, pro
essors,

monitors, software modules and hardware ne
essary to

implement the monitoring system

67



Statemate 2000-06-09

The three views

68



Statemate 2000-06-09

1.1.1 Fun
tional De
omposition

� In the State
hart approa
h, the fun
tionality of a system

is des
ribed by fun
tional de
omposition, by whi
h a

system is viewed as a 
olle
tion of inter
onne
ted fun
tional


omponents, 
alled a
tivities, organized into a hierar
hy.

� E.g., in the a
tivity-
hart ews a
tivities, the set up


omponents 
an be de
omposed leading to a multi-level

de
omposition of ews a
tivities:

� Ea
h of the a
tivities may be de
omposed into suba
tivities

repeatedly until the system is spe
i�ed in terms of basi


a
tivities.

There are spe
i�ed using textual des
ription (formal or

69



Statemate 2000-06-09

informal), or 
ode in a programming language, inside the

Data Di
tionary.

� The intended meaning of the fun
tional de
omposition is that

the 
apabilities of the parent a
tivity are distributed

between its suba
tivities.

� The order in whi
h these suba
tivities are performed, and the


onditions that 
ause their a
tivation or dea
tivation are

not represented in the fun
tional view and are spe
i�ed in the

behavioral view, i.e., in the (one) state
hart asso
iated with

the parent a
tivity-
hart.

� Please observe that a fun
tional 
omponent may very well be

rea
tive in nature (
fr. the �rst session le
ture).

� A
tivities 
an represent obje
ts, pro
esses, fun
tions,

logi
al ma
hines, or any other kind of fun
tionally distin
t

entity.

� In the following se
tions we'll 
on�ne ourselves to fun
tion-

based de
omposition of an a
tivity-
hart. We shall not

dis
uss obje
t-based de
omposition (see Se
tion 2.1.3 of

Harel & Politi)

70



Statemate 2000-06-09

1.1.2 Fun
tion-based de
omposition of

a
tivity-
harts

� In fun
tion-based de
omposition, the a
tivities are (possibly

rea
tive) fun
tions.

� As an illustration 
onsider the EWS example.

� Its �rst des
ription is in natural language:

71



Statemate 2000-06-09

� Next we de
ompose this narrative to des
ribe its fun
tionality:

� Thirdly, we identify the various fun
tions that are des
ribed

by there requirements:

72



Statemate 2000-06-09

� Noti
e that this des
ription also 
ontains info about handled

data. An a
tivity may transform its input into output to be


onsumed by other fun
tions, whi
h are internal or external

to the system:

� The interfa
e of an a
tivity is des
ribed in terms of input and

output signals, both data and 
ontrol, see last �gure.

73



Statemate 2000-06-09

1.1.3 System 
ontext

One of the �rst de
isions to be made when developing a system

involves its boundaries, or, 
ontext. I.e., one must determine

whi
h entities are part of the environment of a system, and how

they 
ommuni
ate with the system. The latter are 
alled external

a
tivities of the system.

Noti
e that for the EWS one might have 
hosen for the printer to

be external, leading to printer as external a
tivity.

Di�erent o

urren
es of the same entity (here: operator) denote

the same entity; these are multipli
ated of ease of drawing.

74



Statemate 2000-06-09

1.1.4 De
omposition pro
ess

The fun
tional view is spe
i�ed by A
tivity-
harts,

together with a Data Di
tionary that 
ontains additional

information about the elements appearing in the 
harts,

e.g., about their basi
 a
tivities.

75



Statemate 2000-06-09

1.2 A
tivities and their representation

We 
ontinue the fun
tional de
omposition of the EWS, started

with:

This a
tivity 
hart 
ontains one top-level box, representing the

top-level a
tivity of the 
hart.

76



Statemate 2000-06-09

On their turn, the a
tivities appearing above 
an be de
omposed

themselves, as set up:

77



Statemate 2000-06-09

Some terminology

� ews a
tivities is 
alled top-level a
tivity

� ews a
tivities is also 
alled parent a
tivity of set up,


ompare, et
., whi
h are 
alled des
endants of

ews a
tivities, as are the suba
tivities prompt range

et
. of set up, who have set up and ews a
tivities as

an
estor.

Ea
h a
tivity has a 
orresponding item in the Data Di
tionary,

whi
h may 
ontain additional information.

78



Statemate 2000-06-09

1.3 Flow of Information between A
tivities

� Consider the following 
hart:

� operator and sensor are external a
tivities, drawn using

dotted lines.

� Di�erent o

urren
es of operator refer to the same entity.

� Solid arrows denote data-
ow-lines between a
tivities.

� Control of ews a
tivities is handled in its 
ontrol a
tivity


hart ews 
ontrol, a state
hart (drawn using rounded


orners).

� Dotted arrows denote 
ontrol-
ow-lines, 
arrying info or

signals used in making 
ontrol de
isions.

79



Statemate 2000-06-09

1.3.1 Flow lines

A label on a 
ow line denotes:

� Either a single information element that 
ows along the line,

i.e., a data-item, 
ondition, or event.

� Or a group of su
h elements, as in, e.g.:

Su
h a group is 
alled information-
ow.

80



Statemate 2000-06-09

� A 
ow-line originates from its sour
e a
tivity, and leads to

its target a
tivity:

� An arrow 
an be 
onne
ted to a non-basi
 box, meaning it

relates to all the subboxes within the box in question, see

above the data 
ow lines labeled v and z.

� Information 
ow signal in Figure 2.5 is de
lared in the Data

Di
tionary as in Figure 3.2 and is used in data pro
essing.

81



Statemate 2000-06-09

� Information 
ow 
ommands in the Data Di
tionary de
lared

as below, is used to denote 
ontrol issues.

� Flow lines may represent, e.g.,

{ parameter passing to pro
edures

{ passing of values of global variables

{ messages transferred in distributed systems

{ queues between tasks in real-time appli
ations

{ signals 
owing along physi
al links in hardware systems

� Flows 
an be 
ontinuous or dis
rete in time.

82



Statemate 2000-06-09

1.3.2 Flowing elements

� Three types of information elements 
ow between a
tivities:

events, 
onditions, data-items.

� Their di�eren
es are in their domain of values and timing


hara
teristi
s:

Events are instantaneous signals used for syn
hronization

purposes, e.g., out of range in Figure 2.5.

Conditions are persistent signals that are either true or false,

e.g., sensor 
onne
ted in Figure 2.5.

Data-item are persistent and may hold values of various

types and stru
tures, e.g., signal, a bit-array, or

legal range, a re
ord with two �elds of type real,

high limit and low limit.

� All three types of information elements 
an be arranged in

array and re
ord stru
tures:

83



Statemate 2000-06-09

1.3.3 Information Flows

The number of lines in an a
tivity 
hart 
an be redu
ed by

grouping information elements into an information-
ow,

used to label a 
ommon 
ow line, see e.g. 
ommands

in the following �gure, 
onsists of set up, exe
ute,

reset.

84



Statemate 2000-06-09

1.3.4 Data Stores

� There are no restri
tions on the time that data reside on a


ow line. Nevertheless it is often more natural to in
orporate

an expli
it data store in the 
hart:

� A data item is de�ned in the Data Di
tionary with the same

name as the data store. Any stru
ture given to a data item is

inherited by the data store.

85



Statemate 2000-06-09

1.4 The Behavioral Fun
tionality of A
tivities

� The behavior of suba
tivities of an a
tivity 
hart is des
ribed

by its 
ontrol a
tivity, whose fun
tion is to 
ontrol their

sibling a
tivities (i.e., the other suba
tivities in the 
hart).

� A 
ontrol a
tivity may expli
itly start and stop its

sibling a
tivities, i.e., ews 
ontrol 
ontrols set up,

pro
ess signal, and 
ompare:

� Ea
h a
tivity may have at most one 
ontrol a
tivity.

� The 
ontrol a
tivity, depi
ted as a re
tangle with rounded


orners, 
annot have suba
tivities. Rather its spe
i�
ation is

that of a State
hart, see next slide.

86



Statemate 2000-06-09

87



Statemate 2000-06-09

1.4.1 A
tivities in the Data Di
tionary

� Every a
tivity 
an be des
ribed more extensively in the Data

Di
tionary using textual information.

� Basi
 a
tivities are des
ribed in the Data Di
tionary by

exe
utable textual des
riptions, spe
ifying patterns of

behavior. These patterns are:

88



Statemate 2000-06-09

1.5 Conne
tors and Compound Flow-Lines

� The data 
ow lines leaving a
tivity 
ompare in Figure 2.5


an be drawn with a joint 
onne
tor as below:

89



Statemate 2000-06-09

Jun
tion 
onne
tors

90



Statemate 2000-06-09

Diagram 
onne
tors

� Diagram 
onne
tors are used when the sour
e of a 
ow line

is far from its target:

91



Session IV

Conne
tions between A
tivity-Charts and

State
harts

Abstra
t: We dis
uss the a
tions used by a state
hart to 
ontrol

a
tivities, and the events and 
onditions used by it to sense

their status.

Literature: Chapters 7 and 8 of \Modeling Rea
tive

Systems with State
harts", by David Harel and Mi
hal

Politi. M
Graw-Hill, 1998.



Statemate 2000-06-09

1.6 Dynami
s in the Fun
tional De
omposition

The a
tivities parti
ipating in the fun
tional de
omposition are

not ne
essarily always a
tive. In most kinds of systems many of

the a
tivities have limited periods in whi
h they are a
tive.

Some examples with di�erent dynami
s:

� Pro
edures and fun
tions in software programs start when

they are \
alled" and stop upon 
ompletion.

� In multi-tasking or multi-pro
essing systems, tasks are

invoked, do their job, and then are \killed" or \kill" themselves.

� Tasks with lower priority maybe interrupted or delayed when

a mission of higher priority arrives.

� Intera
tive user interfa
e is spe
i�ed by \
allba
k

fun
tions".

93



Statemate 2000-06-09

EWS Example

Dynami
 and timing issues related to the a
tivities in the EWS

example:

SET UP: a
tivated by an expli
it request of the operator,

terminates on its own.

COMPARE: starts with the exe
ute 
ommand and stops with

the out of range event or the reset 
ommand.

PROCESS SIGNAL: a
tive when the 
ompare a
tivity is

a
tive.

DISPLAY FAULT: starts with the out of range event and

is stopped by the operator or after a prede�ned time period.

PRINT FAULT: starts when the time period is passed and

terminates on its own.

94



Statemate 2000-06-09

Spe
ifying the Dynami
s

� Obviously, merely listing the a
tivities and their 
onne
tions,

as is done in the fun
tional view, is not suÆ
ient. We have to

spe
ify the dynami
s of 
ontrolling these a
tivities, in
luding

the starting and stopping of the suba
tivities of a non-basi


a
tivity.

� The order in whi
h the fun
tional and behavioral views and

their 
onne
tions are developed depends on the nature of the

system and on the spe
i�
ation methodology.

� One 
an start by 
arrying out a fun
tional de
omposition in

a
tivity-
harts, and then add the timing and other dynami


information i state
harts to 
apture behavior.

� In 
ontrast, it is possible to start by using state
harts to

des
ribe the system's modes of operation and/or a 
olle
tion

of use-
ases, and then 
onstru
t an a
tivity-
hart from the

a
tivities performed in these modes or s
enarios.

95



Statemate 2000-06-09

1.7 Dynami
s of A
tivities

In order to 
apture the dynami
 behavior of non-basi
 a
tivities,

our models employ 
ontrol a
tivities that are asso
iated with

state
harts.

1.7.1 State
harts in the fun
tional view When a non-basi


a
tivity that 
ontains a 
ontrol a
tivity starts its exe
ution, the

state
hart asso
iated with that 
ontrol a
tivity be
omes a
tive,

i.e., the system enters the top level state of this state
hart.

96



Statemate 2000-06-09

Control A
tivities

An a
tivity with a rea
tive behavior pattern 
an be des
ribed by

a state
hart even though it is not further de
omposed, so that it

has no suba
tivities to 
ontrol:

In some 
ases, the 
ontrol behavior of an a
tivity 
an be 
aptured

by stati
 rea
tions alone. Then, the 
ontrolling state
hart will


onsist of a single top-level state with the stati
 rea
tions given

in its Data Di
tionary entry.

Note: While the 
ontrolling state
hart may 
onsume and produ
e

external (
ontrol and data) information, its interfa
e does not

appear in the state
hart itself.

97



Statemate 2000-06-09

1.7.2 Termination Type of an A
tivity

We distinguish between a
tivities that have self-termination and

those that have 
ontrolled-termination.

If a self-terminating a
tivity has a 
ontrol a
tivity, then the


orresponding state
hart must 
ontain a termination 
onne
tor.

It is 
onsidered a �nal state; in parti
ular it has no exits:

Upon entering this 
onne
tor, the state
hart \stops", its parent

a
tivity be
omes dea
tivated, and the event stopped(A) o

urs.

When a non-basi
 a
tivity stops, all its suba
tivities stop

immediately too.

98



Statemate 2000-06-09

1.7.3 Perpetual A
tivities

Sometimes there is no 
ontrol a
tivity needed:

All the suba
tivities start when the parent a
tivity starts, and they

all stop when it stops.

99



Statemate 2000-06-09

1.8 Controlling the a
tivities

How does the 
ontrolling state
hart a�e
t and sense the status of

its sibling a
tivities?

1.8.1 Starting and Stopping A
tivities The main me
hanism

that state
harts use to 
ontrol a
tivities is the ability to start and

stop them expli
itly:

100



Statemate 2000-06-09

Examples

The 
ontrol a
tivity 
an 
ontrol only its sibling a
tivities.

Therefore, all a
tions that appear in its stat
hart may refer

to the sibling a
tivities only.

101



Statemate 2000-06-09

1.8.2 Sensing the status of A
tivities

The stat
hart that des
ribes a 
ontrol a
tivity is not limited to


ausing a
tivities to start and stop. It 
an also sense whether

su
h happenings have indeed taken pla
e. Spe
i�
ally, the 
ontrol

a
tivity 
an sense the events started(A) and stopped(A), and

the 
ondition a
tive(A).

The events and 
onditions in the des
ribing state
hart are allowed

to refer only to the sibling a
tivities.

102



Statemate 2000-06-09

1.8.3 A
tivities Throughout and Within States

Often, we wish an a
tivity a to start when a 
ertain state s is

entered, and to stop when s is exited.

This 
an be spe
i�ed by asso
iating the a
tion st!(A) with the

entering event ns and sp!(A) with the exiting event xs in the

Data Di
tionary.

Another more 
ompa
t way is to spe
ify that a is a
tive

throughout s:

Another similar asso
iation is a
tive within, whi
h represents a

looser 
onne
tion between an a
tivity and a state.

103



Statemate 2000-06-09

1.8.4 Suspending and Resuming A
tivities

In addition to being able to start and stop a
tivities, 
ontrol

a
tivities 
an 
ause an a
tivity to \freeze", or suspend, its

a
tivation, and to later resume from where it stopped.

The relevant a
tions are suspend(A) and resume(A).

Asso
iated with these a
tions is the 
ondition hanging(A).

Suspension may be used, for example, when we want to interrupt

the progress of an a
tivity in favor of another a
tivity with higher

priority:

104



Statemate 2000-06-09

The event e 
auses a to be suspended, while the preferred a
tivity

B is 
arried out to 
ompletion, at whi
h time A is resumed.

105



Statemate 2000-06-09

Comparison with History Entran
e

When a is a
tive throughout a
 a the a
tion is started again.

On the other hand, not stopping a would allow a to rea
t on

events while b is a
tive.

106



Statemate 2000-06-09

1.9 Spe
ifying Behavior of Basi
 A
tivities

When 
arrying out fun
tional de
omposition, the lower building

blo
ks of the des
ription are the basi
 a
tivities, those that require

no further breakup.

Basi
 a
tivities may have additional textual des
riptions in the

Data Di
tionary and are marked by a \>".

1.9.1 Rea
tive Mini-Spe
s

In some 
ases the behavior of a basi
 a
tivity 
an be des
ribed by

a 
olle
tion of rea
tions, 
onsisting of triggers and their implied

a
tions.

A rea
tive mini-spe
 is a list of rea
tions of the form

trigger/a
tion, separated by a double semi-
olon (;;).

107



Statemate 2000-06-09

A rea
tive mini-spe
 
an be atta
hed to both self-terminating or


ontrolled-terminating a
tivities.

It is important to remember that states and a
tivities 
annot be

referred to in the mini-spe
. All the a
tivities and states of the

model are beyond the s
ope of an individual mini-spe
.

108



Statemate 2000-06-09

1.9.2 Pro
edure-Like Mini-Spe
s

Often an a
tivity 
an be des
ribed as a sequen
e of a
tions,

possibly with 
onditional bran
hing and iterations. Su
h a
tivities

are 
alled pro
edure-like. They are a
tive for a single step only.

Therefore, su
h a
tivities are always self-terminating.

109



Statemate 2000-06-09

110



Statemate 2000-06-09

1.9.3 Combinational Assignments

Another typi
al behavior for an a
tivity is that of a data-driven

pattern. The a
tivity is 
ontinuously ready to perform some


al
ulations whenever the input 
hanges its value.

111



Statemate 2000-06-09

3 Communi
ation between A
tivities

Spe
ifying the 
ommuni
ation between a
tivities 
onsists

of the what and the when, just like for other parts of the

spe
i�
ation.

The what is des
ribed by the 
ow-lines in the a
tivity-


harts and relevant parts of the Data Di
tionary. The

when is to be spe
i�ed by the behavioral parts of the

model, i.e., the state
harts and mini-spe
s.

112



Statemate 2000-06-09

3.1 Communi
ation and Syn
hronization Issues

Fun
tional 
omponents in systems 
ommuni
ate between

themselves in order to pass along information and to help

syn
hronize their pro
essing. A number of attributes 
hara
terize

the various 
ommuni
ation me
hanisms.

Communi
ation 
an be

� instantaneous , meaning that it is lost when not 
onsumed

immediately, or

persistent , meaning that it stays around until it gets


onsumed.

� syn
hronous , i.e., the sender waits for an a
knowledgment,

or

asyn
hronous , i.e., there is no waiting on the part of the

sender

� dire
tly addressed , i.e., the target is spe
i�ed, or sent by

broad
asting

113



Statemate 2000-06-09

3.2 Controlling the Flow of Information

In the following �gure x is spe
i�ed to 
ow between a
tivities a

and b:

If x is an event we may have the following situation:

If x is a 
ondition or data-item modi�ed by a, b 
ould sense the

value or the 
hange of the value (x, tr(x), wr(x)).

114



Statemate 2000-06-09

3.3 Examples of Communi
ation Control

115



Statemate 2000-06-09

Message Passing

116



Statemate 2000-06-09

3.4 A
tivities Communi
ating Through Queues

Queuing fa
ilities for messages are virtually indispensable in

modeling multi-pro
essing environments, and espe
ially multiple


lient-server systems.

We want to have:

� ability to sent unlimited number of messages to the same

address, while the re
eiver is not always in a position to

a

ept them,

� no message is 
onsumed before one that was sent earlier,

� possibility for 
on
urrently a
tive 
omponents to write

messages to the same address at the same moment

� possibility for 
on
urrently a
tive 
omponents to read di�erent

messages to the same address at the same moment

117



Statemate 2000-06-09

3.4.1 Queues and their operations

A queue is an ordered, unlimited 
olle
tion of data-items, all of

the same data type. The queue is usually shared among several

a
tivities, whi
h 
an employ spe
ial a
tions to add elements to

the queue and read and remove elements from it.

� q put(Q,D) add the value of expression d to the queue

� q urgent put(Q,D) add the value of expression d to the

head of the queue

� q get(Q,D,S) extra
t the element at the head of q and pla
e

it in D

� q peek(Q,D,S) same as above without removing the element

from q

� q 
ush(Q) 
lears q totally

The following �gure illustrates the order in whi
h operations on a

queue are performed during a step:

118



Statemate 2000-06-09

Combination with Data Stores

Queues 
an be asso
iated with data stores just like data-items of

other types 
an.

119



Statemate 2000-06-09

Example

120



Statemate 2000-06-09

5 State
hart Language (
ont'd)

5.1 Conditions and Events Related to States

121



Statemate 2000-06-09

5.2 Conne
tors

5.2.1 Condition Conne
tor

122



Statemate 2000-06-09

5.2.2 Swit
h Conne
tor

123



Statemate 2000-06-09

5.2.3 Jun
tion Conne
tor

124



Statemate 2000-06-09

5.2.4 Diagram Conne
tor

125



Statemate 2000-06-09

5.3 Transitions to and from And-States

126



Statemate 2000-06-09

Asymmetri
 Cases

127



Session V

Module-Charts

Abstra
t: Module-
harts des
ribe the stru
tural view {

sometimes 
alled the ar
hite
tural view { of the system under

development. Module-
harts are typi
ally used in the high-

level design stage of the proje
t.

Literature: Chapters 9 and 10 of \Modeling Rea
tive

Systems with State
harts", by David Harel and Mi
hal

Politi. M
Graw-Hill, 1998.



Statemate 2000-06-09

6 Stru
tural Des
ription: High-Level Design

The stru
tural view 
aptures the system's high-level design. A

stru
tural des
ription of the system spe
i�es the 
omponents

that implement the 
apabilities des
ribed by the fun
tional and

behavioral views.

These 
omponents may be:

� hardware,

� software,

� or even humans.

129



Statemate 2000-06-09

Sometimes There is a 
lear 
orresponden
e between the top-level

a
tivities in the fun
tional view and the top-level subsystems in

the stru
tural view, e.g., signal pro
essor implements the

a
tivity pro
ess signal.

In other 
ases the stru
tural de
omposition is quite di�erent

from the fun
tional de
omposition. E.g., the 

u subsystem


arries out both the ews 
ontrol and 
ompare a
tivities,

whereas the display fault a
tivity is divided into suba
tivities

that are distributed among the alarm system and monitor

subsystems.

130



Statemate 2000-06-09

6.1 Internal and External Modules

The stru
tural view is represented by the language of Module-


harts.

� There exist two types of internal modules:

{ exe
ution modules

{ storage modules

� And there exist external modules

� Exe
ution modules may be submodules of other external

modules only.

� Storage modules may be submodules of other storage modules

or of exe
ution modules.

� External modules are always external to an exe
ution module

or storage module, and there is no hierar
hy of external

modules.

131



Statemate 2000-06-09

EWS-Example

The next �gure shows the stru
tural de
omposition of the ews,

in
luding a storage module disk, that stores the fault messages:

132



Statemate 2000-06-09

Data Di
tionary Entry

The Data Di
tionary 
ontains a spe
ial �eld, Des
ribed by

A
tivity-Chart, whi
h is used to 
onne
t modules with their

fun
tional des
ription:

133



Statemate 2000-06-09

6.2 Communi
ation Between Modules

As in A
tivity-
harts we use labeled arrows between modules to

denote 
ommuni
ation between them. They are 
alled 
ow-lines

or m-
ow-lines to emphasize that they 
onne
t modules.

A 
ow-line may denote information 
owing between modules:

Here, user input 
ontains the information-
ow


ommands, the data-item range limits and the 
ondition

sensor 
onne
ted.

134



Statemate 2000-06-09

Physi
al Links Between Modules

Arrows in a module-
hart may also denote physi
al 
ommuni
ation

links, or 
hannels, between modules:

135



Statemate 2000-06-09

6.3 Conne
tors and Compound Flow-Lines

Conne
tors and 
ompound 
ow-lines are allowed in module-
harts

exa
tly as in a
tivity-
harts:

136



Statemate 2000-06-09

7 Conne
tions Between the Fun
tional and

Stru
tural Views

� The fun
tional view provides a de
omposition of the system

under development into its fun
tional 
omponents, i.e., its


apabilities and pro
esses.

� The stru
tural view provides a de
omposition of the system

into the a
tual subsystems that will be part of the �nal system,

and whi
h implement its fun
tionality.

There are three types of 
onne
tions between the fun
tional and

stru
tural views:

1. des
ribe the fun
tionality of a module by an a
tivity-
hart:

A
tivity-
hart Des
ribing a Module

2. allo
ate spe
i�
 a
tivities in an a
tivity-
hart to be

implemented in a module: A
tivities Implemented by

Modules

3. map a
tivities in the fun
tional des
ription of one module to

a
tivities in that of some other module: A
tivities Asso
iated

with a Module's A
tivities

137



Statemate 2000-06-09

In 
on
lusion, we may wish to atta
h fun
tional des
riptions, i.e.,

a
tivity-
harts, to modules on di�erent levels of the stru
tural

de
omposition:

138



Statemate 2000-06-09

7.1 A
tivity-
hart Des
ribing a Module

The a
tivity-
hart ews a
tivities

des
ribes the fun
tionality of the module ews

139



Statemate 2000-06-09

This 
onne
tion is spe
i�ed in the Data Di
tionary:

Noti
e that the 
onne
tion is between an a
tivity-
hart and a

module!

140



Statemate 2000-06-09

Top-Down Approa
h

One may now want to spe
ify an a
tivity-
hart 

u a
 for the

module 

u:

141



Statemate 2000-06-09

There must be a 
orresponden
e between the fun
tional and

stru
tural de
ompositions of a module in terms of the environment

and the interfa
e with it:

142



Statemate 2000-06-09

Sin
e also the 
ow-lines have to be 
orre
t we have to introdu
e an

a
tivity get input whi
h will be implemented by the monitor

module:

143



Statemate 2000-06-09

7.2 A
tivities implemented by Modules

When the module des
ribed by the a
tivity-
hart is eventually

de
omposed into submodules, we may be more 
on
rete and

allo
ate the relevant a
tivities and data-stores to the submodules:

144



Statemate 2000-06-09

A single a
tivity or data-store 
annot be distributed among several

modules.

Therefore, one has to de
ompose su
h a
tivities (or data-stores)

into suba
tivities that 
an ea
h be allo
ated to a single module:

145



Statemate 2000-06-09

7.3 A
tivities Asso
iated with a Module's

A
tivities

On the one hand, there is the ews a
tivities des
ribing the

fun
tionality of the whole system. On the other hand, also the

submodules implement a
tivities:

Then, one wishes to asso
iate suba
tivities of ews a
tivities

with those implemented by a submodule:

146



Session VI

Semanti
s of State
harts

Abstra
t: We dis
uss the 
entral 
on
epts and de
isions for

various possible semanti
s for State
harts (and the \real"

implemented one).

Literature: Dissertation Kees Huizing: \Semanti
s of rea
tive

systems: 
omparison and full abstra
tion", Eindhoven

University of Te
hnology, 1991.

In parti
ular the following pages are relevant:

� \Everything you always wanted to know about

State
harts", Huizing and de Roever.

� \On the semanti
s of rea
tive systems", Huizing and Gerth.

And:

Chapter 6 of \Modeling Rea
tive Systems with

State
harts", by David Harel and Mi
hal Politi.

M
Graw-Hill, 1998.



Statemate 2000-06-09

8 Semanti
s of State
harts

8.1 Summary of previously dis
ussed material

(
fr. �rst lesson)

� There is a fundamental di
hotomy between transformational

systems des
ribed by the relation between initial and


orresponding �nal states, i.e., their input/output behavior,

and

� Rea
tive systems, whose only purpose is to maintain an

ongoing relationship with their environment.

148



Statemate 2000-06-09

Bro
k-A
kermann Paradox

The Bro
k-A
kermann paradox explains why rea
tive systems


annot be 
hara
terized by a fun
tion mapping sequen
es of

inputs to sequen
es of outputs.

� Consider two systems, a one-pla
e bu�er and a two-pla
e

bu�er. If you 
onsider these transformationally, they display

the same initial-�nal state behavior.

in: ab
 : : :

out: 1. e.g. aba
 : : :

2. e.g. ab
a : : :

not aba
 : : :

149



Statemate 2000-06-09

But if the output of these systems is fed ba
k, and merged

with their input they behave di�erently. (See transparen
y)

� What's needed to 
hara
terize a rea
tive system is re
ording

the relative order of inputs and outputs, i.e., the way they

are interleaved.

150



Statemate 2000-06-09

Central De
isions for a State
harts Semanti
s

� Semanti
s of rea
tive systems is state-based

� Observations are sequen
es of pairs of inputs I and


orresponding outputs O, i.e., of pairs of the form (I; O).

In pra
ti
e a rea
tive system is therefore des
ribed by

sequen
es of the following form:

S

1

=)

O

1

I

1

S

2

=)

O

2

I

2

S

3

=)

O

3

I

3

=) � � �

� Transitions don't take time, time is spent in states.

This has a simple reason: the rea
tion of a rea
tive system

to environmental inputs should be always well-de�ned. As a


onsequen
e, state-
hanges shouldn't take time.

151



Statemate 2000-06-09

Berry's syn
hrony hypothesis

Rea
tion time between input (i.e., trigger) and 
orresponding

output (i.e., response) is zero.

Why?

� Re
all that individual rea
tion times are too 
ompli
ated to

handle, abstra
tly, on the high level of spe
i�
ation State
harts

are aiming at.

� a �xed non-zero rea
tion time wouldn't allow transition

re�nement.

� Unspe
i�ed rea
tion times lead to 
haos, and is not desired at

a high level of abstra
tion.

=) Only one rea
tion time satis�es all 
riteria: zero! For:

� Now transition 
an always be re�ned

� spe
i�


� deterministi


152



Statemate 2000-06-09

Detailed Argumentation from Lesson I

Possibility 1 : Spe
ify a 
on
rete amount of time for ea
h

situation. This for
es us to quantify time right from the

beginning. Clumsy, and not appropriate at this stage of

spe
i�
ation where one is only interested in the relative order

and 
oin
iden
e of events.

Possibility 2 : Fix rea
tion time between trigger a and


orresponding a
tion a within e/a (the label of a transition)

upon 1 time unit.

Doesn't work: Upon re�ning question/answer to a

question/
onsult and a 
onsult/answer transition, there's a


hange of time, whi
h may have far rea
hing e�e
ts (be
ause

of tm(n)-events, e.g.)

=)

A �xed exe
ution time for synta
ti
 entities (transitions,

statements, et
.) is not 
exible enough.

Possibility 3 : Leave things open: say only that exe
ution of

a rea
tion takes some positive amount of time, and see at a

later stage (
loser to the a
tual implementation) how mu
h

time things take.

Clumsy, introdu
es far too mu
h nondeterminism.

153



Statemate 2000-06-09

Rea
tion time of a system (2)

Summary : We want the exe
ution time asso
iated to rea
tions

to have following properties:

� It should be a

urate, but not depending on the a
tual

implementation.

� It should be as short as possible, to avoid arti�
ial delays.

� It should be abstra
t in the sense that the timing behavior

must be orthogonal to the fun
tional behavior.

=)

Only 
hoi
e that meets all wishes is zero rea
tion time.

As a result all obje
tions raised w.r.t. the possibilities mentioned

on the previous page are met!

� Now, for instan
e, upon re�ning transition question/answer

from previous page into two transitions, the rea
tion time of

this re�nement is the same as that of the original transition.

� Obje
tion 3 on the previous transparen
y is resolved, too.

� Finally, also obje
tion 1 (on previous transparen
y) is met,

be
ause 0 + 0 = 0!

154



Statemate 2000-06-09

Berry's Syn
hrony Hypothesis

� Is Berry's syn
hrony hypothesis implementable?

Yes, if the input frequen
y is low w.r.t. the time required for


omputing response.

� However, this hypothesis leads to a number of 
ounterintuitive


onsequen
es, if 
arried through.

Careful: the following example does not des
ribe the

State
harts semanti
s as implemented in Statemate.

a ^ d is a generated trigger, sin
e we assume the rea
tion time

to be zero. A 
onsequen
e is that transition t

3

is taken!!

155



Statemate 2000-06-09

Combination with Negation

The syn
hrony hypothesis leads to problems if 
ombined with

the possibility of 
he
king the absen
e of signals (the latter is


ustomary in the syn
hronous world, and a possibility not o�ered

in the asyn
hronous world):

If a is absent, i.e., : a holds as 
ondition, transition t

1

is taken,

i.e., b is generated, and hen
e t

2

, i.e., b/a is taken, generating a

within the same time unit, i.e., in zero time, hen
e transition

t

1

should not be taken.

156



Statemate 2000-06-09

This is 
alled the \Grandfather paradox".

It's solution is to order event o

urren
es 
ausally, with later

events not in
uen
ing earlier events:

:a � b � a

Note here: this 
ausal order has nothing to do with the

passage of time; it merely refers to 
ausal 
hains within

one time step.

157



Statemate 2000-06-09

The new semanti
s

� This leads to a semanti
s of the following form:

Micro-steps

expressing
causal order

Time, measured by Macro-steps,

where a macro-step is a sequence of
micro-steps which cannot be prolonged

� Ma
ro-steps are observable steps =)

O

I

� Ea
h ma
ro-step is a sequen
e of mi
ro-steps, that are ordered


ausally; one mi
ro-step 
an never in
uen
e previous mi
ro-

steps.

� In State
harts as implemented by Statemate 
ausality is

trivially obtained be
ause in Statemate events generated in

one step are only available in the next step, and only for that

one. I.e., there is no 
ausality within one step.

158



Statemate 2000-06-09

Problems with this new semanti
s

� The problem with ma
ro-steps is that they lead to a globally

in
onsistent semanti
s, i.e., transitions are taken in one

ma
ro-step whi
h aren't generated globally.

S

1

=)

b

;

S

2

=)

a

b

S

3

Here absen
e of triggers generates presen
e of triggers, whi
h

violates their absen
e within the same step (not globally


onsistent).

159



Statemate 2000-06-09

� These 
onsiderations lead to the fundamental question:

Is a semanti
s for su
h languages possible whi
h satis�es

all \reasonable" assumptions? I.e., whi
h is both good

for program development and for program 
omposition?

The answer is NO.

� This is a serious problem. As it turns out, the semanti
s with

ma
ro-steps indi
ating passage of time, and re�ned by 
ausally

ordered mi
ro-steps is a basis for a 
ompositional semanti
s for

State
harts in whi
h the semanti
s of a 
onstru
t is a fun
tion

of the semanti
s of its parts. But this semanti
s turns out to

be too diÆ
ult to handle for the engineers of I-Logix, and of

Israeli Air
raft Industries, its main 
ustomer for the Statemate

system.

� Hen
e looking for a \best" semanti
s makes a lot of sense.

What our theorem below says is that, in a 
ertain sense, there

is no best semanti
s. However, it does leave some room for

the sear
h for ever better semanti
s!!

160



Statemate 2000-06-09

There is no \best" semanti
s for State
harts

Let's list a 
ouple of desirable properties of su
h a semanti
s:

Responsiveness: Rea
tions are simultaneous with their triggers

| this fa
ilitates re�nement of transitions from a high to a

lower level.

Causality: Without a 
ausal order of the mi
ro-steps inside a

ma
ro-step, 
harts s.a.:

would trigger ea
h other, whi
h makes no 
ausal sense. Su
h


harts are ex
luded imposing 
ausality.

Modularity: Modules 
an be 
omposed on the basi
s of their

ma
ro-steps, i.e., the external interfa
e of a (parallel)


omposition of modules is of the same nature as their mutual

interfa
e w.r.t. ea
h other. (This is inspired by a paper by

Pnueli and Shalev)

161



Statemate 2000-06-09

Impossibility of a Semanti
s being Causal,

modular, and responsive

Modularity, 
ausality, and responsiveness 
an be mathemati
ally

expressed; the impossibility of all three being satis�ed

simultaneously be
omes a theorem, proved in the paper by Huizing

and Gerth.

However, also intuitively this is 
lear:

� Causality and responsiveness leads to

examples in whi
h both a and its absen
e :a o

ur within

the same ma
ro-step =) no global 
onsisten
y =) no

modularity

� Modularity and responsiveness imply there exists no

satisfa
tory semanti
s for the example above. This 
hoi
e

is made in the syn
hronous language ESTEREL, in whi
h

162



Statemate 2000-06-09

examples as the one above are ex
luded on synta
ti
 grounds

by a 
ompiler.

163



Statemate 2000-06-09

8.2 Classi�
ation of possible semanti
s for

State
harts

Next we list a few possible semanti
s for State
harts, semanti
s

A { E, of whi
h E is 
losest to the one a
tually implemented in

Statemate, and dis
uss the anomalies allowed by them (in
luding

those of the implemented semanti
s of State
harts).

Semanti
s A

Events generated as a rea
tion to some input 
an only be sensed

in the step following that input. (This is a 
hoi
e made in the

implemented semanti
s of State
harts.)

Anomaly: no simultaneity of a
tion and rea
tion, i.e., no

responsiveness.

In semanti
s A the trigger a ^ 
 will not o

ur:

This example makes 
lear that in semanti
s A the moment of

generation of an event is too important | a too detailed analysis

of 
harts is required for adopting it.

164



Statemate 2000-06-09

Semanti
s B

In order to over
ome the problem with semanti
s A, absen
e of

responsiveness, mi
ro-steps are introdu
ed, with events sensed in

the next mi
ro-step.

Then, in the previous example the third transition is taken.

Consider now the trigger b ^ :
 for the third transition; the

transition is taken, be
ause in the se
ond mi
ro-step, event 
 is

not yet sensed. This example also works for semanti
s A.

Disadvantage: Semanti
s B is too subtle to be of any pra
ti
al

use; same obje
tion as to semanti
s A.

165



Statemate 2000-06-09

Semanti
s C

Requires global 
onsisten
y of every mi
ro-step. The rea
tion of

the system to an input should

� not only be enabled by events generated in previous mi
ro-

steps

� but also by events generated in the full ma
ro-step.

As a 
onsequen
e, the b ^ :
 transition is not taken.

This example is ex
luded in semanti
s C, leads to 
ontradi
tion.

I.e., synta
ti
al means must be found to ex
lude it, as done in

ESTEREL by a 
ompiler.

This makes a lot of sense, as eviden
ed by the 
onsiderable su

ess

of ESTEREL of G�erard Berry.

166



Statemate 2000-06-09

However, this semanti
s is not modular. This implies that a

modular development of the system is 
umbersome, sin
e every

developer has to know the detailed mi
ro-behavior of the other

pro
esses. Hen
e, this semanti
s is appropriate for top-level guys

only, and that's what G�erard Berry's 
rowd 
onsists of.

167



Statemate 2000-06-09

Semanti
s D

All events generated during some ma
ro-step 
onsidered as if they

were present right from the beginning of the ma
ro-step.

Semanti
s D allows

to be taken: rea
tions may trigger themselves. I.e., semanti
s D

is not 
ausal.

Note: In semanti
s D, the external world does not generate an a

event!

Con
lusion: This example should be reje
ted!

168



Statemate 2000-06-09

Semanti
s E

Events are generated at the next step, but no input from the

environment is possible before the rea
tion of the system has


ompletely died out.

This semanti
s is heavily non-modular, sin
e one ma
ro-step may


ontain several steps of the A semanti
s. Events remain a
tive

only for the duration of su
h a step, hen
e, in one ma
ro-step

an event 
an be a
tivated and dea
tivated several times, thus

leading to a mu
h more 
omplex interfa
e between subsystems,

than between the system and its environment.

S1 S2 S3a/b b/c

Generation of event a leads the system eventually to state S

3

.

S1 S2

a/b

b/a

In semanti
s E, as in the implemented semanti
s of State
harts,

this example leads to an in�nite loop (the so-
alled: \go repeat"

mode): try it out yourself!

169



Statemate 2000-06-09

Situation

No \best" semanti
s =) still room for better ones

The situation is summarized in the following �gure, showing how

ea
h semanti
s is an attempt to improve on the other one:

A B C D

E

responsivenessmodularity

responsiveness modularity

causality

What to do? The sear
h is now on for better semanti
s

1. Several 
leaner semanti
s have been proposed, notably by

Floren
e Maranin
hi. She opts for semanti
s D, in whi
h both


harts su
h as example C and D are ex
luded, resulting in

Argos semanti
s:

a/e e bhvr
handler

Generation of event a leads to exit transition e being taken.

This is 
alled non-preemptive interrupts.

170



Statemate 2000-06-09

The Argos semanti
s leads to a 
leaner 
on
ept of state-

hierar
hy in whi
h inter-level transitions are not allowed.

Probably a too heavy investment in their \old" semanti
s,

manyear-wise, prevented I-Logix from adopting the 
leaner

Argos semanti
s of Maranin
hi in Statemate.

2. Huizing and Gerth propose a 
ompositional semanti
s in whi
h

the 
ausal 
hains inside a module are hidden from its external

behavior. This proposal has not yet 
aught on.

171



Statemate 2000-06-09

8.3 State
harts as Implemented

This leaves us with the semanti
s of State
harts as it is

implemented in Statemate. Computing that semanti
s is a fairly

involved algorithm, only re
ently (1996) published in a paper by

David Harel and A. Naamad.

Operational semanti
s

We des
ribe the 
ontents of the system status, and the algorithm

for exe
uting a step.

The status in
ludes:

� a list of states in whi
h the system 
urrently resides;

� a list of a
tivities that are 
urrently a
tive;

� 
urrent values of 
onditions and data-items;

� a list of regular and derived events that were generated

internally in the previous step;

� a list of timeout events and their time for o

urren
e;

� a list of s
heduled a
tions and their time for exe
ution;

� relevant information on the history of states.

172



Statemate 2000-06-09

The input to the algorithm 
onsists of:

� the 
urrent system status;

� a set of external 
hanges that o

urred sin
e the last step;

� the 
urrent time

The step exe
ution algorithm works in three main phases:

1. � 
al
ulate the events derived from the external 
hanges and

add them to the list of events;

� perform the s
heduled a
tions whose s
heduled time has

been ex
eeded, and 
al
ulate their derived events;

� update the o

urren
e time of timeout events if their

triggering events have o

urred;

� generate the timeout events whose o

urren
e time has

been ex
eeded;

2. � evaluate the triggers of all relevant transition rea
tions;

� prepare a list of all states that will be exited and entered;

� evaluate the triggers of all stati
 rea
tions

3. � update the history of states;

� 
arry out all 
omputations pres
ribed by the a
tions in the

list produ
ed in the se
ond phase;

� 
arry out all updates 
alled for by the a
tions

� update the list of 
urrent states.

173



Statemate 2000-06-09

Syn
hronous/Asyn
hronous Semanti
s

Syn
hronous Semanti
s: Environment intera
ts with the

system after ea
h step and time advan
es. This is 
on
eptually

quiet easy and appropriate for syn
hronous hardware. But,

the system's rea
tion on the external input has to be simple

(
ompare with semanti
s A).

Asyn
hronous Semanti
s: Syn
hrony Hypothesis: system may

rea
t with a 
hain rea
tion. External input only in stable

states. Easier to model 
omplex systems, abstra
tion from

real-time. But, the implementation has to be shown to satisfy

the assumptions of zero rea
tion time.

174


