
Statemate Course

Statemate/SDL | Teleteahing Vorlesung

W.-P. de Roever

K. Baukus

CAU Kiel

D. Hogrefe

H. Neukirhen

MU L�ubek

Session I

Introdution to Stateharts

Everything you wanted to know about Stateharts

but were afraid to ask

Abstrat: The notion of a reative system and the language

Stateharts are introdued. The rationale behind the design

deisions of Stateharts is explained in relation to the spei�

nature of reative systems.

Literature: Introdution to Design Choies in the Semantis

of Stateharts, C. Huizing, W.-P. de Roever, Information

Proessing Letters 37, p. 205-213, 1991

Statemate 2000-06-09

0.1 What are reative systems?

� There is a fundamental dihotomy in the analysis of reative

systems; namely, the dihotomy between

{ transformational and

{ reative systems.

� Transformational systems are desribed by the relation

between initial and orresponding �nal states; they have a

linear struture, beause only the initial and orresponding

�nal states are of interest.

Examples inlude: sorting algorithms, ompilers, and other

algorithms omputing a funtion as disussed in your data

strutures and omplexity of algorithms ourse.

� Reative systems do not ompute a funtion, but are in

ontinuous interation with their environment.

Examples: your tv set, digital wathes, hips, interative

software systems, game programs s.a. trakman, monkey

island, tomb raider, and other interative omputer games,

but also one's heart monitor at an intensive are unit.

� Transformational systems are well-studied; for their

programming and analysis many good languages and theories

exist.

� We explain why the language Stateharts is a good andidate

for speifying and programming reative systems.

2

Statemate 2000-06-09

3

Statemate 2000-06-09

0.2 Why not use transformational desription

tehniques?

� If transformational systems are so well studied, why doesn't

one onsider a reative system as a transformational one?

Simply say that a reative system transforms a sequene of

inputs to a sequene of outputs.

� This doesn't work, beause of \feedbak", as illustrated by

the Brok-Akermann paradox.

� Consider two systems, a one-plae bu�er and a two-plae

bu�er. If you onsider these transformationally, they display

the same initial-�nal state behavior.

But if the output of these systems is fed bak, and merged

with their input they behave di�erently. (See transpareny)

� Conlusion: The relative order of output events relative

to the input events needs to be spei�ed, in order to

haraterize the semantis of a system with interation

with its environment through feedbak.

(One needs to know when an output is produed)

4

Statemate 2000-06-09

in: ab : : :

out: 1. e.g. aba : : :

2. e.g. aba : : :

not aba : : :

5

Statemate 2000-06-09

0.3 Graphial languages

� Transformational systems have a linear struture, and so have

the onventional languages for speifying and programming

them. What one desribes is how a �nal state is produed

from an initial one. The relative time when intermediate

states are omputed is not important, and neither is their

identity as long as the orresponding �nal state is known!

� For reative systems this is ompletely di�erent:

{ The \moment" a new input arrives is relevant to the

behavior of the system =)

{ The internal state of the system at the time of input is

important for the systems reation.

{ Reative systems may not even have a �nal state!

� So, in reative systems there is no main sequential ow of

ontrol (as in transformational systems) and statements an

have several entry and exit points.

6

Statemate 2000-06-09

Graphial formalisms for reative systems

There exist graphial formalisms for desribing reative systems:

� E.g., state diagrams for �nite state mahines (FSMs):

For eah state, the possible reations to input that arrives in

that state is spei�ed by a transition to other states.

7

Statemate 2000-06-09

� However, these don't serve our purpose: The only output a

FSM produes is a signal that it has reahed its �nal state.

A reative system, however, may produe output at any time

of its exeution =)

� Use Mealy mahines: these an produe an output whenever

a transition is made.

Example: A lamp having two bulbs | one of 50 W and one

of 100 W | whih an be lighted separately and together.

Note that in this example the data ow 6= ontrol ow:

OFF

50 W

100 W

150 W

Pull

Pull

Pull

turn 50 W off;

turn 100 W off

turn 50 W off;
turn 100 W on

turn 50 W on

Pull

turn 50 W on

8

Statemate 2000-06-09

Disadvantages of Mealy mahines for desribing

reative systems

� They have no struture. There is no strategy for their

top-down or bottom-up development.

� They are not eonomial w.r.t. transitions, when one event

has all transitions as a starting point as in ase of interrupts:

Interrupt state

� They are not eonomial w.r.t. parallel omposition:

Exponential growth in the number of states when omposed

in parallel.

=) We need a formalism for the hierarhial development and

re�nement of Mealy mahines.

This is provided by Stateharts, invented by David Harel.

Stateharts display hierarhy and struture, and enable

hierarhial development.

9

Statemate 2000-06-09

0.4 Hierarhy and Struture

The onepts of hierarhy and struture in Stateharts are

introdued using a quite familiar example of a reative system:

that of a television set with remote ontrol.

10

Statemate 2000-06-09

0.4.1 First onept: Hierarhy

Hierarhy or depth in states, and interrupts. This is ahieved by

drawing states as boxes that ontain other boxes as sub-states.

� The television set an be in two states: on and standby.

Swithing between them is done by pushing the on and o�

buttons, generating the on and o� events:

11

Statemate 2000-06-09

� In state on the tv set an be in two sub-states: normal and

videotext:

The �! arrow leading to normal spei�es whih sub-state

should be entered when the higher level stateon is entered,

namely normal.

� When in on an event o� is generated, this ats like an

interrupt and state on (inl. all its sub-states) is left, and

ontrol swithes to state standby. In this way interrupts

are handled without luttering the piture with arrows as on

transpareny no. 9.

12

Statemate 2000-06-09

0.4.2 Seond onept: Orthogonality

� Two independent omponents an be put together into an

AND-state, separated by a dotted line

� Being in an AND-state means being in all of its immediate

sub-states at the same time. This prevents the exponential

blow-up familiar from omposing FSMs in parallel.

13

Statemate 2000-06-09

0.4.3 Third onept: Broadast

� In our ase we split state normal in two orthogonal

omponents hannel, for seleting hannels, and sm for

swithing to mute:

� When a hannel button (1 or 2, for simpliity) is pressed,

one swithes to that hannel and the internal event sm is

generated. This auses the event mute by a transition in sm

to state mute, and the sound will be turned o�.

� After one seond the event sound is generated to turn the

sound on, again. This is done by the speial time-out event

tm(1).

14

Statemate 2000-06-09

Thus one sees that orthogonal omponents an ommuniate

by generating events whih are broadast, and that this an be

done in a time-dependent manner: introduing the generation

of events e=a

1

; : : : ; a

n

and time-out events tm(1), ...

In general the label of a transition onsists of two parts: a trigger

that determines if and when a transition will be taken, and an

ation that is performed when a transition is taken. This ation

is the generation of a set of events.

15

Statemate 2000-06-09

0.4.4 Fourth onept: Compound events

� When in state standby, dependent on whether one presses

button 1 or 2 one makes sure to swith to states h1 or h2

in on. This is indiated as follows:

on standby1 v 2

off

� In general one an label transitions by ompound events s.a.

(:a ^ b) _ ; a ^ b; _ d;:a; et

� E.g., in:

a an be replaed by a ^ :b to express priority of event b

over event a.

16

Statemate 2000-06-09

In a nutshell, one may say with David Harel:

Stateharts = Mealy Mahines + depth

+ orthogonality + broadast + data

17

Statemate 2000-06-09

18

Statemate 2000-06-09

0.5 Time

� The elementary unit of observation in a reative system is the

event

� The environment sends events to the system to trigger

omputations, the system reats to the environment by

sending, or generating, events.

� Events are also means of ommuniation between parts of a

system.

� Beause one wants to speify reative systems at the highest

level of abstration in a disrete fashion, events are disrete

signals, ourring at a point in time.

19

Statemate 2000-06-09

� Events have no duration; they are generated from one state

to another. Hene, transitions have a disrete uninterruptable

nature and all time is spent in states.

� This has an important reason:

In a reason system new inputs may arrive at any moment.

Therefore the urrent state it is in should be always lear.

Sine transitions have no duration, there are no \transient"

periods in between states.

Therefore, the reation on a possible input is always well

de�ned.

� Of ourse this is an abstration from reality. (At deep levels

of eletroni implementations, one enounters levels where

disrete reasoning makes no sense anymore)

Stateharts is meant to be a high level spei�ation language,

where this abstration an be maintained and is appropriate.

20

Statemate 2000-06-09

How long is the reation time?

� We know that transitions have no duration, but when do they

take plae, relative to the trigger? And:

How long does it take the system to ompute a

reation upon an external event?

� For transformational systems this is easy | the only important

distintion is between �nite and in�nite values (orresponding

to a �nal state or no �nal state)

� For reative systems this is not enough:

We have to know when an output ours relative to the events

in the input sequene (see Brok-Akermann paradox)

=)

One has to determine what the reation time of a sequene

is.

21

Statemate 2000-06-09

What's the reation time of a reative systems upon an

external event in the high level Spei�ation Language

Stateharts?

Possibility 1 : Speify a onrete amount of time for eah

situation. This fores us to quantify time right from the

beginning. Clumsy, and not appropriate at this stage of

spei�ation where one is only interested in the relative order

and oinidene of events.

Possibility 2 : Fix reation time between trigger a and

orresponding ation a within e/a (the label of a transition)

upon 1 time unit.

Doesn't work: Upon re�ning question/answer to a

question/onsult and a onsult/answer transition, there's a

hange of time, whih may have far reahing e�ets (beause

of tm(n)-events, e.g.)

=)

A �xed exeution time for syntati entities (transitions,

statements, et.) is not exible enough.

Possibility 3 : Leave things open: say only that exeution of

a reation takes some positive amount of time, and see at a

later stage (loser to the atual implementation) how muh

time things take.

Clumsy, introdues far too muh nondeterminism.

22

Statemate 2000-06-09

Reation time of a system (2)

Summary : We want the exeution time assoiated to reations

to have following properties:

� It should be aurate, but not depending on the atual

implementation.

� It should be as short as possible, to avoid arti�ial delays.

� It should be abstrat in the sense that the timing behavior

must be orthogonal to the funtional behavior.

=)

Only hoie that meets all wishes is zero reation time.

As a result all objetions raised w.r.t. the possibilities mentioned

on the previous page are met!

� Now, for instane, upon re�ning transition question/answer

from previous page into two transitions, the reation time of

this re�nement is the same as that of the original transition.

� Objetion 3 on the previous transpareny is resolved, too.

� Finally, also objetion 1 (on previous transpareny) is met,

beause 0 + 0 = 0!

23

Statemate 2000-06-09

This hoie, that the reation time between a trigger and its event

is zero, is alled Berry's synhrony hypothesis.

Is this implementable? No, a real omputation takes time. But

in atual implementation this means:

The reation omes before the next input arrives,

or, so to say,

Reations are not in�nitely fast but fast enough.

See the following �gure:

A onsequene is that transition t

3

is taken!!

24

Statemate 2000-06-09

Negations and paradoxes

� Idea of immediate reation works �ne as long as transitions

only triggered by primitive events, or or onjuntions and

disjuntions of them.

� However, one also needs negations of events to trigger a

transition. E.g.: to speify priority:

25

Statemate 2000-06-09

� Problem: What semantis to give to Stateharts in the next

�gure?

If ais absent, i.e., : a holds as ondition, transition t

1

is

taken, i.e., b is generated, and hene t

2

, i.e., b/a is taken,

generating a within the same time unit, i.e., in zero time,

hene transition t

1

should not be taken.

But that means that event b is not generated, and hene event

a is not generated, so transition t

1

should be taken, et.

=) Paradoxon!

26

Statemate 2000-06-09

Negations and paradoxes (2)

Solution : Introdue two levels of time

� Maro steps, for ounting time, (these are observable)

time steps, and

� Miro steps, whih desribe the ausal hain within

reations.

Every maro-step is then divided in an arbitrary but �nite

number of miro-steps.

This sequene of miro-steps has only an operational meaning.

27

Statemate 2000-06-09

Alternative approahes

� Problem with introduing maro-steps only within our

formalism (and no miro-steps) is that the semantis is no

longer globally onsistent in ase of the following statehart:

28

Statemate 2000-06-09

� Another problem is: What semantis to give to the statehart

in the following �gure?

Causality ditates that no suh transitions are \triggered

themselves": there should be a ausally aeptable hain of

reation steps.

� Responsiveness: reations are simultaneous with their

triggers.

It an be proved that no semantis an be both globally onsistent,

ausal, and responsive.

E.g., in the synhronous language ESTEREL, programs are

disallowed whih violate ausality. The ompiler detets these,

and refuses to ompile them.

29

Statemate 2000-06-09

Conlusion

� Reative systems are fundamentally di�erent from

transformational systems

� We explained the design deisions behind Stateharts in

relation to the spei� nature of reative systems

� Time is passed in states, transitions are instantaneous

� To avoid aumulation of time in reative hains, the reation

time should be zero

� We pointed out that several semanti problems arise when

reation time is zero, and how to irumvent these problems.

For solutions the reader is referred to the literature, see the

paper by Huizing and Hooman, and the book by David Harel

and Mihal Politi:

David Harel and Mihal Politi. Modeling Reative

Systems with Stateharts. MGraw-Hill, 1998.

30

Session II

Introdution to Statemate

Abstrat

The notion of a reative system and the language

Stateharts were introdued in the last session. We

explained the rationale behind the design deisions of

Stateharts in relation to the spei� nature of reative

systems.

This time, the role of models in a system development

life yle is desribed. We introdue three languages to

haraterize reative systems from di�erent views. This

yields to a brief desription of the Statemate toolset.

Literature: David Harel and Mihal Politi. Modeling

Reative Systems with Stateharts. MGraw-Hill, 1998.

Statemate 2000-06-09

Last Session

We wanted to desribe reative systems:

ENVIRONMENT ENVIRONMENT

SYSTEM

Solution

Stateharts = Mealy Mahines + depth

+ orthogonality + broadast + data

32

Statemate 2000-06-09

0.6 Spei�ation in a systems life yle

� Identify several phases in the development life yle of a system

� Classi waterfall model: requirements analysis, spei�ation,

design, implementation, testing, and maintenane.

� Other approahes enter around prototyping, inremental

development, reusable software, or automated synthesis.

� Most proposals ontain a requirements analysis phase.

Spei�ation errors and misoneptions should be disovered

in that early phase.

� Correting errors in later stages is extremely expensive.

� Speial languages are therefore used in the requirements

analysis phase to speify a model of the system, and speial

tehniques are used to analyze it extensively.

33

Statemate 2000-06-09

System's life yle

34

Statemate 2000-06-09

System model

� A good model is important for all partiipants in the system's

development.

� Having a lear and exeutable model the funtionality and

behavior an be approved before investigating heavily in the

implementation stages.

� The spei�ation team uses modeling as the main medium for

expressing ideas.

35

Statemate 2000-06-09

0.7 Methodology

A methodology provides guidelines for performing the proesses

that omprise the various phases.

Conentrating on the modeling and analysis phase, a methodology

onsists of the following omponents:

� The methodology's underlying approah and the onepts it

uses.

� The notation used, that is, the modeling languages with their

syntax and semantis.

� The proess presribed by the methodology, that is, whih

ativities have to be arried out to apply the methodology and

in what order.

� The omputerized tools that an be used to help in the proess.

Here, we fous on notation and desribe the Statemate toolset.

36

Statemate 2000-06-09

0.8 Reative systems

The Stateharts language is espeially e�etive for reative

systems.

A typial reative system exhibits the following distintive

harateristis:

� It ontinuously interats with its environment, using inputs

and outputs that are either ontinuous in time or disrete.

� It must be able to respond to interrupts, i.e., high-priority

events.

� Its operation and reation often reet stringent time

requirements.

� It is very often based on interating proesses that operate in

parallel.

Examples

On-line interative systems : e.g., automati teller mahines,

ight reservation systems

Computer-embedded systems :avionis, automotive, and

teleommuniation systems

Control systems : suh as hemial and manufaturing systems.

37

Statemate 2000-06-09

Example: The early warning system A system model

onstitutes a tangible representation of the system's oneptual

and physial properties and serves as a vehile for the spei�er

and designer to apture their thoughts.

38

Statemate 2000-06-09

0.9 Charateristis of models

Beside for ommuniation, systems models should also be used

for inspetion and analysis.

When the model reets some preexisting desriptions, suh as

requirements written in natural language, it is useful to keep trak

of how the omponents of the developing model are derived from

the earlier desriptions.

The modeling languages used in Statemate have been designed

with several important properties in mind:

� to be intuitive and lear

� to be preise

� to be omprehensive

� to be fully exeutable

39

Statemate 2000-06-09

How to ahieve these properties?

� To ahieve larity, elements of the model are represented

graphially wherever possible.

� For preision, all languages features have rigorous

mathematial semantis

� Comprehension omes from the fat that the languages have

the full expressive power needed to model all relevant issues,

inluding the what, the when, and the how.

� For exeutability, the behavioral semantis is detailed and

rigorous enough to enable the model to be exeuted (or be

used to generate ode).

40

Statemate 2000-06-09

0.10 Modeling Views

Building a model an be onsidered as a transition from ideas and

informal desriptions to onrete desriptions that use onepts

and prede�ned terminology.

Here, the desriptions used to apture the system spei�ation

are organized into three views: the funtional, the behavioral,

and the strutural

41

Statemate 2000-06-09

The three views

Funtional view : The funtional view aptures the \what". It

desribes the system's funtions, proesses, or objets, also

alled ativities, thus pinning down its apabilities. This view

inludes the inputs and outputs of the ativities.

Behavioral view : The behavioral view aptures the \when".

It desribes the system's behavior over time, inluding the

dynamis of ativities, their ontrol and timing behavior, the

states and modes of the system, and the onditions and events

that ause modes to hange and other ourrenes to take

plae.

Strutural view : The strutural view aptures the \how". It

desribes the subsystems, modules, or objets onstituting the

real system and the ommuniation between them.

While the two former views provide the oneptual model of the

system, the strutural view is onsidered to be its physial model.

The main onnetion between the oneptual and physial models

is aptured by speifying the modules of the strutural view that

are responsible for implementing the ativities in the funtional

view.

42

Statemate 2000-06-09

Modeling heuristis

Modeling heuristis are guidelines for how the notation should be

used to model the system.

� The mapping between the methodology's onepts and the

elements allowed in the notation.

� The type of deomposition to be used: e.g., funtion based,

objet based, mode based, module based, or senario based.

� The step-by-step order of the modeling proess: bottom-up or

top-down

43

Statemate 2000-06-09

0.11 The Modeling Languages

The three views of a system model are desribed in our approah

using three graphial languages.

� Ativity-harts for the funtional view,

� Stateharts for the behavioral view,

� and Module-harts for the strutural view.

� Additional non-graphial information related to the views

themselves and their inter-onnetions is provided in a Data

Ditionary

44

Statemate 2000-06-09

0.11.1 Ativity-harts

Ativity-harts an be viewed as multilevel data-ow diagrams.

They apture funtions, or ativities, as well as data-stores, all

organized into hierarhies and onneted via the information that

ows between them.

45

Statemate 2000-06-09

0.11.2 Non-graphial information

In addition to the graphial information, eah element in the

desribed has an entry in the Data Ditionary, whih may ontain

non-graphial information about the element.

For example, the ativity entry ontains �elds alled mini-spe

and long desription, in whih it is possible to provide formal and

informal textual desriptions of the ativities workings.

46

Statemate 2000-06-09

0.11.3 Stateharts

Stateharts onstitute an extensive generalization of state-

transition diagrams. They allow for multilevel states deomposed

in an and/or fashion, and thus support eonomial spei�ation

of onurreny and enapsulation. They inorporate a broadast

ommuniation mehanism, timeout and delay operators for

speifying synhronization and timing information, and a means

for speifying transitions that depend on the history of the system's

behavior.

47

Statemate 2000-06-09

0.11.4 Module-hart

A module-hart an also be regarded as a ertain kind of data-ow

diagram or blok diagram. Module-harts are used to desribe

the modules that onstitute the implementation of the system,

its division into hardware and software bloks and their inner

omponents, and the ommuniation between them.

48

Statemate 2000-06-09

0.12 Relationship between the languages

The relationship between the onepts of the three views are

reeted in orresponding onnetions between the three modeling

languages.

Most of these onnetions are provided in the Data Ditionary,

and they tie the piees together, thus yielding a omplete model

of the system under development.

49

Statemate 2000-06-09

Handling large-sale systems

� The languages allow to split large hierarhial harts into

separate ones:

� Also, oping with visibility and information hiding by setting

soping rules of elements in the model.

� Moreover, generi harts and user-de�ned types.

50

Statemate 2000-06-09

The Statemate toolset

Statemate has been onstruted to \understand" the model

and its dynamis. The user an then exeute the spei�ation by

emulating the environment of the system under development and

letting the model make dynami progress in response.

51

Statemate 2000-06-09

0.13 A larger example: Alarm wath

As an example of a statehart we use that of a simple digital

wath with four buttonsA;B;C andD like in the below piture:

D

C

BA

am12:31

The wath an show the time or date, has the possibility to beep

every hour, an alarm, a stopwath, a light and an indiation that

the battery must be replaed.

The following events are onsidered as external:

� A;B;C and D desribe the pushing of the four buttons and

B up the release of button B.

� The events Bt In;Bt Rm;Bt Dy and Bt Wk desribe

respetively the putting in, removal, drop dead and weakening

of the battery.

� T hits Hr desribes that the internal time has reahed a

whole hour and T Hits Tm desribes that the internal time

has reahed the alarm time.

� T Min desribes that there are two minutes passed sine for

the last time a button has been pushed.

52

Statemate 2000-06-09

Display ontrol

The below statehart shows the display state of the wath.

There is a speial state up � alarm for the hanging of the

internal state of the alarm. Note that T

m

in takes are of the

resetting of a state, exept the stopwath, to the default state

time if nothing has happen sine the last two minutes.

DISPLAY

UPDATE

T_MIN

HOUR

DATE

MIN

SEC

DAY

DATE

TIME

ALARM

CHIME

STOPWATCH UP_ALARM

HOUR

T_MIN

MIN

C

CC

C

C

C

C

B
D

D

A

T_MIN[not in(STOPWATCH)]

A

A
A

C

CC

C B

53

Statemate 2000-06-09

0.13.1 History of states

A frequently used way to enter a group of states is by the history

of that group. The most simple example of this is the one where

you enter the most reently visited state of a group. In the

wath example this happens in the zoom-in of the alarm state

with two substates on and off . The problem is that the initial

default is the off state but when we put on the alarm we want

to get bak the next time in state on. In the next statehart this

desribed by the H onnetor.

TIME ALARM H

ON OFF

UP_ALARM
C

B

C

D
D

A

54

Statemate 2000-06-09

The following stateharts sums up the till now developed

wath. It ontains a beep state that is entered when event

T Hits Tm ours, provided the alarm is on (the ondition

alarm enabled shall be explained later), and is left when event

Beep Rt ours. This event Beep Rt is an abbreviation of

(A or B or C or D or tm(en(beep); 30)) wherein tm

stands for `timeout' and en for `entered'. This means that the

wath returns to the previous state (beause of H

�

) when one

of the four buttons is pushed or 30 seonds are passed sine the

entering of beep.

ALARM_WATCH DEAD

MAIN

BEEP

DISPLAY

H

UPDATE

T_MIN

HOUR

DATE

MIN

SEC

DAY

TIME

DATE

ALARM

UP_ALARM

HOUR

T_MIN

MIN

CHIME

STOPWATCH

BT_RM/dc!(MAIN)

BT_IN

T_HITS_TM[ALARM_ENABLED]

C

C

C

C
C

C

C

B D

A

T_MIN[not in(STOPWATCH)]

CB

C

C
C

A

A
A

BEEP_RT

55

Statemate 2000-06-09

The wath ontains also orthogonal states on di�erent levels. On

the higher levels there are besides the state main of the above

statehart also four other and-omponents as is illustrated in the

next statehart:

DEAD

POWER

WEAK OK

ALARM_ST

ENAB DISAB

CHIME_ST

C_ENAB

BEEP QUIET C_DISAB

MAIN

BEEP

DISPLAY

LIGHT

ON OFF

BEEP_RT

T_HITS_TM[in(ENAB)]

BT_WK

BT_RM

BT_DY

/dc!(MAIN)

BT_IN

B

B_UP

D[in(ALARM)]

D[in(ALARM)]

BEEP_ST

T_HITS_HR

D[in(CHIME)]

D[in(CHIME)]

The event Beep st is an abbreviation for

tm(en(enab:beep); 2) what means that the beeping

stops after 2 seonds.

56

Statemate 2000-06-09

The omplete statehart for the wath is:

ALARM_WATCH

DEAD

ALARM_ST
POWER

WEAK OK

ALARM_ST

ENAB DISAB
CHIME_ST

C_ENAB

BEEP QUIET C_DISAB

MAIN BEEP

@DISPLAY 1

LIGHT

ON OFF

BT_RM

BT_DY

BT_WK

/dc!(MAIN)

B

B_UP

BT_IN

T_HITS_TM[in(ENAB)]
BEEP_RT

D[in(DISPLAY:CHIME)]

D[in(DISPLAY:CHIME)]
BEEP_ST

T_HITS_HR
D[in(DISPLAY:ALARM)]

D[in(DISPLAY:ALARM)]

57

Statemate 2000-06-09

1

DISPLAY
H

UPDATE

T_MIN

HOUR

DATE DAY

SEC

MIN

STOPWATCH
HZERO

RUN

ON

OFF

DISP

C
REG

LAP

UP_ALARM

HOUR MIN

T_MIN

DATE

ALARM

CHIME

TIME
D

D

A

A

BA

B

C
C

C

C

C
C

C

A

BBDD
[in(ON)]

C

C

C

C

B[in(OFF)]

T_MIN[not in(STOPWATCH)]

58

Statemate 2000-06-09

We �nish the desription of stateharts with an overview of the

syntax for events, onditions and ations. The general form for a

label of a transition is E[C℄=A with E an event, C a ondition

and A an ation.

59

Statemate 2000-06-09

0.13.2 Events

The basi events and ondition are external, for example for

the wath the pressing of a button is an external event and

T Hits Tm is an external ondition. Besides the external

events the following internal events are allowed:

entered(S), abbreviation en(S),

exit(S), abbreviation ex(S),

timeout(E;X), abbreviation tm(E;X),

true(C), abbreviation tr(C),

false(C), abbreviation fs(C).

60

Statemate 2000-06-09

0.13.3 Ations

An ation an be an uninterpreted event symbol, alled primitive

event, and auses then other transitions in the statehart.

Furthermore ations an turn on or o� uninterpreted ondition

symbols. The following primitive ations are allowed:

make true(C), abbreviation tr!(C),

make false(C), abbreviation fs!(C),

history lear(S), abbreviation h!(S),

deep lear(S), abbreviation d!(S).

61

Session III

Ativity-Charts

Literature: Chapters 2 and 3 of \Modeling Reative

Systems with Stateharts", by David Harel and Mihal

Politi. MGraw-Hill, 1998.

Statemate 2000-06-09

1 Desribing the funtional view of a system

� Ativity-harts are used to depit the funtional view of a

system under development (SUD), \what the SUD does".

� This view of a system is spei�ed by

{ a hierarhy of funtional omponents, alled ativities,

{ what kind of information is exhanged between these

ativities and is manipulated by them,

{ how this information ows,

{ how information is stored, and

{ how ativities are started and terminated, i.e.,

ontrolled, if neessary, and whether ativities are

ontinuous, or whether they stop by themselves.

� Ativity-harts are kind of hierarhial data ow diagrams:

63

Statemate 2000-06-09

1.1 Funtional deomposition of a System

The funtional view of a system spei�es the system's

apabilities.

� It does so in the ontext of the system's environment, that

is, it de�nes the environment with whih the system interats

and the interfae between the two:

64

Statemate 2000-06-09

� This funtional view does not address the physial and

implementation aspets of the system; the latter is done

in its strutural view, i.e., its module-hart:

65

Statemate 2000-06-09

� Moreover it separates the dynamis and behavioral aspets of

the SUD from its funtional desription. The former is done

by its behavioral view, in its ontrolling Stateharts:

66

Statemate 2000-06-09

Example

The funtional view tells whether a medial diagnosis

system an monitor a patient's funtions, and, if so, where

it gets its input data and whih funtions have aess to

the output data.

The behavioral view tells under whih onditions

monitoring is started, whether it an be arried out parallel

to temperature monitoring, and how the ow of ontrol of

the proess of monitoring develops.

The strutural view deals with the sensors, proessors,

monitors, software modules and hardware neessary to

implement the monitoring system

67

Statemate 2000-06-09

The three views

68

Statemate 2000-06-09

1.1.1 Funtional Deomposition

� In the Statehart approah, the funtionality of a system

is desribed by funtional deomposition, by whih a

system is viewed as a olletion of interonneted funtional

omponents, alled ativities, organized into a hierarhy.

� E.g., in the ativity-hart ews ativities, the set up

omponents an be deomposed leading to a multi-level

deomposition of ews ativities:

� Eah of the ativities may be deomposed into subativities

repeatedly until the system is spei�ed in terms of basi

ativities.

There are spei�ed using textual desription (formal or

69

Statemate 2000-06-09

informal), or ode in a programming language, inside the

Data Ditionary.

� The intended meaning of the funtional deomposition is that

the apabilities of the parent ativity are distributed

between its subativities.

� The order in whih these subativities are performed, and the

onditions that ause their ativation or deativation are

not represented in the funtional view and are spei�ed in the

behavioral view, i.e., in the (one) statehart assoiated with

the parent ativity-hart.

� Please observe that a funtional omponent may very well be

reative in nature (fr. the �rst session leture).

� Ativities an represent objets, proesses, funtions,

logial mahines, or any other kind of funtionally distint

entity.

� In the following setions we'll on�ne ourselves to funtion-

based deomposition of an ativity-hart. We shall not

disuss objet-based deomposition (see Setion 2.1.3 of

Harel & Politi)

70

Statemate 2000-06-09

1.1.2 Funtion-based deomposition of

ativity-harts

� In funtion-based deomposition, the ativities are (possibly

reative) funtions.

� As an illustration onsider the EWS example.

� Its �rst desription is in natural language:

71

Statemate 2000-06-09

� Next we deompose this narrative to desribe its funtionality:

� Thirdly, we identify the various funtions that are desribed

by there requirements:

72

Statemate 2000-06-09

� Notie that this desription also ontains info about handled

data. An ativity may transform its input into output to be

onsumed by other funtions, whih are internal or external

to the system:

� The interfae of an ativity is desribed in terms of input and

output signals, both data and ontrol, see last �gure.

73

Statemate 2000-06-09

1.1.3 System ontext

One of the �rst deisions to be made when developing a system

involves its boundaries, or, ontext. I.e., one must determine

whih entities are part of the environment of a system, and how

they ommuniate with the system. The latter are alled external

ativities of the system.

Notie that for the EWS one might have hosen for the printer to

be external, leading to printer as external ativity.

Di�erent ourrenes of the same entity (here: operator) denote

the same entity; these are multipliated of ease of drawing.

74

Statemate 2000-06-09

1.1.4 Deomposition proess

The funtional view is spei�ed by Ativity-harts,

together with a Data Ditionary that ontains additional

information about the elements appearing in the harts,

e.g., about their basi ativities.

75

Statemate 2000-06-09

1.2 Ativities and their representation

We ontinue the funtional deomposition of the EWS, started

with:

This ativity hart ontains one top-level box, representing the

top-level ativity of the hart.

76

Statemate 2000-06-09

On their turn, the ativities appearing above an be deomposed

themselves, as set up:

77

Statemate 2000-06-09

Some terminology

� ews ativities is alled top-level ativity

� ews ativities is also alled parent ativity of set up,

ompare, et., whih are alled desendants of

ews ativities, as are the subativities prompt range

et. of set up, who have set up and ews ativities as

anestor.

Eah ativity has a orresponding item in the Data Ditionary,

whih may ontain additional information.

78

Statemate 2000-06-09

1.3 Flow of Information between Ativities

� Consider the following hart:

� operator and sensor are external ativities, drawn using

dotted lines.

� Di�erent ourrenes of operator refer to the same entity.

� Solid arrows denote data-ow-lines between ativities.

� Control of ews ativities is handled in its ontrol ativity

hart ews ontrol, a statehart (drawn using rounded

orners).

� Dotted arrows denote ontrol-ow-lines, arrying info or

signals used in making ontrol deisions.

79

Statemate 2000-06-09

1.3.1 Flow lines

A label on a ow line denotes:

� Either a single information element that ows along the line,

i.e., a data-item, ondition, or event.

� Or a group of suh elements, as in, e.g.:

Suh a group is alled information-ow.

80

Statemate 2000-06-09

� A ow-line originates from its soure ativity, and leads to

its target ativity:

� An arrow an be onneted to a non-basi box, meaning it

relates to all the subboxes within the box in question, see

above the data ow lines labeled v and z.

� Information ow signal in Figure 2.5 is delared in the Data

Ditionary as in Figure 3.2 and is used in data proessing.

81

Statemate 2000-06-09

� Information ow ommands in the Data Ditionary delared

as below, is used to denote ontrol issues.

� Flow lines may represent, e.g.,

{ parameter passing to proedures

{ passing of values of global variables

{ messages transferred in distributed systems

{ queues between tasks in real-time appliations

{ signals owing along physial links in hardware systems

� Flows an be ontinuous or disrete in time.

82

Statemate 2000-06-09

1.3.2 Flowing elements

� Three types of information elements ow between ativities:

events, onditions, data-items.

� Their di�erenes are in their domain of values and timing

harateristis:

Events are instantaneous signals used for synhronization

purposes, e.g., out of range in Figure 2.5.

Conditions are persistent signals that are either true or false,

e.g., sensor onneted in Figure 2.5.

Data-item are persistent and may hold values of various

types and strutures, e.g., signal, a bit-array, or

legal range, a reord with two �elds of type real,

high limit and low limit.

� All three types of information elements an be arranged in

array and reord strutures:

83

Statemate 2000-06-09

1.3.3 Information Flows

The number of lines in an ativity hart an be redued by

grouping information elements into an information-ow,

used to label a ommon ow line, see e.g. ommands

in the following �gure, onsists of set up, exeute,

reset.

84

Statemate 2000-06-09

1.3.4 Data Stores

� There are no restritions on the time that data reside on a

ow line. Nevertheless it is often more natural to inorporate

an expliit data store in the hart:

� A data item is de�ned in the Data Ditionary with the same

name as the data store. Any struture given to a data item is

inherited by the data store.

85

Statemate 2000-06-09

1.4 The Behavioral Funtionality of Ativities

� The behavior of subativities of an ativity hart is desribed

by its ontrol ativity, whose funtion is to ontrol their

sibling ativities (i.e., the other subativities in the hart).

� A ontrol ativity may expliitly start and stop its

sibling ativities, i.e., ews ontrol ontrols set up,

proess signal, and ompare:

� Eah ativity may have at most one ontrol ativity.

� The ontrol ativity, depited as a retangle with rounded

orners, annot have subativities. Rather its spei�ation is

that of a Statehart, see next slide.

86

Statemate 2000-06-09

87

Statemate 2000-06-09

1.4.1 Ativities in the Data Ditionary

� Every ativity an be desribed more extensively in the Data

Ditionary using textual information.

� Basi ativities are desribed in the Data Ditionary by

exeutable textual desriptions, speifying patterns of

behavior. These patterns are:

88

Statemate 2000-06-09

1.5 Connetors and Compound Flow-Lines

� The data ow lines leaving ativity ompare in Figure 2.5

an be drawn with a joint onnetor as below:

89

Statemate 2000-06-09

Juntion onnetors

90

Statemate 2000-06-09

Diagram onnetors

� Diagram onnetors are used when the soure of a ow line

is far from its target:

91

Session IV

Connetions between Ativity-Charts and

Stateharts

Abstrat: We disuss the ations used by a statehart to ontrol

ativities, and the events and onditions used by it to sense

their status.

Literature: Chapters 7 and 8 of \Modeling Reative

Systems with Stateharts", by David Harel and Mihal

Politi. MGraw-Hill, 1998.

Statemate 2000-06-09

1.6 Dynamis in the Funtional Deomposition

The ativities partiipating in the funtional deomposition are

not neessarily always ative. In most kinds of systems many of

the ativities have limited periods in whih they are ative.

Some examples with di�erent dynamis:

� Proedures and funtions in software programs start when

they are \alled" and stop upon ompletion.

� In multi-tasking or multi-proessing systems, tasks are

invoked, do their job, and then are \killed" or \kill" themselves.

� Tasks with lower priority maybe interrupted or delayed when

a mission of higher priority arrives.

� Interative user interfae is spei�ed by \allbak

funtions".

93

Statemate 2000-06-09

EWS Example

Dynami and timing issues related to the ativities in the EWS

example:

SET UP: ativated by an expliit request of the operator,

terminates on its own.

COMPARE: starts with the exeute ommand and stops with

the out of range event or the reset ommand.

PROCESS SIGNAL: ative when the ompare ativity is

ative.

DISPLAY FAULT: starts with the out of range event and

is stopped by the operator or after a prede�ned time period.

PRINT FAULT: starts when the time period is passed and

terminates on its own.

94

Statemate 2000-06-09

Speifying the Dynamis

� Obviously, merely listing the ativities and their onnetions,

as is done in the funtional view, is not suÆient. We have to

speify the dynamis of ontrolling these ativities, inluding

the starting and stopping of the subativities of a non-basi

ativity.

� The order in whih the funtional and behavioral views and

their onnetions are developed depends on the nature of the

system and on the spei�ation methodology.

� One an start by arrying out a funtional deomposition in

ativity-harts, and then add the timing and other dynami

information i stateharts to apture behavior.

� In ontrast, it is possible to start by using stateharts to

desribe the system's modes of operation and/or a olletion

of use-ases, and then onstrut an ativity-hart from the

ativities performed in these modes or senarios.

95

Statemate 2000-06-09

1.7 Dynamis of Ativities

In order to apture the dynami behavior of non-basi ativities,

our models employ ontrol ativities that are assoiated with

stateharts.

1.7.1 Stateharts in the funtional view When a non-basi

ativity that ontains a ontrol ativity starts its exeution, the

statehart assoiated with that ontrol ativity beomes ative,

i.e., the system enters the top level state of this statehart.

96

Statemate 2000-06-09

Control Ativities

An ativity with a reative behavior pattern an be desribed by

a statehart even though it is not further deomposed, so that it

has no subativities to ontrol:

In some ases, the ontrol behavior of an ativity an be aptured

by stati reations alone. Then, the ontrolling statehart will

onsist of a single top-level state with the stati reations given

in its Data Ditionary entry.

Note: While the ontrolling statehart may onsume and produe

external (ontrol and data) information, its interfae does not

appear in the statehart itself.

97

Statemate 2000-06-09

1.7.2 Termination Type of an Ativity

We distinguish between ativities that have self-termination and

those that have ontrolled-termination.

If a self-terminating ativity has a ontrol ativity, then the

orresponding statehart must ontain a termination onnetor.

It is onsidered a �nal state; in partiular it has no exits:

Upon entering this onnetor, the statehart \stops", its parent

ativity beomes deativated, and the event stopped(A) ours.

When a non-basi ativity stops, all its subativities stop

immediately too.

98

Statemate 2000-06-09

1.7.3 Perpetual Ativities

Sometimes there is no ontrol ativity needed:

All the subativities start when the parent ativity starts, and they

all stop when it stops.

99

Statemate 2000-06-09

1.8 Controlling the ativities

How does the ontrolling statehart a�et and sense the status of

its sibling ativities?

1.8.1 Starting and Stopping Ativities The main mehanism

that stateharts use to ontrol ativities is the ability to start and

stop them expliitly:

100

Statemate 2000-06-09

Examples

The ontrol ativity an ontrol only its sibling ativities.

Therefore, all ations that appear in its stathart may refer

to the sibling ativities only.

101

Statemate 2000-06-09

1.8.2 Sensing the status of Ativities

The stathart that desribes a ontrol ativity is not limited to

ausing ativities to start and stop. It an also sense whether

suh happenings have indeed taken plae. Spei�ally, the ontrol

ativity an sense the events started(A) and stopped(A), and

the ondition ative(A).

The events and onditions in the desribing statehart are allowed

to refer only to the sibling ativities.

102

Statemate 2000-06-09

1.8.3 Ativities Throughout and Within States

Often, we wish an ativity a to start when a ertain state s is

entered, and to stop when s is exited.

This an be spei�ed by assoiating the ation st!(A) with the

entering event ns and sp!(A) with the exiting event xs in the

Data Ditionary.

Another more ompat way is to speify that a is ative

throughout s:

Another similar assoiation is ative within, whih represents a

looser onnetion between an ativity and a state.

103

Statemate 2000-06-09

1.8.4 Suspending and Resuming Ativities

In addition to being able to start and stop ativities, ontrol

ativities an ause an ativity to \freeze", or suspend, its

ativation, and to later resume from where it stopped.

The relevant ations are suspend(A) and resume(A).

Assoiated with these ations is the ondition hanging(A).

Suspension may be used, for example, when we want to interrupt

the progress of an ativity in favor of another ativity with higher

priority:

104

Statemate 2000-06-09

The event e auses a to be suspended, while the preferred ativity

B is arried out to ompletion, at whih time A is resumed.

105

Statemate 2000-06-09

Comparison with History Entrane

When a is ative throughout a a the ation is started again.

On the other hand, not stopping a would allow a to reat on

events while b is ative.

106

Statemate 2000-06-09

1.9 Speifying Behavior of Basi Ativities

When arrying out funtional deomposition, the lower building

bloks of the desription are the basi ativities, those that require

no further breakup.

Basi ativities may have additional textual desriptions in the

Data Ditionary and are marked by a \>".

1.9.1 Reative Mini-Spes

In some ases the behavior of a basi ativity an be desribed by

a olletion of reations, onsisting of triggers and their implied

ations.

A reative mini-spe is a list of reations of the form

trigger/ation, separated by a double semi-olon (;;).

107

Statemate 2000-06-09

A reative mini-spe an be attahed to both self-terminating or

ontrolled-terminating ativities.

It is important to remember that states and ativities annot be

referred to in the mini-spe. All the ativities and states of the

model are beyond the sope of an individual mini-spe.

108

Statemate 2000-06-09

1.9.2 Proedure-Like Mini-Spes

Often an ativity an be desribed as a sequene of ations,

possibly with onditional branhing and iterations. Suh ativities

are alled proedure-like. They are ative for a single step only.

Therefore, suh ativities are always self-terminating.

109

Statemate 2000-06-09

110

Statemate 2000-06-09

1.9.3 Combinational Assignments

Another typial behavior for an ativity is that of a data-driven

pattern. The ativity is ontinuously ready to perform some

alulations whenever the input hanges its value.

111

Statemate 2000-06-09

3 Communiation between Ativities

Speifying the ommuniation between ativities onsists

of the what and the when, just like for other parts of the

spei�ation.

The what is desribed by the ow-lines in the ativity-

harts and relevant parts of the Data Ditionary. The

when is to be spei�ed by the behavioral parts of the

model, i.e., the stateharts and mini-spes.

112

Statemate 2000-06-09

3.1 Communiation and Synhronization Issues

Funtional omponents in systems ommuniate between

themselves in order to pass along information and to help

synhronize their proessing. A number of attributes haraterize

the various ommuniation mehanisms.

Communiation an be

� instantaneous , meaning that it is lost when not onsumed

immediately, or

persistent , meaning that it stays around until it gets

onsumed.

� synhronous , i.e., the sender waits for an aknowledgment,

or

asynhronous , i.e., there is no waiting on the part of the

sender

� diretly addressed , i.e., the target is spei�ed, or sent by

broadasting

113

Statemate 2000-06-09

3.2 Controlling the Flow of Information

In the following �gure x is spei�ed to ow between ativities a

and b:

If x is an event we may have the following situation:

If x is a ondition or data-item modi�ed by a, b ould sense the

value or the hange of the value (x, tr(x), wr(x)).

114

Statemate 2000-06-09

3.3 Examples of Communiation Control

115

Statemate 2000-06-09

Message Passing

116

Statemate 2000-06-09

3.4 Ativities Communiating Through Queues

Queuing failities for messages are virtually indispensable in

modeling multi-proessing environments, and espeially multiple

lient-server systems.

We want to have:

� ability to sent unlimited number of messages to the same

address, while the reeiver is not always in a position to

aept them,

� no message is onsumed before one that was sent earlier,

� possibility for onurrently ative omponents to write

messages to the same address at the same moment

� possibility for onurrently ative omponents to read di�erent

messages to the same address at the same moment

117

Statemate 2000-06-09

3.4.1 Queues and their operations

A queue is an ordered, unlimited olletion of data-items, all of

the same data type. The queue is usually shared among several

ativities, whih an employ speial ations to add elements to

the queue and read and remove elements from it.

� q put(Q,D) add the value of expression d to the queue

� q urgent put(Q,D) add the value of expression d to the

head of the queue

� q get(Q,D,S) extrat the element at the head of q and plae

it in D

� q peek(Q,D,S) same as above without removing the element

from q

� q ush(Q) lears q totally

The following �gure illustrates the order in whih operations on a

queue are performed during a step:

118

Statemate 2000-06-09

Combination with Data Stores

Queues an be assoiated with data stores just like data-items of

other types an.

119

Statemate 2000-06-09

Example

120

Statemate 2000-06-09

5 Statehart Language (ont'd)

5.1 Conditions and Events Related to States

121

Statemate 2000-06-09

5.2 Connetors

5.2.1 Condition Connetor

122

Statemate 2000-06-09

5.2.2 Swith Connetor

123

Statemate 2000-06-09

5.2.3 Juntion Connetor

124

Statemate 2000-06-09

5.2.4 Diagram Connetor

125

Statemate 2000-06-09

5.3 Transitions to and from And-States

126

Statemate 2000-06-09

Asymmetri Cases

127

Session V

Module-Charts

Abstrat: Module-harts desribe the strutural view {

sometimes alled the arhitetural view { of the system under

development. Module-harts are typially used in the high-

level design stage of the projet.

Literature: Chapters 9 and 10 of \Modeling Reative

Systems with Stateharts", by David Harel and Mihal

Politi. MGraw-Hill, 1998.

Statemate 2000-06-09

6 Strutural Desription: High-Level Design

The strutural view aptures the system's high-level design. A

strutural desription of the system spei�es the omponents

that implement the apabilities desribed by the funtional and

behavioral views.

These omponents may be:

� hardware,

� software,

� or even humans.

129

Statemate 2000-06-09

Sometimes There is a lear orrespondene between the top-level

ativities in the funtional view and the top-level subsystems in

the strutural view, e.g., signal proessor implements the

ativity proess signal.

In other ases the strutural deomposition is quite di�erent

from the funtional deomposition. E.g., the u subsystem

arries out both the ews ontrol and ompare ativities,

whereas the display fault ativity is divided into subativities

that are distributed among the alarm system and monitor

subsystems.

130

Statemate 2000-06-09

6.1 Internal and External Modules

The strutural view is represented by the language of Module-

harts.

� There exist two types of internal modules:

{ exeution modules

{ storage modules

� And there exist external modules

� Exeution modules may be submodules of other external

modules only.

� Storage modules may be submodules of other storage modules

or of exeution modules.

� External modules are always external to an exeution module

or storage module, and there is no hierarhy of external

modules.

131

Statemate 2000-06-09

EWS-Example

The next �gure shows the strutural deomposition of the ews,

inluding a storage module disk, that stores the fault messages:

132

Statemate 2000-06-09

Data Ditionary Entry

The Data Ditionary ontains a speial �eld, Desribed by

Ativity-Chart, whih is used to onnet modules with their

funtional desription:

133

Statemate 2000-06-09

6.2 Communiation Between Modules

As in Ativity-harts we use labeled arrows between modules to

denote ommuniation between them. They are alled ow-lines

or m-ow-lines to emphasize that they onnet modules.

A ow-line may denote information owing between modules:

Here, user input ontains the information-ow

ommands, the data-item range limits and the ondition

sensor onneted.

134

Statemate 2000-06-09

Physial Links Between Modules

Arrows in a module-hart may also denote physial ommuniation

links, or hannels, between modules:

135

Statemate 2000-06-09

6.3 Connetors and Compound Flow-Lines

Connetors and ompound ow-lines are allowed in module-harts

exatly as in ativity-harts:

136

Statemate 2000-06-09

7 Connetions Between the Funtional and

Strutural Views

� The funtional view provides a deomposition of the system

under development into its funtional omponents, i.e., its

apabilities and proesses.

� The strutural view provides a deomposition of the system

into the atual subsystems that will be part of the �nal system,

and whih implement its funtionality.

There are three types of onnetions between the funtional and

strutural views:

1. desribe the funtionality of a module by an ativity-hart:

Ativity-hart Desribing a Module

2. alloate spei� ativities in an ativity-hart to be

implemented in a module: Ativities Implemented by

Modules

3. map ativities in the funtional desription of one module to

ativities in that of some other module: Ativities Assoiated

with a Module's Ativities

137

Statemate 2000-06-09

In onlusion, we may wish to attah funtional desriptions, i.e.,

ativity-harts, to modules on di�erent levels of the strutural

deomposition:

138

Statemate 2000-06-09

7.1 Ativity-hart Desribing a Module

The ativity-hart ews ativities

desribes the funtionality of the module ews

139

Statemate 2000-06-09

This onnetion is spei�ed in the Data Ditionary:

Notie that the onnetion is between an ativity-hart and a

module!

140

Statemate 2000-06-09

Top-Down Approah

One may now want to speify an ativity-hart u a for the

module u:

141

Statemate 2000-06-09

There must be a orrespondene between the funtional and

strutural deompositions of a module in terms of the environment

and the interfae with it:

142

Statemate 2000-06-09

Sine also the ow-lines have to be orret we have to introdue an

ativity get input whih will be implemented by the monitor

module:

143

Statemate 2000-06-09

7.2 Ativities implemented by Modules

When the module desribed by the ativity-hart is eventually

deomposed into submodules, we may be more onrete and

alloate the relevant ativities and data-stores to the submodules:

144

Statemate 2000-06-09

A single ativity or data-store annot be distributed among several

modules.

Therefore, one has to deompose suh ativities (or data-stores)

into subativities that an eah be alloated to a single module:

145

Statemate 2000-06-09

7.3 Ativities Assoiated with a Module's

Ativities

On the one hand, there is the ews ativities desribing the

funtionality of the whole system. On the other hand, also the

submodules implement ativities:

Then, one wishes to assoiate subativities of ews ativities

with those implemented by a submodule:

146

Session VI

Semantis of Stateharts

Abstrat: We disuss the entral onepts and deisions for

various possible semantis for Stateharts (and the \real"

implemented one).

Literature: Dissertation Kees Huizing: \Semantis of reative

systems: omparison and full abstration", Eindhoven

University of Tehnology, 1991.

In partiular the following pages are relevant:

� \Everything you always wanted to know about

Stateharts", Huizing and de Roever.

� \On the semantis of reative systems", Huizing and Gerth.

And:

Chapter 6 of \Modeling Reative Systems with

Stateharts", by David Harel and Mihal Politi.

MGraw-Hill, 1998.

Statemate 2000-06-09

8 Semantis of Stateharts

8.1 Summary of previously disussed material

(fr. �rst lesson)

� There is a fundamental dihotomy between transformational

systems desribed by the relation between initial and

orresponding �nal states, i.e., their input/output behavior,

and

� Reative systems, whose only purpose is to maintain an

ongoing relationship with their environment.

148

Statemate 2000-06-09

Brok-Akermann Paradox

The Brok-Akermann paradox explains why reative systems

annot be haraterized by a funtion mapping sequenes of

inputs to sequenes of outputs.

� Consider two systems, a one-plae bu�er and a two-plae

bu�er. If you onsider these transformationally, they display

the same initial-�nal state behavior.

in: ab : : :

out: 1. e.g. aba : : :

2. e.g. aba : : :

not aba : : :

149

Statemate 2000-06-09

But if the output of these systems is fed bak, and merged

with their input they behave di�erently. (See transpareny)

� What's needed to haraterize a reative system is reording

the relative order of inputs and outputs, i.e., the way they

are interleaved.

150

Statemate 2000-06-09

Central Deisions for a Stateharts Semantis

� Semantis of reative systems is state-based

� Observations are sequenes of pairs of inputs I and

orresponding outputs O, i.e., of pairs of the form (I; O).

In pratie a reative system is therefore desribed by

sequenes of the following form:

S

1

=)

O

1

I

1

S

2

=)

O

2

I

2

S

3

=)

O

3

I

3

=) � � �

� Transitions don't take time, time is spent in states.

This has a simple reason: the reation of a reative system

to environmental inputs should be always well-de�ned. As a

onsequene, state-hanges shouldn't take time.

151

Statemate 2000-06-09

Berry's synhrony hypothesis

Reation time between input (i.e., trigger) and orresponding

output (i.e., response) is zero.

Why?

� Reall that individual reation times are too ompliated to

handle, abstratly, on the high level of spei�ation Stateharts

are aiming at.

� a �xed non-zero reation time wouldn't allow transition

re�nement.

� Unspei�ed reation times lead to haos, and is not desired at

a high level of abstration.

=) Only one reation time satis�es all riteria: zero! For:

� Now transition an always be re�ned

� spei�

� deterministi

152

Statemate 2000-06-09

Detailed Argumentation from Lesson I

Possibility 1 : Speify a onrete amount of time for eah

situation. This fores us to quantify time right from the

beginning. Clumsy, and not appropriate at this stage of

spei�ation where one is only interested in the relative order

and oinidene of events.

Possibility 2 : Fix reation time between trigger a and

orresponding ation a within e/a (the label of a transition)

upon 1 time unit.

Doesn't work: Upon re�ning question/answer to a

question/onsult and a onsult/answer transition, there's a

hange of time, whih may have far reahing e�ets (beause

of tm(n)-events, e.g.)

=)

A �xed exeution time for syntati entities (transitions,

statements, et.) is not exible enough.

Possibility 3 : Leave things open: say only that exeution of

a reation takes some positive amount of time, and see at a

later stage (loser to the atual implementation) how muh

time things take.

Clumsy, introdues far too muh nondeterminism.

153

Statemate 2000-06-09

Reation time of a system (2)

Summary : We want the exeution time assoiated to reations

to have following properties:

� It should be aurate, but not depending on the atual

implementation.

� It should be as short as possible, to avoid arti�ial delays.

� It should be abstrat in the sense that the timing behavior

must be orthogonal to the funtional behavior.

=)

Only hoie that meets all wishes is zero reation time.

As a result all objetions raised w.r.t. the possibilities mentioned

on the previous page are met!

� Now, for instane, upon re�ning transition question/answer

from previous page into two transitions, the reation time of

this re�nement is the same as that of the original transition.

� Objetion 3 on the previous transpareny is resolved, too.

� Finally, also objetion 1 (on previous transpareny) is met,

beause 0 + 0 = 0!

154

Statemate 2000-06-09

Berry's Synhrony Hypothesis

� Is Berry's synhrony hypothesis implementable?

Yes, if the input frequeny is low w.r.t. the time required for

omputing response.

� However, this hypothesis leads to a number of ounterintuitive

onsequenes, if arried through.

Careful: the following example does not desribe the

Stateharts semantis as implemented in Statemate.

a ^ d is a generated trigger, sine we assume the reation time

to be zero. A onsequene is that transition t

3

is taken!!

155

Statemate 2000-06-09

Combination with Negation

The synhrony hypothesis leads to problems if ombined with

the possibility of heking the absene of signals (the latter is

ustomary in the synhronous world, and a possibility not o�ered

in the asynhronous world):

If a is absent, i.e., : a holds as ondition, transition t

1

is taken,

i.e., b is generated, and hene t

2

, i.e., b/a is taken, generating a

within the same time unit, i.e., in zero time, hene transition

t

1

should not be taken.

156

Statemate 2000-06-09

This is alled the \Grandfather paradox".

It's solution is to order event ourrenes ausally, with later

events not inuening earlier events:

:a � b � a

Note here: this ausal order has nothing to do with the

passage of time; it merely refers to ausal hains within

one time step.

157

Statemate 2000-06-09

The new semantis

� This leads to a semantis of the following form:

Micro-steps

expressing
causal order

Time, measured by Macro-steps,

where a macro-step is a sequence of
micro-steps which cannot be prolonged

� Maro-steps are observable steps =)

O

I

� Eah maro-step is a sequene of miro-steps, that are ordered

ausally; one miro-step an never inuene previous miro-

steps.

� In Stateharts as implemented by Statemate ausality is

trivially obtained beause in Statemate events generated in

one step are only available in the next step, and only for that

one. I.e., there is no ausality within one step.

158

Statemate 2000-06-09

Problems with this new semantis

� The problem with maro-steps is that they lead to a globally

inonsistent semantis, i.e., transitions are taken in one

maro-step whih aren't generated globally.

S

1

=)

b

;

S

2

=)

a

b

S

3

Here absene of triggers generates presene of triggers, whih

violates their absene within the same step (not globally

onsistent).

159

Statemate 2000-06-09

� These onsiderations lead to the fundamental question:

Is a semantis for suh languages possible whih satis�es

all \reasonable" assumptions? I.e., whih is both good

for program development and for program omposition?

The answer is NO.

� This is a serious problem. As it turns out, the semantis with

maro-steps indiating passage of time, and re�ned by ausally

ordered miro-steps is a basis for a ompositional semantis for

Stateharts in whih the semantis of a onstrut is a funtion

of the semantis of its parts. But this semantis turns out to

be too diÆult to handle for the engineers of I-Logix, and of

Israeli Airraft Industries, its main ustomer for the Statemate

system.

� Hene looking for a \best" semantis makes a lot of sense.

What our theorem below says is that, in a ertain sense, there

is no best semantis. However, it does leave some room for

the searh for ever better semantis!!

160

Statemate 2000-06-09

There is no \best" semantis for Stateharts

Let's list a ouple of desirable properties of suh a semantis:

Responsiveness: Reations are simultaneous with their triggers

| this failitates re�nement of transitions from a high to a

lower level.

Causality: Without a ausal order of the miro-steps inside a

maro-step, harts s.a.:

would trigger eah other, whih makes no ausal sense. Suh

harts are exluded imposing ausality.

Modularity: Modules an be omposed on the basis of their

maro-steps, i.e., the external interfae of a (parallel)

omposition of modules is of the same nature as their mutual

interfae w.r.t. eah other. (This is inspired by a paper by

Pnueli and Shalev)

161

Statemate 2000-06-09

Impossibility of a Semantis being Causal,

modular, and responsive

Modularity, ausality, and responsiveness an be mathematially

expressed; the impossibility of all three being satis�ed

simultaneously beomes a theorem, proved in the paper by Huizing

and Gerth.

However, also intuitively this is lear:

� Causality and responsiveness leads to

examples in whih both a and its absene :a our within

the same maro-step =) no global onsisteny =) no

modularity

� Modularity and responsiveness imply there exists no

satisfatory semantis for the example above. This hoie

is made in the synhronous language ESTEREL, in whih

162

Statemate 2000-06-09

examples as the one above are exluded on syntati grounds

by a ompiler.

163

Statemate 2000-06-09

8.2 Classi�ation of possible semantis for

Stateharts

Next we list a few possible semantis for Stateharts, semantis

A { E, of whih E is losest to the one atually implemented in

Statemate, and disuss the anomalies allowed by them (inluding

those of the implemented semantis of Stateharts).

Semantis A

Events generated as a reation to some input an only be sensed

in the step following that input. (This is a hoie made in the

implemented semantis of Stateharts.)

Anomaly: no simultaneity of ation and reation, i.e., no

responsiveness.

In semantis A the trigger a ^ will not our:

This example makes lear that in semantis A the moment of

generation of an event is too important | a too detailed analysis

of harts is required for adopting it.

164

Statemate 2000-06-09

Semantis B

In order to overome the problem with semantis A, absene of

responsiveness, miro-steps are introdued, with events sensed in

the next miro-step.

Then, in the previous example the third transition is taken.

Consider now the trigger b ^ : for the third transition; the

transition is taken, beause in the seond miro-step, event is

not yet sensed. This example also works for semantis A.

Disadvantage: Semantis B is too subtle to be of any pratial

use; same objetion as to semantis A.

165

Statemate 2000-06-09

Semantis C

Requires global onsisteny of every miro-step. The reation of

the system to an input should

� not only be enabled by events generated in previous miro-

steps

� but also by events generated in the full maro-step.

As a onsequene, the b ^ : transition is not taken.

This example is exluded in semantis C, leads to ontradition.

I.e., syntatial means must be found to exlude it, as done in

ESTEREL by a ompiler.

This makes a lot of sense, as evidened by the onsiderable suess

of ESTEREL of G�erard Berry.

166

Statemate 2000-06-09

However, this semantis is not modular. This implies that a

modular development of the system is umbersome, sine every

developer has to know the detailed miro-behavior of the other

proesses. Hene, this semantis is appropriate for top-level guys

only, and that's what G�erard Berry's rowd onsists of.

167

Statemate 2000-06-09

Semantis D

All events generated during some maro-step onsidered as if they

were present right from the beginning of the maro-step.

Semantis D allows

to be taken: reations may trigger themselves. I.e., semantis D

is not ausal.

Note: In semantis D, the external world does not generate an a

event!

Conlusion: This example should be rejeted!

168

Statemate 2000-06-09

Semantis E

Events are generated at the next step, but no input from the

environment is possible before the reation of the system has

ompletely died out.

This semantis is heavily non-modular, sine one maro-step may

ontain several steps of the A semantis. Events remain ative

only for the duration of suh a step, hene, in one maro-step

an event an be ativated and deativated several times, thus

leading to a muh more omplex interfae between subsystems,

than between the system and its environment.

S1 S2 S3a/b b/c

Generation of event a leads the system eventually to state S

3

.

S1 S2

a/b

b/a

In semantis E, as in the implemented semantis of Stateharts,

this example leads to an in�nite loop (the so-alled: \go repeat"

mode): try it out yourself!

169

Statemate 2000-06-09

Situation

No \best" semantis =) still room for better ones

The situation is summarized in the following �gure, showing how

eah semantis is an attempt to improve on the other one:

A B C D

E

responsivenessmodularity

responsiveness modularity

causality

What to do? The searh is now on for better semantis

1. Several leaner semantis have been proposed, notably by

Florene Maraninhi. She opts for semantis D, in whih both

harts suh as example C and D are exluded, resulting in

Argos semantis:

a/e e bhvr
handler

Generation of event a leads to exit transition e being taken.

This is alled non-preemptive interrupts.

170

Statemate 2000-06-09

The Argos semantis leads to a leaner onept of state-

hierarhy in whih inter-level transitions are not allowed.

Probably a too heavy investment in their \old" semantis,

manyear-wise, prevented I-Logix from adopting the leaner

Argos semantis of Maraninhi in Statemate.

2. Huizing and Gerth propose a ompositional semantis in whih

the ausal hains inside a module are hidden from its external

behavior. This proposal has not yet aught on.

171

Statemate 2000-06-09

8.3 Stateharts as Implemented

This leaves us with the semantis of Stateharts as it is

implemented in Statemate. Computing that semantis is a fairly

involved algorithm, only reently (1996) published in a paper by

David Harel and A. Naamad.

Operational semantis

We desribe the ontents of the system status, and the algorithm

for exeuting a step.

The status inludes:

� a list of states in whih the system urrently resides;

� a list of ativities that are urrently ative;

� urrent values of onditions and data-items;

� a list of regular and derived events that were generated

internally in the previous step;

� a list of timeout events and their time for ourrene;

� a list of sheduled ations and their time for exeution;

� relevant information on the history of states.

172

Statemate 2000-06-09

The input to the algorithm onsists of:

� the urrent system status;

� a set of external hanges that ourred sine the last step;

� the urrent time

The step exeution algorithm works in three main phases:

1. � alulate the events derived from the external hanges and

add them to the list of events;

� perform the sheduled ations whose sheduled time has

been exeeded, and alulate their derived events;

� update the ourrene time of timeout events if their

triggering events have ourred;

� generate the timeout events whose ourrene time has

been exeeded;

2. � evaluate the triggers of all relevant transition reations;

� prepare a list of all states that will be exited and entered;

� evaluate the triggers of all stati reations

3. � update the history of states;

� arry out all omputations presribed by the ations in the

list produed in the seond phase;

� arry out all updates alled for by the ations

� update the list of urrent states.

173

Statemate 2000-06-09

Synhronous/Asynhronous Semantis

Synhronous Semantis: Environment interats with the

system after eah step and time advanes. This is oneptually

quiet easy and appropriate for synhronous hardware. But,

the system's reation on the external input has to be simple

(ompare with semantis A).

Asynhronous Semantis: Synhrony Hypothesis: system may

reat with a hain reation. External input only in stable

states. Easier to model omplex systems, abstration from

real-time. But, the implementation has to be shown to satisfy

the assumptions of zero reation time.

174

