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Introduction to Statecharts

Everything you wanted to know about Statecharts
but were afraid to ask

Abstract: The notion of a reactive system and the language
Statecharts are introduced. The rationale behind the
design decisions of Statecharts is explained in relation
to the specific nature of reactive systems.

Literature: Introduction to Design Choices in the Semantics
of Statecharts, C. Huizing, W.-P. de Roever,
Information Processing Letters 37, p. 205-213, 1991
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What is a system?

A composed and relative independent whole that
can exchange (material, energy, information) with
its environment.

The two essential elements in this definition are:

1. group of components, that form a connected whole

2. the exchange with its environment.
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How to Characterize Systems?

The systems are often divided in two categories that make
distinction between more simple and more difficult
systems.
Examples of this separation are:

sequential versus parallel,

central versus distributed,

deterministic versus nondeterministic,

terminating versus nonterminating.

Statemate Course, April 20, 2001 – p.4



How to Characterize Systems?

The systems are often divided in two categories that make
distinction between more simple and more difficult
systems.
Examples of this separation are:

sequential versus parallel,

central versus distributed,

deterministic versus nondeterministic,

terminating versus nonterminating.

Statemate Course, April 20, 2001 – p.4



How to Characterize Systems?

The systems are often divided in two categories that make
distinction between more simple and more difficult
systems.
Examples of this separation are:

sequential versus parallel,

central versus distributed,

deterministic versus nondeterministic,

terminating versus nonterminating.

Statemate Course, April 20, 2001 – p.4



How to Characterize Systems?

The systems are often divided in two categories that make
distinction between more simple and more difficult
systems.
Examples of this separation are:

sequential versus parallel,

central versus distributed,

deterministic versus nondeterministic,

terminating versus nonterminating.

Statemate Course, April 20, 2001 – p.4



Another Separation

There is another separation, namely:

transformational and

reactive systems.
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Transformational systems

are described by the relation between initial and
corresponding final states; they have a linear structure,
because only the initial and corresponding final states are
of interest.

Examples include: sorting algorithms, compilers, and other
algorithms computing a function as discussed in your
data structures and complexity of algorithms course.
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Reactive systems

do not compute a function, but are in continuous interaction
with their environment.

Examples: your tv set, digital watches, chips, interactive
software systems, game programs s.a. trackman,
monkey island, tomb raider, and other interactive
computer games, but also one’s heart monitor at an
intensive care unit.

Statemate Course, April 20, 2001 – p.7



Why use Formal Methods?

in the formalization process ambiguities, omissions
and contradictions can be found in the informal
formulation of the problem,

the formal model can be proven correct with
mathematical methods,

a formal specified system can be analyzed to have or
to have not some wanted properties,

a formal verified subsystem can be embedded in a
greater system with more confidence,

the formal model leads to (partly) automated
development methods and tools like simulators,

several designs can be compared with each other.
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Transformational/Reactive Systems

Transformational systems are well-studied; for their
programming and analysis many good languages and
theories exist.

We explain why the language Statecharts is a good
candidate for specifying and programming reactive
systems.
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Why not use transformational techniques?

If transformational systems are so well studied, why
doesn’t one consider a reactive system as a
transformational one?
Simply say that a reactive system transforms a
sequence of inputs to a sequence of outputs.

This doesn’t work, because of “feedback”, as illustrated
by the Brock-Ackermann paradox.

Consider two systems, a one-place buffer and a
two-place buffer. If you consider these
transformationally, they display the same initial-final
state behavior.
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Brock-Ackermann paradox

in: � ��� � � �

out: 1. e.g. � � � � � � �

2. e.g. � ��� � � � �

not � � � � � � �
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Conclusion

If the output of these systems is fed back, and merged with
their input they behave differently.

The relative order of output events relative to the
input events needs to be specified, in order to
characterize the semantics of a system with
interaction with its environment through feedback.

(One needs to know when an output is produced)
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Initial/Final State Behavior

Transformational systems have a linear structure, and so

have the conventional languages for specifying and pro-

gramming them. What one describes is how a final state

is produced from an initial one. The relative time when interme-

diate states are computed is not important, and neither is their

identity as long as the corresponding final state is known!
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Reactive Behavior

For reactive systems this is completely different:
The “moment” a new input arrives is relevant to the
behavior of the system � �

The internal state of the system at the time of input
is important for the systems reaction.
Reactive systems may not even have a final state!

So, in reactive systems there is no main sequential flow of
control (as in transformational systems) and statements
can have several entry and exit points.

Statemate Course, April 20, 2001 – p.14



Finite State Machines
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Finite Automata

Formally a finite automaton is defined as a five tuple

� ��
�

�
�

�
� ��� �

	 


where

is a finite set of states,
is the input alphabet,
is the begin state,
is the set of final states,
is the transition function.

The transition function gives for every state and every

input symbol the new state that arises as reaction

on the execution of in state .
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State Diagram

For each state, the possible reactions to input that arrives
in that state is specified by a transition to other states.
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Extensions

A restriction of these kind of automata as defined above is
the fact that they have an input alphabet but not an output
alphabet. There are two ways to extend the above model
with output: output can be associated with a state (a so
called Moore machine) or with a transition (a so called
Mealy machine). These are formally defined as follows.

A � �� � � � � ���� � is a 6-tuple
� ��
�

�
�

�
�

�
�

	
� � �




where

��
�

�
�

�
� ��� are the same as in the definition of the finite

automaton,�

is the �
 �
� 
 � � � � � � � � �

and

� � � � �

is the �
 �
� 
 � � 
 � � �� �� .

A � � ��� � � � � �� � is also a 6-tuple

� ��
�

�
�

�
�

�
�

	
� � �




but
now

	

is a function from

� � �

to

�

.
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Example: Moore Machine

For a Moore machine

	

the output is thus associated with

every state, while for a Mealy machine

	 � �� � 
 gives the out-

put associated with the transition of state � on input �.
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Serial Addition: Moore Machine

(0,1)
(1,0)

(1,1)

(0,0)

(1,0)(0,1)0 1

1

0

(1,1)

(0,0)
(0,0)

(1,1)
(0,0)

(1,0)

(0,1)

(1,1)

(0,1)(1,0)
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Serial Addition: Mealy Machine

(1,1)−0

(0,0)−1

(0,1)−0
(1,0)−0
(1,1)−1

(0,0)−0
(1,0)−1
(0,1)−1
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Disadvantages

They have no structure. There is no strategy for their
top-down or bottom-up development.

state-transition diagrams are “flat”, i.e., without a
natural notion of depth, hierarchy or modularity,

state-transition diagrams are uneconomical concerning
their transitions:think for instance of a high-level
interrupt

Statemate Course, April 20, 2001 – p.22



Interrupt Transition

They are not economical w.r.t. transitions, when one event
has all transitions as a starting point as in case of
interrupts:

Interrupt state
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Disadvantages (cont’d)

concerning the states state-transition diagrams are
even very uneconomical: exponential blow-up

They are not economical w.r.t. parallel composition:
Exponential growth in the number of states when
composed in parallel.

the nature of state-transition diagrams is inherently
sequential and so parallelism can‘t be represented in a
natural way.
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Statecharts

We need a formalism for the hierarchical development and
refinement of Mealy machines.
This is provided by Statecharts, invented by David Harel.

Statecharts display hierarchy and structure, and enable hier-

archical development.
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Statecharts
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Hierarchy and Structure

The concepts of hierarchy and structure in Statecharts are
introduced using a quite familiar example of a reactive
system: that of a television set with remote control.
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First concept: Hierarchy

Hierarchy or depth in states, and interrupts. This is
achieved by drawing states as boxes that contain other
boxes as sub-states.

The television set can be in two states: on and standby.
Switching between them is done by pushing the on and
off buttons, generating the on and off events:
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Zooming into ON

In state on the tv set can be in two sub-states: normal and
videotext:

The � � arrow leading to normal specifies which sub-state
should be entered when the higher level stateon is entered,
namely normal.
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Superstates

When in on an event off is generated, this acts like an inter-

rupt and state on (incl. all its sub-states) is left, and control

switches to state standby. In this way interrupts are handled

without cluttering the picture with arrows.
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Second concept: Orthogonality

Two independent components can be put together into
an AND-state, separated by a dotted line

Being in an AND-state means being in all of its
immediate sub-states at the same time. This prevents
the exponential blow-up familiar from composing FSMs
in parallel.
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Third concept: Broadcast

In our case we split state normal in two orthogonal
components channel, for selecting channels, and sm for
switching to mute:
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Behavior

When a channel button (1 or 2, for simplicity) is
pressed, one switches to that channel and the internal
event sm is generated. This causes the event mute by a
transition in sm to state mute, and the sound will be
turned off.

After one second the event sound is generated to turn
the sound on, again. This is done by the special
time-out event tm(1).
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Actions and Transitions

Thus one sees that orthogonal components can
communicate by generating events which are broadcast,
and that this can be done in a time-dependent manner:
introducing the generation of events � � ��� � � � � � ��� and time-out
events tm(1), ...

In general the label of a transition consists of two parts: a

trigger that determines if and when a transition will be taken,

and an action that is performed when a transition is taken.

This action is the generation of a set of events.
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Fourth concept: Compound events

When in state standby, dependent on whether one presses
button 1 or 2 one makes sure to switch to states ch1 or ch2
in on. This is indicated as follows:

on standby1 v 2

off
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Transition Labels

In general one can label transitions by compound events
s.a.

�
� � � � 
 � � � � � �
� � � �
� � �� etc

E.g., in:

� can be replaced by � � �
�

to express priority of event

�

over event �.
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Summa Summarum

In a nutshell, one may say with David Harel:

Statecharts � Mealy Machines

depth

orthogonality

broadcast

data
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Another Example
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Alarm watch

As an example of a statechart we use that of a simple
digital watch with four buttons

�
�

�
�

�

and
�

like in the
below picture:

D

C

BA

am12:31
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Events

The following events are considered as external:

�
�

�
�

�

and

�

describe the pushing of the four buttons
and

�

_
 � the release of button

�

.

The events

� �

_

�� �

� �

_

� �� � �

_
�� and

� �

_

�

describe respectively the putting in, removal, drop
dead and weakening of the battery.

�

_

�� ��� _

� � describes that the internal time has
reached a whole hour and

�

_

� � ��� _

� � describes that
the internal time has reached the alarm time.

�

_

��� describes that there are two minutes passed
since for the last time a button has been pushed.
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Display control

There is a special state 
 � � � � � � � for the changing of the
internal state of the alarm. Note that

�
�

��� takes care of the
resetting of a state.

DISPLAY

UPDATE

T_MIN

HOUR

DATE

MIN

SEC

DAY

DATE

TIME

ALARM

CHIME

STOPWATCH UP_ALARM

HOUR

T_MIN

MIN

C

CC

C

C

C

C

B
D

D

A

T_MIN[not in(STOPWATCH)]

A

A
A

C

CC

C B
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History of states

A frequently used way to enter a group of states is by the
history of that group. The most simple example of this is
the one where you enter the most recently visited state of a
group. In the watch example this happens in the zoom-in of
the � � � � � state with two substates �� and � � �

. The
problem is that the initial default is the � � �

state but when
we put on the alarm we want to get back the next time in
state �� . In the next statechart this described by the H
connector.

TIME ALARM H

ON OFF

UP_ALARM
C

B

C

D
D

A
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The Watch

DEAD

POWER

WEAK OK

ALARM_ST

ENAB DISAB

CHIME_ST

C_ENAB

BEEP QUIET C_DISAB

MAIN

BEEP

DISPLAY

LIGHT

ON OFF

BEEP_RT

T_HITS_TM[in(ENAB)]

BT_WK

BT_RM

BT_DY

/dc!(MAIN)

BT_IN

B

B_UP

D[in(ALARM)]

D[in(ALARM)]

BEEP_ST

T_HITS_HR

D[in(CHIME)]

D[in(CHIME)]
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Display with Stopwatch

1

DISPLAY
H

UPDATE

T_MIN

HOUR

DATE DAY

SEC

MIN

STOPWATCH
HZERO

RUN

ON

OFF

DISP

C
REG

LAP

UP_ALARM

HOUR MIN

T_MIN

DATE

ALARM

CHIME

TIME
D

D

A

A

BA

B

C
C

C

C

C
C

C

A

BBDD
[in(ON)]

C

C

C

C

B[in(OFF)]

T_MIN[not in(STOPWATCH)]
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Events

The basic events and condition are external, for example
for the watch the pressing of a button is an external event
and

�

_

� � � � _

� � is an external condition. Besides the
external events the following internal events are allowed:

�� � � � � � � � 


, abbreviation �� � � 


,

�� � � � � 


, abbreviation �� � � 


,

�� � � � 
 � � �
�

� 


, abbreviation

� � � �
�

� 


,

� � 
 � � � 


, abbreviation

� � � � 


,

� � � � � � � 


, abbreviation

� � � � 


.
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Action

An action can be an uninterpreted event symbol, called
primitive event, and causes then other transitions in the
statechart. Furthermore actions can turn on or off
uninterpreted condition symbols. The following primitive
actions are allowed:

� � � �_ � � 
 � � � 


, abbreviation

� � � � � 


,

� � � �_ � � � � � � � 


, abbreviation

� � � � � 


,�� � � �� � _� � � � � � � 


, abbreviation

� � � � � 


,

� � � � _� � � � � � � 


, abbreviation

�� � � � 


.
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