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Semantics of Statecharts

We discuss the central concepts and decisions for various
possible semantics for Statecharts (and the “real”

implemented one).

[HdR91] Introduction to Design Choices in the Semantics of
Statecharts, C. Huizing, W.-P. de Roever, Information
Processing Letters 37, p. 205-213, 1991

[HP98] Modeling Reactive Systems with Statecharts: The
STATEMATE Approach, D. Harel, M, Politi. McGraw-Hill,
1998.
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First Session
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Serial Addition: Mealy Machine

(1,1)−0

(0,0)−1

(0,1)−0
(1,0)−0
(1,1)−1

(0,0)−0
(1,0)−1
(0,1)−1
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Disadvantages

They have no structure. There is no strategy for their
top-down or bottom-up development.

state-transition diagrams are “flat”, i.e., without a
natural notion of depth, hierarchy or modularity,

state-transition diagrams are uneconomical concerning
their transitions:think for instance of a high-level
interrupt
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Interrupt Transition

They are not economical w.r.t. transitions, when one event
has all transitions as a starting point as in case of
interrupts:

Interrupt state
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Disadvantages (cont’d)

concerning the states state-transition diagrams are
even very uneconomical: exponential blow-up

They are not economical w.r.t. parallel composition:
Exponential growth in the number of states when
composed in parallel.

the nature of state-transition diagrams is inherently
sequential and so parallelism can‘t be represented in a
natural way.
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Introduction of Superstates

In state on the tv set can be in two sub-states: normal and
videotext:

The � � arrow leading to normal specifies which sub-state
should be entered when the higher level stateon is entered,
namely normal.
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Orthogonality

Two independent components can be put together into
an AND-state, separated by a dotted line

Being in an AND-state means being in all of its
immediate sub-states at the same time. This prevents
the exponential blow-up familiar from composing FSMs
in parallel.
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Broadcast

In our case we split state normal in two orthogonal
components channel, for selecting channels, and sm for
switching to mute:
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Compound Events

In general one can label transitions by compound events
s.a.

� � � � � � ��� 	 � � �
	� � 

	 � � 	 etc

E.g., in:

� can be replaced by � � � �

to express priority of event�

over event �.
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Statecharts

Statecharts � Mealy Machines

depth

orthogonality

broadcast

data
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Another Example
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Alarm watch

As an example of a statechart we use that of a simple
digital watch with four buttons

�
	

�
	

�

and
�

like in the
below picture:

D

C

BA

am12:31
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Events

The following events are considered as external:

�
	

�
	

�

and

�

describe the pushing of the four buttons
and

�

_ �� the release of button

�

.

The events

��

_

��� 	
� �

_

��� 	
� �

_
��� and

� �

_

	

describe respectively the putting in, removal, drop
dead and weakening of the battery.




_

�� ��
 _

��� describes that the internal time has
reached a whole hour and



_

� � ��
 _


�� describes that
the internal time has reached the alarm time.




_

� � describes that there are two minutes passed
since for the last time a button has been pushed.
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Display control

There is a special state �� � � � �� � for the changing of the
internal state of the alarm. Note that



�

� � takes care of the
resetting of a state.

DISPLAY

UPDATE

T_MIN

HOUR

DATE

MIN

SEC

DAY

DATE

TIME

ALARM

CHIME

STOPWATCH UP_ALARM

HOUR

T_MIN

MIN

C

CC

C

C

C

C

B
D

D

A

T_MIN[not in(STOPWATCH)]

A

A
A

C

CC

C B
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History of states

A frequently used way to enter a group of states is by the
history of that group. The most simple example of this is
the one where you enter the most recently visited state of a
group. In the watch example this happens in the zoom-in of
the � � �� � state with two substates �� and �

� �

. The
problem is that the initial default is the �

� �

state but when
we put on the alarm we want to get back the next time in
state �� . In the next statechart this described by the H
connector.

TIME ALARM H

ON OFF

UP_ALARM
C

B

C

D
D

A
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The Watch

DEAD

POWER

WEAK OK

ALARM_ST

ENAB DISAB

CHIME_ST

C_ENAB

BEEP QUIET C_DISAB

MAIN

BEEP

DISPLAY

LIGHT

ON OFF

BEEP_RT

T_HITS_TM[in(ENAB)]

BT_WK

BT_RM

BT_DY

/dc!(MAIN)

BT_IN

B

B_UP

D[in(ALARM)]

D[in(ALARM)]

BEEP_ST

T_HITS_HR

D[in(CHIME)]

D[in(CHIME)]
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Display with Stopwatch

1

DISPLAY
H

UPDATE

T_MIN

HOUR

DATE DAY

SEC

MIN

STOPWATCH
HZERO

RUN

ON

OFF

DISP

C
REG

LAP

UP_ALARM

HOUR MIN

T_MIN

DATE

ALARM

CHIME

TIME
D

D

A

A

BA

B

C
C

C

C

C
C

C

A

BBDD
[in(ON)]

C

C

C

C

B[in(OFF)]

T_MIN[not in(STOPWATCH)]

Statemate Course, April 27, 2001 – p.19



Events

The basic events and condition are external, for example
for the watch the pressing of a button is an external event
and




_

� � � 
 _


 � is an external condition. Besides the
external events the following internal events are allowed:

� � � � � � 
 � � �

, abbreviation � � � � �

,

�� � � � � �

, abbreviation �� � � �

,

� � � � � �� � �
	

� �

, abbreviation

� � � �
	

� �

,

� � � � � � �

, abbreviation

� � � � �

,

� � �
 � � � �

, abbreviation

�
 � � �

.
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Action

An action can be an uninterpreted event symbol, called
primitive event, and causes then other transitions in the
statechart. Furthermore actions can turn on or off
uninterpreted condition symbols. The following primitive
actions are allowed:

� � 	 �_

� � � � � � �

, abbreviation

� � � � � �

,

� � 	 �_

� � �
 � � � �

, abbreviation

�
 � � � �

,��
 � �� � _� � � �� � � �

, abbreviation

�� � � � �

,


 � �� _�
� � �� � � �

, abbreviation


� � � � �

.
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Real-Time Systems
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Real-Time Systems

the environment can deliver data continuously, for
example via temperature sensor.

data can be delivered from different sources
simultaneously and must therefore be processed in
parallel.

the time scale is fast by human standard (milli seconds
instead of seconds),

the system must react in time and accurately on input
from the environment.
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Characteristics

the environment of a real-time systems contains often
equipment that act as sensors of the systems (a typical
example are optical scanners, that collect a continuous
stream of relative unstructured data) and also
equipment that can change the environment physical
(like ‘actuators’ that continuously change the position
of a tap).

real-time systems must often simultaneously process
input from different sources (in an industrial process
control system, for example, the values of temperature,
pressure and liquid concentration must be correlated
simultaneously to execute adjustments of
heating-apparatus and taps)
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Characteristics

the time scale of much real-time systems is fast
considered to human standards (in an automated
systems for the control of the speed of a car, for
instance, the real speed must be measured many
times a second to insure a comfortable ride; although
this is fast for human standards, it is slow for real-time
standards where the speed of operation is near the
speed of the available implementation technology)

real-time systems must react punctual and accurate on
the input from the environment (a valid value on the
wrong moment is often more worse that no value at all)

the data in a real-time system has often a limited
period of validity (think of for instance a green traffic
light for an automated car control system)
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Characteristics

the observation of the environment by the real-time
system is always behind so that there is an
inconsistency between the perception and the real
state of that environment

a real-time system must be prepared for every possible
situation that can happen in the environment and must
be safe with respect to appearance of critical fault
situations

a real-time system must satisfy high reliability
requirements: a guaranteed MTBF (Mean Time
Between Failure) and MTTR (Mean Time To Repair),
for instance, telephone exchanges are considered not
to be out of order for more than 2 hours in 40 years.
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Time in Statecharts
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Time

The elementary unit of observation in a reactive
system is the event

The environment sends events to the system to trigger
computations, the system reacts to the environment by
sending, or generating, events.

Events are also means of communication between parts
of a system.
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Time (cont’d)

Because one wants to specify reactive systems at the
highest level of abstraction in a discrete fashion, events
are discrete signals, occurring at a point in time.

Events have no duration; they are generated from one
state to another. Hence, transitions have a discrete
uninterruptable nature and all time is spent in states.
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Reason

In a reason system new inputs may arrive at any moment.
Therefore the current state it is in should be always clear.
Since transitions have no duration, there are no “transient”
periods in between states.
Therefore, the reaction on a possible input is always well
defined.

Of course this is an abstraction from reality. (At
deep levels of electronic implementations, one
encounters levels where discrete reasoning makes
no sense anymore)

Statecharts is meant to be a high level specification
language, where this abstraction can be maintained and is
appropriate.
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Reaction Time

We know that transitions have no duration, but when do
they take place, relative to the trigger? And:

HOW LONG DOES IT TAKE THE SYSTEM TO COMPUTE A
REACTION UPON AN EXTERNAL EVENT?

For transformational systems this is easy — the only
important distinction is between finite and infinite
values (corresponding to a final state or no final state)

For reactive systems this is not enough:
We have to know when an output occurs relative to the
events in the input sequence (see Brock-Ackermann
paradox) � �
One has to determine the reaction time of a sequence.
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What’s the reaction time of a reactive systems upon an external
event in the high level Specification Language Statecharts?
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Possibility 1

Specify a concrete amount of time for each situation. This

forces us to quantify time right from the beginning. Clumsy,

and not appropriate at this stage of specification where one

is only interested in the relative order and coincidence of

events.
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Possibility 2

Fix reaction time between trigger a and corresponding
action a within e/a (the label of a transition) upon 1 time unit.
Doesn’t work: Upon refining question/answer to a
question/consult and a consult/answer transition, there’s a
change of time, which may have far reaching effects
(because of tm(n)-events, e.g.)

� �

A fixed execution time for syntactic entities (transitions, state-

ments, etc.) is not flexible enough.
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Possibility 3

Leave things open: say only that execution of a reaction
takes some positive amount of time, and see at a later
stage (closer to the actual implementation) how much time
things take.

Clumsy, introduces far too much nondeterminism.
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Solution

Summary : We want the execution time associated to
reactions to have following properties:

It should be accurate, but not depending on the
actual implementation.
It should be as short as possible, to avoid artificial
delays.
It should be abstract in the sense that the timing
behavior must be orthogonal to the functional
behavior.

� �

Only choice that meets all wishes is zero reaction time.
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Problems Disappear

As a result all objections raised w.r.t. the possibilities
mentioned on the previous page are met!

Now, for instance, upon refining transition
question/answer from previous page into two transitions,
the reaction time of this refinement is the same as that
of the original transition.

Objection 3 on the previous transparency is resolved,
too.

Finally, also objection 1 (on previous transparency) is
met, because

� � � � �

!
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Berry’s synchrony hypothesis

This choice, that the reaction time between a trigger and its
event is zero, is called Berry’s synchrony hypothesis.
Is this implementable? No, a real computation takes time.
But in actual implementation this means:

The reaction comes before the next input arrives,

or, so to say,
Reactions are not infinitely fast but fast enough.
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Example

See the following figure:

A consequence is that transition

�
� is taken!!
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Negations and paradoxes

Idea of immediate reaction works fine as long as
transitions only triggered by primitive events, or or
conjunctions and disjunctions of them.

However, one also needs negations of events to trigger a
transition. E.g.: to specify priority:
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Problem

What semantics to give to Statecharts in the next figure?
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Grandfather Paradoxon

If a is absent, i.e., �a holds as condition, transition
�

� is
taken, i.e., b is generated, and hence

�
� , i.e., b/a is taken,

generating a within the same time unit, i.e., in zero time,
hence transition

�
� should not be taken.

But that means that event b is not generated, and hence
event a is not generated, so transition

�
� should be taken,

etc.

� � PARADOXON!
This is called the “Grandfather paradox”.
It’s solution is to order event occurrences causally, with later
events not influencing earlier events:

� � � � � �

Note here: this causal order has nothing to do with
the passage of time; it merely refers to causal
chains within one time step.
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Solution

Introduce two levels of time

Macro steps, for counting time, (these are observable)
time steps, and

Micro steps, which describe the causal chain within
reactions.
Every macro-step is then divided in an arbitrary but
finite number of micro-steps.

This sequence of micro-steps has only an operational

meaning.
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The New Semantics

This leads to a semantics of the following form:
Micro-steps

expressing
causal order

Time, measured by Macro-steps,

where a macro-step is a sequence of
micro-steps which cannot be prolonged
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The New Semantics (cont’d)

Macro-steps are observable steps � � �
�

Each macro-step is a sequence of micro-steps, that
are ordered causally; one micro-step can never
influence previous micro-steps.

In Statecharts as implemented by Statemate causality
is trivially obtained because in Statemate events
generated in one step are only available in the next
step, and only for that one. I.e., there is no causality
within one step.
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Problems with New Semantics

The problem with macro-steps is that they lead to a globally
inconsistent semantics.

�
� � � �

�

�
� � � �

�

�
�

Here absence of triggers generates presence of triggers,

which violates their absence within the same step (not glob-
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Fundamental Question

Is a semantics for such languages possible which
satisfies all “reasonable” assumptions? I.e., which
is both good for program development and for
program composition?

The answer is NO.
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“Reasonable” Assumptions

Let’s list a couple of desirable properties of such a
semantics:

Responsiveness: Reactions are simultaneous with their
triggers — this facilitates refinement of transitions from
a high to a lower level.

Modularity: Modules can be composed on the basics of
their macro-steps, i.e., the external interface of a
(parallel) composition of modules is of the same nature
as their mutual interface w.r.t. each other. (This is
inspired by a paper by Pnueli and Shalev)
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Causality

Without a causal order of the micro-steps inside a
macro-step, charts s.a.:

would trigger each other, which makes no causal sense.
Such charts are excluded imposing causality.
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Impossibility Result

Modularity, causality, and responsiveness can be
mathematically expressed; the impossibility of all three
being satisfied simultaneously becomes a theorem, proved
in the paper by Huizing and Gerth.
However, also intuitively this is clear:

Causality and responsiveness leads to examples in
which both � and its absence � � occur within the same
macro-step � � no global consistency � � no
modularity

Modularity and responsiveness imply there exists no
satisfactory semantics for the example above. This
choice is made in the synchronous language
ESTEREL, in which examples as the one above are
excluded on syntactic grounds by a compiler.
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Compositional Semantics

This is a serious problem. As it turns out, the semantics
with macro-steps indicating passage of time, and refined
by causally ordered micro-steps is a basis for a
compositional semantics for Statecharts in which the
semantics of a construct is a function of the semantics of
its parts. But this semantics turns out to be too difficult to
handle for the engineers of I-Logix, and of Israeli Aircraft
Industries, its main customer for the Statemate system.

Hence looking for a “best” semantics makes a lot
of sense. What our theorem below says is that, in
a certain sense, there is no best semantics.
However, it does leave some room for the search
for ever better semantics!!
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Classification of possible semantics for
Statecharts
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Several Classes of Semantics

Next we list a few possible semantics for Statecharts, se-

mantics A – E, of which E is closest to the one actually im-

plemented in Statemate, and discuss the anomalies allowed

by them (including those of the implemented semantics of

Statecharts).
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Semantics A

Events generated as a reaction to some input can only be
sensed in the step following that input.
Anomaly: no simultaneity of action and reaction, i.e., no
responsiveness. In semantics A the trigger � � 


will not
occur:

This example makes clear that in semantics A the moment

of generation of an event is too important — a too detailed

analysis of charts is required for adopting it. Statemate Course, April 27, 2001 – p.54



Semantics B

In order to overcome the problem with semantics A,
absence of responsiveness, micro-steps are introduced,
with events sensed in the next micro-step.
Then, in the previous example the third transition is taken.
Consider now the trigger

� � � 


for the third transition; the
transition is taken, because in the second micro-step,
event � is not yet sensed. This example also works for
semantics A.
Disadvantage: Semantics B is too subtle to be of any
practical use; same objection as to semantics A.
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Semantics C

Requires global consistency of every micro-step. The
reaction of the system to an input should

not only be enabled by events generated in previous
micro-steps

but also by events generated in the full macro-step.

As a consequence, the

� � � 

transition is not taken.
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Semantics C (cont’d)

This example is excluded in semantics C, leads to contra-

diction. I.e., syntactical means must be found to exclude it,

as done in ESTEREL by a compiler.
Statemate Course, April 27, 2001 – p.57



Semantics C (cont’d)

This makes a lot of sense, as evidenced by the
considerable success of ESTEREL of Gérard Berry.

However, this semantics is not modular. This implies that a

modular development of the system is cumbersome, since

every developer has to know the detailed micro-behavior of

the other processes. Hence, this semantics is appropriate

for top-level guys only, and that’s what Gérard Berry’s crowd

consists of.
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Semantics D

All events generated during some macro-step considered
as if they were present right from the beginning of the
macro-step. Semantics D allows

to be taken: reactions may trigger themselves. I.e.,
semantics D is not causal.
Note: In semantics D, the external world does not generate
an � event!
Conclusion: This example should be rejected!
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Semantics E

Events are generated at the next step, but no input from
the environment is possible before the reaction of the
system has completely died out.

This semantics is heavily non-modular, since one
macro-step may contain several steps of the A
semantics. Events remain active only for the
duration of such a step, hence, in one macro-step
an event can be activated and deactivated several
times, thus leading to a much more complex
interface between subsystems, than between the
system and its environment.
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Semantics E (cont’d)

S1 S2 S3a/b b/c

Generation of event � leads the system eventually to state�
� .

S1 S2

a/b

b/a

In semantics E, as in the implemented semantics of State-

charts, this example leads to an infinite loop (the so-called:

“go repeat” mode): try it out yourself!
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Situation

No “best” semantics � � still room for better ones
The situation is summarized in the following figure,
showing how each semantics is an attempt to improve on
the other one:

A B C D

E

responsivenessmodularity

responsiveness modularity

causality
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Search for better Semantics

Several cleaner semantics have been proposed, notably by
Florence Maraninchi. She opts for semantics D, in which
both charts such as example C and D are excluded,
resulting in Argos semantics:

a/e e bhvr
handler

Generation of event � leads to exit transition � being taken.

This is called non-preemptive interrupts.
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Argos Semantics

The Argos semantics leads to a cleaner concept of
state-hierarchy in which inter-level transitions are not allowed.
Probably a too heavy investment in their “old” semantics,
manyear-wise, prevented I-Logix from adopting the cleaner
Argos semantics of Maraninchi in Statemate.

Huizing and Gerth propose a compositional
semantics in which the causal chains inside a
module are hidden from its external behavior. This
proposal has not yet caught on.
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Statecharts as Implemented

This leaves us with the semantics of Statecharts as it is
implemented in Statemate. Computing that semantics is a
fairly involved algorithm, only recently (1996) published in a
paper by David Harel and A. Naamad.

Operational semantics

We describe the contents of the system status, and the al-

gorithm for executing a step.
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Statecharts Status

a list of states in which the system currently resides;

a list of activities that are currently active;

current values of conditions and data-items;

a list of regular and derived events that were generated
internally in the previous step;

a list of timeout events and their time for occurrence;

a list of scheduled actions and their time for execution;

relevant information on the history of states.
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a list of regular and derived events that were generated
internally in the previous step;

a list of timeout events and their time for occurrence;

a list of scheduled actions and their time for execution;

relevant information on the history of states.

Statemate Course, April 27, 2001 – p.66



Input

The input to the algorithm consists of:

the current system status;

a set of external changes that occurred since the last
step;

the current time

The step execution algorithm works in three main phases.
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Step Algorithm: First Step

calculate the events derived from the external changes
and add them to the list of events;

perform the scheduled actions whose scheduled time
has been exceeded, and calculate their derived events;

update the occurrence time of timeout events if their
triggering events have occurred;

generate the timeout events whose occurrence time
has been exceeded;
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Step Algorithm: Second Step

evaluate the triggers of all relevant transition reactions;

prepare a list of all states that will be exited and
entered;

evaluate the triggers of all static reactions
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Step Algorithm: Third Step

update the history of states;

carry out all computations prescribed by the actions in
the list produced in the second phase;

carry out all updates called for by the actions

update the list of current states.
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Synchronous/Asynchronous Semantics

Synchronous Semantics: Environment interacts with the
system after each step and time advances. This is
conceptually quiet easy and appropriate for
synchronous hardware. But, the system’s reaction on
the external input has to be simple (compare with
semantics A).

Asynchronous Semantics: Synchrony Hypothesis: system
may react with a chain reaction. External input only in
stable states. Easier to model complex systems,
abstraction from real-time. But, the implementation has
to be shown to satisfy the assumptions of zero reaction
time.
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