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The STATEMATE Toolset

The notion of a reactive system and the language
Statecharts were introduced in the last session.
We explained the rationale behind the design
decisions of Statecharts in relation to the specific
nature of reactive systems.
This time, the role of models in a system
development life cycle is described. We introduce
three languages to characterize reactive systems
from different views. This results in a brief
description of the STATEMATE toolset

[HP98] Modeling Reactive Systems with Statecharts: The
STATEMATE Approach, D. Harel, M, Politi. McGraw-Hill,
1998.

Statemate Course, May 4, 2001 – p.2



Last Session
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Serial Addition: Mealy Machine

(1,1)−0

(0,0)−1

(0,1)−0
(1,0)−0
(1,1)−1

(0,0)−0
(1,0)−1
(0,1)−1
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Statecharts

Statecharts � Mealy Machines

depth

orthogonality

broadcast

data
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Time

The elementary unit of observation in a reactive
system is the event

The environment sends events to the system to trigger
computations, the system reacts to the environment by
sending, or generating, events.

Events are also means of communication between parts
of a system.
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Time (cont’d)

Because one wants to specify reactive systems at the
highest level of abstraction in a discrete fashion, events
are discrete signals, occurring at a point in time.

Events have no duration; they are generated from one
state to another. Hence, transitions have a discrete
uninterruptable nature and all time is spent in states.
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Reaction Time

We know that transitions have no duration, but when do
they take place, relative to the trigger? And:

HOW LONG DOES IT TAKE THE SYSTEM TO COMPUTE A
REACTION UPON AN EXTERNAL EVENT?

For transformational systems this is easy — the only
important distinction is between finite and infinite
values (corresponding to a final state or no final state)

For reactive systems this is not enough:
We have to know when an output occurs relative to the
events in the input sequence (see Brock-Ackermann
paradox) � �
One has to determine the reaction time of a sequence.
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Reaction Time

Summary : We want the execution time associated to
reactions to have following properties:

It should be accurate, but not depending on the
actual implementation.
It should be as short as possible, to avoid artificial
delays.
It should be abstract in the sense that the timing
behavior must be orthogonal to the functional
behavior.

� �

Only choice that meets all wishes is zero reaction time.
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Berry’s synchrony hypothesis

This choice, that the reaction time between a trigger and its
event is zero, is called Berry’s synchrony hypothesis.
Is this implementable? No, a real computation takes time.
But in actual implementation this means:

The reaction comes before the next input arrives,

or, so to say,
Reactions are not infinitely fast but fast enough.
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Grandfather Paradoxon

If a is absent, i.e., �a holds as condition, transition
��
� is

taken, i.e., b is generated, and hence

��
� , i.e., b/a is taken,

generating a within the same time unit, i.e., in zero time,
hence transition

�
� should not be taken.

But that means that event b is not generated, and hence
event a is not generated, so transition

�
� should be taken,

etc.
This is called the “Grandfather paradox”.
It’s solution is to order event occurrences causally, with later
events not influencing earlier events: � � � � � �

Note here: this causal order has nothing to do with
the passage of time; it merely refers to causal
chains within one time step.
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Solution

Introduce two levels of time

Macro steps, for counting time, (these are observable)
time steps, and

Micro steps, which describe the causal chain within
reactions.
Every macro-step is then divided in an arbitrary but
finite number of micro-steps.

This sequence of micro-steps has only an operational

meaning.
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The New Semantics

This leads to a semantics of the following form:
Micro-steps

expressing
causal order

Time, measured by Macro-steps,

where a macro-step is a sequence of
micro-steps which cannot be prolonged
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Problems with New Semantics

The problem with macro-steps is that they lead to a globally
inconsistent semantics.

�
� � � �� �
� � � �
�

��
�

Here absence of triggers generates presence of triggers,

which violates their absence within the same step.
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Systems Life Cycle
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Specification in a systems life cycle

Identify several phases in the development life cycle of
a system

Classic waterfall model: requirements analysis,
specification, design, implementation, testing, and
maintenance.

Other approaches center around prototyping,
incremental development, reusable software, or
automated synthesis.
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Requirements Analysis

Most proposals contain a requirements analysis
phase. Specification errors and misconceptions should
be discovered in that early phase.

Correcting errors in later stages is extremely
expensive.

Special languages are therefore used in the
requirements analysis phase to specify a model of the
system, and special techniques are used to analyze it
extensively.
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System’s life cycle
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System Model

A good model is important for all participants in the
system’s development.

Having a clear and executable model the functionality
and behavior can be approved before investigating
heavily in the implementation stages.

The specification team uses modeling as the main
medium for expressing ideas.
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Methodology

A methodology provides guidelines for performing the
processes that comprise the various phases.
Concentrating on the modeling and analysis phase, a
methodology consists of the following components:

The methodology’s underlying approach and the
concepts it uses.

The notation used, that is, the modeling languages
with their syntax and semantics.

The process prescribed by the methodology, that is,
which activities have to be carried out to apply the
methodology and in what order.

The computerized tools that can be used to help in the
process.
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Reactive systems

The Statecharts language is especially effective for
reactive systems.
A typical reactive system exhibits the following distinctive
characteristics:

It continuously interacts with its environment, using
inputs and outputs that are either continuous in time or
discrete.

It must be able to respond to interrupts, i.e.,
high-priority events.

Its operation and reaction often reflect stringent time
requirements.

It is very often based on interacting processes that
operate in parallel.
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Examples

On-line interactive systems: e.g., automatic teller machines,
flight reservation systems

Computer-embedded systems: avionics, automotive, and
telecommunication systems

Control systems: such as chemical and manufacturing
systems.
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The early warning system

A system model constitutes a tangible representation of
the system’s conceptual and physical properties and
serves as a vehicle for the specifier and designer to
capture their thoughts.
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Characteristics of models

Beside for communication, systems models should also be
used for inspection and analysis.

When the model reflects some preexisting descriptions,

such as requirements written in natural language, it is use-

ful to keep track of how the components of the developing

model are derived from the earlier descriptions.
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STATEMATE

The modeling languages used in STATEMATE have been
designed with several important properties in mind:

to be intuitive and clear

to be precise

to be comprehensive

to be fully executable
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How to achieve these properties?

To achieve clarity, elements of the model are
represented graphically wher ever possible.

For precision, all languages features have rigorous
mathematical semantics

Comprehension comes from the fact that the
languages have the full expressive power needed to
model all relevant issues, including the what, the when,
and the how.

For executability, the behavioral semantics is detailed
and rigorous enough to enable the model to be
executed (or be used to generate code).
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Modeling Views

Building a model can be considered as a transition from
ideas and informal descriptions to concrete descriptions
that use concepts and predefined terminology.

Here, the descriptions used to capture the system
specification are organized into three views: the
functional, the behavioral, and the structural
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Illustration
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The Three Views

Functional view : The functional view captures the “what”. It
describes the system’s functions, processes, or
objects, also called activities, thus pinning down its
capabilities. This view includes the inputs and outputs
of the activities.

Behavioral view : The behavioral view captures the “when”.
It describes the system’s behavior over time, including
the dynamics of activities, their control and timing
behavior, the states and modes of the system, and the
conditions and events that cause modes to change
and other occurrences to take place.

Structural view : The structural view captures the “how”. It
describes the subsystems, modules, or objects
constituting the real system and the communication
between them. Statemate Course, May 4, 2001 – p.29



Connection

While the two former views provide the conceptual
model of the system, the structural view is
considered to be its physical model.
The main connection between the conceptual and
physical models is captured by specifying the
modules of the structural view that are responsible
for implementing the activities in the functional
view.
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Modeling Heuristics

Modeling heuristics are guidelines for how the notation
should be used to model the system.

The mapping between the methodology’s concepts
and the elements allowed in the notation.

The type of decomposition to be used: e.g., function
based, object based, mode based, module based, or
scenario based.

The step-by-step order of the modeling process:
bottom-up or top-down
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The Modeling Languages

The three views of a system model are described in our
approach using three graphical languages.

Activity-charts for the functional view,

Statecharts for the behavioral view,

and Module-charts for the structural view.

Additional non-graphical information related to the
views themselves and their inter-connections is
provided in a Data Dictionary
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Illustration
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Activity-charts

Activity-charts can be viewed as multilevel data-flow
diagrams. They capture functions, or activities, as well as
data-stores, all organized into hierarchies and connected
via the information that flows between them.
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Non-graphical information

In addition to the graphical information, each element in
the described has an entry in the Data Dictionary, which
may contain non-graphical information about the element.
For example, the activity entry contains fields called
mini-spec and long description, in which it is possible to
provide formal and informal textual descriptions of the
activities workings.
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Statecharts

Statecharts constitute an extensive generalization of
state-transition diagrams. They allow for multilevel states
decomposed in an and/or fashion, and thus support
economical specification of concurrency and
encapsulation. They incorporate a broadcast
communication mechanism, timeout and delay operators
for specifying synchronization and timing information, and
a means for specifying transitions that depend on the
history of the system’s behavior.
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EWS-Statecharts
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Module-charts

A module-chart can also be regarded as a certain kind of
data-flow diagram or block diagram. Module-charts are
used to describe the modules that constitute the
implementation of the system, its division into hardware
and software blocks and their inner components, and the
communication between them.
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Relationship between the languages

The relationship between the concepts of the three views
are reflected in corresponding connections between the
three modeling languages.
Most of these connections are provided in the Data
Dictionary, and they tie the pieces together, thus yielding a
complete model of the system under development.
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Handling large-scale systems

The languages allow to split large hierarchical charts
into separate ones:

Also, coping with visibility and information hiding by
setting scoping rules of elements in the model.

Moreover, generic charts and user-defined types.
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The STATEMATE toolset

STATEMATE has been constructed to “understand” the model
and its dynamics. The user can then execute the
specification by emulating the environment of the system
under development and letting the model make dynamic
progress in response.
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Activity-Charts
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Describing the functional view of a system

Activity-charts are used to depict the functional
view of a system under development (SUD), “what
the SUD does”.
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System’s Specification

a hierarchy of functional components, called activities,

what kind of information is exchanged between these
activities and is manipulated by them,

how this information flows,

how information is stored, and

how activities are started and terminated, i.e., controlled, if
necessary, and whether activities are continuous, or
whether they stop by themselves.
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Hierarchical Data Flow Diagrams
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Functional decomposition of a System

The functional view of a system specifies the system’s
capabilities.
It does so in the context of the system’s environment, that
is, it defines the environment with which the system
interacts and the interface between the two:
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Structural View

This functional view does not address the physical and
implementation aspects of the system; the latter is done in
its structural view, i.e., its module-chart:
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Behavioral Aspects

Moreover it separates the dynamics and behavioral
aspects of the SUD from its functional description. The
former is done by its behavioral view, in its controlling
Statecharts:
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Example

The functional view tells whether a medical
diagnosis system can monitor a patient’s functions,
and, if so, where it gets its input data and which
functions have access to the output data.

The behavioral view tells under which conditions
monitoring is started, whether it can be carried out
parallel to temperature monitoring, and how the
flow of control of the process of monitoring
develops.

The structural view deals with the sensors,
processors, monitors, software modules and
hardware necessary to implement the monitoring
system

Statemate Course, May 4, 2001 – p.49



The three views
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Illustration
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Functional Decomposition

In the Statechart approach, the functionality of a system is

described by functional decomposition, by which a system is

viewed as a collection of interconnected functional compo-

nents, called activities, organized into a hierarchy.
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EWS ACTIVITIES

E.g., in the activity-chart EWS ACTIVITIES, the SET UP

components can be decomposed leading to a multi-level
decomposition of EWS ACTIVITIES:
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Functional Decomposition (cont’d)

Each of the activities may be decomposed into
subactivities repeatedly until the system is specified in
terms of basic activities.
There are specified using textual description (formal or
informal), or code in a programming language, inside
the Data Dictionary.

The intended meaning of the functional decomposition
is that the capabilities of the parent activity are distributed
between its subactivities.
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Functional Decomposition (cont’d)

The order in which these subactivities are performed,
and the conditions that cause their activation or
deactivation are not represented in the functional view
and are specified in the behavioral view, i.e., in the (one)
statechart associated with the parent activity-chart.

Activities can represent objects, processes, functions,
logical machines, or any other kind of functionally distinct
entity.

In the following sections we’ll confine ourselves to
function-based decomposition of an activity-chart. We
shall not discuss object-based decomposition (see
Section 2.1.3 of Harel & Politi)
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Function-based Decomposition

In function-based decomposition, the activities are
(possibly reactive) functions.
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Function-based Decomposition (cont’d)

Next we decompose this narrative to describe its
functionality:
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Function-based Decomposition (cont’d)

Thirdly, we identify the various functions that are described
by there requirements:
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Function-based Decomposition (cont’d)

Notice that this description also contains info about
handled data. An activity may transform its input into output
to be consumed by other functions, which are internal or
external to the system:
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System Context

One of the first decisions to be made when developing a

system involves its boundaries, or, context. I.e., one must

determine which entities are part of the environment of a

system, and how they communicate with the system. The

latter are called external activities of the system.
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EWS-Example

Notice that for the EWS one might have chosen for the
printer to be external, leading to printer as external activity.

Different occurrences of the same entity (here: operator)

denote the same entity; these are multiplicated of ease of

drawing. Statemate Course, May 4, 2001 – p.61



Decomposition process

The functional view is specified by Activity-charts,
together with a Data Dictionary that contains
additional information about the elements
appearing in the charts, e.g., about their basic
activities.
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Activities and their representation

We continue the functional decomposition of the EWS,
started with:

This activity chart contains one top-level box, representing

the top-level activity of the chart.
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Top-Down Development

On their turn, the activities appearing above can be
decomposed themselves, as SET UP:
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Some terminology

EWS ACTIVITIES is called top-level activity

EWS ACTIVITIES is also called parent activity of SET UP,
COMPARE, etc., which are called descendants of
EWS ACTIVITIES, as are the subactivities PROMPT RANGE

etc. of SET UP, who have SET UP and EWS ACTIVITIES as
ancestor.

Each activity has a corresponding item in the Data Dictio-

nary, which may contain additional information.
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Flow of Information between Activities
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Information Flow in EWS

OPERATOR and SENSOR are external activities, drawn
using dotted lines.

Different occurrences of OPERATOR refer to the same
entity.

Solid arrows denote data-flow-lines between activities.

Control of EWS ACTIVITIES is handled in its control activity
chart EWS CONTROL, a statechart (drawn using rounded
corners).

Dotted arrows denote control-flow-lines, carrying info or
signals used in making control decisions.
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Flow lines

A label on a flow line denotes either a single information
element that flows along the line, i.e., a data-item, condition,
or event or a group of such elements, as in, e.g.:
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Records

Such groups are called information-flow. Statemate Course, May 4, 2001 – p.69



Representation

A flow-line originates from its source activity, and leads
to its target activity:

An arrow can be connected to a non-basic box,
meaning it relates to all the subboxes within the box in
question, see above the data flow lines labeled V and Z.

Information flow SIGNAL in Figure 2.5 is declared in the
Data Dictionary as in Figure 3.2 and is used in data
processing.
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Information-flow in Data Dictionary

Information flow COMMANDS in the Data Dictionary declared
as below, is used to denote control issues.

The number of lines in an activity chart can be
reduced by grouping information elements into an
information-flow, used to label a common flow line,
e.g. COMMANDS consists of SET UP, EXECUTE, RESET.
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Flow Lines

Flow lines may represent, e.g.,
parameter passing to procedures
passing of values of global variables
messages transferred in distributed systems
queues between tasks in real-time applications
signals flowing along physical links in hardware
systems

Flows can be continuous or discrete in time.

Statemate Course, May 4, 2001 – p.72



Flowing Elements

Three types of information elements flow between
activities: events, conditions, data-items.

Their differences are in their domain of values and timing
characteristics:
Events are instantaneous signals used for

synchronization purposes, e.g., OUT OF RANGE in
Figure 2.5.

Conditions are persistent signals that are either true or
false, e.g., SENSOR CONNECTED in Figure 2.5.

Data-item are persistent and may hold values of various
types and structures, e.g., SIGNAL, a bit-array, or
LEGAL RANGE, a record with two fields of type real,
HIGH LIMIT and LOW LIMIT.
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Complex Information Structures

All three types of information elements can be arranged in
array and record structures:
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Data Stores

There are no restrictions on the time that data reside
on a flow line. Nevertheless it is often more natural to
incorporate an explicit data store in the chart:

A data item is defined in the Data Dictionary with the
same name as the data store. Any structure given to a
data item is inherited by the data store.
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The Behavioral Functionality of Activities

The behavior of subactivities of an activity chart is
described by its control activity, whose function is to
control their sibling activities (i.e., the other
subactivities in the chart).

Each activity may have at most one control activity.

The control activity, depicted as a rectangle with
rounded corners, cannot have subactivities.
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Control Activity

A control activity may explicitly start and stop its sibling
activities, i.e., EWS CONTROL controls SET UP, PROCESS SIGNAL,
and COMPARE:
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EWS-Activities
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EWS-Control
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Activities in the Data Dictionary

Every activity can be described more extensively in the
Data Dictionary using textual information.

Basic activities are described in the Data Dictionary by
executable textual descriptions, specifying patterns of
behavior.
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EWS-Example
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Connectors and Compound Flow-Lines

The data flow lines leaving activity COMPARE in Figure 2.5
can be drawn with a joint connector as below:
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Junction Connectors
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Diagram Connectors

Diagram connectors are used when the source of a flow line
is far from its target:
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