
Statemate Course

Kai Baukus

Statemate/SDL

W.-P. de Roever D. Hogrefe

K. Baukus H. Neukirchen

CAU Kiel MU Lübeck

Statemate Course, May 11, 2001 – p.1



Activity-Charts

Describing the functional view of a system:

Activity-charts are used to depict the functional
view of a system under development (SUD), “what
the SUD does”.

[HP98] Modeling Reactive Systems with Statecharts: The
STATEMATE Approach, D. Harel, M, Politi. McGraw-Hill,
1998.

Statemate Course, May 11, 2001 – p.2



Last Session

Statemate Course, May 11, 2001 – p.3



Specification in a systems life cycle

Identify several phases in the development life cycle of
a system

Classic waterfall model: requirements analysis,
specification, design, implementation, testing, and
maintenance.

Other approaches center around prototyping,
incremental development, reusable software, or
automated synthesis.

Statemate Course, May 11, 2001 – p.4



Requirements Analysis

Most proposals contain a requirements analysis
phase. Specification errors and misconceptions should
be discovered in that early phase.

Correcting errors in later stages is extremely
expensive.

Special languages are therefore used in the
requirements analysis phase to specify a model of the
system, and special techniques are used to analyze it
extensively.

Statemate Course, May 11, 2001 – p.5



System Model

A good model is important for all participants in the
system’s development.

Having a clear and executable model the functionality
and behavior can be approved before investigating
heavily in the implementation stages.

The specification team uses modeling as the main
medium for expressing ideas.

Statemate Course, May 11, 2001 – p.6



The early warning system

A system model constitutes a tangible representation of
the system’s conceptual and physical properties and
serves as a vehicle for the specifier and designer to
capture their thoughts.

Statemate Course, May 11, 2001 – p.7



STATEMATE

The modeling languages used in STATEMATE have been
designed with several important properties in mind:

to be intuitive and clear

to be precise

to be comprehensive

to be fully executable

Statemate Course, May 11, 2001 – p.8



How to achieve these properties?

To achieve clarity, elements of the model are
represented graphically wher ever possible.

For precision, all languages features have rigorous
mathematical semantics

Comprehension comes from the fact that the
languages have the full expressive power needed to
model all relevant issues, including the what, the when,
and the how.

For executability, the behavioral semantics is detailed
and rigorous enough to enable the model to be
executed (or be used to generate code).

Statemate Course, May 11, 2001 – p.9



Modeling Views

Building a model can be considered as a transition from
ideas and informal descriptions to concrete descriptions
that use concepts and predefined terminology.

Here, the descriptions used to capture the system
specification are organized into three views: the
functional, the behavioral, and the structural

Statemate Course, May 11, 2001 – p.10



The Three Views

Functional view : The functional view captures the “what”. It
describes the system’s functions, processes, or
objects, also called activities, thus pinning down its
capabilities. This view includes the inputs and outputs
of the activities.

Behavioral view : The behavioral view captures the “when”.
It describes the system’s behavior over time, including
the dynamics of activities, their control and timing
behavior, the states and modes of the system, and the
conditions and events that cause modes to change
and other occurrences to take place.

Structural view : The structural view captures the “how”. It
describes the subsystems, modules, or objects
constituting the real system and the communication
between them. Statemate Course, May 11, 2001 – p.11



The Modeling Languages

The three views of a system model are described in our
approach using three graphical languages.

Activity-charts for the functional view,

Statecharts for the behavioral view,

and Module-charts for the structural view.

Additional non-graphical information related to the
views themselves and their inter-connections is
provided in a Data Dictionary

Statemate Course, May 11, 2001 – p.12



Illustration

Statemate Course, May 11, 2001 – p.13



Activity-charts

Activity-charts can be viewed as multilevel data-flow
diagrams. They capture functions, or activities, as well as
data-stores, all organized into hierarchies and connected
via the information that flows between them.

Statemate Course, May 11, 2001 – p.14



The STATEMATE toolset

STATEMATE has been constructed to “understand” the model
and its dynamics. The user can then execute the
specification by emulating the environment of the system
under development and letting the model make dynamic
progress in response.

Statemate Course, May 11, 2001 – p.15



Configuration Management

Statemate Course, May 11, 2001 – p.16



Configuration managment

Basic idea of configuration management (CM) in the soft-

ware development process is to guarantee the integrity

(completeness and intactness) of the software product at

any moment of the development

Statemate Course, May 11, 2001 – p.17



CM (cont’d)

Aims of CM:

structure and discipline in the development process

reusability of software

result of CM is

better software quality and

increased efficiency of the software development

CM is a management task that includes

people responsible for it

CM strategy/methods, plans

support tools

Statemate Course, May 11, 2001 – p.18



Aspects of configuration management

Identification: The imposed structure of the product
provides access to parts of the product.

Control: Product changes are authorized by a formal
procedure that distinguishes different releases of the
same product and its parts. Consistent releases
constitute a baseline.

Documentation: of status (releases, baselines).

Verification: guarantees completeness and consistency

Construction: of the product from its constituents

process management: support the software life cycle.

teamwork: several teams/developers of one product

Statemate Course, May 11, 2001 – p.19



CM informally

programming-in-the-many: � potential for confusion. CM
is meant to decrease the confusion. CM must

identify,

organize, and

control

changes by different developers. The aim of CM is to in-

crease quality by avoiding errors.

Statemate Course, May 11, 2001 – p.20



Architecture of a CM system

repository: to provide consistency, releases and
baselines;

workareas: parallel development/test and parallel (sic!)
changes of the same parts of the software

Makefiles: construction and dependency checks

Statemate Course, May 11, 2001 – p.21



Tasks of a CM system

Typical CM activities from the viewpoint of a developer (=
user)

check out current product parts

build product from checked out parts (if available)

check in modifications

compare own version to one in the repository

update to actual status

change the structure of the product: add or remove
parts.

Statemate Course, May 11, 2001 – p.22



Activity-Charts

Statemate Course, May 11, 2001 – p.23



System’s Specification

a hierarchy of functional components, called activities,

what kind of information is exchanged between these
activities and is manipulated by them,

how this information flows,

how information is stored, and

how activities are started and terminated, i.e., controlled, if
necessary, and whether activities are continuous, or
whether they stop by themselves.

Statemate Course, May 11, 2001 – p.24



Hierarchical Data Flow Diagrams

Statemate Course, May 11, 2001 – p.25



Functional decomposition of a System

The functional view of a system specifies the system’s
capabilities.
It does so in the context of the system’s environment, that
is, it defines the environment with which the system
interacts and the interface between the two:

Statemate Course, May 11, 2001 – p.26



Structural View

This functional view does not address the physical and
implementation aspects of the system; the latter is done in
its structural view, i.e., its module-chart:

Statemate Course, May 11, 2001 – p.27



Behavioral Aspects

Moreover it separates the dynamics and behavioral
aspects of the SUD from its functional description. The
former is done by its behavioral view, in its controlling
Statecharts:

Statemate Course, May 11, 2001 – p.28



Example

The functional view tells whether a medical
diagnosis system can monitor a patient’s functions,
and, if so, where it gets its input data and which
functions have access to the output data.

The behavioral view tells under which conditions
monitoring is started, whether it can be carried out
parallel to temperature monitoring, and how the
flow of control of the process of monitoring
develops.

The structural view deals with the sensors,
processors, monitors, software modules and
hardware necessary to implement the monitoring
system

Statemate Course, May 11, 2001 – p.29



The three views

Statemate Course, May 11, 2001 – p.30



Illustration

Statemate Course, May 11, 2001 – p.31



Functional Decomposition

In the Statechart approach, the functionality of a system is

described by functional decomposition, by which a system is

viewed as a collection of interconnected functional compo-

nents, called activities, organized into a hierarchy.

Statemate Course, May 11, 2001 – p.32



EWS ACTIVITIES

E.g., in the activity-chart EWS ACTIVITIES, the SET UP

components can be decomposed leading to a multi-level
decomposition of EWS ACTIVITIES:

Statemate Course, May 11, 2001 – p.33



Functional Decomposition (cont’d)

Each of the activities may be decomposed into
subactivities repeatedly until the system is specified in
terms of basic activities.
There are specified using textual description (formal or
informal), or code in a programming language, inside
the Data Dictionary.

The intended meaning of the functional decomposition
is that the capabilities of the parent activity are distributed
between its subactivities.

Statemate Course, May 11, 2001 – p.34



Functional Decomposition (cont’d)

The order in which these subactivities are performed,
and the conditions that cause their activation or
deactivation are not represented in the functional view
and are specified in the behavioral view, i.e., in the (one)
statechart associated with the parent activity-chart.

Activities can represent objects, processes, functions,
logical machines, or any other kind of functionally distinct
entity.

In the following sections we’ll confine ourselves to
function-based decomposition of an activity-chart. We
shall not discuss object-based decomposition (see
Section 2.1.3 of Harel & Politi)

Statemate Course, May 11, 2001 – p.35



Function-based Decomposition

In function-based decomposition, the activities are
(possibly reactive) functions.

Statemate Course, May 11, 2001 – p.36



Function-based Decomposition (cont’d)

Next we decompose this narrative to describe its
functionality:

Statemate Course, May 11, 2001 – p.37



Function-based Decomposition (cont’d)

Thirdly, we identify the various functions that are described
by there requirements:

Statemate Course, May 11, 2001 – p.38



Function-based Decomposition (cont’d)

Notice that this description also contains info about
handled data. An activity may transform its input into output
to be consumed by other functions, which are internal or
external to the system:

Statemate Course, May 11, 2001 – p.39



System Context

One of the first decisions to be made when developing a

system involves its boundaries, or, context. I.e., one must

determine which entities are part of the environment of a

system, and how they communicate with the system. The

latter are called external activities of the system.

Statemate Course, May 11, 2001 – p.40



EWS-Example

Notice that for the EWS one might have chosen for the
printer to be external, leading to printer as external activity.

Different occurrences of the same entity (here: operator)

denote the same entity; these are multiplicated of ease of

drawing. Statemate Course, May 11, 2001 – p.41



Decomposition process

The functional view is specified by Activity-charts,
together with a Data Dictionary that contains
additional information about the elements
appearing in the charts, e.g., about their basic
activities.

Statemate Course, May 11, 2001 – p.42



Activities and their representation

We continue the functional decomposition of the EWS,
started with:

This activity chart contains one top-level box, representing

the top-level activity of the chart.

Statemate Course, May 11, 2001 – p.43



Top-Down Development

On their turn, the activities appearing above can be
decomposed themselves, as SET UP:

Statemate Course, May 11, 2001 – p.44



Some terminology

EWS ACTIVITIES is called top-level activity

EWS ACTIVITIES is also called parent activity of SET UP,
COMPARE, etc., which are called descendants of
EWS ACTIVITIES, as are the subactivities PROMPT RANGE

etc. of SET UP, who have SET UP and EWS ACTIVITIES as
ancestor.

Each activity has a corresponding item in the Data Dictio-

nary, which may contain additional information.

Statemate Course, May 11, 2001 – p.45



Flow of Information between Activities

Statemate Course, May 11, 2001 – p.46



Information Flow in EWS

OPERATOR and SENSOR are external activities, drawn
using dotted lines.

Different occurrences of OPERATOR refer to the same
entity.

Solid arrows denote data-flow-lines between activities.

Control of EWS ACTIVITIES is handled in its control activity
chart EWS CONTROL, a statechart (drawn using rounded
corners).

Dotted arrows denote control-flow-lines, carrying info or
signals used in making control decisions.

Statemate Course, May 11, 2001 – p.47



Flow lines

A label on a flow line denotes either a single information
element that flows along the line, i.e., a data-item, condition,
or event or a group of such elements, as in, e.g.:

Statemate Course, May 11, 2001 – p.48



Records

Such groups are called information-flow. Statemate Course, May 11, 2001 – p.49



Representation

A flow-line originates from its source activity, and leads
to its target activity:

An arrow can be connected to a non-basic box,
meaning it relates to all the subboxes within the box in
question, see above the data flow lines labeled V and Z.

Information flow SIGNAL in Figure 2.5 is declared in the
Data Dictionary as in Figure 3.2 and is used in data
processing.

Statemate Course, May 11, 2001 – p.50



Information-flow in Data Dictionary

Information flow COMMANDS in the Data Dictionary declared
as below, is used to denote control issues.

The number of lines in an activity chart can be
reduced by grouping information elements into an
information-flow, used to label a common flow line,
e.g. COMMANDS consists of SET UP, EXECUTE, RESET.

Statemate Course, May 11, 2001 – p.51



Flow Lines

Flow lines may represent, e.g.,
parameter passing to procedures
passing of values of global variables
messages transferred in distributed systems
queues between tasks in real-time applications
signals flowing along physical links in hardware
systems

Flows can be continuous or discrete in time.

Statemate Course, May 11, 2001 – p.52



Flowing Elements

Three types of information elements flow between
activities: events, conditions, data-items.

Their differences are in their domain of values and timing
characteristics:
Events are instantaneous signals used for

synchronization purposes, e.g., OUT OF RANGE in
Figure 2.5.

Conditions are persistent signals that are either true or
false, e.g., SENSOR CONNECTED in Figure 2.5.

Data-item are persistent and may hold values of various
types and structures, e.g., SIGNAL, a bit-array, or
LEGAL RANGE, a record with two fields of type real,
HIGH LIMIT and LOW LIMIT.

Statemate Course, May 11, 2001 – p.53



Complex Information Structures

All three types of information elements can be arranged in
array and record structures:

Statemate Course, May 11, 2001 – p.54



Data Stores

There are no restrictions on the time that data reside
on a flow line. Nevertheless it is often more natural to
incorporate an explicit data store in the chart:

A data item is defined in the Data Dictionary with the
same name as the data store. Any structure given to a
data item is inherited by the data store.

Statemate Course, May 11, 2001 – p.55



The Behavioral Functionality of Activities

The behavior of subactivities of an activity chart is
described by its control activity, whose function is to
control their sibling activities (i.e., the other
subactivities in the chart).

Each activity may have at most one control activity.

The control activity, depicted as a rectangle with
rounded corners, cannot have subactivities.

Statemate Course, May 11, 2001 – p.56



Control Activity

A control activity may explicitly start and stop its sibling
activities, i.e., EWS CONTROL controls SET UP, PROCESS SIGNAL,
and COMPARE:

Statemate Course, May 11, 2001 – p.57



EWS-Activities

Statemate Course, May 11, 2001 – p.58



EWS-Control

Statemate Course, May 11, 2001 – p.59



Activities in the Data Dictionary

Every activity can be described more extensively in the
Data Dictionary using textual information.

Basic activities are described in the Data Dictionary by
executable textual descriptions, specifying patterns of
behavior.

Statemate Course, May 11, 2001 – p.60



EWS-Example

Statemate Course, May 11, 2001 – p.61



Connectors and Compound Flow-Lines

The data flow lines leaving activity COMPARE in Figure 2.5
can be drawn with a joint connector as below:

Statemate Course, May 11, 2001 – p.62



Junction Connectors

Statemate Course, May 11, 2001 – p.63



Diagram Connectors

Diagram connectors are used when the source of a flow line
is far from its target:

Statemate Course, May 11, 2001 – p.64


	Activity-Charts
	Last Session
	Specification in a systems life cycle
	Requirements Analysis
	System Model
	The early warning system
	{sc Statemate}
	How to achieve these properties?
	Modeling Views
	The Three Views
	The Modeling Languages
	Illustration
	Activity-charts
	The {sc Statemate} toolset
	Configuration Management
	Configuration managment
	CM (cont'd)
	Aspects of configuration management
	CM informally
	Architecture of a CM system
	Tasks of a CM system
	Activity-Charts
	System's Specification
	Hierarchical Data Flow Diagrams
	Functional decomposition of a System
	Structural View
	Behavioral Aspects
	Example
	The three views
	Illustration
	Functional Decomposition
	{sc ews_activities}
	Functional Decomposition (cont'd)
	Functional Decomposition (cont'd)
	Function-based Decomposition
	Function-based Decomposition (cont'd)
	Function-based Decomposition (cont'd)
	Function-based Decomposition (cont'd)
	System Context
	EWS-Example
	Decomposition process
	Activities and their representation
	Top-Down Development
	Some terminology
	Flow of Information between Activities
	Information Flow in EWS
	Flow lines
	Records
	Representation
	Information-flow in Data Dictionary
	Flow Lines
	Flowing Elements
	Complex Information Structures
	Data Stores
	The Behavioral Functionality of Activities
	Control Activity
	EWS-Activities
	EWS-Control
	Activities in the Data Dictionary
	EWS-Example
	Connectors and Compound Flow-Lines
	Junction Connectors
	Diagram Connectors

