Statemate Course

Kai Baukus

Statemate/SDL
W.-P. de Roever D. Hogrefe

K. Baukus H. Neukirchen
CAU Kiel MU Lubeck

—

Statemate Course, May 11, 2001 — p.

I Activitﬁ-Charts

Describing the functional view of a system:

Activity-charts are used to depict the functional
view of a system under development (SUD), “what
the SUD does”.

[HP98] Modeling Reactive Systems with Statecharts: The
StaTemMATE Approach, D. Harel, M, Politi. McGraw-Hill,
1998.

—

Statemate Course, May 11, 2001 — p..

i

Last Session

—

Statemate Course, May 11, 2001 — p.!

I SEecification In a systems life cycle

I|dentify several phases in the development life cycle of
a system

® Classic waterfall model: requirements analysis,
specification, design, implementation, testing, and
maintenance.

Other approaches center around prototyping,
Incremental development, reusable software, or
automated synthesis.

—

Statemate Course, May 11, 2001 — p.-

I Reﬂuirements Analysis

#® Most proposals contain a requirements analysis
phase. Specification errors and misconceptions should
be discovered in that early phase.

#® Correcting errors in later stages is extremely
expensive.

#® Special languages are therefore used in the
requirements analysis phase to specify a model of the
system, and special techniques are used to analyze it
extensively.

—

Statemate Course, May 11, 2001 — p.!

I Sistem Model

#® A good model is important for all participants in the
system'’s development.

#® Having a clear and executable model the functionality
and behavior can be approved before investigating
heavily in the implementation stages.

#® The specification team uses modeling as the main
medium for expressing ideas.

—

Statemate Course, May 11, 2001 — p.|

I The earlﬁ warnin% system

A system model constitutes a tangible representation of
the system’s conceptual and physical properties and

serves as a vehicle for the specifier and designer to
capture their thoughts.

OFERATOR

commandm
{r & daca |
e

CPERATOR

prinmted reporcs
PREINTER

_—

BENBOR

Figura 1.1 The enrly warning svetem (EWS). |

Statemate Course, May 11, 2001 — p.

I STATEMATE

The modeling languages used in statemaTE have been
designed with several important properties in mind:

® to be intuitive and clear
#® to be precise

#® to be comprehensive
#® to be fully executable

—

Statemate Course, May 11, 2001 — p.:

I Howatesachleve these properties?

To achieve clarity, elements of the model are
represented graphically wher ever possible.

#® For precision, all languages features have rigorous
mathematical semantics

® Comprehension comes from the fact that the
languages have the full expressive power needed to
model all relevant issues, including the what, the when,
and the how.

#® For executability, the behavioral semantics is detailed
and rigorous enough to enable the model to be

executed (or be used to generate code).

Statemate Course, May 11, 2001 — p.!

I I\/Iodelinﬁ \/1ews

Building a model can be considered as a transition from
iIdeas and informal descriptions to concrete descriptions
that use concepts and predefined terminology.

Here, the descriptions used to capture the system
specification are organized into three views: the
functional, the behavioral, and the structural

—

Statemate Course, May 11, 2001 — p. 1(

I Lhellhree\ilews

Functional view : The functional view captures the “what”. It
describes the system’s functions, processes, or
objects, also called activities, thus pinning down its
capabilities. This view includes the inputs and outputs

of the activities.

Behavioral view . The behavioral view captures the “when”.
It describes the system’s behavior over time, including
the dynamics of activities, their control and timing
behavior, the states and modes of the system, and the
conditions and events that cause modes to change
and other occurrences to take place.

Structural view : The structural view captures the “how”. It

describes the subsystems, modules, or objects
constituting the real system and the communication

betwee n th e m . Statemate Course, May 11, 2001 — p.1:

I The Modelinﬂ Languages

The three views of a system model are described in our
approach using three graphical languages.

® Activity-charts for the functional view,
Statecharts for the behavioral view,
and Module-charts for the structural view.

Additional non-graphical information related to the
views themselves and their inter-connections Is
provided Iin a Data Dictionary

© o 0

—

Statemate Course, May 11, 2001 — p.1:

llustration

Activity-charts
! :
:I —u* -‘_"‘1-_,._‘_"- :
ki gt
- SR By Statecharts
-' iy ': + 1 E ﬁﬁﬁﬁﬁ e
et P
" o %,
- fis 4 ' :
52

Module-charts i na :
JJDescription:
5 |
!
K 'Tl l |-—.] Module:
5 199 acription:

Figure 1.3 The modeling languages.

Statemate Course, May 11, 2001 — p.1:

I Activitﬁ-charts

Activity-charts can be viewed as multilevel data-flow
diagrams. They capture functions, or activities, as well as
data-stores, all organized into hierarchies and connected
via the information that flows between them.

EW5_ACTIVITIES
EL
KEY ENSOR_CONNECTED Ay
ERESSING " e e R EWE cmnm} -} OPERATOR
e - =
| I el COMMANDS T
OUT_OF RANGE
RARNGE Ly
—— LIMITS -
: : DISPLAY HOTIFICTION
T 5] FAULT l
' SET_UP pi TRGAL, ... ' e
i B 1 H H
OUT_OF_RANGE_DATh i
PROCESS_ | — | COMPARE PRINT T
SIGHAL SAMFPLE FPAULT FAULT_ REFORT
-

SIGHNAL

SENSOR ; |
R |
Figure 1.4 An activity-chart.

Statemate Course, May 11, 2001 — p.1-

I J heSianemaic toolset

STaTEMATE has been constructed to “understand” the model
and its dynamics. The user can then execute the

specification by emulating the environment of the system
under development and letting the model make dynamic
progress in response.

Configuration - STATEMATE Extraction
Management — Model Functions

Y

ﬁ
: Code Synthesis

: ac.mmgvm

)l Documentation

—

Statemate Course, May 11, 2001 — p.1!

Figure 1.11 The STATEMATE toolset.

Configuration Management

—

Statemate Course, May 11, 2001 — p. 1

I Confiﬂuration managment

Basic idea of configuration management (CM) in the soft-
ware development process is to guarantee the integrity
(completeness and intactness) of the software product at

any moment of the development

—

Statemate Course, May 11, 2001 — p.1

I CM ﬁcont’d‘

Aims of CM:
#® structure and discipline in the development process

#® reusabllity of software
result of CM is

® Dbetter software quality and
® increased efficiency of the software development

CM is a management task that includes
® people responsible for it
® CM strategy/methods, plans

& support tools |

Statemate Course, May 11, 2001 — p. 1

I AsEects of confi%uration management

© o o o ©

|dentification: The imposed structure of the product
provides access to parts of the product.

Control: Product changes are authorized by a formal
procedure that distinguishes different releases of the
same product and its parts. Consistent releases
constitute a baseline.

Documentation: of status (releases, baselines).
Verification: guarantees completeness and consistency
Construction: of the product from its constituents
process management. support the software life cycle.

teamwork: several teams/developers of one product |

Statemate Course, May 11, 2001 — p. 1!

I CM informalli

programming-in-the-many: = potential for confusion. CM
IS meant to decrease the confusion. CM must

identify,
#® organize, and
& control

changes by different developers. The aim of CM is to In-

crease guality by avoiding errors.

—

Statemate Course, May 11, 2001 — p.2

I Architeetire of a CM system

® repository: to provide consistency, releases and
baselines;

#® workareas: parallel development/test and parallel (sic!)
changes of the same parts of the software

» Makefiles: construction and dependency checks

—

Statemate Course, May 11, 2001 — p.2.

I Tasks of a CM sistem

Typical CM activities from the viewpoint of a developer (=
user)

® check out current product parts

build product from checked out parts (if available)
check in modifications

compare own version to one in the repository
update to actual status

© o o o @

change the structure of the product: add or remove

parts.

Statemate Course, May 11, 2001 — p.2:

Activity-Charts

—

Statemate Course, May 11, 2001 — p.2

I Sistem’s Sﬁecification

| I

© o 0

a hierarchy of functional components, called activities,

what kind of information is exchanged between these
activities and is manipulated by them,

now this information flows,
now information is stored, and

NOW activities are started and terminated, 1.€., controlled, If
necessary, and whether activities are continuous, or
whether they stop by themselves.

—

Statemate Course, May 11, 2001 — p.2

Hieranehical Data Flow Diagrams

EWS_ACTIVITIES

KEY SENSOR_CONNECTED e B
ENSRINC ol ger. T ’[;,’.5 ,;mng‘ ~]-—-.i OPERATOR
bs R— iy
| Rl COMMANDS - '
E RANGE OUT_OF RANGE
OPERATOR | - 1 ryMITS ALARM.,
: g, NOTIFICTION
i E!T “P |d; LEGM'_ ! !"“'_"-""'""'""'E
ET UP MSGS] p— 1 i i :
st i RANGE | ! OPERATOR |
‘ QUT_OF_RANGE_DATH | “j
PROCESS —p{ COMPARE T
SIGNAL SAMPLE FAULT REPORT
‘ o=
SIGNAL
| SENSOR |

Figure 1.4 An activitv-chart.

Statemate Course, May 11, 2001 — p.2!

I Funetienal.decomposition of a System

The functional view of a system specifies the system’s
capabilities.

It does so in the context of the system’s environment, that
IS, It defines the environment with which the system
Interacts and the interface between the two:

DPERATOE

OPEEATOR
EWS alarm

Figure 2.1. The context of the EWS |

Statemate Course, May 11, 2001 — p.2(

I Structural\dew

This functional view does not address the physical and
Implementation aspects of the system; the latter is done in
ItS structural view, I.e., ItS module-chart:

T P —

WS ALARM_SIGNAL
MONTTOR rsap—
user_INputT | C°U spE
KEY_PRESSING o
XEYBOARD SYSTEM l
| OPERATOR | MSGS_TO_DIFPLAY e 1O FRINT | OPERATOR
o e r SAMPLE l 'ﬁ-—'
BSCREEN EIGHAL PRINTER
DISPLAYED MSGS|| - PROCRSSOR FAULT_REPORT
SIGNAL
| SENSOR ;

Figure 1.7 A module-chart. |

Statemate Course, May 11, 2001 — p.2’

I Behavioral AsEects

Moreover it separates the dynamics and behavioral
aspects of the SUD from its functional description. The
former Is done by its behavioral view, in its controlling

Statecharts:
%ﬁs— [POWER_ON] (not POWER_ON] \

i1 ./ MONTTORING \
. / [in (DISCONNECTED)] \
d [in (CONNECTED) /[\
A EXECUTE ¥ - /OPERATE | .| coMPARING
1] [mazrove_ror_ ¢} SEATE
41 | comano -
14 RESET/HALT
] T OUT_OF RANGE
& | JHALT
H v
: sp (SET UP) e
: = nmmuma
| | | sErrINe_UP ALARM_TIME_PASSED
/st! tmxm_mmr\ B,

\._______.)

PROCESSING
Frcmzcm
' |SENSOR_CONNECTED] ';
DISCONNECTED st - A
7 g -+ OPERATING
\K [SENSOR_DISCONNECTED] \ S HALT
Statemate Course, May 11, 2001 — p.2

Figure 1.6 A statechart.

Example

The functional view tells whether a medical
diagnosis system can monitor a patient’s functions,
and, if so, where it gets its input data and which
functions have access to the output data.

The behavioral view tells under which conditions
monitoring Is started, whether it can be carried out

parallel to temperature monitoring, and how the
flow of control of the process of monitoring
develops.

The structural view deals with the sensors,
processors, monitors, software modules and

hardware necessary to implement the monitoring
system

Statemate Course, May 11, 2001 — p.2

unctional view

What
capabilities &

flow of information

behavioral view

When

control & timing

gtructural view

How

modules/objects &
communicacion links

Figure 1.2 The three specification views.

Statemate Course, May 11, 2001 — p.3(

llustration

Activity-charts
! :
:I —u* -‘_"‘1-_,._‘_"- :
ki gt
- SR By Statecharts
-' iy ': + 1 E ﬁﬁﬁﬁﬁ e
et P
" o %,
- fis 4 ' :
52

Module-charts i na :
JJDescription:
5 |
!
K 'Tl l |-—.] Module:
5 199 acription:

Figure 1.3 The modeling languages.

Statemate Course, May 11, 2001 — p.3:

I Funetienal. Decomposition

In the Statechart approach, the functionality of a system is

described by functional decomposition, by which a system is

viewed as a collection of interconnected functional compo-

nents, called activities, organized into a hierarchy.

—

Statemate Course, May 11, 2001 — p.3.

I EWS_ACTIVITIES

E.g., in the activity-chart ews_acTiviTiEs, the seT_up

components can be decomposed leading to a multi-level
decomposition of Ews_AcTIVITIES:

EWs AMCTIVITIES
SET Up
I'WHFI'_ VYALITARATE
ERMGE BANGCE
DISPLAY]]ISPL]IY_
SV _EPROR ERULT
PHROCES 5_ COMPREE pHHT_
SIGHAL ERULT

Statemate Course, May 11, 2001 — p.3:

I Funetienal. Decomposition (cont’d)

Each of the activities may be decomposed into
subactivities repeatedly until the system is specified in
terms of basic activities.

There are specified using textual description (formal or
Informal), or code in a programming language, inside
the Data Dictionary.

#® The intended meaning of the functional decomposition

IS that the capabilities of the parent activity are distributed
between its subactivities.

—

Statemate Course, May 11, 2001 — p.3:

I Funetienal. Decomposition (cont’d)

#® The order in which these subactivities are performed,
and the conditions that cause their activation or
deactivation are not represented in the functional view

and are specified in the behavioral view, I.e., in the (one)
statechart associated with the parent activity-chart.

#® Activities can represent objects, processes, functions,

logical machines, or any other kind of functionally distinct
entity.

In the following sections we’ll confine ourselves to
function-based decomposition Of an activity-chart. We
shall not discuss object-based decomposition (See

Section 2.1.3 of Harel & Politi)

Statemate Course, May 11, 2001 — p.3!

I Funetieirkased Decomposition

In function-based decomposition, the activities are
(possibly reactive) functions.

The EWS receives a signal from an external sensor. When
the sensor is connected, the EWS processes the signal and
checks if the resulting value is within a specified range. If
the value of the processed signal is out of range, the system
155ues a4 warning message on the operator display and
posts an alarm. If the operator does not respond to this
warning within a given time interval, the system prints a
fault message on a printing facility and stops monitoring
the signal. The range limits are set by the operator. The
system becomes ready to start monitoring the signal only
after the range limits are set. The limits can be re-defined
after an out-of-range situation has been detected, or after
the operator has deliberately stopped the monitoring, |

Statemate Course, May 11, 2001 — p.3!

I FunetieRskased Decomposition (cont’d)

Next we decompose this narrative to describe its
functionality:

The EWS receives a signal from an external sensor.

-

It samples and processes the zignal continuously, producing some
result.

= It checks whether the value of the result is within a specified range
that is set by the operator.

& [fthe value iz out of range, the system issues a warning message on
the operator display and posts an alarm.

@ If the operator does not respond within a given time interval, the
system prints a fault message on a printing facility and stops moni-

toring the signal.

Statemate Course, May 11, 2001 — p.3’

I FunetieRskased Decomposition (cont’d)

Thirdly, we identify the various functions that are described
by there requirements:

SET_UP: receives the range limits from the operator.

PROCESS_SIGMAL: reads the “raw” signal from the sensor and
performs some processing to yield a value that is to be
compared to the range limits.

COMPARE: compares the value of the processed signal with the
range limits.

DISPLAY FAULT:issucs a warning message on the operator
display and posts an alarm.

PRINT_FAULT: prints a fault message on the printing facility. |

Statemate Course, May 11, 2001 — p.3

I Funetierkased Decomposition (cont’d)

Notice that this description also contains info about
handled data. An activity may transform Its input into output
to be consumed by other functions, which are internal or

external to the system:

EWS_ACTIVITIES
KEY ENSOR_CONNECTEL, oy X
Ll R R R ’[zﬁs ,;mnmJ‘] OPERATOR
- s
| I el COMMANDS T
OUT_OF_RANGE
RANGE 2 0F A
ol R R T T =
o NOTIFICTION
" : : PAULT l
: SET_UP e ;
ET UP MSGS| =) 1 X i
SET_UP_| | RANGE _ | OPERATOR |
OUT_OF_RANGE_DATh i
PROCESS_ | — | COMPARE PRINT T
SIGHAL SAMFPLE FPAULT FAULT_ REFORT
%

SIGNAL
SENSOR |
ey

Figure 1.4 An activity-chart.

Statemate Course, May 11, 2001 — p.3t

I Sﬁstem Context

One of the first decisions to be made when developing a

system involves its boundaries, or, context. l.e., one must
determine which entities are part of the environment of a
system, and how they communicate with the system. The

latter are called external activities of the system.

—

Statemate Course, May 11, 2001 — p.4(

EWS=Example

EWS alarm

Figure 2.1. The context of the EWS

Notice that for the EWS one might have chosen for the
printer to be external, leading to printer as external activity.

Different occurrences of the same entity (here: operator)
denote the same entity; these are multiplicated of ease of |

drawina.

I DecomEosition Erocess

The functional view is specified by Activity-charts,
together with a Data Dictionary that contains
additional information about the elements

appearing in the charts, e.g., about their basic
activities.

—

Statemate Course, May 11, 2001 — p.4.

I Activities,.and their representation

We continue the functional decomposition of the EWS,
started with:

EWS_ACTIVITIES

SET TP DISPLAY
e FRULT

PBOCESS COMPRRE PEINT

SIGHRAL FRILT

Figure 2.2. First level decomposition of an activity

This activity chart contains one top-level box, representing

the top-level activity of the chart. |

Statemate Course, May 11, 2001 — p.4:

I TOE-Down Development

On their turn, the activities appearing above can be
decomposed themselves, as set_ur:

EWS ACTIVITIES
SET UP
PROMPT _ VALIDATE
BANGE BRANGE
DISPLAY DISPLAY
SU_EFBOR FAVLT
PROCESS COMPABE PRINT
SIGHAL EFAULT

Figura 2.3, Multl-level decomposition of an activity

—

Statemate Course, May 11, 2001 — p.4-

I Some terminology

® ews_AcTIVITIES IS called top-level activity

® ews_AcTIVITIES IS also called parent activity of seT_up,
coMPARE, etc., which are called descendants oOf
EWS_ACTIVITIES, aS are the subactivitieS PROMPT_RANGE
etc. of set_up, Who have set_up and ews_AcTIVITIES aS

ancestor.

Each activity has a corresponding item in the Data Dictio-

nary, which may contain additional information.

—

Statemate Course, May 11, 2001 — p.4!

tion between Activities

EWS_ACTIVITIES
COMMANDS
———————————————————— EVS_CONTEOL
: _ _ SEHSOR CRNECTED]
e %
1 1
\0UT_OF_DANGE
I 1 RANGE_ [\OUT_OF_ ALARM
L Mesh ot fLINTTS ~ : DISPLAY NOT IFICTION
] 1
 DPRNOR. 1 begT TP Mech ! s ! l
L e i 7 LEGAL_ ! oA -1
nawoe | [0UTOF_RANGE DATA) |opmmaroR
I
P COMPARE g f
STGNAL FAULT
T OUT_OF_RANGE_DATAL
ls::u::m
[e o o
! SENSOR

—e— e = = m om o o=

Figure 2.5. BWS_ACTIVITIES, its environment and
flow of information

Statemate Course, May 11, 2001 — p.4

I Informatien.tlow In EWS

® OPERATOR and sensor are external activities, drawn
using dotted lines.

® Different occurrences of oreraTOR refer to the same
entity.

® Solid arrows denote data-flow-lines between activities.

® Control of ews_acTiviTies 1S handled in its control activity
chart Ews_coNTRoL, a Statechart (drawn using rounded

corners).
#® Dotted arrows denote control-flow-lines, carrying info or

sighals used in making control decisions.

Statemate Course, May 11, 2001 — p.4’

A label on a flow line denotes either a single information
element that flows along the line, i.e., a data-item, condition,

or event or a group of such elements, as in, e.g.:

- —_— T

ata It:m SIGHJ;L

efined in Chart: Ews
ata-Type. bit-array 23 downto 0

hort Dcsmptiun SystEl 5]_tlp'l.lt,. comes from the sensor.

Figure 3.2. A bit- array data-item in the Data
Dictlonary

i

—

Statemate Course, May 11, 2001 — p.4

—
e -
= - = £ -

- T P TN S s BB]
S

Uszer-Defined Type: RANGE
Defined in Chart: EwWs
Data-Type: record
Field Name: LOW LIMIT
Field Name: HIGH LIMIT

Drata-Itetn TEGAL BRAHGE

Defined in Chart: EWs
Data-Type: RAHNGE

Data-Item: FAULT REPORT
Lefined in Chart FwWs
Data-Type: recoxrd

Field Mame: FAULT TIME
Field Mame: FAULT VALUE
Field NMamme: FAULT RANGE

Figure 3.5 User-defined type RANGE in the Data
Dictionary

Such groups are called information-flow.

Field Type: real
Field Type: real

Field Type: TIME
Field Type: raal
Field Type: RANGE

qqqqq

Statemate Course, May 11, 2001 — p.4

I Reﬁresentation

#® A flow-line originates from its source activity, and leads
to ItS target activity:

il ¥ Bl

| z
2 Az 4 B2
: .

w

An arrow can be connected to a non-basic box,
meaning it relates to all the subboxes within the box in
guestion, see above the data flow lines labeled v and z.

Information flow siecnAL In Figure 2.5 Is declared in the
Data Dictionary as in Figure 3.2 and is used in data
processing.

Statemate Course, May 11, 2001 — p.5(

I Infesmatien-flow in Data Dictionary

Information flow commanps In the Data Dictionary declared
as below, Is used to denote control issues.

-
- —
- 2= b

-
L -
mpr e T B PR e e R

s S i x
-‘-H *p"
L\'u

Information-Flow: COMMARDS
Defined in Chart; EARLY WARNING SYSTEM
Consists of: SET up e
EXECUTE
RESET

Figure 2.7, Information-flow COMMANDS in Data
Dictionary

The number of lines in an activity chart can be
reduced by grouping information elements into an
information-flow, used to label a common flow line,

€.J. COMMANDS CONSIStS Of SET_UP, EXECUTE, RESET. |

Statemate Course, May 11, 2001 — p.5:

I Flow Lines

Flow lines may represent, e.g.,

parameter passing to procedures

passing of values of global variables
messages transferred in distributed systems
gueues between tasks in real-time applications

signals flowing along physical links in hardware
systems

9

e o o ©

® Flows can be continuous or discrete in time.

—

Statemate Course, May 11, 2001 — p.5:

I Flowin(.:1 Elements

® Three types of information elements flow between
activities: events, conditions, data-items.

® Their differences are in their domain of values and timing
characteristics.
Events are instantaneous signals used for

synchronization purposes, e.g., OUT_OF_RANGE IN
Figure 2.5.

Conditions are persistent signals that are either true or
false, e.g., seNsor_conNNECTED In Figure 2.5.

Data-item are persistent and may hold values of various
types and structures, e.g., SIGNAL, a bit-array, Or
LEGAL_RANGE, a record With two fields of type real,
HIGH_LIMIT and LOW_LIMIT.

Statemate Course, May 11, 2001 — p.5:

lexclnformation Structures

All three types of information elements can be arranged in
array and record structures:

AR R

R araes
e S e
'*. 3-..-#%'. S i,

nl a2z

o, gk e o = % oA - - -

F.rgure 2 E Array cnmpnnants Iat}elllng flow-lines

Statemate Course, May 11, 2001 — p.5.

® There are no restrictions on the time that data reside
on a flow line. Nevertheless it is often more natural to
Incorporate an explicit data store in the chart:

#® A data item is defined in the Data Dictionary with the
same name as the data store. Any structure given to a
data item is inherited by the data store.

Statemate Course, May 11, 2001 — p.5!

I IheiBehawioral Functionality of Activities

#® The behavior of subactivities of an activity chart is
described by its control activity, whose function is to
control their sibling activities (i.e., the other
subactivities in the chart).

#® Each activity may have at most one control activity.

#® The control activity, depicted as a rectangle with
rounded corners, cannot have subactivities.

—

Statemate Course, May 11, 2001 — p.5f

I Control Activiti

A control activity may explicitly start and stop its sibling

activities, I1.e., EWS_CONTROL CONtrolS seT_up, PROCESS_SIGNAL,
and coMPARE:

EWS_ACTIVITIES

ZET WP EVWS CONTEIL DISPLAY
bR FAULT
SIGNAL FRAVLT

Figure 2.9, A control activity in an activity-chart

—

Statemate Course, May 11, 2001 — p.5

e ek R e e e e e e

|
EEY_
FRESSING |
o e o |
prlenaee 5 |
| CEERATOR I '

| | LIMITS - | GOISFPLAY E:-':IFIEATIGH |
at ur ~fie-| FADLT |
L —_—— aU_:-:sc;_u.'p_u:ﬂt.p.v | * |

DISPLAYED_ e T
SU_MS5 DISPLAY t | | owr_or_rasce_ndra | opemazem | |
EU_WSGS» | LEGAL_ | | el) |
; | |

I

FROCERS PEINT : l
szouALs | o R gy FAULT_REFORT |
4 :
JEI\J. L |
r - (e |
|
|

Activity-chart ENS_ACTIVITIES

Statemate Course, May 11, 2001 — p.5

ﬁ:j_mm'm:.
[POWER._OHN]

[not POWER_ON)

=

3

=

HALT

[READY] /OPERATE | [cmmunm:-] ‘-.
SET_UP o g S OUT_OF_PANGE
JHALT
¥
¥ PUVERE_PTY GENERATING
SETTING UP > ALAFM TIME_F i
5 /st! (PEINT FAULT)
PROCES STHG
fcmn
[SENSOR_CONNECTED] S
DISCONMECTED » [_:::umms}]
IDLE
tnot SERSOR_DISCORMECTED] | - /

N\

-/

Statechart EWS_CONTROL

Statemate Course, May 11, 2001 — p.5!

I Activties i the Data Dictionary

#® Every activity can be described more extensively in the
Data Dictionary using textual information.

® Basic activities are described in the Data Dictionary by
executable textual descriptions, specifying patterns of
behavior.

—

Statemate Course, May 11, 2001 — p.6

le

- -
- S !

* Activity: "PROCESS SIGNAL A e o
Defined in Chart; EWS_ACTIVITIES

Mini-spec: st JTICK; ;
TICK/ §SIGNAL VALUE:=SIGHAL:
SAMPLE : =COMPUTE (S5IGHNAL VALUE)

- - - -
o -
b
- ==

- -
- (o -
-~ =

S e mar™ -

(&) Event-dnven actrvity descnibed by a mmuru-spec

-
= -
J' - e e L] = b s

- %= om

" Activity VALIDATE m@n N Pl
Defined in Chart; SET - up

Mini-spec: i€ (LOW LIMIT < HIGH LIMIT)
then SUCCESS

Else FAILURE end if

- -
- e e = =

(b) Procedure-like actnr:l:gr described by a mini-spec

] -— -
- "y _ - - ES -
o S Sk L e -

Activity! COMPUTE IN RANGE i ol
Defined in Chart: COMPARE

Combmational Assignments:
IN RAHGE :=(SAMPLE>LEGAL. RAWGE.LOW LIMIT)
and (SMMPLE-LEGAL RANGE .HIGH:I.II!IIT}

S Dy i
e = \

------ 5 g i, e e g gl

L

(c) Data-driven activity descrnbed by cnmbmatmnaj aSEIENMENts

Figure 2.10. Data Dictionary entries describing
activities

Statemate Course, May 11, 2001 — p.6

I iﬁnnﬁiiiri ind Compound Flow-Lines

The data flow lines leaving activity compare in Figure 2.5
can be drawn with a joint connector as below:

s
DISPLAY

—{ ERAULT

e | o it et o) e

PRINT
FAULT

COMPRERE

-
______________ OUT OF RANGE DATA
Figure 11. A joint
connector (a fork

construct) i

—

Statemate Course, May 11, 2001 — p.6:

Bl

B2

k J

B3

Figure 2.12. Junctlen connectors =~
Wt o s TR R e ot SR R R R R Statemate Course, May 11, 2001 — p.6:

Diagram=.Connectors

Diagram connectors are used when the source of a flow line
Is far from its target:

Statemate Course, May 11, 2001 — p.6.

	Activity-Charts
	Last Session
	Specification in a systems life cycle
	Requirements Analysis
	System Model
	The early warning system
	{sc Statemate}
	How to achieve these properties?
	Modeling Views
	The Three Views
	The Modeling Languages
	Illustration
	Activity-charts
	The {sc Statemate} toolset
	Configuration Management
	Configuration managment
	CM (cont'd)
	Aspects of configuration management
	CM informally
	Architecture of a CM system
	Tasks of a CM system
	Activity-Charts
	System's Specification
	Hierarchical Data Flow Diagrams
	Functional decomposition of a System
	Structural View
	Behavioral Aspects
	Example
	The three views
	Illustration
	Functional Decomposition
	{sc ews_activities}
	Functional Decomposition (cont'd)
	Functional Decomposition (cont'd)
	Function-based Decomposition
	Function-based Decomposition (cont'd)
	Function-based Decomposition (cont'd)
	Function-based Decomposition (cont'd)
	System Context
	EWS-Example
	Decomposition process
	Activities and their representation
	Top-Down Development
	Some terminology
	Flow of Information between Activities
	Information Flow in EWS
	Flow lines
	Records
	Representation
	Information-flow in Data Dictionary
	Flow Lines
	Flowing Elements
	Complex Information Structures
	Data Stores
	The Behavioral Functionality of Activities
	Control Activity
	EWS-Activities
	EWS-Control
	Activities in the Data Dictionary
	EWS-Example
	Connectors and Compound Flow-Lines
	Junction Connectors
	Diagram Connectors

