
Statemate Course

Kai Baukus

Statemate/SDL

W.-P. de Roever D. Hogrefe

K. Baukus H. Neukirchen

CAU Kiel MU Lübeck

Statemate Course, May 18, 2001 – p.1



Activity-Charts and Statecharts

We discuss the actions used by a statechart to
control activities, and the events and conditions
used by it to sense their status.

[HP98] Modeling Reactive Systems with Statecharts: The
STATEMATE Approach, D. Harel, M, Politi. McGraw-Hill,
1998.

Statemate Course, May 18, 2001 – p.2



SCL programs

Statemate Course, May 18, 2001 – p.3



Skeleton

PROGRAM template;

CONSTANT

INTEGER step_counter := 0;

VARIABLE

INTEGER I := 45;

GLOBAL FILE f1;

INIT

END INIT;

SET BREAKPOINT [STEP] DO

END BREAKPOINT;

BEGIN

END;

END.

Statemate Course, May 18, 2001 – p.4



Declaration

-- CONSTANT

--%% To declare constants remove the comment sign in the previous line

--%% and declare their types as in the example in the next several lines.

--%% INTEGER step_counter := 0;

-- VARIABLE

--%% In this section you declare variables

--%% and their types as in the example in the next several lines.

--%% INTEGER I := 45;

--%% GLOBAL FILE f1;

Statemate Course, May 18, 2001 – p.5



Init

-- INIT

--%% In this section you place SCL statements to be executed once,

--%% each time the SCP is invoked.

-- END INIT;

INIT

time_to_change:=0;

open(fout,’/tmp/klimatest.log’, output);

write(fout,’Juhu’,’\n’)

END INIT;

Statemate Course, May 18, 2001 – p.6



Breakpoints

-- SET BREAKPOINT [STEP] DO

--%% In this section you put statements to be executed conditionally,

--%% at each simulation step. Duplicate this structure for each

--%% breakpoint definition.

--%% The condition STEP may be replaced by other condition/event expressions.

-- END BREAKPOINT;

set breakpoint neue_temperatur=> every 1 do

if (time_to_change <= cur_clock) then

temp:=rand_iuniform(-20,40);

write(’Temperature changed to ’,temp,’ at ’,cur_clock,’\n’);

time_to_change:=rand_iuniform(20,120)+cur_clock;

write(’Next change at ’,time_to_change,’\n’);

end if;

end breakpoint;

Statemate Course, May 18, 2001 – p.7



Body

-- BEGIN

--%% This is the Main Section, in which you place any SCL statements,

--%% including Go statements.

--%% These statements are executed sequentially.

-- END;

BEGIN

write(’Simulation started at: ’,cur_clock,’\n’);

while true loop

go step;

end loop;

Statemate Course, May 18, 2001 – p.8



Connections between Activity-Charts and
Statecharts

Statemate Course, May 18, 2001 – p.9



Dynamics in the Functional Decomposition

The activities participating in the functional decomposition

are not necessarily always active. In most kinds of systems

many of the activities have limited periods in which they are

active.

Statemate Course, May 18, 2001 – p.10



Examples

Some examples with different dynamics:

Procedures and functions in software programs start
when they are “called” and stop upon completion.

In multi-tasking or multi-processing systems, tasks are
invoked, do their job, and then are “killed” or “kill”
themselves.

Tasks with lower priority maybe interrupted or delayed
when a mission of higher priority arrives.

Interactive user interface is specified by “callback
functions”.

Statemate Course, May 18, 2001 – p.11



EWS Example

Statemate Course, May 18, 2001 – p.12



EWS Example (cont’d)

Dynamic and timing issues related to the activities in the
EWS example:

SET UP: activated by an explicit request of the operator,
terminates on its own.

COMPARE: starts with the EXECUTE command and stops with
the OUT OF RANGE event or the RESET command.

PROCESS SIGNAL: active when the COMPARE activity is
active.

DISPLAY FAULT: starts with the OUT OF RANGE event and is
stopped by the operator or after a predefined time
period.

PRINT FAULT: starts when the time period is passed and
terminates on its own.

Statemate Course, May 18, 2001 – p.13



Specifying the Dynamics

Obviously, merely listing the activities and their
connections, as is done in the functional view, is not
sufficient. We have to specify the dynamics of
controlling these activities, including the starting and
stopping of the subactivities of a non-basic activity.

The order in which the functional and behavioral views
and their connections are developed depends on the
nature of the system and on the specification
methodology.

Statemate Course, May 18, 2001 – p.14



Methodology

One can start by carrying out a functional
decomposition in activity-charts, and then add the
timing and other dynamic information in statecharts to
capture behavior.

In contrast, it is possible to start by using statecharts to
describe the system’s modes of operation and/or a
collection of use-cases, and then construct an
activity-chart from the activities performed in these
modes or scenarios.

Statemate Course, May 18, 2001 – p.15



Dynamics of Activities

In order to capture the dynamic behavior of non-basic
activities, our models employ control activities that are
associated with statecharts.

Statemate Course, May 18, 2001 – p.16



Statecharts in the functional view

When a non-basic activity that contains a control activity
starts its execution, the statechart associated with that
control activity becomes active, i.e., the system enters the
top level state of this statechart.

Statemate Course, May 18, 2001 – p.17



Control Activities

An activity with a reactive behavior pattern can be
described by a statechart even though it is not further
decomposed, so that it has no subactivities to control:

Statemate Course, May 18, 2001 – p.18



Control Activities (cont’d)

In some cases, the control behavior of an activity can be
captured by static reactions alone. Then, the controlling
statechart will consist of a single top-level state with the
static reactions given in its Data Dictionary entry.

Note: While the controlling statechart may consume and
produce external (control and data) information, its
interface does not appear in the statechart itself.

Statemate Course, May 18, 2001 – p.19



Termination Type of an Activity

We distinguish between activities that have self-termination
and those that have controlled-termination.

If a self-terminating activity has a control activity, then the

corresponding statechart must contain a termination connec-

tor.

Statemate Course, May 18, 2001 – p.20



Termination Connector

It is considered a final state; in particular it has no exits:

Upon entering this connector, the statechart “stops”, its
parent activity becomes deactivated, and the event
STOPPED(A) occurs.

When a non-basic activity stops, all its subactivities stop

immediately too.
Statemate Course, May 18, 2001 – p.21



Perpetual Activities

Sometimes there is no control activity needed:

All the subactivities start when the parent activity starts, and

they all stop when it stops.

Statemate Course, May 18, 2001 – p.22



Controlling the activities

How does the controlling statechart affect and sense the

status of its sibling activities?

Statemate Course, May 18, 2001 – p.23



Starting and Stopping Activities

The main mechanism that statecharts use to control
activities is the ability to start and stop them explicitly:

Statemate Course, May 18, 2001 – p.24



Examples

The control activity can control only its sibling activities.
Therefore, all actions that appear in its statchart may refer
to the sibling activities only.

Statemate Course, May 18, 2001 – p.25



Sensing the status of Activities

The statchart that describes a control activity is not limited
to causing activities to start and stop. It can also sense
whether such happenings have indeed taken place.
Specifically, the control activity can sense the events
STARTED(A) and STOPPED(A), and the condition ACTIVE(A).

The events and conditions in the describing statechart are
allowed to refer only to the sibling activities.

Statemate Course, May 18, 2001 – p.26



Activities in States

Often, we wish an activity A to start when a certain state S

is entered, and to stop when S is exited.

This can be specified by associating the action ST!(A) with

the entering event NS and SP!(A) with the exiting event XS in

the Data Dictionary.

Statemate Course, May 18, 2001 – p.27



Activities Throughout and Within States

Another more compact way is to specify that A is active
throughout S:

Another similar association is active within, which represents

a looser connection between an activity and a state.

Statemate Course, May 18, 2001 – p.28



Suspending and Resuming Activities

In addition to being able to start and stop activities, control
activities can cause an activity to “freeze”, or suspend, its
activation, and to later resume from where it stopped.
The relevant actions are SUSPEND(A) and RESUME(A).
Associated with these actions is the condition HANGING(A).

Statemate Course, May 18, 2001 – p.29



Suspension

Suspension may be used, for example, when we want to
interrupt the progress of an activity in favor of another
activity with higher priority:

The event E causes A to be suspended, while the preferred

activity B is carried out to completion, at which time A is

resumed. Statemate Course, May 18, 2001 – p.30



Comparison with History Entrance

When A is active throughout AC A the action is started again.

On the other hand, not stopping A would allow A to react on

events while B is active.

Statemate Course, May 18, 2001 – p.31



Specifying Behavior of Basic Activities

When carrying out functional decomposition, the lower
building blocks of the description are the basic activities,
those that require no further breakup.
Basic activities may have additional textual descriptions in
the Data Dictionary and are marked by a “ � ”.

Statemate Course, May 18, 2001 – p.32



Reactive Mini-Specs

In some cases the behavior of a basic activity can be
described by a collection of reactions, consisting of triggers
and their implied actions.
A reactive mini-spec is a list of reactions of the form
TRIGGER/ACTION, separated by a double semi-colon (;;).

Statemate Course, May 18, 2001 – p.33



Reactive Mini-Specs (cont’d)

A reactive mini-spec can be attached to both
self-terminating or controlled-terminating activities.

It is important to remember that states and activities
cannot be referred to in the mini-spec. All the activities and
states of the model are beyond the scope of an individual
mini-spec.

Statemate Course, May 18, 2001 – p.34



Procedure-Like Mini-Specs

Often an activity can be described as a sequence of
actions, possibly with conditional branching and iterations.
Such activities are called procedure-like. They are active for
a single step only. Therefore, such activities are always
self-terminating.

Statemate Course, May 18, 2001 – p.35



Corresponding Mini-Spec

Statemate Course, May 18, 2001 – p.36



Combinational Assignments

Another typical behavior for an activity is that of a
data-driven pattern. The activity is continuously ready to
perform some calculations whenever the input changes its
value.

Statemate Course, May 18, 2001 – p.37



Communication between Activities

Specifying the communication between activities
consists of the what and the when, just like for
other parts of the specification.
The what is described by the flow-lines in the
activity-charts and relevant parts of the Data
Dictionary. The when is to be specified by the
behavioral parts of the model, i.e., the statecharts
and mini-specs.

Statemate Course, May 18, 2001 – p.38



Communication and Synchronization Issues

Functional components in systems communicate
between themselves in order to pass along
information and to help synchronize their
processing. A number of attributes characterize
the various communication mechanisms.

Statemate Course, May 18, 2001 – p.39



Attributes

Communication can be

instantaneous , meaning that it is lost when not
consumed immediately, or

persistent , meaning that it stays around until it gets
consumed.

synchronous , i.e., the sender waits for an
acknowledgment, or

asynchronous , i.e., there is no waiting on the part of
the sender

directly addressed , i.e., the target is specified, or sent
by

broadcasting

Statemate Course, May 18, 2001 – p.40



Controlling the Flow of Information

In the following figure X is specified to flow between
activities A and B:

Statemate Course, May 18, 2001 – p.41



Flow of Information

If X is an event we may have the following situation:

If X is a condition or data-item modified by A, B could sense
the value or the change of the value (X, TR(X), WR(X)).

Statemate Course, May 18, 2001 – p.42



Examples of Communication Control

Statemate Course, May 18, 2001 – p.43



Message Passing

Statemate Course, May 18, 2001 – p.44



Activities Communicating Through Queues

Queuing facilities for messages are virtually indispensable
in modeling multi-processing environments, and especially
multiple client-server systems.
We want to have:

ability to sent unlimited number of messages to the
same address, while the receiver is not always in a
position to accept them,

no message is consumed before one that was sent
earlier,

possibility for concurrently active components to write
messages to the same address at the same moment

possibility for concurrently active components to read
different messages to the same address at the same
moment

Statemate Course, May 18, 2001 – p.45



Queues and their operations

A queue is an ordered, unlimited collection of data-items,
all of the same data type. The queue is usually shared
among several activities, which can employ special actions
to add elements to the queue and read and remove
elements from it.

q put(Q,D) add the value of expression D to the queue

q urgent put(Q,D) add the value of expression D to the
head of the queue

q get(Q,D,S) extract the element at the head of Q and
place it in D

q peek(Q,D,S) same as above without removing the
element from Q

q flush(Q) clears Q totally
Statemate Course, May 18, 2001 – p.46



Combination with Data Stores

The following figure illustrates the order in which
operations on a queue are performed during a step:

Queues can be associated with data stores just like
data-items of other types can.

Statemate Course, May 18, 2001 – p.47



Example

Statemate Course, May 18, 2001 – p.48



Example

Statemate Course, May 18, 2001 – p.49



Conditions and Events Related to States

Statemate Course, May 18, 2001 – p.50



Condition Connector

Statemate Course, May 18, 2001 – p.51



Switch Connector

Statemate Course, May 18, 2001 – p.52



Junction Connector

Statemate Course, May 18, 2001 – p.53



Example

Statemate Course, May 18, 2001 – p.54



Diagram Connector

Statemate Course, May 18, 2001 – p.55



Transitions to and from And-States

Statemate Course, May 18, 2001 – p.56



Asymmetric Cases

Statemate Course, May 18, 2001 – p.57



Module-Charts

Statemate Course, May 18, 2001 – p.58



Statemate Course, May 18, 2001 – p.59



Structural Description: High-Level Design

Module-charts describe the structural view –
sometimes called the architectural view – of the
system under development. Module-charts are
typically used in the high-level design stage of the
project.

Statemate Course, May 18, 2001 – p.60



Structural View

The structural view captures the system’s high-level
design. A structural description of the system specifies the
components that implement the capabilities described by
the functional and behavioral views.
These components may be:

hardware,

software,

or even humans.

Statemate Course, May 18, 2001 – p.61



EWS Example

Statemate Course, May 18, 2001 – p.62



Connections to functional view

Sometimes There is a clear correspondence between the
top-level activities in the functional view and the top-level
subsystems in the structural view, e.g., SIGNAL PROCESSOR

implements the activity PROCESS SIGNAL.
In other cases the structural decomposition is quite
different from the functional decomposition. E.g., the CCU

subsystem carries out both the EWS CONTROL and COMPARE

activities, whereas the DISPLAY FAULT activity is divided into
subactivities that are distributed among the ALARM SYSTEM

and MONITOR subsystems.

Statemate Course, May 18, 2001 – p.63



Internal and External Modules

The structural view is represented by the language of
Module-charts.

There exist two types of internal modules:
execution modules

storage modules

And there exist external modules

Statemate Course, May 18, 2001 – p.64



Modules

Execution modules may be submodules of other
external modules only.

Storage modules may be submodules of other storage
modules or of execution modules.

External modules are always external to an execution
module or storage module, and there is no hierarchy of
external modules.

Statemate Course, May 18, 2001 – p.65



EWS-Example

The next figure shows the structural decomposition of the
EWS, including a storage module DISK, that stores the fault
messages:

Statemate Course, May 18, 2001 – p.66



Data Dictionary Entry

The Data Dictionary contains a special field, DESCRIBED BY

ACTIVITY-CHART, which is used to connect modules with their
functional description:

Statemate Course, May 18, 2001 – p.67



Communication Between Modules

As in Activity-charts we use labeled arrows between
modules to denote communication between them. They
are called flow-lines or m-flow-lines to emphasize that they
connect modules.

Here, USER INPUT contains the information-flow COMMANDS,
the data-item RANGE LIMITS and the condition
SENSOR CONNECTED.

Statemate Course, May 18, 2001 – p.68



Physical Links Between Modules

Arrows in a module-chart may also denote physical
communication links, or channels, between modules:

Statemate Course, May 18, 2001 – p.69



Connectors and Compound Flow-Lines

Connectors and compound flow-lines are allowed in
module-charts exactly as in activity-charts:

Statemate Course, May 18, 2001 – p.70



Connections Between the Functional and Structural Views

The functional view provides a decomposition of the
system under development into its functional
components, i.e., its capabilities and processes.

The structural view provides a decomposition of the
system into the actual subsystems that will be part of
the final system, and which implement its functionality.

Statemate Course, May 18, 2001 – p.71



Types of connections

There are three types of connections between the
functional and structural views:

1. describe the functionality of a module by an
activity-chart: Activity-chart Describing a Module

2. allocate specific activities in an activity-chart to be
implemented in a module: Activities Implemented by
Modules

3. map activities in the functional description of one
module to activities in that of some other module:
Activities Associated with a Module’s Activ ities

Statemate Course, May 18, 2001 – p.72



Conclusion

In conclusion, we may wish to attach functional
descriptions, i.e., activity-charts, to modules on different
levels of the structural decomposition:

Statemate Course, May 18, 2001 – p.73



Activity-chart Describing a Module

The activity-chart EWS ACTIVITIES

describes the functionality of the module EWS

Statemate Course, May 18, 2001 – p.74



This connection is specified in the Data Dictionary:

Notice that the connection is between an activity-chart and
a module!

Statemate Course, May 18, 2001 – p.75



Top-Down Approach

One may now want to specify an activity-chart CCU AC for
the module CCU:

Statemate Course, May 18, 2001 – p.76



Correspondence between views

There must be a correspondence between the functional
and structural decompositions of a module in terms of the
environment and the interface with it:

Statemate Course, May 18, 2001 – p.77



Since also the flow-lines have to be correct we have to
introduce an activity GET INPUT which will be implemented
by the MONITOR module:

Statemate Course, May 18, 2001 – p.78



Activities implemented by Modules

When the module described by the activity-chart is
eventually decomposed into submodules, we may be more
concrete and allocate the relevant activities and
data-stores to the submodules:

Statemate Course, May 18, 2001 – p.79



A single activity or data-store cannot be distributed among
several modules.
Therefore, one has to decompose such activities (or
data-stores) into subactivities that can each be allocated to
a single module:

Statemate Course, May 18, 2001 – p.80



Activities Associated with a Module’s Activities

On the one hand, there is the EWS ACTIVITIES describing the
functionality of the whole system. On the other hand, also
the submodules implement activities:

Statemate Course, May 18, 2001 – p.81



Then, one wishes to associate subactivities of
EWS ACTIVITIES with those implemented by a submodule:

Statemate Course, May 18, 2001 – p.82


	Activity-Charts and Statecharts
	SCL programs
	Skeleton
	Declaration
	Init
	Breakpoints
	Body
	Connections between Activity-Charts and Statecharts
	Dynamics in the Functional Decomposition
	Examples
	EWS Example
	EWS Example (cont'd)
	Specifying the Dynamics
	Methodology
	Dynamics of Activities
	Statecharts in the functional view
	Control Activities
	Control Activities (cont'd)
	Termination Type of an Activity
	Termination Connector
	Perpetual Activities
	Controlling the activities
	Starting and Stopping Activities
	Examples
	Sensing the status of Activities
	Activities in States
	Activities Throughout and Within States
	Suspending and Resuming Activities
	Suspension
	Comparison with History Entrance
	Specifying Behavior of Basic Activities
	Reactive Mini-Specs
	Reactive Mini-Specs (cont'd)
	Procedure-Like Mini-Specs
	Corresponding Mini-Spec
	Combinational Assignments
	Communication between Activities
	Communication and Synchronization Issues
	Attributes
	Controlling the Flow of Information
	Flow of Information
	Examples of Communication Control
	Message Passing
	Activities Communicating Through Queues
	Queues and their operations
	Combination with Data Stores
	Example
	Example
	Conditions and Events Related to States
	Condition Connector
	Switch Connector
	Junction Connector
	Example
	Diagram Connector
	Transitions to and from And-States
	Asymmetric Cases
	Module-Charts
	
	Structural Description: High-Level Design
	Structural View
	EWS Example
	Connections to functional view
	Internal and External Modules
	Modules
	EWS-Example
	Data Dictionary Entry
	Communication Between Modules
	Physical Links Between Modules
	Connectors and Compound Flow-Lines
	Connections Between the Functional and Structural Views
	Types of connections
	Conclusion
	Activity-chart Describing a Module
	
	Top-Down Approach
	Correspondence between views
	
	Activities implemented by Modules
	
	Activities Associated with a Module's Activities
	

