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I Activiti-Charts and Statecharts

We discuss the actions used by a statechart to
control activities, and the events and conditions
used by it to sense their status.

[HP98] Modeling Reactive Systems with Statecharts: The
StaTemMATE Approach, D. Harel, M, Politi. McGraw-Hill,
1998.
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SCL programs
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PROGRAM t enpl at e;

CONSTANT

| NTEGER step_counter := 0;
VARI ABLE

| NTEGER | : = 45;

GLOBAL FI LE f1;

I NI'T
END I NI T;

SET BREAKPO NT [ STEP] DO
END BREAKPO NT;

BEG N

END;
END.
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- - CONSTANT
--%% To declare constants renove the comment sign in the previous line

--%%0 and declare their types as in the exanple in the next several |ine
- - %0 | NTEGER step_counter := 0O;

-- VARI ABLE

--%0In this section you declare vari abl es

--%0 and their types as in the exanple in the next several |ines.

- - %% | NTEGER | : = 45;

- - %% GLOBAL FILE f1,
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-- INIT

--%%In this section you place SCL statenents to be executed once,
--%b each tine the SCP is invoked.

-- END INIT;

INIT

ti me_to_change: =0;

open(fout,’ /tnp/klimtest.log’ , output);
write(fout,’ Juhu',’\n")

END | NI T;
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Breakpoints

-- SET BREAKPQO NT [ STEP] DO

--%%In this section you put statenents to be executed conditionally,
--%0 at each sinmulation step. Duplicate this structure for each

- - %8 br eakpoi nt definition.

--%% The condition STEP nmay be replaced by other condition/event expres
-- END BREAKPQO NT;

set breakpoint neue_tenperatur=> every 1 do
if (tinme_to _change <= cur_clock) then
t enp: =rand_i uni f or n( - 20, 40) ;
write(’ Tenperature changed to ',tenp,’ at ',cur_clock,’\n);
time_to_change: =rand_i uni forn(20, 120) +cur _cl ock;
write(’ Next change at ',tine_to _change,’'\n’);
end if;
end breakpoi nt;
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-- BEG N
--%®0 This is the Main Section, in which you place any SCL statenents,

--%% i ncluding Go statenents.
--%% These statenents are executed sequentially.

- - END;
BEG N
wite(’Sinulation started at: ' ,cur_clock,’\n");
while true | oop
go step;
end | oop;
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Connections between Activity-Charts and
Statecharts

—
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I Dinamics ln the Functional Decomposition

The activities participating in the functional decomposition

are not necessarily always active. In most kinds of systems

many of the activities have limited periods in which they are

active.

—
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Examples

Some examples with different dynamics:

® Procedures and functions In software programs start
when they are “called” and stop upon completion.

® |n multi-tasking or multi-processing systems, tasks are
iInvoked, do their job, and then are “killed” or “kill”
themselves.

#® Tasks with lower priority maybe interrupted or delayed
when a mission of higher priority arrives.

® Interactive user interface IS specified by “callback

functions”.
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le

EWs ACTIVITIES
SET_“P DISPLAY
FRULT
PEOCESS COMPREE PEINT _
S IGNRL FRULT

Figure 2.2. First level decomposition of an activity
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I EWS Examﬁle ﬁcont’d)

Dynamic and timing issues related to the activities in the
EWS example:

SET_UP: activated by an explicit request of the operator,
terminates on its own.

COMPARE: starts with the execute command and stops with
the out_oF_RANGE event or the rReser command.

PROCESS_SIGNAL: active when the comparE activity Is
active.

DISPLAY_FAULT: starts with the ouTt_or_raNGE event and Is
stopped by the operator or after a predefined time
period.

PRINT_FAULT: starts when the time period is passed and
terminates on its own.
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I SﬁeCifiinﬂ the D‘namics

#® Obviously, merely listing the activities and their
connections, as is done in the functional view, is not
sufficient. We have to specify the dynamics of
controlling these activities, including the starting and
stopping of the subactivities of a non-basic activity.

#® The order in which the functional and behavioral views
and their connections are developed depends on the

nature of the system and on the specification
methodology.

—
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I Methodoloai

#® One can start by carrying out a functional
decomposition in activity-charts, and then add the
timing and other dynamic information in statecharts to
capture behavior.

#® In contrast, it is possible to start by using statecharts to
describe the system’s modes of operation and/or a
collection of use-cases, and then construct an
activity-chart from the activities performed in these
modes or scenarios.

—
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I Dinamics of Activities

In order to capture the dynamic behavior of non-basic
activities, our models employ control activities that are
associated with statecharts.

—
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1IN the functional view

When a non-basic activity that contains a control activity
starts its execution, the statechart associated with that
control activity becomes active, i.e., the system enters the
top level state of this statechart.

[(om_serocwem ) j

&
IE-u-Echarl: CNTEL SC

==}

Figure 7.1. Associating a statechart with a contral
activiby
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An activity with a reactive behavior pattern can be
described by a statechart even though it is not further
decomposed, so that it has no subactivities to control:

CLOCE IN 1 CLOCE OnIT
— EDPE_S5C J »

o

=5

lttata:hart. IPE _SC

./r DPE._SC
CLOCK_IN
EVEN CLOCK_IN/CLOCK OUT B |

Figura 7.2, A statechart describing a simple activity

—
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I ContnelsActivities (cont’d)

In some cases, the control behavior of an activity can be
captured by static reactions alone. Then, the controlling
statechart will consist of a single top-level state with the
static reactions given in its Data Dictionary entry.

Note: While the controlling statechart may consume and
produce external (control and data) information, its
Interface does not appear in the statechart itself.

—
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I Termination Tiﬁe of an Activity

We distinguish between activities that have self-termination
and those that have controlled-termination.

If a self-terminating activity has a control activity, then the
corresponding statechart must contain a termination connec-

tor.

—
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I Jlerminatien.connector

It is considered a final state; in particular it has no exits:

/ SET WP STETES \\
4 DATA ENTERED
WALT FOE_ =
RENGE_DETA

SUCCESS/WRIT

g

Figure 7.3. Termination connector in SET-UP's
statechart

Upon entering this connector, the statechart “stops”, its
parent activity becomes deactivated, and the event

STOPPED(A) OCCUIS.

When a non-basic activity stops, all its subactivities stop |
Immediately too.
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I PerEetual Activities

Sometimes there is no control activity needed:

DISPIAY FAVLT

DISPLAY FAULT PROINKCE
MESSRGE ALAEM SOUND

All the subactivities start when the parent activity starts, and

—
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I Controllinﬁ the activities

How does the controlling statechart affect and sense the

status of its sibling activities?

—
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I Startinﬂ ahd StOﬁping Activities

The main mechanism that statecharts use to control
activities is the ability to start and stop them explicitly:

Fon ALATM TIME PASSED/

COMMAND st | (PRINT_FAULT )

GENERATI NG

—
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Examples

[on]

NO &
St [ND_STGHAL)
[EIGHAL EXISTE] :
WALTING FOR_| EXECUTE /OPETATE
COMMRND =

__‘& | COMPAR TG
RESET/HRLT
SHET_UP| SET TP ! OUT_OF DANGE/HALT
COMPLET LAFM TIME PASSED/ b b L
r S st ! {PRINT FAULT) W
= RESET RLARM-
A i L
PFHOCES STHE
"f COMNMECTED 1\"
[ 2ENS0F, CONNECTED) | OPETATE
o ——
\ [SENS0R DISCONNECTED] 5 HALT /

Figure 7.6. States marked as having entering and
axiting reactions

The control activity can control only its sibling activities.
Therefore, all actions that appear in its statchart may refer

to the sibling activities only. |

Statemate Course, May 18, 2001 — p.2!



I Sensinﬁ the status of Activities

The statchart that describes a control activity is not limited
to causing activities to start and stop. It can also sense
whether such happenings have indeed taken place.
Specifically, the control activity can sense the events
STARTED(A) and stoppeD(A), and the condition AcTIvE(A).

Figure 7.7. An event signifying termination of an
activity

The events and conditions in the describing statechart are |
allowed to refer only to the sibling activities.
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Often, we wish an activity a to start when a certain state s
IS entered, and to stop when s is exited.

This can be specified by associating the action st!(A) with
the entering event ns and sp!(A) with the exiting event xs In

the Data Dictionary.

—

Statemate Course, May 18, 2001 — p.2’



I Activities Throui;hout and Within States

Another more compact way is to specify that a Is active
throughout s.

-
- b T "'\-\.‘_...-' 5y 4 =
-

State: COMPAPR.ING et
Defined in Chartt: EWS CONTROL

Arctivities in State:
COMPAPE (throughout)

State: OPERATINHG
Defined 1n Chart; EWS COHTROL

Activities 1n State:
PROCESE SIGHAL (throughout)

5 = e - Y e -
Figure 7.8. Activities active throughout states in tha
Crata Dictionary

.........................................

Statemate Course, May 18, 2001 — p.2



I SusEendinﬁ and Resuming Activities

In addition to being able to start and stop activities, control
activities can cause an activity to “freeze”, or suspend, Its
activation, and to later resume from where it stopped.

The relevant actions are suspenp(A) and RESUME(A).
Associated with these actions is the condition HANGING(A).

—
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I SusEension

Suspension may be used, for example, when we want to
interrupt the progress of an activity in favor of another
activity with higher priority:

Ed
#
|
i
5
i
/;n CONTRDL

.lfst! (a)
Essdl (k) zet | (B
| RC R i sp B /s | (A) I cE

Figure 7.10. Suspending and resuming activities

The event e causes A to be suspended, while the preferred

activity B is carried out to completion, at which time A is |

res u m ed . Statemate Course, May 18, 2001 — p.3!



I Comﬁarison with History Entrance

o i

,fsn: | (&)
Esf=t1(B)

\Bhor=tiy )

Figure 7.11. History antrance vs. resume activity =~

When a Is active throughout ac_a the action is started again.

On the other hand, not stopping A would allow A to react on

—
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I SEecifiinﬁ Behavior of Basic Activities

When carrying out functional decomposition, the lower
building blocks of the description are the basic activities,
those that require no further breakup.

Basic activities may have additional textual descriptions in
the Data Dictionary and are marked by a “>".

—
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I Reactive Mini-Sﬁecs

In some cases the behavior of a basic activity can be
described by a collection of reactions, consisting of triggers

and their implied actions.
A reactive mini-spec is a list of reactions of the form
TRIGGER/ACTION, Separated by a double semi-colon (;;).

o
ES — o

Activity. PROCESS SIGHAL i o 3
Defined in Chart: EWS ACTIVITIES
Termination Tvpe: Reactive Controlled
Mini-spec: st/ TICK : :
TICK/ SSIGHAL VALUE:=SIGHAL;
SAMPLE :=COMPUTE (55 IGHNATL. VALUE) :
sc! (TICK, SAMPLE INTERVAL)

Figure 7.12. A reactive mini-spec in the Data

Dictionary
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I Reactive Mini-Sﬁecs (cont’d)

A reactive mini-spec can be attached to both
self-terminating or controlled-terminating activities.

Activity’ PROCES S~ SIGHAL
Defined in Chart EWS ACTIVITIES
Termination Type: Reactive Controlled
Mini-spec: st fTICK; ;
TICE/ SSIGHAL VALUE:=5IGHAL;
if (SSIGHAL VALUE # 0) then
SAMPIE : =COMPUTE (55 IGNAT, VALUE) ;
sc| (TICK, SAMPLE INTERVAL)
else o
sp!
end if

Figure 7.13. The step action in a mini-spec

It is important to remember that states and activities
cannot be referred to in the mini-spec. All the activities and

states of the model are beyond the scope of an individual
mini-spec. |
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I Procedure-Like Mini-Specs

Often an activity can be described as a sequence of
actions, possibly with conditional branching and iterations.
Such activities are called procedure-like. They are active for
a single step only. Therefore, such activities are always
self-terminating.

SET_UP

()

RANGE LIMITS PEOMPT
» BANGE FATLURE LEGAL DANCE
SUCCEZZ I e ol
DISPLAY YALTIATE
SU_ERROR 5 o SET_UP_M3Cs
SET_UP_STATES
DATA ENTERED
ALIT FOR ez
EANGE DRTR>

SUCCESS/WERITE FANCGE

5 ERROR)
statechart

Figure 7.14. SET-UP activity and controlling

Statemate Course, May 18, 2001 — p.3!



Comrespending Mini-Spec

- = T il oo o g >

Activity, VALIDATE RANGE s
Defined in Chart: SET uUp

Termnation Type: Procedure-Like

Mini-spec: if LOW LIMIT < HIGH LIMIT then
SUCCESS T &

else
FATLUPE

end if

Figure 7.15. A procedure-like mini-spec in the Data
Dictionary
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I Combinational Assignments

Another typical behavior for an activity is that of a
data-driven pattern. The activity iIs continuously ready to

perform some calculations whenever the input changes its
value.

Activity: COMPUTE IH RANGE s
Defined 1n Chart; CoMP ARE
Termnation Type: Reactive Controlled

Combinational Assignments
IH_H_EHGE := (SAMPLE .~ I.EG]II._RMIGE . I.CIW_I.IHIT] and
(SAMPLE - I.EGBI._REHGE .HIEH_LII'ETJ

= s e

.........................................

Figure 7.76. Combinational assignments in the Data
Dictionary
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I Communieation between Activities

Specifying the communication between activities
consists of the what and the when, just like for
other parts of the specification.

The what is described by the flow-lines in the
activity-charts and relevant parts of the Data
Dictionary. The when is to be specified by the
behavioral parts of the model, i.e., the statecharts
and mini-specs.

—
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I Commurication and Synchronization Issues

Functional components in systems communicate
between themselves in order to pass along
Information and to help synchronize their
processing. A number of attributes characterize
the various communication mechanisms.

—
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I Attributes

Communication can be

#® instantaneous , meaning that it is lost when not
consumed immediately, or

persistent , meaning that it stays around until it gets
consumed.

® synchronous , I.e., the sender waits for an
acknowledgment, or

asynchronous , I.e., there is no waiting on the part of
the sender

® directly addressed |, I.e., the target is specified, or sent
by

broadcasting |
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I Controllinﬁ the Flow of Information

In the following figure x is specified to flow between
activities a and s:

F:gu.re 8.1. An information element fl-:-ﬁ:ing
betwean aclivilies

—
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I Flowsoefdatermation

If x Is an event we may have the following situation:

o
@
IIH
o)

I

w

N
@
lu

3]

e

M statechart H S By T statechart B SC

If x iIs a condition or data-item modified by A, 8 could sense
the value or the change of the value (x, TrR(x), wr(X)).
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les.of Communication Control

ateetels R T TR T
............. SRR -’“"ﬂ:-"-— OUT OF PANGE +

[EEHIPE_EI‘RL ]

CHECE

(2} The communicating activities

STICKE pg CcrRL
=p{ COMPUTE) fwy | { SAMPLE)

WALT FOR
tm{ TICK, N} / TICK MEXT
(b) The statechart of PEOCESS STGNAL
CMPE CTRL
wr { SAMPLE)
WALT FOR_ =pICHECK) /if (not IN BAWGE) "] CHECKING
s il then OUT_OF_BANGE end if
(c) The statechart of coyenes

Flgure 8.4. Communication between periodic
activities
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Message Passin

HE SERVER MEG. TYPE
CLIENT —.T {em-n_st ]
MEG.DATA.PL MSG.DATA . D2 7 MSG_DATL D3
v
0P1 0Pz or3

statecharet m___sl; 7]

[BE=-_T¥YPE=1]/=t! {DPL p{OP1 )

wE(MSG)

IDLE =I-ISG.TT?H'E].-"I‘:-I (OFE)

| m [MEG.TIPE=2]/st! (OP3]
(b)

.F-'.l,';\‘ure a5 'S-u-rﬁér-rééﬁc;n'd-lng 1o three service
reguests
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I Activties.Communicating Through Queues

Queuing facilities for messages are virtually indispensable
In modeling multi-processing environments, and especially
multiple client-server systems.

We want to have:

# ability to sent unlimited number of messages to the
same address, while the receiver is not always in a
position to accept them,

® no message Is consumed before one that was sent
earlier,

#® possibility for concurrently active components to write
messages to the same address at the same moment

#® possibility for concurrently active components to read
different messages to the same address at the same |
moment
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I %ueues and their operations

A queue Is an ordered, unlimited collection of data-items,
all of the same data type. The queue is usually shared
among several activities, which can employ special actions
to add elements to the queue and read and remove
elements from it.

#® g_put(Q,D) add the value of expression b to the queue

#® g.urgent_put(Q,D) add the value of expression b to the
head of the queue

® (.get(Q,D,S) extract the element at the head of ¢ and
place itin D

® (g_peek(Q,D,S) same as above without removing the
element from o

® q_flush(Q) clears q totally
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' ' ith Data Stores

The following figure illustrates the order in which
operations on a queue are performed during a step:

retrieve : :
q_length g _get Operations = g_put Operations

W
5,
B
g

Queues can be associated with data stores just like
data-items of other types can.

PHOINCER : 1 CONSIMER.
e S ] | !
puat: | (0, P_MSG) I . ! get | (Q,P_MSG)

—
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WS _1

PEINT FAULT

EWs 2

PRINT FRULT

PEINTER 1

| PEINTING Q

-

EWS_3

PEINT FRULT

N

WS 4

PEINT FRAULT

via a queue

.
\\.

PRINTEE 2
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Example

I I R I R R L T N g S —

| COMNSTRUCT_FAULT ME22AGCE;
| put ! (PRINTING_{, FAULT M3G)
I

e e e o o o o oEm R W RN BN BN OER O NN B B A R e o R e

(a) Mini-spec of PRINT FAULT activity

PETNTEE
PEINTING Q MEG
= {EI'BJJH'I'II_I:'I'H. I_N PEINT

"; PEINTER _CTEL

FFRAITHE wr (M3) /=t | (PRINT)

PEINTEE _ sp { PRINT ) PRINTING
QUEUE:-

| entering/get| (PRINTING Q,MSG);;
' wr (PRINTING 0} /get | (PRINTING Q,MSG)

(b} The description of the PEINTER

Figure 8.8. Writing and reading messages from a
qlJE-IJE Statemate Course, May 18, 2001 — p.4'



Events Related to States

ﬂJ
i
=)

_en( COMPARING)
” | > { COMTA TING) 'Emm r

.......................................
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transitions
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&

EL/A]

(a)

Dﬂ EL and B2 / Al;AZ

(b)

Figure 4.20. Two equivalent transition constructs
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nd from And-States

RL/AL C]w

e . ]

Figure 4.23. Triggers and actions on a fork construct

7 iy
LB e o oY
= P )

\@@4

Figure 4.24. A joint connector in a merge construct
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Figure 4.25, A transition from an and-stats
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Module-Charts

—
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I Structural Descriﬁtion: High-Level Design

Module-charts describe the structural view —
sometimes called the architectural view — of the
system under development. Module-charts are

typically used in the high-level design stage of the
project.

—
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I Structusal\d.ew

The structural view captures the system’s high-level
design. A structural description of the system specifies the
components that implement the capabilities described by

the functional and behavioral views.
These components may be:

® hardware,
® software,
® Or even humans.

—

Statemate Course, May 18, 2001 — p.6:



ccU (control and computation unit): The central CPU, within
which the main control of the system and the basic
computations take place.

SIGNAL_PROCESSOR: The subsystem that processes the signal
produced by the sensor and computes the value to be checked.
It consists of an analog-to-digital unit, and a high speed
processor that works at the required checking rate.

MOMITOR: The subsystem that communicates with the operator,
[t consists of a KEYBOARD for commands and data entry, and a
SCREEN for displaying messages.

ALARM SYSTEM: The subsystemn that produces the alarm, in
visual and /or audible fashion.

PRINTER: The subsystem that receives the messages (text and
fl‘.'}['ﬂ‘latti tl'l.g 'I'[':I ._':-:-1.1'1] I'_"ti 1 E-:| .a__'l_'l_lj_ p:[']_'l_'[tS 'I'J:'l_-l.'_']':|_'|_I Statemate Course, May 18, 2001 — p.6



I Conneectieons.to functional view

Sometimes There is a clear correspondence between the
top-level activities in the functional view and the top-level
subsystems in the structural view, e.g., SIGNAL_PROCESSOR
Implements the activity PROCESS_SIGNAL.

In other cases the structural decomposition is quite
different from the functional decomposition. E.g., the ccu
subsystem carries out both the ews_conTroL and compare
activities, whereas the bispLAY_FauLT activity is divided into
subactivities that are distributed among the ALARM_sYSTEM

and moNITor subsystems.
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ernal Modules

The structural view is represented by the language of
Module-charts.

® There exist two types of internal modules:
& execution modules
# storage modules

® And there exist external modules

—
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I Modules

#® Execution modules may be submodules of other
external modules only.

# Storage modules may be submodules of other storage
modules or of execution modules.

# External modules are always external to an execution
module or storage module, and there is no hierarchy of
external modules.

—
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le

The next figure shows the structural decomposition of the
Ews, Including a storage module bisk, that stores the fault

messages.:
S
MONTTOR. s —
1___1 Cou SYSTEM o l _____
L . "mmm !’ [ ’ EL‘IPER]!TEIR .
OPERRTOR. ‘ l ! I ] » PELNTER R
T SCREEN STGNAL : : .
1 PROCES SOR UL E
T
| SENSOR |
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Datasictionar

The Data Dictionary contains a special field, DescriBeDp BY
AcTIVITY-CHART, Which Is used to connect modules with their

functional description:

-
B L AFC . " e g e T B2 E - -

Module: STGHAT PROCESSOR o ) -

Defined in Chart: EWS

mynonyi FET548

Description

High speed FFT that processes the sensor’s signal.

-

Described by Activity-Chart

Atirtbutes:
Mame Value
IMPTEMEHTATION HAPDWARE

Long Descrniption: ;
This subsystem processes the analog signal coming |
from the sensor. It iz a standard FFT, that also |

contains an ASD unit.

Oy o =N OBy o
- - - =
'-—————-F-_F-\'-\_ __.‘--\.\_ —_ - = Ty -

. - . _T—
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icall Between Modules

As In Activity-charts we use labeled arrows between
modules to denote communication between them. They
are called flow-lines or m-flow-lines to emphasize that they

connect modules.

s ALATM SIGNAL
honrroR  UsER twpur ALREM
L_{HE - B L& M
KEY_PRESSING I CCu SYSTR |
||_ " KR BORED ry ¢
_________ | HSGS TO PRINT p------%-.
- i ———
OPERATOR OPE
' X MEGE TO|DISPLAY SAMDLE l TR
_________ ¥ IR S
T STIGHAL_ PEINTER T
SCREEN PEOCESSOR, FAITLT BEPORT
DISPLATED MSGS -
= ! SICMAL
| —
| gt e
SENSOR

__________

Figure 9.3, Flow of infermation among maodules

Here, user_INpuT cONtains the information-flow commanbs,

the data-item rance_LimiTs and the condition
SENSOR_CONNECTED. |
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I Phﬁiﬁﬁl Linki Between Modules

Arrows in a module-chart may also denote physical

communication links, or channels, between modules:
WS ooz R
| ONTTOR  TO0L #;Tnmm_ -
I__l_..____.: " [rreonz Ipdot T ;IIIIIII:H} s l_‘l
"T.-""I | o ; STEHAL_ PRINTEE _“-"_f-
DISPLAYED MSGS TSR FAULT REPORT

Information-Flow: WO05 B P
Defined in Chart: EWs
Descnption: The bus linking SP to the cou
Consists of

SAMPLE
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I %ﬁnnﬁﬁiﬁri ﬁnd Compound Flow-Lines

Connectors and compound flow-lines are allowed In
module-charts exactly as in activity-charts:

MSGS

Ll

DEVY=

CONTEDLLER

DEV1 DEWV2

Figure 9.6. Communication link to several devices

—

Statemate Course, May 18, 2001 — p.7



' tween the Functional and Structu

#® The functional view provides a decomposition of the
system under development into its functional
components, i.e., its capabilities and processes.

#® The structural view provides a decomposition of the
system into the actual subsystems that will be part of
the final system, and which implement its functionality.

—
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I Tiﬁes efsconnections

There are three types of connections between the
functional and structural views:

1. describe the functionality of a module by an
activity-chart: Activity-chart Describing a Module

2. allocate specific activities in an activity-chart to be

Implemented in a module: Activities Implemented by
Modules

3. map activities in the functional description of one
module to activities in that of some other module:

Activities Associated with a Module’s Activ ities
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In conclusion, we may wish to attach functional
descriptions, i.e., activity-charts, to modules on different
levels of the structural decomposition:

_'_'_'_,—I_\—\_\_\_\_\-\-
functional ™
descriprtion of )

_the CCU__.

—

EWS
cCCu | ALRABM
i SYSTEM
HONTTOR
PROCES 50F
£ ' 1
unctiona :
_ description Df}j segﬁfgﬁﬁlnf
T MONITOR il rhe FUE

Figure 10.1. Functional descriptions attached 1o
different modules
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I Activiti-chart Describing a Module

The activity-chart ews_AcTIvITIES

F¥S_ACTIVITIES
__________ COMMANDS
-*
: | BANGE_ e :UUT_UF_PJ.HGE ALATH
Fe=tmmmalea, |LOOTE = i DISPLAYT NOTIFICTION
1] ! b 1 e
T ] P , e et R i_
Lo LEGAL | oo o pamcE DATA| ' i
maNcE | _OF_ % |OPERATOR |
FRCHES, COMPRRE PR T
SIGNAL » FRAULT
SAMDLE FAULT REPORT
OUT_OF_RANGE DATA
STGHAL
P
! SENSOR .

——————————

Figure 2.5. EWS_ACTIVITIES, Its environment and
flow of information

describes the functionality of the module ews

S
MONTTOE ALABM T
M Cow SYSTEM

| | . OPEBRTOR |
1 ¥
: L., PEINTER | | ~---z ---
: OPERRTOR | l——l ! +
r i Ll
T SCEEEN STGHAL ' '
PEICES SOR » PISE :
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This connection is specified in the Data Dictionary:

= T -
- L . - W — = ™= —
- - W N o m == L' - e

Iodule: EWS -
Defined in Chart: EWS

Described by Activity-Chart: EWS ACTIVITIES

= T -
P L9 - . e

————— o — - = =t =

Notice that the connection is between an activity-chart and

a module!
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-

lecu |

wifie—

Fo-—-—

o o |

activity-chart CCU aC
_dézcribing the moduls CCU

-

r
i

=
.

-

One may now want to specify an activity-chart ccu_ac for
the module ccu:

Jackivicy=chare EV5_RCTIVITIES

i =,

-»l,_i describing the modules EWS

i

-

)

—1 [
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I Corresiondence between views

There must be a correspondence between the functional
and structural decompositions of a module in terms of the
environment and the interface with it:

module—charc ES

EW¥S

HONTTOR

EEYHIAERD

"EEU'

T |

STGNAL

PHICES SR

--------- 'RLARM
i ,-h...._._'.z b =
' WONTTOE ! COU RCTT | SYSTEM |
1 -‘_E | “IIII:I:ES b= e o
_______ I FI__- ————I
T (PRINTER
1
| STGMAL .
| PEOCESSOE :

_____
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Since also the flow-lines have to be correct we have to
Introduce an activity cet_input Which will be implemented
by the moniTor module:

KEY
PRESESING

EVS_RMCTIVITIES

SET UP_MSGS

SENSOR COMMECTED L ittt
| GET Poiminaiet sl iy "i:EI-E CONTEOL T4 T OPEERTOR
“* rNpuT ___':E“:E’-”_'-‘EI‘?....E - o
] [ = -
L ' QUT OF EANGE
DANGE ST UF DoNE T LLATM
e B HOTIFICTION
LIHITS ? i nIEPT-ﬁ.T_ ok
1 B | 1
' LEGAL_ 1  —*|FRULT l
SFT —— DENGE Bt
- | ' pUT_OF_RANGE_DATA | | OPERRTOR
1 i
’ I £
BOCESS | WCOMPREE PRINT_ |
= IEHAL SAIPLE FRULT FAULT REFORT
T —]
JSIGJJ.-:.L
= ====mmn
' SENSOR :
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I Activities imEIemented by Modules

When the module described by the activity-chart is

eventually decomposed into submodules, we may be more
concrete and allocate the relevant activities and
data-stores to the submodules:

-
- - — =
.\.J_J—'F ] -

Activity: PROCESS SIGHAL T
Defined in Chart: EWS ACTIVITIES '

Is Actvity:
Implemented by Module: SIGNAL PROCESSOR

, - ~ -——= I
-._,l - - = .I

- T -
— o o pm T R L IR —

'F-",-:J!Jré 10.6. An activity implemented by a module
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A single activity or data-store cannot be distributed among

several modules.

Therefore, one has to decompose such activities (or
data-stores) into subactivities that can each be allocated to

a single module:

SET UP actiwitsy

SET_UP
PEOMPT '
I

[E SET UP STHTES |

DISPLAY
5U_EBRROR

VALIIATE
RANGE

4

mnduleighart EMS.

| MONTTOR

.|Hmmm|
_--_I i
|

CCu
L |

SIGNAL
PROCESSDR

ETrS

ALRE ]
SYSTHL

PHEINTER

[ o)
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VIt lated with a Module’s Activities

On the one hand, there is the ews_acTiviTies describing the
functionality of the whole system. On the other hand, also
the submodules implement activities:

[;:uirr_'cgr—-:hut MONTTOR. AC
| MONTTOR
S e
| e PRESSTNG USER INPUT h,’
: . *| GET_INPUT - :
| \ OPEERTOR g wevlreale. 0 77T
I
1
I HYGS TO
1 : 3 pIspLRY | DHSPLAY  mommTm o
! " 1
"""" TISPLAYED WS SHER B
| s i
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Then, one wishes to associate subactivities of
Ews_ACTIVITIES With those iImplemented by a submodule:

=
. - - - —
By o= " - - - - - e -
s = - S

Achwity: DISPLAY SU ERROR e
Defined in Chart: SET up

Is Activity: DISPLAY MESSAGE
Implemented by Module: MONITOR
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