Statemate Course

Kai Baukus

Statemate/SDL
W.-P. de Roever D. Hogrefe

K. Baukus H. Neukirchen
CAU Kiel MU Lubeck

Statemate Course, June 1, 2001 — p.

I Communication between Activities and Module-C

We discuss the mechanismens used to
communicate bewteen actions.

As last language in StaTemATE We introduce
Module-Charts. Module-charts describe the
structural view — sometimes called the architectural
view — of the system under development.
Module-charts are typically used in the high-level
design stage of the project.

[HP98] Modeling Reactive Systems with Statecharts: The
StaTeMaTE Approach, D. Harel, M, Politi. McGraw-Hlill,

1998.

Statemate Course, June 1, 2001 — p..

I Communieation between Activities

Specifying the communication between activities
consists of the what and the when, just like for
other parts of the specification.

The what is described by the flow-lines in the
activity-charts and relevant parts of the Data
Dictionary. The when is to be specified by the
behavioral parts of the model, i.e., the statecharts
and mini-specs.

—

Statemate Course, June 1, 2001 — p..

I Commurication and Synchronization Issues

Functional components in systems communicate
between themselves in order to pass along
Information and to help synchronize their
processing. A number of attributes characterize
the various communication mechanisms.

—

Statemate Course, June 1, 2001 — p.

I Attributes

Communication can be

#® instantaneous , meaning that it is lost when not
consumed immediately, or

persistent , meaning that it stays around until it gets
consumed.

® synchronous , I.e., the sender waits for an
acknowledgment, or

asynchronous , I.e., there is no waiting on the part of
the sender

® directly addressed |, I.e., the target is specified, or sent
by

broadcasting |

Statemate Course, June 1, 2001 — p.!

I Controllinﬁ the Flow of Information

In the following figure x is specified to flow between
activities a and s:

F:gu.re 8.1. An information element fl-:-ﬁ:ing
betwean aclivilies

—

Statemate Course, June 1, 2001 — p.

I Flowsoefdatermation

If x Is an event we may have the following situation:

o
@
IIH
o)

I

w

N
@
lu

3]

e

M statechart H S By T statechart B SC

If x iIs a condition or data-item modified by A, 8 could sense
the value or the change of the value (x, TrR(x), wr(X)).

Statemate Course, June 1, 2001 — p.

les.of Communication Control

ateetels R T TR T
............. SRR -’“"ﬂ:-"-— OUT OF PANGE +

[EEHIPE_EI‘RL]

CHECE

(2} The communicating activities

STICKE pg CcrRL
=p{ COMPUTE) fwy | { SAMPLE)

WALT FOR
tm{ TICK, N} / TICK MEXT
(b) The statechart of PEOCESS STGNAL
CMPE CTRL
wr { SAMPLE)
WALT FOR_ =pICHECK) /if (not IN BAWGE) "] CHECKING
s il then OUT_OF_BANGE end if
(c) The statechart of coyenes

Flgure 8.4. Communication between periodic
activities

Statemate Course, June 1, 2001 — p.

Message Passin

HE SERVER MEG. TYPE
CLIENT —.T {em-n_st]
MEG.DATA.PL MSG.DATA . D2 7 MSG_DATL D3
v
0P1 0Pz or3

statecharet m___sl; 7]

[BE=-_T¥YPE=1]/=t! {DPL p{OP1)

wE(MSG)

IDLE =I-ISG.TT?H'E].-"I‘:-I (OFE)

| m [MEG.TIPE=2]/st! (OP3]
(b)

.F-'.l,';\‘ure a5 'S-u-rﬁér-rééﬁc;n'd-lng 1o three service
reguests

Statemate Course, June 1, 2001 — p.

I Activties.Communicating Through Queues

Queuing facilities for messages are virtually indispensable
In modeling multi-processing environments, and especially
multiple client-server systems.

We want to have:

ability to sent unlimited number of messages to the
same address, while the receiver is not always in a
position to accept them,

® no message Is consumed before one that was sent
earlier,

#® possibility for concurrently active components to write
messages to the same address at the same moment

#® possibility for concurrently active components to read
different messages to the same address at the same |
moment

Statemate Course, June 1, 2001 — p. 1!

I %ueues and their operations

A queue Is an ordered, unlimited collection of data-items,
all of the same data type. The queue is usually shared
among several activities, which can employ special actions
to add elements to the queue and read and remove
elements from it.

#® g_put(Q,D) add the value of expression b to the queue

#® g.urgent_put(Q,D) add the value of expression b to the
head of the queue

® (.get(Q,D,S) extract the element at the head of ¢ and
place itin D

® (g_peek(Q,D,S) same as above without removing the
element from o

® q_flush(Q) clears q totally

Statemate Course, June 1, 2001 — p.1:

' ' ith Data Stores

The following figure illustrates the order in which
operations on a queue are performed during a step:

retrieve : :
q_length g _get Operations = g_put Operations

W
5,
B
g

Queues can be associated with data stores just like
data-items of other types can.

PHOINCER : 1 CONSIMER.
e S] | !
puat: | (0, P_MSG) I . ! get | (Q,P_MSG)

B

Statemate Course, June 1, 2001 — p.1:

Figure 8.7. A queue assoclated with a data-store

&

WS _1

PEINT FAULT

EWs 2

PRINT FRULT

PEINTER 1

| PEINTING Q

-

EWS_3

PEINT FRULT

N

WS 4

PEINT FRAULT

via a queue

.
\\.

PRINTEE 2

Statemate Course, June 1, 2001 — p.1.

Example

I I R I R R L T N g S —

| COMNSTRUCT_FAULT ME22AGCE;
| put ! (PRINTING_{, FAULT M3G)
I

e e e o o o o oEm R W RN BN BN OER O NN B B A R e o R e

(a) Mini-spec of PRINT FAULT activity

PETNTEE
PEINTING Q MEG
= {EI'BJJH'I'II_I:'I'H. I_N PEINT

"; PEINTER _CTEL

FFRAITHE wr (M3) /=t | (PRINT)

PEINTEE _ sp { PRINT) PRINTING
QUEUE:-

| entering/get| (PRINTING Q,MSG);;
' wr (PRINTING 0} /get | (PRINTING Q,MSG)

(b} The description of the PEINTER

Figure 8.8. Writing and reading messages from a
qlJE-IJE Statemate Course, June 1, 2001 — p.1.

Events Related to States

ﬂJ
i
=)

_en(COMPARING)
” | > { COMTA TING) 'Emm r

.......................................

Statemate Course, June 1, 2001 — p.1!

transitions

Statemate Course, June 1, 2001 — p. 1

r'l-'l- g
T T gty

-F-F-'u! .F..:nr..n.'.h.-:?':'r.t-: .l'-r .
e

Statemate Course, June 1, 2001 — p.1

OUT OF RANGE

&

ELFAL EZfA7

(a)

Dﬂ EL and B2 / Al;AZ

(b)

Figure 4.20. Two equivalent transition constructs

Statemate Course, June 1, 2001 — p.1

" s P TR A AR R YRR O

Statemate Course, June 1, 2001 — p.2!

nd from And-States

RL/AL C]w

e .]

Figure 4.23. Triggers and actions on a fork construct

7 iy
LB e o oY
= P)

\@@4

Figure 4.24. A joint connector in a merge construct

Statemate Course, June 1, 2001 — p.2:

" ot

Dt o LB
\@/

Figure 4.25, A transition from an and-stats

@/\

_

Module-Charts

—

Statemate Course, June 1, 2001 — p.2:

Statemate Course, June 1, 2001 — p.2-

I Structural Descriﬁtion: High-Level Design

Module-charts describe the structural view —
sometimes called the architectural view — of the
system under development. Module-charts are

typically used in the high-level design stage of the
project.

—

Statemate Course, June 1, 2001 — p.2!

I Structusal\d.ew

The structural view captures the system’s high-level
design. A structural description of the system specifies the
components that implement the capabilities described by

the functional and behavioral views.
These components may be:

® hardware,
® software,
® Or even humans.

—

Statemate Course, June 1, 2001 — p.2!

ccU (control and computation unit): The central CPU, within
which the main control of the system and the basic
computations take place.

SIGNAL_PROCESSOR: The subsystem that processes the signal
produced by the sensor and computes the value to be checked.
It consists of an analog-to-digital unit, and a high speed
processor that works at the required checking rate.

MOMITOR: The subsystem that communicates with the operator,
[t consists of a KEYBOARD for commands and data entry, and a
SCREEN for displaying messages.

ALARM SYSTEM: The subsystemn that produces the alarm, in
visual and /or audible fashion.

PRINTER: The subsystem that receives the messages (text and
fﬂ[’ﬂ‘lﬁtti tl'l.g 11 ciru I'_"ti T E-:' .a__'l_'l_lj_ pr]_'l_'[tS ﬂ'[-l:']']_'ll Statemate Course, June 1, 2001 — p.2

I Conneectieons.to functional view

Sometimes There is a clear correspondence between the
top-level activities in the functional view and the top-level
subsystems in the structural view, e.g., SIGNAL_PROCESSOR
Implements the activity PROCESS_SIGNAL.

In other cases the structural decomposition is quite
different from the functional decomposition. E.g., the ccu
subsystem carries out both the ews_conTroL and compare
activities, whereas the bispLAY_FauLT activity is divided into
subactivities that are distributed among the ALARM_sYSTEM

and moNITor subsystems.

Statemate Course, June 1, 2001 — p.2:

ernal Modules

The structural view is represented by the language of
Module-charts.

® There exist two types of internal modules:
& execution modules
storage modules

® And there exist external modules

—

Statemate Course, June 1, 2001 — p.2!

I Modules

#® Execution modules may be submodules of other
external modules only.

Storage modules may be submodules of other storage
modules or of execution modules.

External modules are always external to an execution
module or storage module, and there is no hierarchy of
external modules.

—

Statemate Course, June 1, 2001 — p.3!

le

The next figure shows the structural decomposition of the
Ews, Including a storage module bisk, that stores the fault

messages.:
S
MONTTOR. s —
1___1 Cou SYSTEM o l _____
L . "mmm !’ [’ EL‘IPER]!TEIR .
OPERRTOR. ‘ l ! I] » PELNTER R
T SCREEN STGNAL : : .
1 PROCES SOR UL E
T
| SENSOR |

Statemate Course, June 1, 2001 — p.3:

Datasictionar

The Data Dictionary contains a special field, DescriBeDp BY
AcTIVITY-CHART, Which Is used to connect modules with their

functional description:

-
B L AFC . " e g e T B2 E - -

Module: STGHAT PROCESSOR o) -

Defined in Chart: EWS

mynonyi FET548

Description

High speed FFT that processes the sensor’s signal.

-

Described by Activity-Chart

Atirtbutes:
Mame Value
IMPTEMEHTATION HAPDWARE

Long Descrniption: ;
This subsystem processes the analog signal coming |
from the sensor. It iz a standard FFT, that also |

contains an ASD unit.

Oy o =N OBy o
- - - =
'-—————-F-_F-\'-_ __.‘--\._ —_ - = Ty -

. - . _T—

Statemate CgLrse, June 1, 2001 - p.3:

icall Between Modules

As In Activity-charts we use labeled arrows between
modules to denote communication between them. They
are called flow-lines or m-flow-lines to emphasize that they

connect modules.

s ALATM SIGNAL
honrroR UsER twpur ALREM
L_{HE - B L& M
KEY_PRESSING I CCu SYSTR |
||_ " KR BORED ry ¢
_________ | HSGS TO PRINT p------%-.
- i ———
OPERATOR OPE
' X MEGE TO|DISPLAY SAMDLE l TR
_________ ¥ IR S
T STIGHAL_ PEINTER T
SCREEN PEOCESSOR, FAITLT BEPORT
DISPLATED MSGS -
= ! SICMAL
| —
| gt e
SENSOR

Figure 9.3, Flow of infermation among maodules

Here, user_INpuT cONtains the information-flow commanbs,

the data-item rance_LimiTs and the condition
SENSOR_CONNECTED. |

Statemate Course, June 1, 2001 — p.3:

I Phﬁiﬁﬁl Linki Between Modules

Arrows in a module-chart may also denote physical

communication links, or channels, between modules:
WS ooz R
| ONTTOR TO0L #;Tnmm_ -
I__l_..____.: " [rreonz Ipdot T ;IIIIIII:H} s l_‘l
"T.-""I | o ; STEHAL_ PRINTEE _“-"_f-
DISPLAYED MSGS TSR FAULT REPORT

Information-Flow: WO05 B P
Defined in Chart: EWs
Descnption: The bus linking SP to the cou
Consists of

SAMPLE

Statemate Course, June 1, 2001 — p.3:

I %ﬁnnﬁﬁiﬁri ﬁnd Compound Flow-Lines

Connectors and compound flow-lines are allowed In
module-charts exactly as in activity-charts:

MSGS

Ll

DEVY=

CONTEDLLER

DEV1 DEWV2

Figure 9.6. Communication link to several devices

—

Statemate Course, June 1, 2001 — p.3!

' tween the Functional and Structu

#® The functional view provides a decomposition of the
system under development into its functional
components, i.e., its capabilities and processes.

#® The structural view provides a decomposition of the
system into the actual subsystems that will be part of
the final system, and which implement its functionality.

—

Statemate Course, June 1, 2001 — p.3!

I Tiﬁes efsconnections

There are three types of connections between the
functional and structural views:

1. describe the functionality of a module by an
activity-chart: Activity-chart Describing a Module

2. allocate specific activities in an activity-chart to be

Implemented in a module: Activities Implemented by
Modules

3. map activities in the functional description of one
module to activities in that of some other module:

Activities Associated with a Module’s Activ ities

Statemate Course, June 1, 2001 — p.3’

In conclusion, we may wish to attach functional
descriptions, i.e., activity-charts, to modules on different
levels of the structural decomposition:

''_'_,—I_\—____\-\-
functional ™
descriprtion of)

_the CCU__.

—

EWS
cCCu | ALRABM
i SYSTEM
HONTTOR
PROCES 50F
£ ' 1
unctiona :
_ description Df}j segﬁfgﬁﬁlnf
T MONITOR il rhe FUE

Figure 10.1. Functional descriptions attached 1o
different modules

Statemate Course, June 1, 2001 — p.3:

I Activiti-chart Describing a Module

The activity-chart ews_AcTIvITIES

F¥S_ACTIVITIES
__________ COMMANDS
-*
: | BANGE_ e :UUT_UF_PJ.HGE ALATH
Fe=tmmmalea, |LOOTE = i DISPLAYT NOTIFICTION
1] ! b 1 e
T] P , e et R i_
Lo LEGAL | oo o pamcE DATA| ' i
maNcE | _OF_ % |OPERATOR |
FRCHES, COMPRRE PR T
SIGNAL » FRAULT
SAMDLE FAULT REPORT
OUT_OF_RANGE DATA
STGHAL
P
! SENSOR .

——————————

Figure 2.5. EWS_ACTIVITIES, Its environment and
flow of information

describes the functionality of the module ews

S
MONTTOE ALABM T
M Cow SYSTEM

| | . OPEBRTOR |
1 ¥
: L., PEINTER | | ~---z ---
: OPERRTOR | l——l ! +
r i Ll
T SCEEEN STGHAL ' '
PEICES SOR » PISE :

Statemate Course, June 1, 2001 — p.3!

This connection is specified in the Data Dictionary:

= T -
- L . - W — = ™= —
- - W N o m == L' - e

Iodule: EWS -
Defined in Chart: EWS

Described by Activity-Chart: EWS ACTIVITIES

= T -
P L9 - . e

————— o — - = =t =

Notice that the connection is between an activity-chart and

a module!

Statemate Course, June 1, 2001 — p.4(

-

lecu |

wifie—

Fo-—-—

o o |

activity-chart CCU aC
_dézcribing the moduls CCU

-

r
i

=
.

-

One may now want to specify an activity-chart ccu_ac for
the module ccu:

Jackivicy=chare EV5_RCTIVITIES

i =,

-»l,_i describing the modules EWS

i

-

)

—1 [

Statemate Course, June 1, 2001 — p.4

I Corresiondence between views

There must be a correspondence between the functional
and structural decompositions of a module in terms of the
environment and the interface with it:

module—charc ES

EW¥S

HONTTOR

EEYHIAERD

"EEU'

T |

STGNAL

PHICES SR

--------- 'RLARM
i ,-h...._._'.z b =
' WONTTOE ! COU RCTT | SYSTEM |
1 -‘_E | “IIII:I:ES b= e o
_______ I FI__- ————I
T (PRINTER
1
| STGMAL .
| PEOCESSOE :

Statemate Course, June 1, 2001 — p.4:

Since also the flow-lines have to be correct we have to
Introduce an activity cet_input Which will be implemented
by the moniTor module:

KEY
PRESESING

EVS_RMCTIVITIES

SET UP_MSGS

SENSOR COMMECTED L ittt
| GET Poiminaiet sl iy "i:EI-E CONTEOL T4 T OPEERTOR
“* rNpuT ___':E“:E’-”_'-‘EI‘?....E - o
] [= -
L ' QUT OF EANGE
DANGE ST UF DoNE T LLATM
e B HOTIFICTION
LIHITS ? i nIEPT-ﬁ.T_ ok
1 B | 1
' LEGAL_ 1 —*|FRULT l
SFT —— DENGE Bt
- | ' pUT_OF_RANGE_DATA | | OPERRTOR
1 i
’ I £
BOCESS | WCOMPREE PRINT_ |
= IEHAL SAIPLE FRULT FAULT REFORT
T —]
JSIGJJ.-:.L
= ====mmn
' SENSOR :

Statemate Course, June 1, 2001 — p.4:

I Activities imEIemented by Modules

When the module described by the activity-chart is

eventually decomposed into submodules, we may be more
concrete and allocate the relevant activities and
data-stores to the submodules:

-
- - — =
.\.J_J—'F] -

Activity: PROCESS SIGHAL T
Defined in Chart: EWS ACTIVITIES '

Is Actvity:
Implemented by Module: SIGNAL PROCESSOR

, - ~ -——= I
-._,l - - = .I

- T -
— o o pm T R L IR —

'F-",-:J!Jré 10.6. An activity implemented by a module

Statemate Course, June 1, 2001 — p.4-

A single activity or data-store cannot be distributed among
several modules.

Therefore, one has to decompose such activities (or

data-stores) into subactivities that can each be allocated to
a single module:

SET UP actiwitsy

SET_UP
PEOMPT ' [ESET_LI'P_S'I'RTES |
RFRMGE -
DISPLAY VALIIRTE
EU_EEB.IIIR BRNGE
____i algy |
[mndulE—Ehart EWS
EWS

| MONTTOR

: | CCu TALAEN |
| [KEYBORERD | SYSTELS
T | - ===
S SIGNAL i j
| SCREEN S Y PRYNTER e
i | |

| |
| Statemate Colirse, June 1, 2001 — p.4

[o)

VIt lated with a Module’s Activities

On the one hand, there is the ews_acTiviTies describing the
functionality of the whole system. On the other hand, also
the submodules implement activities:

Et, ivicy-chart MONITOR RC

| MONTTOR.
REY
| i T STt USER TNPUT
! i * | CET INPUT
| | OPERFTOR =
1
I
| MIGS TO
1 : ', DISPLAY DESPLAY
"
]
------ TS PLATED MES-HE
| e

Statemate Course, June 1, 2001 — p.4(

Then, one wishes to associate subactivities of
Ews_ACTIVITIES With those iImplemented by a submodule:

=
. - - - —
By o= " - - - - - e -
s = - S

Achwity: DISPLAY SU ERROR e
Defined in Chart: SET up

Is Activity: DISPLAY MESSAGE
Implemented by Module: MONITOR

Statemate Course, June 1, 2001 — p.4

	Communication between Activities and Module-Charts
	Communication between Activities
	Communication and Synchronization Issues
	Attributes
	Controlling the Flow of Information
	Flow of Information
	Examples of Communication Control
	Message Passing
	Activities Communicating Through Queues
	Queues and their operations
	Combination with Data Stores
	Example
	Example
	Conditions and Events Related to States
	Condition Connector
	Switch Connector
	Junction Connector
	Example
	Diagram Connector
	Transitions to and from And-States
	Asymmetric Cases
	Module-Charts
	
	Structural Description: High-Level Design
	Structural View
	EWS Example
	Connections to functional view
	Internal and External Modules
	Modules
	EWS-Example
	Data Dictionary Entry
	Communication Between Modules
	Physical Links Between Modules
	Connectors and Compound Flow-Lines
	Connections Between the Functional and Structural Views
	Types of connections
	Conclusion
	Activity-chart Describing a Module
	
	Top-Down Approach
	Correspondence between views
	
	Activities implemented by Modules
	
	Activities Associated with a Module's Activities
	

