
Christian-Albrechts-Universität zu Kiel

Institut für Informatik und Praktische Mathematik

Prof. Dr. W.-P. de Roever
Karsten Stahl, Martin Steffen

!(
)+

Programming-in-the-many (Java)

Sommersemester 2002 22. April 2002Slime (1)

Termin: 22. April 2002

Abstract

The document describes the requirement specification for the Java-Fortgeschrittenenpraktikum
in the summer term 2002. It is also available via the Slime website. The requirement
specification is being updated und refined during the semester according the the project’s
progress and the decisions taken.

1 Introduction

The document describes informally the functionality of Slime, a graphical tool for editing
and analyzing SFCs (Sequential function charts modeling environment).

One crucial part of the implementation, around which most of the rest has been arranged,
is the abstract syntax (cf. Section A)/

The rest of the documents sketches the parts of the project, each implemented by one
package of the project. Especially, we describe in first approximation

• the functionality offered by each package, and

• the functionality expected from other packages.

As we intend to start early with the integration, the required methods should be provided
rather quickly without being (fully) implemented (i.e., as stubs). See also the time-line of the
project.

We provide as starting point a first implementation of the abstract syntax (cf. Section A)
and a small textual printer in the utilities package.

If from the perspective of a package, changes or extensions seem necessary or desirable
as far as the abstract syntax is concerned, the wish should be uttered and justified as early
as possible to all participants (and then potentially implemented by us or the requester, if
everyone agrees).

Slime (1) 22. April 2002

2 Graphical user interface (Gui)

Responsible: Norbert Boeck

Slime is built from various components interacting with the user. There’s an integrating
top-level packages responsible for the following tasks:

• Start: When invoking a Slime-session, a “window” appears which allows to activate
the various sub-components of the system.

• Dependency: Not all interactions are sensible all situations, for instance: a simulation
can be started only on a syntactically correct program. The task is, to define the
dependencies between the packages and implement them in the tool.

• Session management: (2nd priority) It should be possible to save a session (opened
windows, loaded files, chosen options . . .). It should be possible to reload a saved
session.

The user interface integrates all other packages. Thus, the one responsible for the GUI should
be especially aware of inconsistencies between the packages and react upon detected violations.

Interfaces

With all other packages, cf. the corresponding description there.

3 Editor

Responsible: Yasin Taskin and Benjamin Bahnsen

The graphical editor for SFC’s should support the following features:

• construction: The editor must be able to build-up a SFC —perhaps using some tem-
plates. A proposal how an SFC could look like is shown in Figure 1.

• save and load: It must be able to store and reload programs

• select: Parts of an SFC must be selectable; this is needed for other actions

• delete and copy: selected parts can be deleted and copied.

• highlight: parts of the displayed SFC, especially steps and transitions, can be marked
as highlighted.

Interfaces

With the Gui (Section 2), where the division of work between gui and editor should be
discussed. Furthermore with the simulator (Section 5), concerning the highlighting.

An important interface (as for all other packages) is with the abstract syntax package. To
support the graphical representation, the abstract syntax classes are equipped with coordi-
nates, the meaning and the representation is to be discussed among editor and the graphical-
placement-package.

2

Slime (1) 22. April 2002

4 Checks

Responsible: Fabrizio Picchiarecci and Francesco Donini

Only syntactically correct systems can be meaningfully processed, in our case simulated.
The task of this package is to check syntactical consistency. The task comprises the definition
of what syntactical correctness means, i.e., what is guaranteed/checked by this group upon
which the others can rely on.

Interface

With the gui. The gui has to take care that the packages for graph-placement, simulation,
model-checking, code-generation . . . are handed over only checked syntax. What needs not
to be checked are “graphical lapses”, e.g., whether the nodes are placed one over the other or
similar things.

Proposals for things checked:

• well-formedness (to be discussed)

• well-typedness of expressions. We assume that the language is well-typed. The types
of the operators is shown in Table 1.

• there’s exactly one initial step.

operator/constant type(s)
true, false Bool

0, 1, . . . Int
+, ∗, / Int × Int → Int
− Int × Int → Int , Int → Int

<,>,≤,≥ Int × Int → Bool
=, 6= Int × Int → Bool ,Bool × Bool → Bool
¬ Bool × Bool

Table 1: Types

5 Simulator

Responsible: Immo Grabe

(Interactive) simulation of a programs is its step-wise execution such that the user can
initate steps, choose among different alternatives . . . and can follow the execution on the
editor. The simulator realizes the semantics from Section B. The following points should be
implemented

• computation of a successor state

3

Slime (1) 22. April 2002

• display of the taken step in the editor, using the highlight-function of the editor.

For an extended functionality, one could think of

• interactive simulation, non-deterministic simulation

• back-stepping

• recording, storing, and replay of the taken steps

Interface

With the editor (highlighting).

6 Graphical layout

Responsible: Andreas Niemann

The editor allows to draw SFC’s free-handedly. Besides that it should be possible to
calculate coordinates of the transition system automatically. To this end, a graphical layout
algorithm must be implemented, that takes care of displaying the SFC in a readable manner.

Interface

Gui and editor. The layouter may assume checked syntax. What the meaning of the coordi-
nates is concerned, this must be agreed upon with the editor

7 Parser

Responsible: Marco Wendel

The tool should support a simple, non-graphical input language, to allow a textual pro-
gram specification. The textual specification is without graphical information; this informa-
tion can be calculated by the layout package.

This module parses the textual input and generates an abstract syntax tree. The imple-
mentation uses JLex und CUP.

Interface

With the gui (Section 2), providing a method parse file.

8 Utilities

Different pieces of code, not specifically attributed to any other package, but useful for more
than one other package.

4

Slime (1) 22. April 2002

8.1 Pretty-Printer

Responsible: Karsten Stahl, Martin Steffen

A simple pretty-printer with tabulated ascii-output, primarily intended for diagnosis. It
should be used for testing and debugging the other parts already during development.

Interface

The pretty-printer can used (and is supposed to be used) by everyone for debugging. The
only interfac that counts is the abstract syntax, which must be printable. The interface is
partially implemented, for the usage, see utils.PpExample. Besides the print-for whole
programs, the same methods is provided publicly also for other syntactic constructs to make
them printable for diagnosis.

A Abstract syntax

Responsible: Karsten Stahl, Martin Steffen, and all others

The following extended BNF -notation specifies the abstract syntax as common interme-
diate data represenation for the project. Modulo some naming conventions (capitalization),
the Java-implementation is straightforward. Each non-terminal is represented as a separate
class. Alternatives, specified by |, are subclasses of the abstract class, to which they build
the alternative. The entries of the middle collum constitute the fields of the classes. The
constructors of the classes are conventionally fixed by the fields of the class (up to the or-
der of the arguments.1 The lists of the EBNF are implemented as java.lang.LinkedList.
Graphical position information, relevant only for the editor and the layout group, is omitted
in the EBNF.

SFC ::= istep : step
steps : step list
transs : transition list
actions : action list
declist : declaration list

step ::= name : string
actions : stepaction list

stepaction ::= qualifier : action qualifier
a name : string

action ::= a name : string
sap : stmt list (∗ simple assignment program ∗)

stmt ::= skip
| assign

assign ::= var : variable
val : expr

variable ::= name : string
type : type

action qualifier ::= Nqual (∗ may be extended ∗)
1There are exceptions to this rule, notably for the (Slime-)types in the expressions. The type-fields are not

included in the constructors. The corresponding fields will be set later.

5

Slime (1) 22. April 2002

transition ::= source : step list
guard : expr
target : step list

declaration ::= var : variable
type : type
val : constval

expr ::= b expr
| u expr
| constval
| variable

b expr ::= left expr : expr
right expr : expr
op : operand
type : type

u expr ::= sub expr : expr
op : operand
type : type

operand ::= PLUS | MINUS | TIMES | DIV (∗ Operand als ∗)
| AND | OR | NEG (∗ Konstanten in expr ∗)
| LESS | GREATER | LEQ | GEQ | EQ | NEQ

constval ::= ...| −2 | −1 | 0 | 1 | ... | true | false
type ::= inttype

| booltype

B Semantics

The section informally describes the semantics of Sequential Function Charts (SFC’s), as
realized in the tool Slime. The semantics is defined for successfully checked SFC’s (cf.
Section 4); unchecked SFC’s don’t have a meaning. Especially, the simulator, which realizes
the semantics, can assume checked syntax.

B.1 Sequential Function Charts

We explain the semantics with the help of the example from Figure 1.
The SFC’s consist of nodes, called steps, to which actions are associated, and transitionen

between steps, decorated with boolean guards. Always, one ore more of the steps are active
and the actions associate with this active steps are executed within one cylcle. The transition
from s1 to both s2 and s3 (with double horizontal line) is a parallel branching: if this transition
is taken, s1 is deactivated and both s2 and s3 get activated.

The topmost step (marked specifically) is initial. The ”N” on the left-hand side of the
actions is a qualifier, stating that the action is to be executed in each cycle in which the step
is active. There are other qualifiers, too, but we neglect them for the teme being, Qualifier,
die wir aber erst einmal vernachlässigen.

The behavior of an SFC during one cycle is as follows.

1. reading inputs from the environment

2. executing the actions from the active steps

6

Slime (1) 22. April 2002

true

s1 N act1

x and y

s2 N act2

y not y

s3 N act3

true

s5

true

s6

s7

true

s4

true

-

s8

Deklarationen
x bool false
y bool false
z bool false

Aktionen
act1 x := false
act2 y := x
act3 x := not x; y := x

Figure 1: SFC

7

Slime (1) 22. April 2002

3. evaluate the guards

4. take transition(s) (if possible)

5. write outputs

The cycle is executed repeatedly. The parts for reading inputs and writing outputs are irrele-
vant for us, as we consider closed systems ony, i.e., systems whose variables are changed only
by the system itself, but not by the outside.

Each transition is equipped by a guard, i.e., a boolean expression. A transition can be
taken only if the guard evaluates to true.

If more than one step is active in a parallel branch, the execution of the corresponding
action is chosen non-deterministically. This means, they can be executed in an arbitrary order
(interleaving semantics). Consequently, a program may have a number of different execution
runs. The simulator could realize the different runs in that it asks the user, in which order the
actions should be performed. An alternative is, to determie the order by a random generator.

The transition from s4 and s5 to s8 closes the parallel branch again. Such a transition
can be taken only, if all source, steps are active. In other words, this transition can be taken
if it’s guard evaluates to true and furthermore both s4 und s5 are active.

B.2 States

The global state of a program is given by the assignment to all variables and the set of all
active steps.

8

