
Communication Closed Layers

Michael Harder

June 20, 2003

Communication Closed Layers Page 1

Introduction and Overview

Introduction and Overview

Communication Closed Layers Page 2

Introduction and Overview

The basic intuition of transformational design:

• Program design is guided by transformation rules.

• Derive the (i+1)-th implementation by applying a transformation

rule on the i-th implementation,

1. implementation → . . . → i − th implementation

→ (i + 1) − th implementation → . . .

• Start derivation with the most coarse grained (simple)

implementation satisfying the specification and proof its

correctness.

• Applying transformation rules preserves correctness.

• Obtain a history of the design process by recording every

transformation step.

Communication Closed Layers Page 3

Introduction and Overview

For what good is transformational design in concurrent programs?

• Assume we need a distributed program SD to perform some task t.

• SD is likely to be hard to verify and the final assertional

correctness proof does not reflect the design process of SD.

• Suppose we have an implementation of t consisting of sequentially

composed parts (layers), say SL.

• Usually SL ought to be easier to develop than the distributed

version SD.

• We may also assume that SL is easier to understand and easier to

verify than SD.

Thus we might ask:

Communication Closed Layers Page 4

Introduction and Overview

Is there way to transform SL into SD such that both programs are

equivalent and the correctness of SL is preserved by the

transformations?

Communication Closed Layers Page 5

Introduction and Overview

Obviously this leads to the following questions:

1. Of what syntactic structure is SL supposed to be?

2. When do we consider two programs as ”equivalent”?

3. What kind of transformations are done?

4. What are the transformation rules?

Communication Closed Layers Page 6

Introduction and Overview

Clarify the first and second question by

• defining the syntax of the programming language to employ ,

• defining equivalence of two programs. In order to do so we have to

define proper semantics for our programming language.

Clarify the third and fourth question by

• introducing the communication-closed-layers paradigm ,

• introducing the so-called CCL Laws.

Communication Closed Layers Page 7

To the first question ...

Syntax and Semantics

• Choose a guarded command language with

– non-deterministic conditional command,

– non-deterministic multi-test loop.

• Additionally:

– every guarded command (called action) has a unique label,

– parallel composition, denoted by ”‖” and

– send and receive actions for asynchronous communication.

• Syntax (and semantics) are closely related to transition systems.

For a statement S we define T [[S]] the be a corresponding

transition system.

Communication Closed Layers Page 8

To the first question ...

Syntax

Actions act ::= 〈b → x̄ := ē〉 |

send(c, e) | receive(c, x)

Programs S ::= a : act | S1; S2 | [S1‖S2] |

if []ni=1Si fi |do SB[]SE; exit od

Closed programs Sys ::= 〈S〉

send(c, e)
def
= 〈¬c.full → c.full, c.buf := true, e〉

receive(c, x)
def
= 〈c.full → c.full, x := false, c.buf〉

Communication Closed Layers Page 9

To the second question ...

• Transformations are supposed to preserve ”equivalence” of two

programs.

• The more stronger our requirements on two programs to be

”equivalent” are the less room we have for interesting

transformations, e.g.

P1 = P2 iff Comp[[P1]] = Comp[[P2]].

• We will require that ”equivalent” programs define the same

initial-final state relation. This implies:

Equivalent programs satisfy the same Hoare formulae for

partial correctness.

• We do not require that ”equivalent” programs have the same

deadlock behavior or that they have the same divergence behavior.

Communication Closed Layers Page 10

To the second question ...

Semantics

• Define semantics of a program S:

– in a compositional way,

– by sequences of action labeled computation steps, e.g.

〈σ0
a
→ σ1〉〈σ

′
1

a′

→ σ′
2〉 . . . ,

– by the set of all possible sequences produced by S.

• Consider two programs as equivalent if they define the same sets

of initial-final state pairs.

Communication Closed Layers Page 11

To the second question ...

Reactive-event-sequence semantics RA

• RA[[a : 〈b → x̄ := ē〉]]
def
= {〈σ

a
→ σ′〉 | σ |= b ∧ σ′ = AI [[x̄ := ē]]σ}

• RA[[S1; S2]]
def
= RA[[S1]]

_RA[[S2]]

• RA[[if []ni=1Si fi]]
def
=

⋃n
i=1 RA[[Si]]

• Let R(0) def
= RA[[SE]], and let R(i+1) def

= RA[[SB]]_R(i), for i ≥ 0.

Then:

RA[[do SB[]SE ; exit od]]
def
=

⋃

{R(i) | i ≥ 0}.

• RA[[[S1‖S2]]]
def
= RA[[S1]] ‖̃ RA[[S2]]

• RA[[〈S〉]]
def
= {Θ ∈ RA[[S]] | Θ is connected}

Communication Closed Layers Page 12

To the second question ...

Limitations:

• Semantics of divergent computations are not defined.

• Sequences must be finite (the set of all sequences produced

by S may be infinite).

• Deadlock behavior is not observable.

→ Partial correctness only.

Communication Closed Layers Page 13

To the second question ...

Initial-final-state semantics

• Ocl[[S]]
def
= O [[T [[S]]]].

• IO : RA → Σ2, constructs the initial-final state pair from a (finite)

reactive sequence.

• Ocl[[S]] ⊆ {IO(η) | η ∈ RA[[〈S〉]]}.

io-equivalence

• S1
IO
= S2 iff Ocl[[S1]] = Ocl[[S2]].

Communication Closed Layers Page 14

To the third question ...

To the third question ...

Remember our introducing example of two programs SL and SD

implementing the same task t:

• We seek to increase/reduce concurrency of programs by applying

transformation rules on them

SL

increase concurrency
,, SD

decrease concurrency

ll .

• Transformed programs are supposed to have the same

initial/final-state behavior, i.e.

SL
IO
= SD.

Communication Closed Layers Page 15

To the third question ...

• Consider a layer as a top-level parallel composition of program

fragments, e.g. [S0,0‖S0,1‖S0,2]

• Programs consist of sequentially composed layers, e.g.

[S0,0‖S0,1‖S0,2]; ...; [Sn,0‖Sn,1‖Sn,2]

• Increase/reduce concurrency by merging/sequentializing the layers

of a program, e.g.

[S0,0 ‖ S0,1 ‖ S0,2] ;

[S1,0 ‖ S1,1 ‖ S1,2] ;

[S2,0 ‖ S2,1 ‖ S2,2]

!

S0,0; S0,1; S0,2

S1,0; S1,1; S1,2

S2,0; S2,1; S2,2

.

Communication Closed Layers Page 16

To the fourth question ...

The Communication-Closed-Layers Laws

Introducing four CCL Laws (CCL 1 - CCL 4):

• CCL 1 and CCL 2 for programs using shared variables.

• CCL 3 and CCL 4 for communication based programs, i.e. no

shared variables are used except those associated with the

communication buffers.

Additionally we will inquire how to transform loops:

• Loop Distribution Theorem for while-loops.

Communication Closed Layers Page 17

CCL Laws for Shared Variables

CCL Laws for Shared Variables

Syntactically commuting and conflicting

Two say that actions a1 ≡ 〈b1 → x̄1 := ē1〉 and a2 ≡ 〈b2 → x̄2 := ē2〉

are syntactically commuting if:

(i) write(a1) ∩ read(a2) = ∅.

(ii) write(a2) ∩ read(a1) = ∅.

(iii) write(a1) ∩ write(a2) = ∅.

Actions which do not syntactically commute are said to be in conflict.

Communication Closed Layers Page 18

CCL Laws for Shared Variables

We introduce the following notations:

• a1−/−−a2, if a1 and a2 are syntactically commuting

• a1−−−a2, if a1 and a2 are in conflict

For program fragments S1 and S2 we define

• S1−/−−S2

by requiring that for all a1 occurring in S1 and all a2 occurring in S2

we have that a1−/−−a2.

Communication Closed Layers Page 19

CCL Laws for Shared Variables

Concurrent actions

Two actions a and a′ occurring in S are called concurrent actions if

there are two different parallel components S1 and S2, such that a

occurs in S1 and a′ occurs in S2.

Example

• S ≡ S1; [S2‖(S3; [S4‖S5]; S6)].

Parallel components of S:

• S2, S4, S5 and (S3; [S4‖S5]; S6).

Let ai be an action occurring in Si for i ∈ {1, 2, 3, 4, 5, 6}, then

• (a2, a3) are concurrent

• (a3, a4) are not concurrent

Communication Closed Layers Page 20

CCL Laws for Shared Variables

Commuting Actions Lemma

Consider

• closed program 〈S〉,

• ai and ai+1 concurrent actions occurring in 〈S〉 s.t. ai−/−−ai+1.

Let η ∈ RA[[〈S〉]] of the form:

〈σ0
a0→ σ1〉 . . . 〈σi−1

ai−1
→ σi〉〈σi

ai→ σi+1〉〈σi+1
ai+1
→ σi+2〉〈σi+1

ai+2
→ σi+3〉 . . .

Let η′ be defined as η with ai and ai+1 exchanged, i.e., of the form:

〈σ0
a0→ σ1〉 . . . 〈σi−1

ai−1
→ σi〉〈σi

ai+1
→ σ′

i+1〉〈σ
′
i+1

ai→ σi+2〉〈σi+1
ai+2
→ σi+3〉 . . .

Then η′ ∈ RA[[〈S〉]].

Communication Closed Layers Page 21

CCL Laws for Shared Variables

Proof: Suppose ai ≡ 〈bi → x̄i := ēi〉 and ai+1 ≡ 〈bi+1 → x̄i+1 := ēi+1〉.

To prove η′ ∈ RA[[〈S〉]] we have to show

(i) [[bi+1]](σi) = tt,

(ii) [[bi]](σ
′
i+1) = tt, where σ′

i+1 = [[x̄i+1 := ēi+1]](σi),

(iii) [[x̄i := ēi]](σ
′
i+1) = [[x̄i+1 := ēi+1]](σi+1),

Since η ∈ RA[[〈S〉]] we have that

(a) [[bi]](σi) = tt

(b) [[bi+1]](σi+1) = tt

(c) σi+1 = [[x̄i := ēi]](σi) and σi+2 = [[x̄i+1 := ēi+1]](σi+1).

By ai−/−−ai+1 we have

(?) write(ai) ∩ write(ai+1) = ∅.

Communication Closed Layers Page 22

CCL Laws for Shared Variables

It follows:

[[x̄i := ēi]](σ
′
i+1) = [[x̄i := ēi]]([[x̄i+1 := ēi+1]](σi))

(?)
= [[x̄i+1 := ēi+1]]([[x̄i := ēi]](σi))
(c)
= [[x̄i+1 := ēi+1]](σi+1).

Thus, point (iii) is valid. Now consider (i) and (ii): By definition

• [[bi+1]](σi+1) = [[bi+1]]([[x̄i := ēi]](σi))
(b)
= tt,

• [[bi]](σ
′
i+1) = [[bi]]([[x̄i+1 := ēi+1]](σi)).

From [[bi+1]](σi+1) = tt and write(ai) ∩ read(ai+1) = ∅ it follows

[[bi+1]](σi) = tt.

Since [[bi]](σi) = tt and write(ai+1) ∩ read(ai) = ∅ we conclude

[[bi]](σi) = tt.

Communication Closed Layers Page 23

CCL Laws for Shared Variables

CCL 1 (Independent program fragments)

Let SL and SD be programs defined as follows:

SL
def
=

[

S0,0 . . . S0,m

]

;
...

...
...

;
[

Sn,0 . . . Sn,m

]

and SD
def
=

S0,0 . . . S0,m

; · · · ;
...

...
...

; · · · ;

Sn,0 . . . Sn,m

.

Assume that Si,j−/−−Si′,j′ for i 6= i′ and j 6= j′, then SL
IO
= SD.

Communication Closed Layers Page 24

CCL Laws for Shared Variables

Proof: Follows from CCL 2.

Communication Closed Layers Page 25

CCL Laws for Shared Variables

CCL 2 (Conflict-based ordering)

Let SL and SD be programs defined as follows:

SL
def
=

[

S0,0 . . . S0,m

]

;
...

...
...

;
[

Sn,0 . . . Sn,m

]

and SD
def
=

S0,0 . . . S0,m

; · · · ;
...

...
...

; · · · ;

Sn,0 . . . Sn,m

.

Assume that |= 〈SD〉 psat (Si,j
C
� Si′,j′) holds for all i < i′ and j 6= j′.

Then SL
IO
= SD.

Communication Closed Layers Page 26

CCL Laws for Shared Variables

Proof: We show

(i) ∀η
L
∈ RA[[〈SL〉]].∃η

D
∈ RA[[〈SD〉]] s.t. IO(η

L
) = IO(η

D
)

(ii) ∀η
D
∈ RA[[〈SD〉]].∃η

L
∈ RA[[〈SL〉]] s.t. IO(η

D
) = IO(η

L
)

Since any sequence produced by 〈SL〉 is also produced by 〈SD〉, i.e.

RA[[〈SL〉]] ⊆ RA[[〈SD〉]],

it remains to prove point (ii). Let η
D
∈ RA[[〈SD〉]].

Consider the case n = 1:

SL =

[S0,0 ‖ · · · ‖ S0,m]

;

[S1,0 ‖ · · · ‖ S1,m]

and SD =

S0,0 · · · S0,m

; · · · ;

S1,0 · · · S1,m

.

Communication Closed Layers Page 27

CCL Laws for Shared Variables

There might be occurrences of events a0 and a1 in η
D

, where a1 labels

an action in S1,j and a0 labels an action in S0,j′ , s.t. the a1-event

precedes the a0-event (note: this is not possible in η
L
). Let k denote

the number of such event pairs (a1, a0) occurring in η
D

.

We show by induction on k:

(?) ∀k.∃η
L
∈ RA[[〈SL〉]] s.t. IO(η

L
) = IO(η

D
).

• Basis case:

Let k = 0. Then we have that η
D
∈ 〈SL〉.

• Induction step:

Assume that η
D

has k + 1 pairs of events (a1, a0) as indicated.

We may assume that there exists a pair (a1, a0) in η
D

s.t. a0

immediately follows a1, thus η
D

is of the following form:

Communication Closed Layers Page 28

CCL Laws for Shared Variables

η
D

= θ〈σ
a1→ σ′〉〈σ′ a0→ σ′′〉θ′, for some sequences θ, θ′ and states σ, σ′, σ′′.

• From |= 〈SD〉 psat (S0,j
C
� S1,j′) for all j 6= j′ it follows

a1−/−−a0.

• Hence, by Commuting Actions Lemma we have that

θ〈σ
a0→ τ ′〉〈τ ′ a1→ σ′′〉θ′ ∈ RA[[〈SD〉]].

• Applying the ind. hypothesis on η〈σ
a0→ τ ′〉〈τ ′ a1→ σ′′〉η′ we obtain

∃η
L
∈ RA[[〈SL〉]] s.t. IO(η

L
) = IO

(

θ〈σ
a0→ τ ′〉〈τ ′ a1→ σ′′〉θ′

)

.

The case n > 1 can be shown analogously by defining a k for every

event pair (ai, ai′) with i > i′.

Communication Closed Layers Page 29

CCL Laws for Shared Variables

Example

Consider the following program S given by

SD
def
=

a1 : z := 2; a′
1 : x := 2;

P1 : P (s); V1 : V (s);

a2 : w := 1; a′
2 : v := 1;

P2 : P (s); V2 : V (s);

a3 : z := x + 1; a′
3 : v := w + 1;

.

We claim that |= {s}〈 S 〉{z = 3 ∧ v = 2}.

Communication Closed Layers Page 30

CCL Laws for Shared Variables

Applying the proof method of Owickie & Gries we would have to verify:

• max. 60 verification conditions to proof interference freedom

Instead we transform S into a layered version: Let

S0,0
def
=

a1 : z := 2;

P1 : P (s);

a2 : w := 1;

, S0,1
def
=

a′
1 : x := 2;

V1 : V (s);

a′
2 : v := 1;

S1,0
def
=

P2 : P (s);

a3 : z := x + 1;

, S1,1
def
=

V2 : V (s);

a′
3 : v := w + 1;

.

Communication Closed Layers Page 31

CCL Laws for Shared Variables

Then

SD =

S0,0; S0,1;

S1,0; S1,1;

 .

Let SL be the layered version of SD, i.e.

SL
def
=

[S0,0 ‖ S0,1] ;

[S1,0 ‖ S1,1]
.

We claim that SD
IO
= SL by CCL 2.

To proof correctness of SL using O&G method we have to verify:

• max. 36 verification conditions to proof interference freedom

Are the requirements of CCL 2 satisfied?

Communication Closed Layers Page 32

CCL Laws for Shared Variables

We have to prove |= 〈SD〉 psat (Si,j

C
� Si′,j′) for all i < i′ and j 6= j′,

i.e.

(a) |= 〈SD〉 psat (P1
C
� V2)

(b) |= 〈SD〉 psat (a2
C
� a′

3)

(c) |= 〈SD〉 psat (a′
1

C
� a3)

(d) |= 〈SD〉 psat (V1

C
� P2)

Conditions (a) and (d) are valid by the ordering caused by semaphores.

We can deduce the validity of (b) and (c) by the ordering caused by

sequential composition.

Communication Closed Layers Page 33

CCL Laws for Communication-Based Programs

CCL Laws for Communication-Based Programs

Communication-based

We call a programm S communication-based if there are no shared

variables used in S except those associated with the channels. All

communication is done using send and receive actions as defined

earlier.

Communication Closed Layers Page 34

CCL Laws for Communication-Based Programs

Syntactic send and receive counters

For a channel c we define the functions

• nsc(S), the number of send events in S along channel c,

• nrc(S), the number of receive events in S along channel c,

by induction on the syntactic structure of S...

Communication Closed Layers Page 35

CCL Laws for Communication-Based Programs

• nsc(send(c, e))
def
= 1, and nsc(a)

def
= 0 for all other atomic actions a,

• nsc(S1; S2)
def
=

nsc(S1) + nsc(S2) : nsc(S1) 6=⊥ ∧ nsc(S2) 6=⊥

⊥ : otherwise
,

• nsc(if []ni=1
bi → Si fi)

def
=

nrc(S1) : ∀1≤i,j≤n(nsc(Si) = nsc(Sj))

⊥ : otherwise
,

• nsc([S1 ‖ S2])
def
=

nsc(S1) + nsc(S2) : nsc(S1) 6=⊥ ∧ nsc(S2) 6=⊥

⊥ : otherwise
,

• nsc(do []ni=1
bi → Si od)

def
=

0 : ∀1≤i,j≤n(nsc(Si) = 0))

⊥ : otherwise
.

Analogously we define nrc.

Communication Closed Layers Page 36

CCL Laws for Communication-Based Programs

Syntax-based communication closedness

• Let L
def
= [S0 ‖ . . . ‖ Sm] be a layer that uses some channel c.

• Assume that Si contains all the send actions for c and some Sj

with i 6= j contains all the receive actions for c.

L is called communication closed for a channel c if

⊥6= nsc(Si) = nrc(Sj) 6=⊥ .

L is called communication closed if it is communication closed for all

channels occurring in L.

Communication Closed Layers Page 37

CCL Laws for Communication-Based Programs

Example

The layer

send(c, e); receive(c, e);

receive(d, x) send(d, x)

is communication closed, however

send(c, e); receive(c, x);

receive(d, x) send(c, e)

is not communication-closed.

Communication Closed Layers Page 38

CCL Laws for Communication-Based Programs

CCL 3 (Syntax-based CCL)

Let SL and SD be communication-based programs defined as follows:

SL
def
=

[

S0,0 . . . S0,m

]

;
...

...
...

;
[

Sn,0 . . . Sn,m

]

and SD
def
=

S0,0 . . . S0,m

; · · · ;
...

...
...

; · · · ;

Sn,0 . . . Sn,m

.

Assume that each layer Li
def
= [Si,0 ‖ . . . ‖ Si,m], where 1 ≤ i ≤ n, is

communication closed. Then SL
IO
= SD.

Communication Closed Layers Page 39

CCL Laws for Communication-Based Programs

Proof: By CCL 2 we have to prove:

|= 〈SD〉 psat (Si,j

C
� Si′,j′) for all i < i′ and j 6= j′. (?)

(b) Consider the case n=1, i.e.

SL =

[S0,0 ‖ · · · ‖ S0,m]

;

[S1,0 ‖ · · · ‖ S1,m]

and SD =

S0,0 · · · S0,m

; · · · ;

S1,0 · · · S1,m

.

(c) Assume (?) is not valid. Then

∃η
D
∈ RA[[〈SD〉]].η

D
= θ〈σ

a1→ σ′〉〈σ′ a0→ σ′′〉θ′ ∧ a0−−−a1,

where a0 is occurring in S0,j and a1 in S1,j′ for j 6= j′.

(d) Let a1 be the first event preceding such an a0-event.

Communication Closed Layers Page 40

Assertion-Based Program Transformations

Assertion-Based Program Transformations

Precondition-based semantics

Ocl[[{pre}S]]
def
= {(σ, σ′) | ∃η.σ |= pre∧ (σ, σ′) = IO(η)∧ η ∈ RA[[〈S〉]]}.

Precondition-based io-equivalence

We define precondition-based io-equivalence between two SVL++

programs S1 and S1 denoted by

{p1}S1
IO
= {p2}S2,

if Ocl[[{p1}S1]] = Ocl[[{p2}S2]].

Communication Closed Layers Page 41

Assertion-Based Program Transformations

Augmented send/receive

send(c, e)
def
= 〈¬c.full → c.full, cbuf, c.sent, := true, e, c.sent + 1〉

receive(c, x)
def
= 〈c.full → c.full, x, c.received := false, c.buf, c.received + 1〉.

Assertion-based communication closedness

Let S be a program with precondition pre.

• S is called communication closed for a channel c if

|= {pre ∧ c.sent = c.received}〈S〉{c.sent = c.received}.

• A program or layer with precondition pre is called communication

closed if it is communication closed for all of its channels.

Communication Closed Layers Page 42

Assertion-Based Program Transformations

CCL 4 (Assertion based)

Let SL and SD be communication-based programs defined as follows:

SL
def
=

{p0}
[

S0,0 . . . S0,m

]

;

{p1}
...

...
...

;

{pn}
[

Sn,0 . . . Sn,m

]

and SD
def
=

S0,0 . . . S0,m

; · · · ;
...

...
...

; · · · ;

Sn,0 . . . Sn,m

.

Communication Closed Layers Page 43

Assertion-Based Program Transformations

Assume that each layer with precondition

Li
def
= {pi}[Si,0 ‖ . . . ‖ Si,m]

is communication closed, and that {pi}[Si,0 ‖ . . . ‖ Si,m]{pi+1} is valid

for 0 ≤ i ≤ n − 1. Then SL
IO
= SD.

Communication Closed Layers Page 44

Assertion-Based Program Transformations

Loop Distribution

Lemma (Loop unfolding)

For all contexts C[·] we have

Ocl[[C[while b do S od]]] =
⋃

j∈N

Ocl[[C[(b; S)j ;¬b]]].

Communication Closed Layers Page 45

Assertion-Based Program Transformations

Loop distribution

Consider a program while b do [S1 ‖S2] od, guards b1, b2, and

assertions p and I with the following properties:

(i) I is a loop invariant, i.e.,

|= {I ∧ b} 〈[S1 ‖S2]〉 {I}.

(ii) |= p → I.

(iii) The variables of bi are local to Si, i ∈ {1, 2}, and moreover the

following is valid:

|= I → ((b ↔ b1) ∧ (b ↔ b2)).

(iv) {I}[S1 ‖S2] is communication closed.

Communication Closed Layers Page 46

Assertion-Based Program Transformations

Then

{p} while b do [S1 ‖ S2] od

IO
=

{p} [while b1 do S1 od ‖ while b2 do S2 od]

and {p} [while b1 do S1 od ‖ while b2 do S2 od] is communication

closed.

Communication Closed Layers Page 47

Assertion-Based Program Transformations

Proof: By Lemma (Loop unfolding) we have that

Ocl[[{p}while b do [S1‖S2] od]] =
⋃

j∈N

Ocl[[{p}(b; [S1‖S2])
j ;¬b]].

(a) Let j ∈ N and η ∈ RA[[〈(b; [S1‖S2])
j ;¬b〉]] s. t. the initial state of

η satisfies p. Let σ be an intermediate state in η where the guard b

or ¬b is evaluated. Then by (i) and (ii) we have that σ |= I.

Property (iii) now implies that σ |= b iff σ |= b1 ∧ b2 and that

σ |= ¬b iff σ |= ¬b1 ∧ ¬b2. We conclude

{p}(b; [S1‖S2])
j ;¬b

IO
= {p} ((b1 ∧ b2); [S1‖S2])

j ; (¬b1 ∧ ¬b2)
︸ ︷︷ ︸

(?)

.

Communication Closed Layers Page 48

Assertion-Based Program Transformations

(b) It can be shown that (b1 ∧ b2)
IO
= [b1‖b2] and

(¬b1 ∧ ¬b2)
IO
= [¬b1‖¬b2], and since (b1 ∧ b2) and (¬b1 ∧ ¬b2) are

not within the scope of a parallel composition operator inside (?)

we can replace (b1 ∧ b2) and (¬b1 ∧ ¬b2) in (a), obtaining:

{p}((b1∧b2); [S1‖S2])
j ; (¬b1∧¬b2)

IO
= {p}([b1‖b2]; [S1‖S2])

j ; [¬b1‖¬b2].

(c) By (ii) and (iv) we may apply CCL 4 on {p}[b1‖b2]; [S1‖S2], thus

{p}[b1‖b2]; [S1‖S2]
IO
= {p}[b1; S2‖b2; S2].

With respect to (b) we conclude

{p}([b1‖b2]; [S1‖S2])
j ; [¬b1‖¬b2]

IO
= {p}([b1; S2‖b2; S2])

j ; [¬b1‖¬b2].

Communication Closed Layers Page 49

Assertion-Based Program Transformations

(d) By properties (ii) and (iv) {p}[b1; S1‖b2; S2]; [b1; S1‖b2; S2] satisfies

the requirements of CCL 4, hence

{p}[b1; S1‖b2; S2]; [b1; S1‖b2; S2]
IO
= {p}[(b1; S1)

2‖(b2; S2)
2].

Inductively we obtain for all j ∈ N that

{p}([b1; S1‖b2; S2])
j IO

= {p}[(b1; S1)
j‖(b2; S2)

j].

Applying CCL 4 once more, we finally obtain

{p}([b1; S1‖b2; S2])
j ; [¬b1‖¬b2]

IO
= {p}[(b1; S1)

j ;¬b1‖(b2; S2)
j ;¬b2].

Communication Closed Layers Page 50

Assertion-Based Program Transformations

Summarizing:

Ocl[[{p}while b do [S1‖S2] od]]

=
⋃

j∈N
Ocl[[{p}(b; [S1‖S2])

j ;¬b]]
(a)
=

⋃

j∈N
Ocl[[{p}((b1 ∧ b2); [S1‖S2])

j ; (¬b1 ∧ ¬b2)]]
(b)
=

⋃

j∈N
Ocl[[{p}([b1‖b2]; [S1‖S2])

j ; [¬b1‖¬b2]]]
(c)
=

⋃

j∈N
Ocl[[{p}([b1; S2‖b2; S2])

j ; [¬b1‖¬b2]]]
(d)
=

⋃

j∈N
Ocl[[{p}[(b1; S1)

j ;¬b1‖(b2; S2)
j ;¬b2]]].

Next we prove that, for all j ∈ N,

Ocl[[{p}[(b1; S1)
j ;¬b1‖(b2; S2)

j ;¬b2]]].

=
⋃

k∈N
Ocl[[{p}[(b1; S1)

j ;¬b1‖(b2; S2)
k;¬b2]]].

Communication Closed Layers Page 51

Assertion-Based Program Transformations

We prove this claim by showing that for any k 6= j

Ocl[[{p}[(b1; S1)
j ;¬b1‖(b2; S2)

k;¬b2]]] = ∅.

Assume that k 6= j, and without loss of generality, that j < k. By (d)

we have that

{p}[(b1; S1)
j ;¬b1‖(b2; S2)

k;¬b2]
IO
= {p}([b1; S1‖b2; S2])

j ; [¬b1‖b2]; (S2; b2)
k−j−1; S2;¬b2

By properties (i) and (ii) the loop invariant I holds at the state where

the guard ¬b1 ∧ b2 is evaluated. However, by property (iii) this guard

evaluates to ”false”, and cannot be passed. It follows that for j 6= k

Ocl[[{p}[(b1; S1)
j ;¬b1‖(b2; S2)

k;¬b2]]] = ∅.

Communication Closed Layers Page 52

Assertion-Based Program Transformations

We deduce by the above equivalences, the compositionality of the

reactive-event-sequence semantics RA, and the fact that
⋃

j∈N

distributes over ‖̃:

Ocl[[{p}while b do [S1‖S2] od]]

=
⋃

j∈N
Ocl[[{p}(b; [S1‖S2])

j ;¬b]]

=
⋃

j∈N

⋃

k∈N
Ocl[[{p}[(b1; S1)

j ;¬b1‖(b2; S2)
k;¬b2]]]

=
⋃

k∈N
Ocl[[{p}[while b1 do S1 od‖(b2; S2)

k;¬b2]]]

= Ocl[[{p}[while b1 do S1 od‖while b2 do S2 od]]].

Communication Closed Layers Page 53

Assertion-Based Program Transformations

Since

{p}while b do [S1‖S2] od (1)

IO
= {p}[while b1 do S1 od‖while b2 do S2 od]. (2)

both loops satisfy the same pre- and postconditions. Thus, the

communication closedness of (2) follows from from communication

closedness of (1).

Communication Closed Layers Page 54

Example: Set-Partitioning

Example: Set-Partitioning

Communication Closed Layers Page 55

Example: Set-Partitioning

• Given two disjoint, nonempty and finite sets of integers S0 and T0,

e.g.

S0 = {3, 8, 9} and T0 = {1, 4}.

• S0 ∪ T0 must be partitioned into two subsets S and T such that

– |S0| = |S|,

– |T0| = |T |,

– every element of S is smaller than any element of T , e.g.

S0 ∪ T0 = {3, 8, 9, 1, 4} −→ S = {1, 3, 4} and T = {8, 9}.

• Algorithmic idea:

′′Exchange max(S) with min(T) until maxi−

mum of S is smaller than minimum of T.′′

Communication Closed Layers Page 56

Example: Set-Partitioning

Pre- and Postcondition for set-partitioning algorithm:

pre
def
=

{

S = S0 6= ∅ ∧ T = T0 6= ∅ ∧ S ∩ T = ∅
}

.

post
def
=

|S| = |S0| ∧ |T | = |T0| ∧ S ∪ T = S0 ∪ T0

∧max(S) < min(T)

.

Algorithm:

{pre}

max, min := max(S), min(T);

while max > min do

(* exchange max with min *);

max, min := max(s), min(T);

od;

{post}

Communication Closed Layers Page 57

Example: Set-Partitioning

PSV :(Proof outline: O&G system for closed programs)

{pre}

[max := max(S) ‖ min := min(T)];

{q0}skip;{I}

while max > min do

{I ∧ max > min}skip;{q1}

[S := (S\{max}) ∪ {min} ‖ T := (T\{min}) ∪ {max}]

{q2}

[max := max(S) ‖ min := min(T)];

{I}

od;

{I ∧ max ≤ min}skip;{post}

Communication Closed Layers Page 58

Example: Set-Partitioning

Assertions PSV :

pre =
{

S = S0 6= ∅ ∧ T = T0 6= ∅ ∧ S ∪ T = ∅
}

.

q0
def
=

{

S = S0 6= ∅ ∧ T = T0 6= ∅ ∧ S ∪ T = ∅

∧min = min(T) ∧ max = max(S)

}

.

q1
def
= q2[S, T / (S\{min}) ∪ {max}, (T\{max}) ∪ {min}].

q2
def
=

{

|S| = |S0| ∧ |T | = |T0| ∧ S ∪ T = S0 ∪ T0

∧S ∩ T = ∅ ∧ S 6= ∅ ∧ T 6= ∅

}

.

I
def
=

|S| = |S0| ∧ |T | = |T0| ∧ S ∪ T = S0 ∪ T0

∧S ∩ T = ∅ ∧ S 6= ∅ ∧ T 6= ∅

∧min = min(T) ∧ max = max(S)

.

post =

{

|S| = |S0| ∧ |T | = |T0| ∧ S ∪ T = S0 ∪ T0

∧max < min(T)

}

.

Communication Closed Layers Page 59

Example: Set-Partitioning

Pinit :(Communication-based)

{pre′}

[max := max(S) ‖ min := min(T)];
{
q′
0

}

[[send(C, max) ‖ receive(D, mn)] ‖ [receive(C, mx) ‖ send(D, min)]] ;
{
q′
01

}
{I′}

while max > min do

{I′ ∧ max > min}
{
q′
1

}

[S := (S\{max}) ∪ {mn} ‖ T := (T\{min}) ∪ {mx}];
{
q′
2

}

[max := max(S) ‖ min := min(T)];
{
q′
21

}

[[send(C, max) ‖ receive(D, mn)] ‖ [receive(C, mx) ‖ send(D, min)]] ;

{I′}

od;

{I′ ∧ max ≤ min} {post′}

Communication Closed Layers Page 60

Example: Set-Partitioning

Assertions Pinit:

pre′
def
=

pre

∧¬C.full ∧ C.sent = C.received

∧¬D.full ∧ D.sent = D.received

.

q′
0

def
=

q0

∧¬C.full ∧ C.sent = C.received

∧¬D.full ∧ D.sent = D.received

.

q′
01

def
=

q′
0

∧mn = min ∧ mx = max

.

q′
1

def
=

q1

∧¬C.full ∧ C.sent = C.received

∧¬D.full ∧ D.sent = D.received

.

Communication Closed Layers Page 61

Example: Set-Partitioning

q′
2

def
=

q2

∧¬C.full ∧ C.sent = C.received

∧¬D.full ∧ D.sent = D.received

.

q′
21

def
=

q′
2

∧min = min(T) ∧ max = max(S)

.

I′
def
=

I

∧¬C.full ∧ C.sent = C.received

∧¬D.full ∧ D.sent = D.received

∧mn = min ∧ mx = max

.

post′
def
=

post

∧¬C.full ∧ C.sent = C.received

∧¬D.full ∧ D.sent = D.received

.

Communication Closed Layers Page 62

Example: Set-Partitioning

By CCL 3 :

[max := max(S) ‖ min := min(T)];

[send(C, max) ‖ receive(D, mn)]

‖ [receive(C, mx) ‖ send(D, min)]

 ;

IO
=

max := max(S); min := min(T);

send(C, max) ‖

receive(D, mn)

send(D, min) ‖

receive(C, mx)

;

Communication Closed Layers Page 63

Example: Set-Partitioning

By CCL 4 :

S := (S\{max}) ∪ {min}

‖ T := (T\{min}) ∪ {max}

 ;

[max := max(S) ‖ min := min(T)];

[send(C, max) ‖ receive(D, mn)]

‖ [receive(C, mx) ‖ send(D, min)]

IO
=

S := (S\{max}) ∪ {min}; T := (T\{min}) ∪ {max};

max := max(S); min := min(T);

send(C, max) ‖

receive(D, mn)

send(D, min) ‖

receive(D, mx)

Communication Closed Layers Page 64

Example: Set-Partitioning

So far we obtained

{pre′}

max := max(S); min := min(T);

send(C, max) ‖

receive(D, mn)

send(D, min) ‖

receive(C, mx)

;

{
q′
01

}
{I′}

while max > min do

{I′ ∧ max > min}

S := (S\{max}) ∪ {min}; T := (T\{min}) ∪ {max};

max := max(S); min := min(T);

send(C, max) ‖

receive(D, mn)

send(D, min) ‖

receive(D, mx)

{I′}

od

{I′ ∧ max ≤ min} {post′}

Communication Closed Layers Page 65

Example: Set-Partitioning

Our next aim is to distribute the loop. Let

B1
def
=

S := (S\{max}) ∪ {min};

max := max(S);

[send(C, max)‖receive(D, mn)]

,

B2
def
=

T := (T\{min}) ∪ {max};

min := min(T);

[send(D, min)‖receive(C, mx)]

.

Communication Closed Layers Page 66

Example: Set-Partitioning

By Theorem (Loop distribution):

{pre′}

max := max(S); min := min(T);

send(C, max) ‖

receive(D, mn)

send(D, min) ‖

receive(C, mx)

;

{q′01}

while max > mn do while mx > min do

B1 B2

od od

{post′}

Communication Closed Layers Page 67

Example: Set-Partitioning

We also obtained that

{q′01} [while mx > min do B1 od ‖ while mx > min do B2 od]

is communication closed.

Communication Closed Layers Page 68

Example: Set-Partitioning

By CCL 4 :

{pre′}

max := max(S); min := min(T);

send(C, max) ‖

receive(D, mn)

 ;

send(D, min) ‖

receive(C, mx)

 ;

while max > mn do while mx > min do

S := (S\{max}) ∪ {min}; T := (T\{min}) ∪ {max};

max := max(S); min := min(T);

send(C, max) ‖

receive(D, mn)

send(D, min) ‖

receive(D, mx)

od od

{post′}

Communication Closed Layers Page 69

References

• W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y.

Lakhnech, M. Poel, and J. Zwiers. Concurrency Verification:

Introduction to Compositional and Noncompositional Proof

Methods. Cambridge University Press (2001).

• W. Janssen, J. Zwiers. Specifying and proving communication

closedness in Protocols. Technical Report 93-23, University of

Twente (1993).

• Tz. Elrad, N. Francez, Decomposition of distributed programs into

communication closed layers. In: Science of Computer

Programming 2 (1982)

Communication Closed Layers Page 70

