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Introduction and Overview

The basic intuition of transformational design:

• Program design is guided by transformation rules.

• Derive the (i+1)-th implementation by applying a transformation

rule on the i-th implementation,

1. implementation → . . . → i − th implementation

→ (i + 1) − th implementation → . . .

• Start derivation with the most coarse grained (simple)

implementation satisfying the specification and proof its

correctness.

• Applying transformation rules preserves correctness.

• Obtain a history of the design process by recording every

transformation step.
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Introduction and Overview

For what good is transformational design in concurrent programs?

• Assume we need a distributed program SD to perform some task t.

• SD is likely to be hard to verify and the final assertional

correctness proof does not reflect the design process of SD.

• Suppose we have an implementation of t consisting of sequentially

composed parts (layers), say SL.

• Usually SL ought to be easier to develop than the distributed

version SD.

• We may also assume that SL is easier to understand and easier to

verify than SD.

Thus we might ask:
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Introduction and Overview

Is there way to transform SL into SD such that both programs are

equivalent and the correctness of SL is preserved by the

transformations?
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Introduction and Overview

Obviously this leads to the following questions:

1. Of what syntactic structure is SL supposed to be?

2. When do we consider two programs as ”equivalent”?

3. What kind of transformations are done?

4. What are the transformation rules?
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Introduction and Overview

Clarify the first and second question by

• defining the syntax of the programming language to employ ,

• defining equivalence of two programs. In order to do so we have to

define proper semantics for our programming language.

Clarify the third and fourth question by

• introducing the communication-closed-layers paradigm ,

• introducing the so-called CCL Laws.
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To the first question ...

Syntax and Semantics

• Choose a guarded command language with

– non-deterministic conditional command,

– non-deterministic multi-test loop.

• Additionally:

– every guarded command (called action) has a unique label,

– parallel composition, denoted by ”‖” and

– send and receive actions for asynchronous communication.

• Syntax (and semantics) are closely related to transition systems.

For a statement S we define T [[S]] the be a corresponding

transition system.

Communication Closed Layers Page 8



To the first question ...

Syntax

Actions act ::= 〈b → x̄ := ē〉 |

send(c, e) | receive(c, x)

Programs S ::= a : act | S1; S2 | [S1‖S2] |

if []ni=1Si fi |do SB[]SE; exit od

Closed programs Sys ::= 〈S〉

send(c, e)
def
= 〈¬c.full → c.full, c.buf := true, e〉

receive(c, x)
def
= 〈c.full → c.full, x := false, c.buf〉
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To the second question ...

• Transformations are supposed to preserve ”equivalence” of two

programs.

• The more stronger our requirements on two programs to be

”equivalent” are the less room we have for interesting

transformations, e.g.

P1 = P2 iff Comp[[P1]] = Comp[[P2]].

• We will require that ”equivalent” programs define the same

initial-final state relation. This implies:

Equivalent programs satisfy the same Hoare formulae for

partial correctness.

• We do not require that ”equivalent” programs have the same

deadlock behavior or that they have the same divergence behavior.
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To the second question ...

Semantics

• Define semantics of a program S:

– in a compositional way,

– by sequences of action labeled computation steps, e.g.

〈σ0
a
→ σ1〉〈σ

′
1

a′

→ σ′
2〉 . . . ,

– by the set of all possible sequences produced by S.

• Consider two programs as equivalent if they define the same sets

of initial-final state pairs.
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To the second question ...

Reactive-event-sequence semantics RA

• RA[[a : 〈b → x̄ := ē〉]]
def
= {〈σ

a
→ σ′〉 | σ |= b ∧ σ′ = AI [[x̄ := ē]]σ}

• RA[[S1; S2]]
def
= RA[[S1]]

_RA[[S2]]

• RA[[if []ni=1Si fi]]
def
=

⋃n
i=1 RA[[Si]]

• Let R(0) def
= RA[[SE ]], and let R(i+1) def

= RA[[SB]]_R(i), for i ≥ 0.

Then:

RA[[do SB[]SE ; exit od]]
def
=

⋃

{R(i) | i ≥ 0}.

• RA[[[S1‖S2]]]
def
= RA[[S1]] ‖̃ RA[[S2]]

• RA[[〈S〉]]
def
= {Θ ∈ RA[[S]] | Θ is connected}
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To the second question ...

Limitations:

• Semantics of divergent computations are not defined.

• Sequences must be finite (the set of all sequences produced

by S may be infinite).

• Deadlock behavior is not observable.

→ Partial correctness only.
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To the second question ...

Initial-final-state semantics

• Ocl[[S]]
def
= O [[T [[S]]]].

• IO : RA → Σ2, constructs the initial-final state pair from a (finite)

reactive sequence.

• Ocl[[S]] ⊆ {IO(η) | η ∈ RA[[〈S〉]]}.

io-equivalence

• S1
IO
= S2 iff Ocl[[S1]] = Ocl[[S2]].
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To the third question ...

To the third question ...

Remember our introducing example of two programs SL and SD

implementing the same task t:

• We seek to increase/reduce concurrency of programs by applying

transformation rules on them

SL

increase concurrency
,, SD

decrease concurrency

ll .

• Transformed programs are supposed to have the same

initial/final-state behavior, i.e.

SL
IO
= SD.
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To the third question ...

• Consider a layer as a top-level parallel composition of program

fragments, e.g. [S0,0‖S0,1‖S0,2]

• Programs consist of sequentially composed layers, e.g.

[S0,0‖S0,1‖S0,2]; ...; [Sn,0‖Sn,1‖Sn,2]

• Increase/reduce concurrency by merging/sequentializing the layers

of a program, e.g.

[S0,0 ‖ S0,1 ‖ S0,2] ;

[S1,0 ‖ S1,1 ‖ S1,2] ;

[S2,0 ‖ S2,1 ‖ S2,2]

!







S0,0; S0,1; S0,2

S1,0; S1,1; S1,2

S2,0; S2,1; S2,2







.
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To the fourth question ...

The Communication-Closed-Layers Laws

Introducing four CCL Laws (CCL 1 - CCL 4):

• CCL 1 and CCL 2 for programs using shared variables.

• CCL 3 and CCL 4 for communication based programs, i.e. no

shared variables are used except those associated with the

communication buffers.

Additionally we will inquire how to transform loops:

• Loop Distribution Theorem for while-loops.
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CCL Laws for Shared Variables

CCL Laws for Shared Variables

Syntactically commuting and conflicting

Two say that actions a1 ≡ 〈b1 → x̄1 := ē1〉 and a2 ≡ 〈b2 → x̄2 := ē2〉

are syntactically commuting if:

(i) write(a1) ∩ read(a2) = ∅.

(ii) write(a2) ∩ read(a1) = ∅.

(iii) write(a1) ∩ write(a2) = ∅.

Actions which do not syntactically commute are said to be in conflict.
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CCL Laws for Shared Variables

We introduce the following notations:

• a1−/−−a2, if a1 and a2 are syntactically commuting

• a1−−−a2, if a1 and a2 are in conflict

For program fragments S1 and S2 we define

• S1−/−−S2

by requiring that for all a1 occurring in S1 and all a2 occurring in S2

we have that a1−/−−a2.
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CCL Laws for Shared Variables

Concurrent actions

Two actions a and a′ occurring in S are called concurrent actions if

there are two different parallel components S1 and S2, such that a

occurs in S1 and a′ occurs in S2.

Example

• S ≡ S1; [S2‖(S3; [S4‖S5]; S6)].

Parallel components of S:

• S2, S4, S5 and (S3; [S4‖S5]; S6).

Let ai be an action occurring in Si for i ∈ {1, 2, 3, 4, 5, 6}, then

• (a2, a3) are concurrent

• (a3, a4) are not concurrent
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CCL Laws for Shared Variables

Commuting Actions Lemma

Consider

• closed program 〈S〉,

• ai and ai+1 concurrent actions occurring in 〈S〉 s.t. ai−/−−ai+1.

Let η ∈ RA[[〈S〉]] of the form:

〈σ0
a0→ σ1〉 . . . 〈σi−1

ai−1
→ σi〉〈σi

ai→ σi+1〉〈σi+1
ai+1
→ σi+2〉〈σi+1

ai+2
→ σi+3〉 . . .

Let η′ be defined as η with ai and ai+1 exchanged, i.e., of the form:

〈σ0
a0→ σ1〉 . . . 〈σi−1

ai−1
→ σi〉〈σi

ai+1
→ σ′

i+1〉〈σ
′
i+1

ai→ σi+2〉〈σi+1
ai+2
→ σi+3〉 . . .

Then η′ ∈ RA[[〈S〉]].
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CCL Laws for Shared Variables

Proof: Suppose ai ≡ 〈bi → x̄i := ēi〉 and ai+1 ≡ 〈bi+1 → x̄i+1 := ēi+1〉.

To prove η′ ∈ RA[[〈S〉]] we have to show

(i) [[bi+1]](σi) = tt,

(ii) [[bi]](σ
′
i+1) = tt, where σ′

i+1 = [[x̄i+1 := ēi+1]](σi),

(iii) [[x̄i := ēi]](σ
′
i+1) = [[x̄i+1 := ēi+1]](σi+1),

Since η ∈ RA[[〈S〉]] we have that

(a) [[bi]](σi) = tt

(b) [[bi+1]](σi+1) = tt

(c) σi+1 = [[x̄i := ēi]](σi) and σi+2 = [[x̄i+1 := ēi+1]](σi+1).

By ai−/−−ai+1 we have

(?) write(ai) ∩ write(ai+1) = ∅.
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CCL Laws for Shared Variables

It follows:

[[x̄i := ēi]](σ
′
i+1) = [[x̄i := ēi]]([[x̄i+1 := ēi+1]](σi))

(?)
= [[x̄i+1 := ēi+1]]([[x̄i := ēi]](σi))
(c)
= [[x̄i+1 := ēi+1]](σi+1).

Thus, point (iii) is valid. Now consider (i) and (ii): By definition

• [[bi+1]](σi+1) = [[bi+1]]([[x̄i := ēi]](σi))
(b)
= tt,

• [[bi]](σ
′
i+1) = [[bi]]([[x̄i+1 := ēi+1]](σi)).

From [[bi+1]](σi+1) = tt and write(ai) ∩ read(ai+1) = ∅ it follows

[[bi+1]](σi) = tt.

Since [[bi]](σi) = tt and write(ai+1) ∩ read(ai) = ∅ we conclude

[[bi]](σi) = tt.
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CCL Laws for Shared Variables

CCL 1 (Independent program fragments)

Let SL and SD be programs defined as follows:

SL
def
=

[

S0,0 . . . S0,m

]

;
...

...
...

;
[

Sn,0 . . . Sn,m

]

and SD
def
=













S0,0 . . . S0,m

; · · · ;
...

...
...

; · · · ;

Sn,0 . . . Sn,m













.

Assume that Si,j−/−−Si′,j′ for i 6= i′ and j 6= j′, then SL
IO
= SD.
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CCL Laws for Shared Variables

Proof: Follows from CCL 2.
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CCL Laws for Shared Variables

CCL 2 (Conflict-based ordering)

Let SL and SD be programs defined as follows:

SL
def
=

[

S0,0 . . . S0,m

]

;
...

...
...

;
[

Sn,0 . . . Sn,m

]

and SD
def
=













S0,0 . . . S0,m

; · · · ;
...

...
...

; · · · ;

Sn,0 . . . Sn,m













.

Assume that |= 〈SD〉 psat (Si,j
C
� Si′,j′) holds for all i < i′ and j 6= j′.

Then SL
IO
= SD.
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CCL Laws for Shared Variables

Proof: We show

(i) ∀η
L
∈ RA[[〈SL〉]].∃η

D
∈ RA[[〈SD〉]] s.t. IO(η

L
) = IO(η

D
)

(ii) ∀η
D
∈ RA[[〈SD〉]].∃η

L
∈ RA[[〈SL〉]] s.t. IO(η

D
) = IO(η

L
)

Since any sequence produced by 〈SL〉 is also produced by 〈SD〉, i.e.

RA[[〈SL〉]] ⊆ RA[[〈SD〉]],

it remains to prove point (ii). Let η
D
∈ RA[[〈SD〉]].

Consider the case n = 1:

SL =

[S0,0 ‖ · · · ‖ S0,m]

;

[S1,0 ‖ · · · ‖ S1,m]

and SD =







S0,0 · · · S0,m

; · · · ;

S1,0 · · · S1,m







.
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CCL Laws for Shared Variables

There might be occurrences of events a0 and a1 in η
D

, where a1 labels

an action in S1,j and a0 labels an action in S0,j′ , s.t. the a1-event

precedes the a0-event (note: this is not possible in η
L
). Let k denote

the number of such event pairs (a1, a0) occurring in η
D

.

We show by induction on k:

(?) ∀k.∃η
L
∈ RA[[〈SL〉]] s.t. IO(η

L
) = IO(η

D
).

• Basis case:

Let k = 0. Then we have that η
D
∈ 〈SL〉.

• Induction step:

Assume that η
D

has k + 1 pairs of events (a1, a0) as indicated.

We may assume that there exists a pair (a1, a0) in η
D

s.t. a0

immediately follows a1, thus η
D

is of the following form:
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CCL Laws for Shared Variables

η
D

= θ〈σ
a1→ σ′〉〈σ′ a0→ σ′′〉θ′, for some sequences θ, θ′ and states σ, σ′, σ′′.

• From |= 〈SD〉 psat (S0,j
C
� S1,j′) for all j 6= j′ it follows

a1−/−−a0.

• Hence, by Commuting Actions Lemma we have that

θ〈σ
a0→ τ ′〉〈τ ′ a1→ σ′′〉θ′ ∈ RA[[〈SD〉]].

• Applying the ind. hypothesis on η〈σ
a0→ τ ′〉〈τ ′ a1→ σ′′〉η′ we obtain

∃η
L
∈ RA[[〈SL〉]] s.t. IO(η

L
) = IO

(

θ〈σ
a0→ τ ′〉〈τ ′ a1→ σ′′〉θ′

)

.

The case n > 1 can be shown analogously by defining a k for every

event pair (ai, ai′) with i > i′.
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CCL Laws for Shared Variables

Example

Consider the following program S given by

SD
def
=
























a1 : z := 2; a′
1 : x := 2;

P1 : P (s); V1 : V (s);

a2 : w := 1; a′
2 : v := 1;

P2 : P (s); V2 : V (s);

a3 : z := x + 1; a′
3 : v := w + 1;
























.

We claim that |= {s}〈 S 〉{z = 3 ∧ v = 2}.
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CCL Laws for Shared Variables

Applying the proof method of Owickie & Gries we would have to verify:

• max. 60 verification conditions to proof interference freedom

Instead we transform S into a layered version: Let

S0,0
def
=







a1 : z := 2;

P1 : P (s);

a2 : w := 1;

, S0,1
def
=







a′
1 : x := 2;

V1 : V (s);

a′
2 : v := 1;

S1,0
def
=







P2 : P (s);

a3 : z := x + 1;

, S1,1
def
=







V2 : V (s);

a′
3 : v := w + 1;

.
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CCL Laws for Shared Variables

Then

SD =




S0,0; S0,1;

S1,0; S1,1;



 .

Let SL be the layered version of SD, i.e.

SL
def
=







[S0,0 ‖ S0,1] ;

[S1,0 ‖ S1,1]
.

We claim that SD
IO
= SL by CCL 2.

To proof correctness of SL using O&G method we have to verify:

• max. 36 verification conditions to proof interference freedom

Are the requirements of CCL 2 satisfied?
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CCL Laws for Shared Variables

We have to prove |= 〈SD〉 psat (Si,j

C
� Si′,j′) for all i < i′ and j 6= j′,

i.e.

(a) |= 〈SD〉 psat (P1
C
� V2)

(b) |= 〈SD〉 psat (a2
C
� a′

3)

(c) |= 〈SD〉 psat (a′
1

C
� a3)

(d) |= 〈SD〉 psat (V1

C
� P2)

Conditions (a) and (d) are valid by the ordering caused by semaphores.

We can deduce the validity of (b) and (c) by the ordering caused by

sequential composition.
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CCL Laws for Communication-Based Programs

CCL Laws for Communication-Based Programs

Communication-based

We call a programm S communication-based if there are no shared

variables used in S except those associated with the channels. All

communication is done using send and receive actions as defined

earlier.
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CCL Laws for Communication-Based Programs

Syntactic send and receive counters

For a channel c we define the functions

• nsc(S), the number of send events in S along channel c,

• nrc(S), the number of receive events in S along channel c,

by induction on the syntactic structure of S...
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CCL Laws for Communication-Based Programs

• nsc(send(c, e))
def
= 1, and nsc(a)

def
= 0 for all other atomic actions a,

• nsc(S1; S2)
def
=







nsc(S1) + nsc(S2) : nsc(S1) 6=⊥ ∧ nsc(S2) 6=⊥

⊥ : otherwise
,

• nsc(if []ni=1
bi → Si fi)

def
=







nrc(S1) : ∀1≤i,j≤n(nsc(Si) = nsc(Sj))

⊥ : otherwise
,

• nsc([S1 ‖ S2])
def
=







nsc(S1) + nsc(S2) : nsc(S1) 6=⊥ ∧ nsc(S2) 6=⊥

⊥ : otherwise
,

• nsc(do []ni=1
bi → Si od)

def
=







0 : ∀1≤i,j≤n(nsc(Si) = 0))

⊥ : otherwise
.

Analogously we define nrc.
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CCL Laws for Communication-Based Programs

Syntax-based communication closedness

• Let L
def
= [S0 ‖ . . . ‖ Sm] be a layer that uses some channel c.

• Assume that Si contains all the send actions for c and some Sj

with i 6= j contains all the receive actions for c.

L is called communication closed for a channel c if

⊥6= nsc(Si) = nrc(Sj) 6=⊥ .

L is called communication closed if it is communication closed for all

channels occurring in L.
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CCL Laws for Communication-Based Programs

Example

The layer



send(c, e); receive(c, e);

receive(d, x) send(d, x)





is communication closed, however



send(c, e); receive(c, x);

receive(d, x) send(c, e)





is not communication-closed.
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CCL Laws for Communication-Based Programs

CCL 3 (Syntax-based CCL)

Let SL and SD be communication-based programs defined as follows:

SL
def
=

[

S0,0 . . . S0,m

]

;
...

...
...

;
[

Sn,0 . . . Sn,m

]

and SD
def
=













S0,0 . . . S0,m

; · · · ;
...

...
...

; · · · ;

Sn,0 . . . Sn,m













.

Assume that each layer Li
def
= [Si,0 ‖ . . . ‖ Si,m], where 1 ≤ i ≤ n, is

communication closed. Then SL
IO
= SD.
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CCL Laws for Communication-Based Programs

Proof: By CCL 2 we have to prove:

|= 〈SD〉 psat (Si,j

C
� Si′,j′) for all i < i′ and j 6= j′. (?)

(b) Consider the case n=1, i.e.

SL =

[S0,0 ‖ · · · ‖ S0,m]

;

[S1,0 ‖ · · · ‖ S1,m]

and SD =







S0,0 · · · S0,m

; · · · ;

S1,0 · · · S1,m







.

(c) Assume (?) is not valid. Then

∃η
D
∈ RA[[〈SD〉]].η

D
= θ〈σ

a1→ σ′〉〈σ′ a0→ σ′′〉θ′ ∧ a0−−−a1,

where a0 is occurring in S0,j and a1 in S1,j′ for j 6= j′.

(d) Let a1 be the first event preceding such an a0-event.
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Assertion-Based Program Transformations

Assertion-Based Program Transformations

Precondition-based semantics

Ocl[[ {pre}S ]]
def
= {(σ, σ′) | ∃η.σ |= pre∧ (σ, σ′) = IO(η)∧ η ∈ RA[[〈S〉]]}.

Precondition-based io-equivalence

We define precondition-based io-equivalence between two SVL++

programs S1 and S1 denoted by

{p1}S1
IO
= {p2}S2,

if Ocl[[{p1}S1]] = Ocl[[{p2}S2]].
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Assertion-Based Program Transformations

Augmented send/receive

send(c, e)
def
= 〈¬c.full → c.full, cbuf, c.sent, := true, e, c.sent + 1〉

receive(c, x)
def
= 〈c.full → c.full, x, c.received := false, c.buf, c.received + 1〉.

Assertion-based communication closedness

Let S be a program with precondition pre.

• S is called communication closed for a channel c if

|= {pre ∧ c.sent = c.received}〈S〉{c.sent = c.received}.

• A program or layer with precondition pre is called communication

closed if it is communication closed for all of its channels.

Communication Closed Layers Page 42



Assertion-Based Program Transformations

CCL 4 (Assertion based)

Let SL and SD be communication-based programs defined as follows:

SL
def
=

{p0}
[

S0,0 . . . S0,m

]

;

{p1}
...

...
...

;

{pn}
[

Sn,0 . . . Sn,m

]

and SD
def
=













S0,0 . . . S0,m

; · · · ;
...

...
...

; · · · ;

Sn,0 . . . Sn,m













.
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Assertion-Based Program Transformations

Assume that each layer with precondition

Li
def
= {pi}[Si,0 ‖ . . . ‖ Si,m]

is communication closed, and that {pi}[Si,0 ‖ . . . ‖ Si,m]{pi+1} is valid

for 0 ≤ i ≤ n − 1. Then SL
IO
= SD.
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Assertion-Based Program Transformations

Loop Distribution

Lemma (Loop unfolding)

For all contexts C[·] we have

Ocl[[C[while b do S od]]] =
⋃

j∈N

Ocl[[C[(b; S)j ;¬b]]].
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Assertion-Based Program Transformations

Loop distribution

Consider a program while b do [S1 ‖S2] od, guards b1, b2, and

assertions p and I with the following properties:

(i) I is a loop invariant, i.e.,

|= {I ∧ b} 〈[S1 ‖S2]〉 {I}.

(ii) |= p → I.

(iii) The variables of bi are local to Si, i ∈ {1, 2}, and moreover the

following is valid:

|= I → ((b ↔ b1) ∧ (b ↔ b2)).

(iv) {I}[S1 ‖S2] is communication closed.
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Assertion-Based Program Transformations

Then

{p} while b do [S1 ‖ S2] od

IO
=

{p} [while b1 do S1 od ‖ while b2 do S2 od]

and {p} [while b1 do S1 od ‖ while b2 do S2 od] is communication

closed.
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Assertion-Based Program Transformations

Proof: By Lemma (Loop unfolding) we have that

Ocl[[{p}while b do [S1‖S2] od]] =
⋃

j∈N

Ocl[[{p}(b; [S1‖S2])
j ;¬b]].

(a) Let j ∈ N and η ∈ RA[[〈(b; [S1‖S2])
j ;¬b〉]] s. t. the initial state of

η satisfies p. Let σ be an intermediate state in η where the guard b

or ¬b is evaluated. Then by (i) and (ii) we have that σ |= I.

Property (iii) now implies that σ |= b iff σ |= b1 ∧ b2 and that

σ |= ¬b iff σ |= ¬b1 ∧ ¬b2. We conclude

{p}(b; [S1‖S2])
j ;¬b

IO
= {p} ((b1 ∧ b2); [S1‖S2])

j ; (¬b1 ∧ ¬b2)
︸ ︷︷ ︸

(?)

.
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Assertion-Based Program Transformations

(b) It can be shown that (b1 ∧ b2)
IO
= [b1‖b2] and

(¬b1 ∧ ¬b2)
IO
= [¬b1‖¬b2], and since (b1 ∧ b2) and (¬b1 ∧ ¬b2) are

not within the scope of a parallel composition operator inside (?)

we can replace (b1 ∧ b2) and (¬b1 ∧ ¬b2) in (a), obtaining:

{p}((b1∧b2); [S1‖S2])
j ; (¬b1∧¬b2)

IO
= {p}([b1‖b2]; [S1‖S2])

j ; [¬b1‖¬b2].

(c) By (ii) and (iv) we may apply CCL 4 on {p}[b1‖b2]; [S1‖S2], thus

{p}[b1‖b2]; [S1‖S2]
IO
= {p}[b1; S2‖b2; S2].

With respect to (b) we conclude

{p}([b1‖b2]; [S1‖S2])
j ; [¬b1‖¬b2]

IO
= {p}([b1; S2‖b2; S2])

j ; [¬b1‖¬b2].
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Assertion-Based Program Transformations

(d) By properties (ii) and (iv) {p}[b1; S1‖b2; S2]; [b1; S1‖b2; S2] satisfies

the requirements of CCL 4, hence

{p}[b1; S1‖b2; S2]; [b1; S1‖b2; S2]
IO
= {p}[(b1; S1)

2‖(b2; S2)
2].

Inductively we obtain for all j ∈ N that

{p}([b1; S1‖b2; S2])
j IO

= {p}[(b1; S1)
j‖(b2; S2)

j ].

Applying CCL 4 once more, we finally obtain

{p}([b1; S1‖b2; S2])
j ; [¬b1‖¬b2]

IO
= {p}[(b1; S1)

j ;¬b1‖(b2; S2)
j ;¬b2].
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Assertion-Based Program Transformations

Summarizing:

Ocl[[{p}while b do [S1‖S2] od]]

=
⋃

j∈N
Ocl[[{p}(b; [S1‖S2])

j ;¬b]]
(a)
=

⋃

j∈N
Ocl[[{p}((b1 ∧ b2); [S1‖S2])

j ; (¬b1 ∧ ¬b2)]]
(b)
=

⋃

j∈N
Ocl[[{p}([b1‖b2]; [S1‖S2])

j ; [¬b1‖¬b2]]]
(c)
=

⋃

j∈N
Ocl[[{p}([b1; S2‖b2; S2])

j ; [¬b1‖¬b2]]]
(d)
=

⋃

j∈N
Ocl[[{p}[(b1; S1)

j ;¬b1‖(b2; S2)
j ;¬b2]]].

Next we prove that, for all j ∈ N,

Ocl[[{p}[(b1; S1)
j ;¬b1‖(b2; S2)

j ;¬b2]]].

=
⋃

k∈N
Ocl[[{p}[(b1; S1)

j ;¬b1‖(b2; S2)
k;¬b2]]].
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Assertion-Based Program Transformations

We prove this claim by showing that for any k 6= j

Ocl[[{p}[(b1; S1)
j ;¬b1‖(b2; S2)

k;¬b2]]] = ∅.

Assume that k 6= j, and without loss of generality, that j < k. By (d)

we have that

{p}[(b1; S1)
j ;¬b1‖(b2; S2)

k;¬b2]
IO
= {p}([b1; S1‖b2; S2])

j ; [¬b1‖b2]; (S2; b2)
k−j−1; S2;¬b2

By properties (i) and (ii) the loop invariant I holds at the state where

the guard ¬b1 ∧ b2 is evaluated. However, by property (iii) this guard

evaluates to ”false”, and cannot be passed. It follows that for j 6= k

Ocl[[{p}[(b1; S1)
j ;¬b1‖(b2; S2)

k;¬b2]]] = ∅.
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Assertion-Based Program Transformations

We deduce by the above equivalences, the compositionality of the

reactive-event-sequence semantics RA, and the fact that
⋃

j∈N

distributes over ‖̃:

Ocl[[{p}while b do [S1‖S2] od]]

=
⋃

j∈N
Ocl[[{p}(b; [S1‖S2])

j ;¬b]]

=
⋃

j∈N

⋃

k∈N
Ocl[[{p}[(b1; S1)

j ;¬b1‖(b2; S2)
k;¬b2]]]

=
⋃

k∈N
Ocl[[{p}[while b1 do S1 od‖(b2; S2)

k;¬b2]]]

= Ocl[[{p}[while b1 do S1 od‖while b2 do S2 od]]].
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Assertion-Based Program Transformations

Since

{p}while b do [S1‖S2] od (1)

IO
= {p}[while b1 do S1 od‖while b2 do S2 od]. (2)

both loops satisfy the same pre- and postconditions. Thus, the

communication closedness of (2) follows from from communication

closedness of (1).
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Example: Set-Partitioning
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Example: Set-Partitioning

• Given two disjoint, nonempty and finite sets of integers S0 and T0,

e.g.

S0 = {3, 8, 9} and T0 = {1, 4}.

• S0 ∪ T0 must be partitioned into two subsets S and T such that

– |S0| = |S|,

– |T0| = |T |,

– every element of S is smaller than any element of T , e.g.

S0 ∪ T0 = {3, 8, 9, 1, 4} −→ S = {1, 3, 4} and T = {8, 9}.

• Algorithmic idea:

′′Exchange max(S) with min(T ) until maxi−

mum of S is smaller than minimum of T.′′
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Example: Set-Partitioning

Pre- and Postcondition for set-partitioning algorithm:

pre
def
=

{

S = S0 6= ∅ ∧ T = T0 6= ∅ ∧ S ∩ T = ∅
}

.

post
def
=







|S| = |S0| ∧ |T | = |T0| ∧ S ∪ T = S0 ∪ T0

∧max(S) < min(T )






.

Algorithm:

{pre}

max, min := max(S), min(T );

while max > min do

(* exchange max with min *);

max, min := max(s), min(T );

od;

{post}
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Example: Set-Partitioning

PSV :(Proof outline: O&G system for closed programs)

{pre}

[max := max(S) ‖ min := min(T )];

{q0}skip;{I}

while max > min do

{I ∧ max > min}skip;{q1}

[S := (S\{max}) ∪ {min} ‖ T := (T\{min}) ∪ {max}]

{q2}

[max := max(S) ‖ min := min(T )];

{I}

od;

{I ∧ max ≤ min}skip;{post}
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Example: Set-Partitioning

Assertions PSV :

pre =
{

S = S0 6= ∅ ∧ T = T0 6= ∅ ∧ S ∪ T = ∅
}

.

q0
def
=

{

S = S0 6= ∅ ∧ T = T0 6= ∅ ∧ S ∪ T = ∅

∧min = min(T ) ∧ max = max(S)

}

.

q1
def
= q2[S, T / (S\{min}) ∪ {max}, (T\{max}) ∪ {min}].

q2
def
=

{

|S| = |S0| ∧ |T | = |T0| ∧ S ∪ T = S0 ∪ T0

∧S ∩ T = ∅ ∧ S 6= ∅ ∧ T 6= ∅

}

.

I
def
=







|S| = |S0| ∧ |T | = |T0| ∧ S ∪ T = S0 ∪ T0

∧S ∩ T = ∅ ∧ S 6= ∅ ∧ T 6= ∅

∧min = min(T ) ∧ max = max(S)







.

post =

{

|S| = |S0| ∧ |T | = |T0| ∧ S ∪ T = S0 ∪ T0

∧max < min(T )

}

.
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Example: Set-Partitioning

Pinit :(Communication-based)

{pre′}

[max := max(S) ‖ min := min(T )];
{
q′
0

}

[[send(C, max) ‖ receive(D, mn)] ‖ [receive(C, mx) ‖ send(D, min)]] ;
{
q′
01

}
{I′}

while max > min do

{I′ ∧ max > min}
{
q′
1

}

[S := (S\{max}) ∪ {mn} ‖ T := (T\{min}) ∪ {mx}];
{
q′
2

}

[max := max(S) ‖ min := min(T )];
{
q′
21

}

[[send(C, max) ‖ receive(D, mn)] ‖ [receive(C, mx) ‖ send(D, min)]] ;

{I′}

od;

{I′ ∧ max ≤ min} {post′}
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Example: Set-Partitioning

Assertions Pinit:

pre′
def
=







pre

∧¬C.full ∧ C.sent = C.received

∧¬D.full ∧ D.sent = D.received







.

q′
0

def
=







q0

∧¬C.full ∧ C.sent = C.received

∧¬D.full ∧ D.sent = D.received







.

q′
01

def
=







q′
0

∧mn = min ∧ mx = max






.

q′
1

def
=







q1

∧¬C.full ∧ C.sent = C.received

∧¬D.full ∧ D.sent = D.received







.
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Example: Set-Partitioning

q′
2

def
=







q2

∧¬C.full ∧ C.sent = C.received

∧¬D.full ∧ D.sent = D.received







.

q′
21

def
=







q′
2

∧min = min(T ) ∧ max = max(S)






.

I′
def
=







I

∧¬C.full ∧ C.sent = C.received

∧¬D.full ∧ D.sent = D.received

∧mn = min ∧ mx = max







.

post′
def
=







post

∧¬C.full ∧ C.sent = C.received

∧¬D.full ∧ D.sent = D.received







.
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Example: Set-Partitioning

By CCL 3 :

[ max := max(S) ‖ min := min(T ) ];



[send(C, max) ‖ receive(D, mn)]

‖ [receive(C, mx) ‖ send(D, min)]



 ;

IO
=








max := max(S); min := min(T );



send(C, max) ‖

receive(D, mn)








send(D, min) ‖

receive(C, mx)












;
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Example: Set-Partitioning

By CCL 4 :




S := (S\{max}) ∪ {min}

‖ T := (T\{min}) ∪ {max}



 ;

[max := max(S) ‖ min := min(T )];



[send(C, max) ‖ receive(D, mn)]

‖ [receive(C, mx) ‖ send(D, min)]





IO
=










S := (S\{max}) ∪ {min}; T := (T\{min}) ∪ {max};

max := max(S); min := min(T );



send(C, max) ‖

receive(D, mn)








send(D, min) ‖

receive(D, mx)
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Example: Set-Partitioning

So far we obtained

{pre′}






max := max(S); min := min(T );



send(C, max) ‖

receive(D, mn)








send(D, min) ‖

receive(C, mx)











;

{
q′
01

}
{I′}

while max > min do

{I′ ∧ max > min}









S := (S\{max}) ∪ {min}; T := (T\{min}) ∪ {max};

max := max(S); min := min(T );



send(C, max) ‖

receive(D, mn)








send(D, min) ‖

receive(D, mx)














{I′}

od

{I′ ∧ max ≤ min} {post′}
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Example: Set-Partitioning

Our next aim is to distribute the loop. Let

B1
def
=







S := (S\{max}) ∪ {min};

max := max(S);

[send(C, max)‖receive(D, mn)]

,

B2
def
=







T := (T\{min}) ∪ {max};

min := min(T );

[send(D, min)‖receive(C, mx)]

.
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Example: Set-Partitioning

By Theorem (Loop distribution):

{pre′}






max := max(S); min := min(T );



send(C, max) ‖

receive(D, mn)








send(D, min) ‖

receive(C, mx)











;

{q′01}






while max > mn do while mx > min do

B1 B2

od od







{post′}
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Example: Set-Partitioning

We also obtained that

{q′01} [while mx > min do B1 od ‖ while mx > min do B2 od]

is communication closed.
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Example: Set-Partitioning

By CCL 4 :

{pre′}

























max := max(S); min := min(T );



send(C, max) ‖

receive(D, mn)



 ;




send(D, min) ‖

receive(C, mx)



 ;

while max > mn do while mx > min do

S := (S\{max}) ∪ {min}; T := (T\{min}) ∪ {max};

max := max(S); min := min(T );



send(C, max) ‖

receive(D, mn)








send(D, min) ‖

receive(D, mx)





od od

























{post′}
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