Lecture 2 Deductive Verification in Action, Weizmann, Spring, 2001

Verification of Invariance Properties

We may use the following basic invariance rule to prove the invariance of assertion
p. That is, establish that the formula [p, for an assertion p is D-valid.

Rule BINV
1. ©—p
2. pAp—1p

Op

An assertion p satisfying 11 and 12 is called inductive.
Claim 3. Rule BINV is sound.

Proof Let o : sg,s1,... be a computation of D. By premise 11, s, satisfies
p. We show that, for every j = 0,1,..., the validity of p propagates from s;
to s;11. Assume that s; |= p. This implies that p(s;[V]) = 1. Since s;41 is a
D-successor of s, it follows that p(s,[V],s;11[V]) = 1. By premise 12, we infer
that p(s;11[V]) =1, i.e., sj4+1 = p.

By induction on j = 0.1,..., we conclude that every s; satisfies p, i.e., p is a
D-invariant.

Deductive Verification in Action, Weizmann, Spring, 2002 26

Lecture 2 Deductive Verification in Action, Weizmann, Spring, 2001

Example: Program MUX-SEM

Consider the following parameterized program coordinating mutual exclusion by
semaphores.

y: integer where y =1

{o: loop forever do
{1 : Non-critical
| Pli] = fo: request y
i=1 43 : Critical
ly: release y

The semaphore instructions request y and release y respectively stand for
(when y>0doy:=y—1) and y:=y+1.

We use rule BINV to verify the invariance of the assertion
pr: y=>0

This assertion is inductive so the proof succeeds.

For example, one of the instances of premise 12 is

<~
p P2
!
- y=0
P’
Deductive Verification in Action, Weizmann, Spring, 2002 27

Lecture 2 Deductive Verification in Action, Weizmann, Spring, 2001

Next, let us try to verify the property of mutual exclusion which can be specified
as the invariance of the assertion

P2 —|(at_€3[1] N at_ﬂg[QD

This attempt fails.

Deductive Verification in Action, Weizmann, Spring, 2002

28

Lecture 2 Deductive Verification in Action, Weizmann, Spring, 2001

Not Every Invariant Assertion is Inductive

As is already explained when one learns mathematical induction, there are valid
assertions p which cannot be proven by induction, where the induction hypothesis
is taken to be p itself.

For example, the claim
Thesum 1 +3+5+ -4 (2k — 1) is a perfect square

or, more mathematically
p: Fu:l+34+5+-+(2k—1) =u?
cannot be proven by induction, using p as the induction hypothesis.

To overcome this difficulty, one often has to come up with a strengthening of p,
being an assertion ¢ which implies p and is inductive. For the above example, this
can be

©: 1+3+5+-+(2k—1)=k

Deductive Verification in Action, Weizmann, Spring, 2002 29

Lecture 2 Deductive Verification in Action, Weizmann, Spring, 2001

Rule Inv

The above considerations lead to the more general INV rule.

Rule INV
For an assertion ¢,
1. -9y
2. ©oAp—¢
3. p—=p
Op

By premises I1 and [2, ¢ is an invariant of the system. That is, all reachable states
satisfy ¢. Since, by premise 13, ¢ implies p, it follows that p is also a D-invariant.

For example, we can establish the invariance of
pa i —(at_Lls[l] A at_l3[2])
using rule INV with the strengthening

@ : (y > 0) A (at_€3,4[1} + at_€3’4[2} + -+ at_£3,4[N} +y= 1)

Deductive Verification in Action, Weizmann, Spring, 2002 30

Lecture 2 Deductive Verification in Action, Weizmann, Spring, 2001

Using TLV for Incremental Strengthening

The TLV tool, developed by Elad Shahar, is a programmable symbolic calculator
over finite-state systems, based on the CMU symbolic model checker SMV.

It can be used to model check LTL formulas over finite-state systems. As we
will show, it can also be used for incremental development of inductive assertions.

To do so, we define a finite-state restriction of the original program, explicitly
calculate the candidate assertion, and apply rule BINV.
e If the rule application produces a counter-example, the assertion is not inductive.

We should strengthen it, and repeat the procedure.

e If the rule application succeeds, there are good chances (but no guarantee) that
the assertion is inductive. This it the time to shift to PVS in order to get the
final confirmation.

Deductive Verification in Action, Weizmann, Spring, 2002 31

Deductive Verification in Action, Weizmann, Spring, 2001 Lecture 2 Deductive Verification in Action, Weizmann, Spring, 2001

The Input File mux3.smv Model Checking Mutual Exclusion

Lecture 2

MODULE main In file scrl.pf, we place the text

DEFINE N:= 3;))
VAR y : boolean; Print "\n Model Check mutual exclusion between P[1] and P[2]\n";
P : array 1..N of process MP(y); mc 1t1([]!'(P[1].1loc=3 & P[2].loc=3));
Id: process Idle; We then run
ASSIGN init(y) := 1;

MODULE Idle
MODULE MP(y)
VAR loc: 0..4;

t1lv mux3.smv
TLV version 3.1

ASSIGN oot
init(loc) := O: Loaded rules file /home/amir/Tlv/Rules.tlv.
next(loc) := case))
loc in {0,1,3,4} : (loc + 1) mod 5; Your wish is my command
loc=2%y 1 3;
1 . loc: >> Load "scril.pf";
esac;
next (y) .= case Model Check mutual exclusion between P[1] and P[2]
loc = 2 & next(loc) = 3 : 0; Model checking...
loc = 4 & next(loc) =0 : 1;
1 Y **x* Property is VALID *xx
’ >>
esac;
JUSTICE loc !'= 0, 1loc != 3, loc != 4
COMPASSION (loc =2 &y, 1loc = 3)
32 Deductive Verification in Action, Weizmann, Spring, 2002 33

Deductive Verification in Action, Weizmann, Spring, 2002

Lecture 2 Deductive Verification in Action, Weizmann, Spring, 2001
Trying First Approximation: ¢, : Vi # j : =(at_l3]i] N at_l5[j])

In file scr2.pf, we place

Print "\n Try deductive verification of mutual exclusion\n";
To prepare_assertion;
Let i:= N;
Let ass := 1;
While (i)
Let j := N;
While (j)
Let ass := ass & (i=j | P[i]l.loc !'= 3 | P[j].1loc !'= 3);
Let j :=j - 1;

End -- While (j)
Let i (=1 - 1;
End -- While(i)
End -- prepare_assertion

prepare_assertion;
Call binv(ass);

Running this script file, we obtain:

>> Load "scr2.pf";

Try deductive verification of mutual exclusion

Checking Premise I1

Premise I1 is valid. Checking Premise I2.

Premise I2 is not valid. Counter-example =

y =1,0 P[1].loc = 0,0 P[2].1loc = 2,3 P[3].1loc = 3,3

Deductive Verification in Action, Weizmann, Spring, 2002 34

Lecture 2 Deductive Verification in Action, Weizmann, Spring, 2001

Strengthening the Assertion

The offending transition captures a situation in which P[3] is already at location
l3 and P[2] has just joined it. Is such a situation possible in a real computation?

No! because in a real computation, if any process is at /3 then y must equal 0.
Consequently, we strengthen ¢, into

P3: Py AN Vi:at_Ls[i] >y=0

Deductive Verification in Action, Weizmann, Spring, 2002 35

Lecture 2 Deductive Verification in Action, Weizmann, Spring, 2001
Trying Second Approximation:
w3 : Vi (at_l3fi] > y=0) N Vj#i:=(at_l3]i] N at_Ls[j])

In file scr3.pf, we place

While (i)
Let ass := ass & ((P[i].loc = 3) -> y=0);
Let j := N;
While (j)
Let ass := ass & (i=j | P[i]l.loc !'= 3 | P[j].1loc !'= 3);
Let j :=j - 1;
End -- While (j)
Let i (=1 - 1;
End -- While(i)

Running this script file, we obtain:

>> Load "scr3.pf";

Try deductive verification of mutual exclusion

Checking Premise I1

Premise I1 is valid. Checking Premise I2.

Premise I2 is not valid. Counter-example =

y = 0,1 P[1].loc = 0,0 P[2].loc = 4,0 P[3].loc = 3,3

Deductive Verification in Action, Weizmann, Spring, 2002 36

Lecture 2 Deductive Verification in Action, Weizmann, Spring, 2001

Strengthening ¢3

The offending transition originates at a state in which P[2] is at location /4 while
P[3] is at location /3. Such a state is unreachable, because the range for which
mutual exclusion is ensured includes /4 together with /3.

Consequently, we strengthen 3 into

Py Vi : at_£3[i] — Y= 0 A Vj 7é 7 _‘(at_'€3’4[i} A at_£314[j])

Deductive Verification in Action, Weizmann, Spring, 2002 37

Deductive Verification in Action, Weizmann, Spring, 2001
Trying next Approximation:
wgp: Vitat_l3li] > y=0 A VjF#i:=(at_l34[i] N at_l54[j])

Lecture 2

In file scr4.pf, we replace

Let ass := ass & (i=j | P[i].loc != 3 | P[j]l.1loc != 3);

as it appeared in scr3.pf, by:

Let ass := ass & (i=j | P[i].loc < 3 | P[j].loc < 3);

Running this version, we obtain

Premise I2 is not valid. Counter-example =

y =1,0 P[1].loc = 0,0 P[2].1loc = 4,4 2,3

P[3].1loc =

The pre-state of this counter-example is unreachable because it has P[2] at
location /4 while y = 1. It is thus necessary to extend the range for which y = 0
to include also /4. Consequently, we strengthen ¢, into

w5 Vi at_£374[i] —y=0A Vj 7é 1 —|(at_£374[i] A at_€3,4[j])

Deductive Verification in Action, Weizmann, Spring, 2002 38

Deductive Verification in Action, Weizmann, Spring, 2001
Once More: Try
Y51 Yitat_l34fi] >y =0 A Vj#i:—(at_Lls4]i] N at_Ls4][]])

Lecture 2

In file scr5.pf, we replace

Let ass := ass & ((P[il.loc = 3) -> y=0);

as it appeared in scr3.pf, by:

Let ass := ass & ((P[i].loc > 2) -> y=0);

Running this version, we obtain

Try deductive verification of mutual exclusion

Checking Premise Il
Premise I1 is valid. Checking Premise I2.

Premise I2 is valid.
* * x Assertion p is invariant.

Deductive Verification in Action, Weizmann, Spring, 2002

39

