Lecture 3 Deductive Verification in Action, Weizmann, Spring, 2001

Methods for Deriving Auxiliary Invariants

The methods for deriving auxiliary invariants (which can be used to strengthen a
non-inductive assertion) can be partitioned into

e Bottom-Up methods. Analyze the program independently of the goal assertion
to be proven.

e Top-Down methods. Take into account both the program and the assertion
whose invariance we wish to prove.

The successive strengthening method we have previously described, using the TLV

tool, is a typical top-down method.

We will proceed to describe additional methods of each of the classes, starting
with bottom-up methods.
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Transition Affirmed Invariants

In some cases, we can identify that all transitions entering location /, cause an
assertion ¢ to hold in the post-state of the transition. If, in addition, no action of
a parallel process can invalidate ¢ then the assertion

at f — @
is an invariant.

Following are some configurations of statements and the candidate assertions
corresponding to them

Configuration Candidate Provided
[ y:= (¥ . .
/.- y:= 1 )} at_L; — y = f(%) y €T
. await c¢ ] at_ b 5 ¢
[ while ¢ do ¢; :S at 11 — ¢
L 2% A at_ly — —c
[ if ¢ then lq:5 at_l1 — ¢
L else 62 ZSQ A at,fg — T1C
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Forward Propagation

Consider a program segment of the form /1 :y := ¢; /5, and assume that

e We previously derived an invariant at /1 — .

e The assignment y := e preserves the assertion . For example, ¢ does not
depend on .

e No statement parallel to this process can invalidate ¢.

Then, we can conclude that at_/5 — ¢ is also an invariant.
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Example: Peterson’s Mutual Exclusion for 2 Processes

local yi,y> :boolean where y; =y, =10
s : {1,2} where s =1

4 : loop forever do my : loop forever do
/1 : Non-Critical m1 : Non-Critical
.. s :(y1,8) == (1,1) .. my : (y2,8) := (1,2)
Py l3:await yo =0 V s#1 I P mg:await y; =0 V s #£2
44 : Critical my : Critical
| |45 :y1:=10 ] | |ms5 iy2: =10 ]

e Using the method of transition affirmed invariants, we can derive the invariant
at_ly — y1 =0 A at_tls — yp >0
Using forward propagation, we can extend this to

at b3 5 < y1 >0

e Applying the second clause of the transition affirmed invariants method to

statement /3, we can derive the invariant
at by — y=0V s#1

This requires showing that no statement parallel to /4 can invalidate the assertion
ya = 0 V s # 1. Special attention must be given to mo which modifies both s
and s. However, since it sets s to 2 # 1, it only revalidates yo =0 V s # 1.
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Loop Derived Invariants

Lecture 3

Consider the following loop:

fj : 1:=1
€j+1 : while 7 <n do
£j+2 :

‘ek : DRI
£k+1 Doii=1+1
£k+2 .
where none of the statements £, ..., £; and no statement parallel to this process
modifies 7.

Then, we can conclude the following invariant:

at_éj+1,,k+1 —1<i1<n+ at_éj+1 A at_Llpio —i=n+1
We can draw similar conclusions about the loop

Liy1:fori=1ton do S; lyio:
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Top-Down Derivation Methods: Generalization

Lecture 3

Consider the following program:

ly: sum:=0
l1: fori:=1tondo
by i sum = sum + A[i]

63:

for which we wish to prove the invariance of the assertion

w: at_ly — sum = ZA[T}

r=1

Since we know that, at location /3, i = n + 1, this can be rewritten as:

at_ly - i=n+1 A sum = ZA[T}

r<i

It is possible to generalize and conjecture the more general invariant

at_l, 3 — sum = ZA[’I‘]

r<i

This corresponds to the following insight:

If the purpose of the complete loop is to compute the sum A[1] + -+ A[n]

and 7 measures the incremental progress, then it seems reasonable that, at an
intermediate stage, sum should contain the partial sum A[1]+ -+ A[i — 1].
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Top-Down Methods: Systematic Strengthening

Premise 12 of rule 1INV requires establishing the validity of ¢ A p — ¢'. As
p consists of a disjunction \/, ps, where each statement ¢ contributes its own
transition relation py, this is often established by showing separately

o Np = ¢

for each statement /. Equivalently, this can be written as ¢ — pre(£,¢), where
pre(l, ) =YV (pg — ¥).

In our case, all individual transition relations have the form p; : ¢, A V' = E,,
where ¢y is a boolean expression over V', and FEy is a set of expressions defining
the new values of the variables V. For these cases, the pre-condition pre(Z, ) can
be simplified to

pre(l,0) 1 ¢ — o(Ey),

where ©(Fy) is obtained from ¢ by substituting the expressions E; for the state
variables V.

Claim 4. If the assertion ¢ is an invariant of system D, the so is pre({, ), for
every statement /.

This claim leads to the following strengthening strategy:

Strategy 1. [Ifthe verification condition ¢ \p, — ¢' fails to be D-valid, strengthen
© by conjuncting it with pre(¢, ).
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Example of Applying the Strategy

Reconsider program PETERSON2. We may start the search for an invariant with
the assertion of mutual exclusion

Yo: mF#4V mpF#A4

Checking the verification conditions, we find out that this assertion fails to be
inductive after execution of the statements /3 and m3. Observing that the enabling
condition for /5 is ¢g, : 11 =3 A (y2 =0 V s # 1) and the variable assignment
is w1 := 4, we compute pre(/s,¢,) and obtain:

o1: m=3 A (yo=0V s#1) —
N

(4#4V mo#4) ~
at_ls N at_mgy — Yy #0 =1

s

In a similar way, pre(my, @g) yields
Wo: at_ly N at_mz — y1#F0 N s=2

Together with the bottom-up derived invariants
pg: atlzs—y =1 Yy at-mg 5 —ys=1,

This set of assertions is inductive and implies ¢, which specifies mutual exclusion.
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