
A Brief Introduction to PVS
Tamarah Aronstamarah@wisdom.weizmann.ac.il

6 June, 2002

What is pvs
� pvs is an extensive higher-order-logic deductiveveri�cation system based on sequent calculus.� Speci�cation language for writing theorems� Interactive prover� Full documentation at ~verify/PVS2-4.1/Doc/

1

Logic of pvsThe prover maintains a proof tree.� Root is the premise to be proved� O�spring follow from a node by a proof step� Tree is complete when all leaves are true� Each node is proof goal� Each proof goal is a sequent

2

SequentsA sequent is comprised of sequent formulas : antecedentsfollowed by consequents.Represented in the formp1; p2; : : : ; pn ` q1; q2; : : : ; qm,where pi are the antecedents, qi are the consequents.Interpretation:8free : (p1 ^ p2 ^ : : : ^ pn)! (q1 _ q2 _ : : : _ qm)where free denotes the free (unbound) variables.
3

Sequent AxiomsUsed to prove that the leaf sequents are trueA1 : �; p ` �; pA2 : � ` �;tA3 : �; f ` �I.e. A1 : � ^ p! � _ pA2 : �! � _ tA3: � ^ f! � �:(� ^ f) _� �:� _ :f _� �:� _ t _� �tCorresponds to pvs assert command.

4

Propositional Rules� ` �; p _ q �; p ^ q ` �� ` �; p; q �; p; q ` �

�;:p ` � � ` �;:p� ` �; p �; p ` �

Correspond to the pvs flatten command.

�; p _ q ` � � ` �; p ^ q�; p ` � �; q ` � � ` �; p � ` �; q

These expanding rules correspond to the pvs splitcommand.

5

Quanti�er RulesSkolemization (skolem!, skosimp*)Requires that t be a new constant that does not occur inthe sequent�; (9x : p) ` � � ` �; (8x : p)�; pfx tg ` � � ` �; pfx tgInstantiation (inst, inst-cp)

�; (8x : p) ` � � ` �; (9x : p)�; (8x : p); pfx tg ` � � ` �; (9x : p); pfx tgStrengthening RulesAllow a stronger sequent to be derived from a weaker oneby removing formulas�; p ` � � ` �; p� ` � � ` �
6

Example' : (8x : P (x) _ :Q(x)) ! (9y : P (y)) _ (8z : :Q(z))

(8x : P (x) _ :Q(x))skolemize(8x : P (x) _ :Q(x))
P (a) _ :Q(a);Q(a) split:Q(a); Q(a)

` P (a)t - Axiom A1
P (a);Q(a)

P (a);Q(a) Q(a) t - Axiom A1

(8x : P (x) _ :Q(x)); Q(a)
flatten

flatten
flatten

` (9y : P (y)); (8z : :Q(z))

` (9y : P (y));:Q(a)
` (9y : P (y))

` (9y : P (y))instantiate y with a
instantiate x with a

` (9y : P (y));Q(a)

` :(8x : P (x) _ :Q(x)); (9y : P (y)); (8z : :Q(z))

` :(8x : P (x) _ :Q(x)) _ (9y : P (y)) _ (8z : :Q(z))flatten
` (9y : P (y))

` (9y : P (y))
7

Basic De�nitions in pvsSpeci�cation �les: text �les containing theories. Includesystem de�nitions and lemmas. Extension .pvs.Proof �les save proofs that have been composed.Extension .prf.Context: Set of speci�cation and proof �les in onedirectory.Interface: Emacs editor.

8

Example - reservations

reservation: theorybeginroom: typedate: typename: typefree: namereservations: type = [room, date ! name]reserve(r:room, d:date, n:name, reg:reservations):reservations = reg with [(r, d) := n]cancel(r:room, d:date, reg:reservations):reservations = reg with [(r, d) := free]reserved(r:room, d:date, reg:reservations): bool=reg(r, d) 6= freeend reservation� room, date, name are uninterpreted types� free is a constant� reservations is a function type� reserve, reserved, cancel are interpreted functions 9

Proving Lemmasreserved(r, d, reg): bool = reg(r, d) 6= freecancel(r, d, reg): reservations =reg with [(r, d) := free]canceled not reserved: lemma8 r, d, reg: : reserved(r, d, cancel(r, d, reg))|-------{1} FORALL r, d, reg:NOT reserved(r, d, cancel(r, d, reg))Rule? (skosimp*){-1} reserved(r!1, d!1, cancel(r!1, d!1, reg!1))|-------Rule? (expand "reserved"){-1} cancel(r!1, d!1, reg!1)(r!1, d!1) /= free|-------Rule? (expand "cancel"){-1} FALSE|-------which is trivially true.Q.E.D. 10

Proving Lemmas - ctdAlternatively, the grind command would have provedthis lemma.grind is a strategy that expands de�nitions, skolemizes,instantiates, simpli�es ...It can often be used to complete a proof.
11

Another lemma

reserved(r, d, reg): bool = reg(r, d) 6= freereserve(r, d, n, reg): reservations =reg with [(r, d) := n]is reserved: lemma8 r, d, n, reg:reserved(r, d, reserve(r, d, n, reg))is_reserved :|-------{1} FORALL r, d, n, reg:reserved(r, d, reserve(r, d, n, reg))Rule? (skosimp*)|-------{1} reserved(r!1, d!1, reserve(r!1, d!1, n!1, reg!1))Rule? (expand "reserved")|-------{1} reserve(r!1, d!1, n!1, reg!1)(r!1, d!1) /= freeRule? (expand "reserve"){-1} n!1 = free|-------Rule? 12

ltl frameworkA set of pvs theories and strategies de�ning basic ltlconstructs, and proof rules like BINV.Example mux-sem
in N : integer where N > 1local y : f0; 1g where y = 1

Np=1 P [p] ::
26666664
`0 : loop forever do2664 `1 : noncritical`2 : request y`3 : critical`4 : release y
3775

37777775

Figure 1: Parameterized mux-sem
13

Proving Mutual Exclusionreachable: ASSERTION =: : :(8 (i: PROC ID): 8 (j: PROC ID):(loc(i) > 2 ! y = 0) ^(i = j _ loc(i) < 3 _ loc(j) < 3))

Hints :� Existential quanti�cation is expensive, often requiringmanual instantiation : avoid when possible� Try to take universal quanti�ers to the top level� Disjunction (_) is more di�cult to work with thanconjunction (^), often requiring manual splitting.
14

