LTL framework

e A prelude library of LTL theories

e Includes definitions of state sequences, temporal

operators, proofs of LTL proof rules

e Strategies manipulating  LTL  structures
split-rho) or applying proof rules (e.g. binv)

(e.g.

State Sequences

e A state is a type-consistent interpretation of the system

variables V

A state sequence is an infinite sequence of states,
represented as a mapping from time (IN) to states:

STATE_SEQ: TYPE = [TIME — STATE]
(Recall: g :80,51,S82,.. )

Assertions are properties defined on individual states,
without reference to their position in the state sequence.

ASSERTION: TYPE = [STATE — bool]

Disjunction, conjunction, negation and implication over
assertions are defined in the natural manner.



Example Lambda expression

V ={a,b: boolean } Lambda (A) expression denote unnamed functions. For
o 00 example, the function which adds 3 to an integer may be
Four distinct states, s°”: (a:F, b:F) written as
sV aiw, biT)
st {a:T, b:F)
sttt {a:T, b:m) Az :int) :x+ 3
STATE type for this system is {570 sVl 510 g1}
State sequence S_opp defined as and defines a function of type [int +— int].
So, more formally,
S_opp : [TIME — STATE] = 0 +— s%
1 — !0 S_opp: STATE_SEQ =
2 - 50 (A (t: TIME):
3 — sl 7 3 (j: TIME): t = 2 X j
THEN (# a := FALSE, b := TRUE #)
ELSE (# a := TRUE, b := FALSE #)
ENDIF)
Assertion a_implies_b is defined to be true in every
state s in which a — b. l.e. it is true of state s iff s # s'°, The assertion a_implies b is defined as
a_implies_b is true at states S_opp(0), S_opp(2),... a_implies_b: ASSERTION =

(A (s: STATE): s‘a — s‘b)



Similarly, we can define

a_and_b: ASSERTION —
(N (s: STATE): s‘a A s‘b)

a_or_b: ASSERTION =
(N (s: STATE): s‘a V s‘b)

Using conjunction and negation over assertions,

a_xor_b: ASSERTION =
(N (s: STATE): a_or_b(s) AND NOT(a_and_b(s)))

Temporal Properties

Temporal properties are interpreted over state

sSequences.

TP: TYPE = [STATE_SEQR, TIME — boolean]
E.g., the henceforth operator, G (0O), is defined as

G: [TP — TP] =

(A (a: TP):
(A (seq: STATE_SEQR), (j: TIME):
V (t: TIME): t > 5 — a(seq, 1)))

That is, G(a) holds at every position j in seq s.t. for all
t > 7, a holds at state seq(t).

There is automatic conversion from assertions to temporal
properties. The temporal property is derived by evaluating
the assertion at every state in the sequence:

assertion_to_TP(p: ASSERTION): TP =
(A (seq: STATE_SEQ), (¢: TIME):
p(seq(?)))

l.e. p(seq, t) = p(seq(t))



e a_or_b(S_opp(t))
evaluates an assertion on state S_opp(?).

a_or_b(S_opp, t)
evaluates a temporal property at position ¢t of S_opp
a_or_b is converted into a temporal property

Both return the same value.

e Consider G(a_or_b)(S_opp, 0)

GG(a_or_b) is a temporal property
It is evaluated at position 0 of S_opp.

(7(a—or_b)(S_opp(0))

is incorrectly typed: a temporal property cannot be
converted to an assertion, nor can it be evaluated at an
individual state.

e Which of the following are true?

— a_implies_b(S_opp(0))

— a_implies_b(S_opp, 0)

— G(a_implies_b)(S_opp, 0)
— a_implies_b(S_opp, 1)

— G(a_or_b)(S_opp, 1)

— G(not(a_and_b))(S_opp, 1)



