LTL framework

- A prelude library of LTL theories
- Includes definitions of state sequences, temporal operators, proofs of LTL proof rules
- Strategies manipulating LTL structures (e.g. split-rho) or applying proof rules (e.g. binv)

State Sequences

- A state is a type-consistent interpretation of the system variables V
- A state sequence is an infinite sequence of states, represented as a mapping from time (\mathbb{N}) to states:

STATE_SEQ: TYPE = [TIME \rightarrow STATE]

(Recall: $\sigma : s_0, s_1, s_2, ...$)

• Assertions are properties defined on individual states, without reference to their position in the state sequence.

ASSERTION: TYPE = [STATE \rightarrow bool]

Disjunction, conjunction, negation and implication over assertions are defined in the natural manner.

Example

 $V = \{a, b : \text{boolean } \}$ Four distinct states, $s^{00} : \langle a : F, b : F \rangle$ $s^{01} : \langle a : F, b : T \rangle$ $s^{10} : \langle a : T, b : F \rangle$ $s^{11} : \langle a : T, b : T \rangle$

STATE type for this system is $\{s^{00},s^{01},s^{10},s^{11}\}$

State sequence *S_opp* defined as

Assertion a_implies_b is defined to be true in every state s in which $a \rightarrow b$. I.e. it is true of state s iff $s \neq s^{10}$.

a_implies_b is true at states $S_opp(0), S_opp(2), \ldots$

Lambda expression

Lambda (λ) expression denote unnamed functions. For example, the function which adds 3 to an integer may be written as

$$\lambda(x:int):x+3$$

and defines a function of type [int \mapsto int].

So, more formally,

S_opp: STATE_SEQ =

$$(\lambda \ (t: \ TIME):$$

IF $\exists \ (j: \ TIME): \ t = 2 \times j$
THEN (# $a := \ FALSE, \ b := \ TRUE$ #)
ELSE (# $a := \ TRUE, \ b := \ FALSE$ #)
ENDIF)

The assertion a_implies_b is defined as

a_implies_b: ASSERTION = (λ (s: STATE): s'a \rightarrow s'b) Similarly, we can define

a_and_b: ASSERTION = (λ (s: STATE): s'a \wedge s'b)

a_or_b: ASSERTION = (λ (s: STATE): s'a \vee s'b)

Using conjunction and negation over assertions,

```
a_xor_b: ASSERTION =
(\lambda (s: STATE): a_or_b(s) AND NOT(a_and_b(s)))
```

Temporal Properties

Temporal properties are interpreted over state sequences.

TP: TYPE = [STATE_SEQ, TIME \rightarrow boolean]

E.g., the henceforth operator, $G(\Box)$, is defined as

That is, G(a) holds at every position j in seq s.t. for all $t \ge j$, a holds at state seq(t).

There is automatic conversion from assertions to temporal properties. The temporal property is derived by evaluating the assertion at every state in the sequence:

assertion_to_TP(p: ASSERTION): TP = (λ (seq: STATE_SEQ), (t: TIME): p(seq(t)))

I.e. p(seq, t) = p(seq(t))

```
    a_or_b(S_opp(t))
    evaluates an assertion on state S_opp(t).
```

```
a_or_b(S_opp, t)
evaluates a temporal property at position t of S_opp
a_or_b is converted into a temporal property
```

Both return the same value.

• Consider G(a_or_b)(S_opp, 0)

```
G(a\_or\_b) is a temporal property
It is evaluated at position 0 of S_opp.
```

```
G(a\_or\_b)(S\_opp(0))
```

is incorrectly typed: a temporal property cannot be converted to an assertion, nor can it be evaluated at an individual state.

- Which of the following are true?
 - a_implies_b(S_opp(0))
 - a_implies_b(S_opp, 0)
 - G(a_implies_b)(S_opp, 0)
 - a_implies_b(S_opp, 1)
 - G(a_or_b)(S_opp, 1)
 - $G(not(a_and_b))(S_opp, 1)$