
State Sequences

� A state is a type-consistent interpretation of the systemvariables V� A state sequence is an in�nite sequence of states,represented as a mapping from time (IN) to states:STATE SEQ: type = [TIME ! STATE](Recall: � : s0; s1; s2; : : :)� Assertions are properties de�ned on individual states,without reference to their position in the state sequence.ASSERTION: type = [STATE ! bool]Disjunction, conjunction, negation and implication overassertions are de�ned in the natural manner.
1

Temporal OperatorsLet S be a state sequence.We denote the notion of a temporal property p holdingat position j � 0 of S by p(S; j).If p is an assertion then p(S; j) = p(S(j))For the ltl operators :Henceforth, 2 , G G(p)(S; j) () p(S; k) for all k � jEventually, 3, F F (p)(S; j) () p(S; k) for some k � jNext, , X X(p)(S; j) () p(S; j + 1)
2

ExampleV = fc : f red, blueg gTwo distinct states: hc : redi, hc : blueiis blue : ASSERTION = (� (s: STATE): s`c = blue)Consider state sequence SS : [TIME 7! STATE] de�nedby the �rst 2 columns in the table:time state is blue X(is blue) F (is blue)0 hc : bluei t f t1 hc : redi f f t2 hc : redi f t t3 hc : bluei t t t4 hc : bluei t t t5 hc : bluei t t t� � �� Assertion is blue depends only on the state.is blue(SS, i) = is blue(SS(i))� Temporal properties depend on the whole statesequence. SS(0) = SS(3) but X(is blue)(SS; 0) ist, X(is blue)(SS; 3) is f� X(is blue)(SS(0)) is incorrectly typed as SS(0) is thestate hc : bluei (as is SS(3)!!) 3

fds - Fair Discrete SystemRecall, fds D = hV;�; �;J ; Ci consists of :� V : a set of typed state variables. A V -state is aninterpretation of V . �V is the set of all V -states.� � : The initial condition. An assertion characterizingthe initial states.� � : The transition relation. A predicate �(V; V 0)referring to the both unprimed (current) and primed(next) versions of state variables.� J : The set of justice requirements. Each computationmust have in�nitely many Ji-states, for every Ji 2 J .� C : The compassion requirements, each of the formhp; qi. In�nitely many p-states imply in�nitely manyq-states.

4

pfs - Parameterized Fair SystemPFS: type =[# initial: ASSERTION,rho: BI ASSERTION,justice: JUSTICE TYPE,compassion: COMPASSION TYPE #]whereBI ASSERTION: type = [STATE, STATE ! boolean]JUSTICE TYPE: type = [TRANSITION DOMAIN ! ASSERTION]COMPASSION PAIR: type =[# p: ASSERTION, q: ASSERTION #]COMPASSION TYPE: type =[TRANSITION DOMAIN ! COMPASSION PAIR]Note:� STATE and TRANSITION DOMAIN parameters are givenin de�ning the pfs� There is no state-variables (V) component 5

Runs and ComputationsA STATE SEQ seq of pfs is an initialized run if it satis�es� Initiality : seq(0) is initial i.e. pfs`initial(seq(0))� Consecution : For every t = 0; 1; 2, state seq(j + 1) isa successor of seq(t). I.e. pfs`rho(seq(t), seq(t+ 1))A computation is an initialized run which also satis�esthe fairness requirements of:� Justice: For every t 2 TRANSITION DOMAIN there arein�nitely many states in seq at which pfs`justice(t)holds.� Compassion: For every t 2 TRANSITION DOMAIN, ifthere are in�nititely many (pfs`compassion(t)`p)-statesin seq then there are in�nititely (pfs`compassion(t)`q)-states in seq.

6

ValidityA temporal property p is termed� valid if it hold in the �rst state of every state sequenceseq.is valid(p)� P-valid if it hold in the �rst state of every computationseq of program P .Assuming that pfs de�nes program P ,is P valid(p, pfs)� P-reachable valid if it hold in the �rst state of everyinitialized run seq of program P .is P reachable valid(p, pfs)

7

Validity ctd
� state sequence � initialized runs � computations,and sovalidity ! P -reachable validity ! P -validity� Generally, interested in P -validity� Rules like BINV actually prove the stronger P -reachablevalidity property� Can always convert P -reachable validity to P -validity.Sometimes having the stronger property is useful.

8

Example: mux-sem
in N : integer where N > 1local y : f0; 1g where y = 1

Np=1 P [p] ::
26666664
`0 : loop forever do2664 `1 : noncritical`2 : request y`3 : critical`4 : release y
3775

37777775

Figure 1: Parameterized mux-sem
9

A pfs for mux-semmuxsem[N: posnat]: theorybeginimporting more nat typesLOCATION: type = upto[4]PROC ID: type = upto nz[N]TRANS DOMAIN: type =[# loc: LOCATION, pid: PROC ID #]STATE: type =[# y: upto[1], loc: [PROC ID ! LOCATION] #]importing PFS[STATE, TRANS DOMAIN]p: var PROC ID

10

rho: BI ASSERTION =(� (current, next: STATE):next = current _(9 p:loc(current)(p) = 0 ^y(next) = y(current) ^loc(next) = loc(current) with [(p) := 1]_loc(current)(p) = 1 ^y(next) = y(current) ^loc(next) = loc(current) with [(p) := 2]_loc(current)(p) = 2 ^y(current) = 1 ^y(next) = 0 ^loc(next) = loc(current) with [(p) := 3]_loc(current)(p) = 3 ^y(next) = y(current) ^loc(next) = loc(current) with [(p) := 4]_loc(current)(p) = 4 ^y(next) = 1 ^loc(next) = loc(current) with [(p) := 0]))
11

st: var STATEt: var TRANS DOMAINjustice: JUSTICE TYPE =(� t: (� st:if loc(t) = 0 _ loc(t) = 3 _ loc(t) = 4then loc(st)(pid(t)) 6= loc(t)else trueendif))compassion: COMPASSION TYPE =(� t:if loc(t) = 2then(# p := (� st: loc(st)(pid(t))=2 ^ y(st)=1),q := (� st: loc(st)(pid(t)) = 3) #)else (# p := (� st: true), q := (� st: true) #)endif)pfs: PFS =(# initial := fst| y(st)=1 ^ (8p: loc(st)(p)=0) g,rho := rho,justice := justice,compassion := compassion #)end muxsem

12

Transition domains

� Very often, as was the case in mux-sem, the transitiondomain is comprised of a location and processor identi�er�eld.� TRANS DOMAIN theory, which de�nes such a transitiondomain.� Importing TRANS DOMAIN[progSize, N] creates andimports the following de�nitions:LOCATION: type = upto[progSize � 1]PROC ID: type = upto nz[N]TRANS DOMAIN: type =[# loc: LOCATION, pid: PROC ID #]� In mux-sem, we could have de�nedimporting TRANS DOMAIN[5, N]

13

Example: bakery
in N : integer whereN > 1local y : array [1::N] of natural where y = 0

Np=1 P [p] ::
266666666664
loop forever do26666664

`0 : NonCritical`1 : y[p] := choosem such that8q : (m > y[q])`2 : await 8q : (y[q] = 0 _ y[p] < y[q])`3 : Critical`4 : y[p] := 0

37777775
377777777775

Figure 2: Parameterized mutual exclusion algorithmbakery

14

pfs for bakerybakery definition[N: posnat]: theorybeginimporting TRANS DOMAIN[5, N]STATE: type =[# y: [PROC ID ! nat],loc: [PROC ID ! LOCATION] #]importing PFS[STATE, TRANS DOMAIN]p, q: var PROC ID

15
rho: BI ASSERTION =(� (current, next: STATE):next = current _(9 p:loc(current)(p) = 0 ^y(next) = y(current) ^loc(next) = loc(current) with [(p) := 1]_loc(current)(p) = 1 ^(9 (m: nat): (8 q: y(current)(q) < m) ^y(next) = y(current) with [(p) := m])^ loc(next) = loc(current) with [(p) := 2]_loc(current)(p) = 2 ^(8 q: q 6= p ! y(current)(q) = 0 _y(current)(p) � y(current)(q))^ y(next) = y(current)^ loc(next) = loc(current) with [(p) := 3]_loc(current)(p) = 3^ y(next) = y(current)^ loc(next) = loc(current) with [(p) := 4]_loc(current)(p) = 4^ y(next) = y(current) with [(p) := 0]^ loc(next) = loc(current) with [(p) := 0]))

16

st: var STATEt: var TRANS DOMAINjustice: [TRANS DOMAIN ! ASSERTION] =(� t: (� st:if loc(t) = 1then loc(st)(pid(t)) 6= 1_ : (9 (m: nat): 8 p: y(st)(p) < m)elsif loc(t) = 2then loc(st)(pid(t)) 6= 2 _: (8 q: q 6= pid(t) !y(st)(q) = 0 _ y(st)(pid(t)) � y(st)(q))elsif loc(t) = 3 _ loc(t) = 4then loc(st)(pid(t)) 6= loc(t)else trueendif))pfs: PFS =(# initial := fst| 8p: y(st)(p)=0 ^ loc(st)(p)=0g,rho := rho,justice := justice,compassion := empty compassion #)end bakery definition

17

Proving properties of bakery

yZero: ASSERTION =� st:let y = y(st), loc = loc(st) in8 (i: PROC ID):(y(i) = 0 iff (loc(i) = 0 _ loc(i) = 1))yZero: lemma is P reachable valid(G(yZero), fds)
18

