State Sequences

e A state is a type-consistent interpretation of the system
variables V

e A state sequence is an infinite sequence of states,
represented as a mapping from time (IN) to states:

STATE_SEQ: TYPE = [TIME — STATE]
(Recall: g 80,581,892, ..)

e Assertions are properties defined on individual states,
without reference to their position in the state sequence.

ASSERTION: TYPE = [STATE — bool]

Disjunction, conjunction, negation and implication over
assertions are defined in the natural manner.

Temporal Operators

Let S be a state sequence.

We denote the notion of a temporal property p holding
at position 7 > 0 of S by p(S, 7).

If p is an assertion then p(S,j) = p(S(J))

For the L.TL. operators :

Henceforth, O, G G(p)(S,7) <= p(S,k) forallk>j
Eventually, &, F F(p)(S,7) <= p(S,k) for some k > j
Next, O, X X(p)(S,5) <= »p(Si+1)

Example

V ={c: { RED, BLUE} }
Two distinct states: (c: RED), (¢ : BLUE)
is_blue : ASSERTION = (A (s: STATE): s'c = BLUE)

Consider state sequence SS : [TIME +— STATE| defined
by the first 2 columns in the table:
time state is_blue X(is_blue) F'(is_blue)

0 (c:BLUE) T F T
1 (c: RED) F F T
2 (c: RED) F T T
3 (c:BLUE) T T T
4 {(c:BLUE) T T T
5 {(c:BLUE) T T T

e Assertion is_blue depends only on the state.
is_blue(SS, i) = is_blue(SS(i))

e Temporal properties depend on the whole state
sequence. SS(0) = SS(3) but X(is_blue)(SS,0) is
T, X(is_blue)(SS,3) is F

e X(is_blue)(S55(0)) is incorrectly typed as SS(0) is the
state (¢ : BLUE) (as is SS(3)!)

FDS - Fair Discrete System

Recall, Fps D = (V, 0, p, J,C) consists of :

V' . a set of typed state variables. A V-state is an
interpretation of V. Xy is the set of all V-states.

© : The initial condition. An assertion characterizing
the initial states.

p : The transition relation. A predicate p(V,V’)
referring to the both unprimed (current) and primed
(next) versions of state variables.

J : The set of justice requirements. Each computation
must have infinitely many J;-states, for every J;, € J.

C : The compassion requirements, each of the form
(p,q). Infinitely many p-states imply infinitely many
g-states.

PFS - Parameterized Fair System

PFS: TYPE =

[# initial: ASSERTION,
rho: BI_ASSERTION,
justice: JUSTICE_TYPE,
compassion: COMPASSION_TYPE #]

where

BI_ASSERTION: TYPE [STATE, STATE — boolean]

JUSTICE_TYPE: TYPE

COMPASSION_PAIR: TYPE =
[# p: ASSERTION, q: ASSERTION #]

COMPASSION_TYPE: TYPE =
[TRANSITION_DOMAIN — COMPASSION_PAIR]

Note:

e STATE and TRANSITION_DOMAIN parameters are given
in defining the PFs

e There is no state-variables (V') component

[TRANSITION_DOMAIN — ASSERTION]

Runs and Computations

A STATE_SEQ seq of pfs is an initialized run if it satisfies
e Initiality : seq(0) is initial i.e. pfs‘initial(seq(0))

e Consecution : For every t =0, 1,2, state seq(j + 1) is
a successor of seq(t). l.e. pfs'rho(seq(t), seq(t +1))

A computation is an initialized run which also satisfies
the fairness requirements of:

e Justice: For every t € TRANSITION_DOMAIN there are
infinitely many states in seq at which pfs'justice(t)
holds.

e Compassion: For every t € TRANSITION_DOMAIN, if
there are infinititely many (pfs'compassion(t)'p)-states
in seq then there are infinititely (pfs'compassion(t)'q)-
states in seq.

Validity Validity ctd

A temporal property p is termed

state sequence D initialized runs O computations,

e valid if it hold in the first state of every state sequence and so

s€q. validity — P-reachable validity — P-validity

is_valid(p)

Generally, interested in P-validity

e P-valid if it hold in the first state of every computation
seq of program P.

Rules like BINV actually prove the stronger P-reachable

_ _ validity property
Assuming that PFs defines program P,

is_P_valid(p, pfs) Can always convert P-reachable validity to P-validity.

o _ , Sometimes having the stronger property is useful.
e P-reachable valid if it hold in the first state of every
initialized run seq of program P.

is_P_reachable_valid(p, pfs)

Example: MUX-SEM A pPFs for MUX-SEM

muxsem[/N: posnat]: THEORY

in N : integer where N > 1 BEGIN

local y : {0,1} wherey =1
IMPORTING more_nat_types

[¢y : loop forever do
|' El : noncritical “ LOCATION: TYPE = upto [4]
N ly : request y
Pip| . . =
pil [p] 5 critical PROC_ID: TYPE = upto_nz[N]
L ly: release y J
TRANS_DOMAIN: TYPE =
- - [# loc: LOCATION, pid: PROC_ID #]
Figure 1. Parameterized MUX-SEM STATE: TYPE =

[# y: upto[1l], loc: [PROC_ID — LOCATION] #]
IMPORTING PFS[STATE, TRANS_DOMAIN]

p: VAR PROC_ID

rho: BI_ASSERTION =
(A (current, next: STATE):
next = current V
(d p:
loc(current)(p) = 0 A
y(next) = y(current) A
loc(next) = loc(current)
V
loc(current) (p) =1 A
y(next) = y(current) A
loc(next) = loc(current)
V
loc(current)(p) = 2 A
y(current) = 1 A
y(next) = 0 A
loc(next) = loc(current)
\%
loc(current) (p) = 3 A
y(next) = y(current) A
loc(next) = loc(current)
V
loc(current) (p) = 4 A
y(next) =1 A
loc(next) = loc(current)

WITH

WITH

WITH

WITH

WITH

[(p) :

[(p) :

[(p) :

[(p)

[(p) :

1]

2]

3]

4]

01))

11

st: VAR STATE
t: VAR TRANS_DOMAIN

justice: JUSTICE_TYPE =
(N t: (X st:
IF loc(t) = 0 V loc(t) = 3 V loc(t) = 4
THEN loc(st) (pid(t)) # loc(t)
ELSE TRUE
ENDIF))

compassion: COMPASSION_TYPE =
(A t:
IF loc(t) = 2
THEN
(# p := (X st: loc(st)(pid(t))=2 A y(st)=1),
q := (X st: loc(st)(pid(t)) = 3) #)

ELSE (# = (A st: TRUE), ¢q := (M st: TRUE) #)
ENDIF)
pfs: PFS =
(# initial := {st| y(st)=1 A (¥p: loc(st) (p)=0) },
rho := rho,
justice := justice,
compassion := compassion #)

END muxsem

12

Transition domains Example: BAKERY

e Very often, as was the case in MUX-SEM, the transition

domain is comprised of a location and processor identifier in N : integer where N > 1
field. local y : array|[l..N]of natural wherey = 0

[loop forever do

e TRANS_DOMAIN theory, which defines such a transition lo: NonCritical
domain. ¢y : y[p] := choose msuch that
N Vg : (m > ylg])
| L PR s awaitvg s (ylal = 0V] < lg)
e Importing TRANS_DOMAIN [progSize, N1 creates and P=) Critical '
imports the following definitions: 3+ Lrtica
| Ly y[p] =0

LOCATION: TYPE = uptol[progSize — 1]

PROC_ID: TYPE = upto_nz[N] Figure 2: Parameterized mutual exclusion algorithm

BAKERY
TRANS_DOMAIN: TYPE =

[# loc: LOCATION, pid: PROC_ID #]

e |n MUX-SEM, we could have defined

IMPORTING TRANS_DOMAIN[5, N]

13 14

rho: BI_ASSERTION =
(A (current, next: STATE):
next = current V

(4 p:

PFS for BAKERY

bakery_definition[/N: posnat]: THEORY

BEGIN
IMPORTING TRANS_DOMAIN[5, N]
STATE: TYPE =
[(# y: [PROC_ID — natl],
loc: [PROC_ID — LOCATION] #]

IMPORTING PFS[STATE, TRANS_DOMAIN]

P, q: VAR PROC_ID

15

loc(current) (p) = 0 A

y(next) = y(current) A

loc(next) = loc(current) WITH [(p) := 1]
V

loc(current)(p) = 1 A

(3 (m: nat): (V q: y(current) (¢) < m) A

y(next) = y(current) WITH [(p) := m])
A loc(next) = loc(current) WITH [(p) := 2]
V

loc(current) (p) = 2 A

(V q: q # p — y(current)(q) = 0 V
y(current) (p) < y(current) (q))

A y(next) = y(current)

A loc(next) = loc(current) WITH [(p) := 3]

V

loc(current) (p) = 3

A y(next) = y(current)

A loc(next) = loc(current) WITH [(p) := 4]

V

loc(current) (p) = 4

A y(next) = y(current) WITH [(p) := 0]

A loc(next) = loc(current) WITH [(p) := 0]))

16

st: VAR STATE
t: VAR TRANS_DOMAIN

justice: [TRANS_DOMAIN — ASSERTION] =
(N t: (A st:
IF loc(?) =1
THEN loc(st) (pid(t)) # 1
V = (3 (m: nat): V p: y(st)(p) < m)
ELSIF loc(t) = 2
THEN loc(st) (pid(?)) # 2 V
- (Y q: q # pid(t) —
y(st) (@) = 0 VvV y(st) (pid(®)) < y(st) (@)
ELSIF loc(t) = 3 V loc(t) = 4
THEN loc(st) (pid(#)) # loc(t)
ELSE TRUE
ENDIF))

pfs: PFS =
(# initial := {stl| Vp: y(st)(p)=0 A loc(st) (p)=0},
rho := rho,
justice
compassion := empty_compassion #)

:= Jjustice,

END bakery_definition

17

Proving properties of BAKERY

yZero: ASSERTION =
A st:
LET y = y(st), loc = loc(st) IN
V (¢: PROC_ID):
(y(z) = 0 1FF (loc(z) = 0 V loc(z) = 1))

yZero: LEMMA is_P_reachable_valid(G(yZero), fds)

18

