State Sequences

- A state is a type-consistent interpretation of the system variables V
- A state sequence is an infinite sequence of states, represented as a mapping from time (\mathbb{N}) to states:

```
STATE_SEQ: TYPE = [TIME \rightarrow STATE]
```

```
(Recall: \sigma : s_0, s_1, s_2, ...)
```

• Assertions are properties defined on individual states, without reference to their position in the state sequence.

ASSERTION: TYPE = [STATE \rightarrow bool]

Disjunction, conjunction, negation and implication over assertions are defined in the natural manner.

Temporal Operators

Let S be a state sequence.

We denote the notion of a temporal property p holding at position $j \ge 0$ of S by p(S, j).

If p is an assertion then p(S, j) = p(S(j))

Example

 $V = \{c : \{ \text{ RED, BLUE} \} \}$ Two distinct states: $\langle c : \text{RED} \rangle$, $\langle c : \text{BLUE} \rangle$ is_blue : ASSERTION = (λ (s: STATE): s'c = BLUE)

Consider state sequence SS : [TIME \mapsto STATE] defined by the first 2 columns in the table:

time	state	is_blue	$X(\texttt{is_blue})$	$F(\texttt{is_blue})$
0	$\langle c: ext{BLUE} angle$	Т	\mathbf{F}	Т
1	$\langle c: extbf{RED} angle$	\mathbf{F}	\mathbf{F}	Т
2	$\langle c: extbf{RED} angle$	\mathbf{F}	Т	Т
3	$\langle c: ext{BLUE} angle$	Т	Т	Т
4	$\langle c: ext{BLUE} angle$	Т	Т	Т
5	$\langle c: ext{BLUE} angle$	Т	Т	Т
		• •	•	

- Assertion is_blue depends only on the state.
 is_blue(SS, i) = is_blue(SS(i))
- Temporal properties depend on the whole state sequence. SS(0) = SS(3) but X(is_blue)(SS,0) is T, X(is_blue)(SS,3) is F
- X(is_blue)(SS(0)) is incorrectly typed as SS(0) is the state $\langle c : BLUE \rangle$ (as is SS(3)!!)

FDS - Fair Discrete System

Recall, FDS $D = \langle V, \Theta, \rho, \mathcal{J}, \mathcal{C} \rangle$ consists of :

- V: a set of typed state variables. A V-state is an interpretation of V. Σ_V is the set of all V-states.
- Θ : The initial condition. An assertion characterizing the initial states.
- ρ : The transition relation. A predicate $\rho(V, V')$ referring to the both unprimed (current) and primed (next) versions of state variables.
- \mathcal{J} : The set of justice requirements. Each computation must have infinitely many J_i -states, for every $J_i \in \mathcal{J}$.
- C: The compassion requirements, each of the form $\langle p,q\rangle$. Infinitely many *p*-states imply infinitely many *q*-states.

PFS - **Parameterized Fair System**

```
PFS: TYPE =
[# initial: ASSERTION,
    rho: BI_ASSERTION,
    justice: JUSTICE_TYPE,
    compassion: COMPASSION_TYPE #]
```

where

```
BI_ASSERTION: TYPE = [STATE, STATE \rightarrow boolean]
```

JUSTICE_TYPE: TYPE = [TRANSITION_DOMAIN \rightarrow ASSERTION]

```
COMPASSION_PAIR: TYPE =
  [# p: ASSERTION, q: ASSERTION #]
```

```
COMPASSION_TYPE: TYPE = [TRANSITION_DOMAIN \rightarrow COMPASSION_PAIR]
```

Note:

- STATE and TRANSITION_DOMAIN parameters are given in defining the PFS
- There is no state-variables (V) component

Runs and Computations

A STATE_SEQ seq of pfs is an initialized run if it satisfies

- Initiality : seq(0) is initial i.e. pfs'initial(seq(0))
- Consecution : For every t = 0, 1, 2, state seq(j + 1) is a successor of seq(t). I.e. pfs'rho(seq(t), seq(t + 1))

A computation is an initialized run which also satisfies the fairness requirements of:

- Justice: For every t ∈ TRANSITION_DOMAIN there are infinitely many states in seq at which pfs'justice(t) holds.
- Compassion: For every t ∈ TRANSITION_DOMAIN, if there are infinititely many (pfs'compassion(t)'p)-states in seq then there are infinititely (pfs'compassion(t)'q)states in seq.

Validity

- A temporal property p is termed
- valid if it hold in the first state of every state sequence seq.

is_valid(p)

• P-valid if it hold in the first state of every computation seq of program P.

Assuming that ${\rm PFS}$ defines program P,

is_P_valid(p, pfs)

• P-reachable valid if it hold in the first state of every initialized run seq of program P.

```
is_P_reachable_valid(p, pfs)
```

Validity ctd

 state sequence ⊇ initialized runs ⊇ computations, and so

validity \rightarrow *P*-reachable validity \rightarrow *P*-validity

- Generally, interested in P-validity
- Rules like BINV actually prove the stronger *P*-reachable validity property
- Can always convert *P*-reachable validity to *P*-validity. Sometimes having the stronger property is useful.

Example: MUX-SEM

in local	$N \\ y$:	integer where $N > 1$ $\{0,1\}$ where $y = 1$
$\underset{p=1}{\overset{N}{\parallel}} P[p$] ::		$\left[\begin{array}{ccc} \ell_0: & \text{loop forever do} \\ & \left[\begin{array}{ccc} \ell_1: & \text{noncritical} \\ \ell_2: & \text{request } y \\ \ell_3: & \text{critical} \\ \ell_4: & \text{release } y \end{array}\right]$

Figure 1: Parameterized MUX-SEM

$\boldsymbol{\mathsf{A}}\ \mathrm{PFS}\ \boldsymbol{\mathsf{for}}\ \mathrm{MUX}\text{-}\mathrm{SEM}$

```
muxsem[N: posnat]: THEORY BEGIN
```

IMPORTING more_nat_types

LOCATION: TYPE = upto [4]

PROC_ID: TYPE = upto_nz[N]

```
TRANS_DOMAIN: TYPE =
    [# loc: LOCATION, pid: PROC_ID #]
```

```
STATE: TYPE = [# y: upto[1], loc: [PROC_ID \rightarrow LOCATION] #]
```

IMPORTING PFS[STATE, TRANS_DOMAIN]

p: VAR PROC_ID

```
rho: BI_ASSERTION =
 (\lambda \text{ (current, next: STATE)}):
    next = current \vee
    (\exists p:
      loc(current)(p) = 0 \land
      y(\text{next}) = y(\text{current}) \land
      loc(next) = loc(current) WITH [(p) := 1]
      \vee
      loc(current)(p) = 1 \land
      y(\text{next}) = y(\text{current}) \land
      loc(next) = loc(current) WITH [(p) := 2]
      V
      loc(current)(p) = 2 \land
      y(\text{current}) = 1 \land
      y(next) = 0 \land
      loc(next) = loc(current) WITH [(p) := 3]
      V
      loc(current)(p) = 3 \land
      y(\text{next}) = y(\text{current}) \land
      loc(next) = loc(current) WITH [(p) := 4]
      \vee
      loc(current)(p) = 4 \land
      y(next) = 1 \land
      loc(next) = loc(current) WITH [(p) := 0]))
```

```
st: VAR STATE
t: VAR TRANS_DOMAIN
justice: JUSTICE_TYPE =
   (\lambda t: (\lambda st:
     IF loc(t) = 0 \lor loc(t) = 3 \lor loc(t) = 4
     THEN loc(st)(pid(t)) \neq loc(t)
     ELSE TRUE
     ENDIF))
compassion: COMPASSION_TYPE =
   (\lambda t:
     IF loc(t) = 2
     THEN
        (# p := (\lambda \text{ st: loc(st)(pid(t))}=2 \land y(\text{st})=1),
            q := (\lambda \text{ st: loc(st)(pid(t))} = 3) \#)
      ELSE (# p := (\lambda \text{ st: TRUE}), q := (\lambda \text{ st: TRUE}) #)
      ENDIF)
pfs: PFS =
   (\texttt{\# initial} := \{\texttt{st} | y(\texttt{st})=1 \land (\forall p: \texttt{loc}(\texttt{st})(p)=0) \},\
      rho := rho,
      justice := justice,
      compassion := compassion #)
```

```
END muxsem
```

Transition domains

Example: BAKERY

- Very often, as was the case in MUX-SEM, the transition domain is comprised of a location and processor identifier field.
- TRANS_DOMAIN theory, which defines such a transition domain.
- Importing TRANS_DOMAIN[progSize, N] creates and imports the following definitions:

```
LOCATION: TYPE = upto[progSize - 1]
```

```
PROC_ID: TYPE = upto_nz[N]
```

```
TRANS_DOMAIN: TYPE =
    [# loc: LOCATION, pid: PROC_ID #]
```

• In MUX-SEM, we could have defined IMPORTING TRANS_DOMAIN[5, N]

in N	: integer where $N > 1$					
local y : array $[1N]$ of natural where $y=0$						
Ioop forever do]						
	$\begin{bmatrix} \ell_0 : \text{NonCritical} \end{bmatrix}$					
	$\ell_1: y[p]:=$ choose m such that					
$\begin{bmatrix} N \\ \mu \end{bmatrix} \begin{bmatrix} P \\ \rho \end{bmatrix} \cdots$	$\forall q: (m > y[q])$					
p=1	$\ell_2:$ await $orall q:(y[q]=0 \lor y[p] < y[q])$					
	ℓ_3 : Critical					
L						

Figure 2: Parameterized mutual exclusion algorithm BAKERY

PFS for BAKERY

```
bakery_definition [N: posnat]: THEORY BEGIN
```

```
IMPORTING TRANS_DOMAIN[5, N]
```

STATE: TYPE = [# y: [PROC_ID \rightarrow nat], loc: [PROC_ID \rightarrow LOCATION] #]

```
IMPORTING PFS[STATE, TRANS_DOMAIN]
```

p, q: VAR PROC_ID

rho: BI_ASSERTION =
(
$$\lambda$$
 (current, next: STATE):
next = current \vee
(\exists p:
loc(current)(p) = 0 \wedge
y(next) = y(current) \wedge
loc(next) = loc(current) WITH [(p) := 1]
 \vee
loc(current)(p) = 1 \wedge
(\exists (m: nat): (\forall q: y(current)(q) < m) \wedge
y(next) = y(current) WITH [(p) := m])
 \wedge loc(next) = loc(current) WITH [(p) := 2]
 \vee
loc(current)(p) = 2 \wedge
(\forall q: q \neq p \rightarrow y(current)(q) = 0 \vee
y(current)(p) \leq y(current)(q))
 \wedge y(next) = y(current)
 \wedge loc(next) = loc(current) WITH [(p) := 3]
 \vee
loc(current)(p) = 3
 \wedge y(next) = y(current)
 \wedge loc(next) = loc(current) WITH [(p) := 4]
 \vee
loc(current)(p) = 4
 \wedge y(next) = y(current) WITH [(p) := 0]
 \wedge loc(next) = loc(current) WITH [(p) := 0]))

st: VAR STATE

t: VAR TRANS_DOMAIN

```
justice: [TRANS_DOMAIN \rightarrow ASSERTION] =
  (\lambda t: (\lambda st:
    IF loc(t) = 1
       THEN loc(st)(pid(t)) \neq 1
         \vee \neg (\exists (m: nat): \forall p: y(st)(p) < m)
    ELSIF loc(t) = 2
       THEN loc(st)(pid(t)) \neq 2 \lor
         \neg (\forall q: q \neq pid(t) \rightarrow
              y(st)(q) = 0 \lor y(st)(pid(t)) \le y(st)(q))
    ELSIF loc(t) = 3 \lor loc(t) = 4
       THEN loc(st)(pid(t)) \neq loc(t)
     ELSE TRUE
    ENDIF))
pfs: PFS =
  (# initial := {st | \forall p: y(st)(p)=0 \land loc(st)(p)=0},
      rho := rho,
      justice := justice,
      compassion := empty_compassion #)
```

END bakery_definition

Proving properties of BAKERY

yZero: ASSERTION = λ st: LET y = y(st), loc = loc(st) IN \forall (i: PROC_ID): (y(i) = 0 IFF (loc(i) = 0 \lor loc(i) = 1))

yZero: LEMMA is_P_reachable_valid(G(yZero), fds)