yZero :

```
    |-------
{1} is_P_reachable_valid(G(assertion_to_TP[STATE[N]](yZero)), pfs)
Rule? (BINV "yZero")
```

;;;The inductive step of the BINV rule
\{-1, (rho) $\}$
loc(current!1)(p!1) = 0 AND $y(n e x t!1)=y(c u r r e n t!1)$ AND
$\operatorname{loc}($ next!1) $=\operatorname{loc}(c u r r e n t!1)$ WITH [(p!1) := 1]
OR $\operatorname{loc}($ current!1) $(p!1)=1$ AND
(EXISTS (m: nat): (FORALL (q: PROC_ID):
$y(c u r r e n t!1)(q)<m)$ AND $y(n e x t!1)=y(c u r r e n t!1)$ WITH [(p!1) :=m])
AND loc(next!1) = loc(current!1) WITH [(p!1) := 2]
OR loc(current!1)(p!1) = 2 AND
(FORALL q: $q /=p!1$ IMPLIES
$y(c u r r e n t!1)(q)=0$ OR y(current!1)(p!1) $<=y(c u r r e n t!1)(q))$ AND
$y($ next!1) $=y$ (current!1) AND
$\operatorname{loc}($ next!1) $=\operatorname{loc}(c u r r e n t!1)$ WITH $[(p!1):=3]$
OR loc(current!1) $(p!1)=3$ AND $y(n e x t!1)=y(c u r r e n t!1)$ AND
loc(next!1) = loc(current!1) WITH [(p!1) := 4]
OR loc(current!1)(p!1) = 4 AND
$y($ next!1) $=y(c u r r e n t!1)$ WITH $[(p!1):=0]$ AND
$\operatorname{loc}($ next!1) $=\operatorname{loc}(c u r r e n t!1)$ WITH [(p!1) := 0]
\{-2, (yZero invariant)\} FORALL (i: PROC_ID):
(y(current!1)(i) = 0 IFF (loc(current!1)(i) = O OR loc(current!1)(i) =1))
|-------
$\{1,(\operatorname{rtp})\}(y(n e x t!1)(i!1)=0 \operatorname{IFF}(\operatorname{loc}(n e x t!1)(i!1)=0 \quad 0 R \operatorname{loc}(n e x t!1)(i!1)=1))$
Rule? (split-rho)

```
this yields 5 subgoals:
yZero.1 :
{-1,(rho)}
    loc(current!1)(p!1) = 0
{-2,(rho)}
    y(next!1) = y(current!1)
{-3,(rho)}
    loc(next!1) = loc(current!1) WITH [(p!1) := 1]
{-4,(yZero invariant)}
    FORALL (i: PROC_ID):
            IF y(current!1)(i) = 0
                THEN (loc(current!1)(i) = 0 OR loc(current!1)(i) = 1)
                    ELSE NOT (loc(current!1)(i) = 0 OR loc(current!1)(i) = 1)
                    ENDIF
    |-------
{1,(rtp)}
        IF y(current!1)(i!1) = 0
            THEN (loc(current!1) WITH [(p!1) := 1](i!1) = 0 OR
                    loc(current!1) WITH [(p!1) := 1](i!1) = 1)
        ELSE NOT (loc(current!1) WITH [(p!1) := 1](i!1) = 0 OR
                    loc(current!1) WITH [(p!1) := 1](i!1) = 1)
        ENDIF
Rule? (inst - "i!1")
[-1,(rho)]
        loc(current!1)(p!1) = 0
[-2,(rho)]
    y(next!1) = y(current!1)
[-3,(rho)]
    loc(next!1) = loc(current!1) WITH [(p!1) := 1]
{-4,(yZero invariant)}
        IF y(current!1)(i!1) = 0
            THEN (loc(current!1)(i!1) = 0 OR loc(current!1)(i!1) = 1)
        ELSE NOT (loc(current!1)(i!1) = 0 OR loc(current!1)(i!1) = 1)
        ENDIF
    |-------
[1,(rtp)]
    IF y(current!1)(i!1) = 0
        THEN (loc(current!1) WITH [(p!1) := 1](i!1) = 0 OR
            loc(current!1) WITH [(p!1) := 1](i!1) = 1)
        ELSE NOT (loc(current!1) WITH [(p!1) := 1](i!1) = 0 OR
            loc(current!1) WITH [(p!1) := 1](i!1) = 1)
        ENDIF
Rule? (split-all)
Split-all if-then-else consequents,
This completes the proof of yZero.1.
```

```
yZero.2 :
{-1,(rho)}
    loc(current!1)(p!1) = 1
{-2,(rho)}
    FORALL (q: PROC_ID[5, N]): y(current!1)(q) < m!1
{-3,(rho)}
    y(next!1) = y(current!1) WITH [(p!1) := m!1]
{-4,(rho)}
    loc(next!1) = loc(current!1) WITH [(p!1) := 2]
{-5,(yZero invariant)}
        FORALL (i: PROC_ID):
            IF y(current!1)(i) = 0
                THEN (loc(current!1)(i) = 0 OR loc(current!1)(i) = 1)
            ELSE NOT (loc(current!1)(i) = 0 OR loc(current!1)(i) = 1)
            ENDIF
    |-------
{1,(rtp)}
        IF y(current!1) WITH [(p!1) := m!1](i!1) = 0
            THEN (loc(current!1) WITH [(p!1) := 2](i!1) = 0 OR
                loc(current!1) WITH [(p!1) := 2](i!1) = 1)
        ELSE NOT (loc(current!1) WITH [(p!1) := 2](i!1) = 0 OR
                                    loc(current!1) WITH [(p!1) := 2](i!1) = 1)
    ENDIF
Rule? (split-all-inst ("i!1"))
This completes the proof of yZero.2.
```

;;;The inductive step of the BINV rule
\{-1, (rho) \}
$\operatorname{loc}($ current!1) $(p!1)=0$ AND $y($ next!1) $=y(c u r r e n t!1)$ AND
loc(next!1) = loc(current!1) WITH [(p!1) := 1]
OR loc (current!1) $(\mathrm{p}!1)=1$ AND
(EXISTS (m: nat): (FORALL (q: PROC_ID):
$\mathrm{y}($ current!1) $(\mathrm{q})<\mathrm{m})$ AND $\mathrm{y}($ next!1) $=\mathrm{y}($ current!1) WITH $[(\mathrm{p}!1):=\mathrm{m}]$)
AND $\operatorname{loc}($ next!1) $=\operatorname{loc}(c u r r e n t!1)$ WITH $[(p!1):=2]$
OR loc(current!1) $(p!1)=2$ AND
(FORALL q: $q /=\mathrm{p}!1$ IMPLIES
$y($ current!1) (q) $=0$ OR $y($ current!1) $(p!1)<=y(c u r r e n t!1)(q))$ AND
$y($ next!1) $=y(c u r r e n t!1)$ AND
$\operatorname{loc}($ next!1) $=\operatorname{loc}(c u r r e n t!1)$ WITH [(p!1) := 3]
OR loc(current!1) $(p!1)=3$ AND $y(n e x t!1)=y(c u r r e n t!1)$ AND
$\operatorname{loc}($ next!1) $=\operatorname{loc}(c u r r e n t!1)$ WITH [(p!1) := 4]
OR loc (current!1) $(p!1)=4$ AND
$y($ next!1) $=y($ current!1) WITH [(p!1) := 0] AND
loc(next!1) = loc(current!1) WITH [(p!1) := 0]
\{-2, (yZero invariant)\} FORALL (i: PROC_ID):
(y(current!1)(i) $=0 \operatorname{IFF}(\operatorname{loc}(c u r r e n t!1)(i)=0 \operatorname{OR} \operatorname{loc}(c u r r e n t!1)(i)=1))$
|-------
$\{1,(\operatorname{rtp})\}(y(n e x t!1)(i!1)=0 \operatorname{IFF}(\operatorname{loc}(n e x t!1)(i!1)=0 \operatorname{OR} \operatorname{loc}(n e x t!1)(i!1)=1))$
Rule? (split-rho-all ("i!1"))
Q.E.D.

