Lecture 6 Deductive Verification in Action, Weizmann, Spring, 2001

Construction of Linear Invariants

An integer variable y is called linear if the modification of variable y in each
statement has the form 3’ = y + ¢ for some constant ¢ (possibly 0).

We are looking for invariants of the form

T

E a; - Y + E by - at_t = K ,
1=1 eL Right Constant
N——
Body Compensation Expression
where v, ...y, are linear variables, a;, b;, and K are integer constants.

For a linear variable y and statement 7 : S, we define the increment A(y, /) = ¢ if
the execution of statement S adds the constant ¢ to v.

For a location predicate /; and statement /; : .S, we define

+1 i=j-—1

A(at,ﬂj./&;) = -1 1= j
For an expression F and a sequence of consecutive statements /; : S;;...;/¢; : S},
we define the accumulated increment

A(E b) = A(E 4;) +---+ A(E, ¢5)
Deductive Verification in Action, Weizmann, Spring, 2002 48

Lecture 6 Deductive Verification in Action, Weizmann, Spring, 2001

Linear Invariants Continued

To simplify the presentation, assume that each process has the following structure
P;j :: £ :loop forever do [{; :Sy;. .. ;g :Sk]
and that there are no nested loops or conditional statements.

Then, for an expression F, we define the process-accumulated increment to be
A(E, Pj) = A(E, 4y,).

Deductive Verification in Action, Weizmann, Spring, 2002 49

Deductive Verification in Action, Weizmann, Spring, 2001

Necessary Conditions

Lecture 6

Assume that

T

Zai~yi+2bg-at,€:K

i=1 tel
is an invariant of a program consisting of the parallel processes Pi, ..., P,. Applying

A(-, P}) to both sides of this equality, we obtain

Z ' y17 + be

=1 LeL

at,ﬁ, PJ) =0

We show now that A(at_¢;, P;) = 0 for all /; and P;. If ¢; ¢ L;, then no
statement in P; can modify /,. If /; € L;, then A(at /;, P;) sums together
A(at l;, l; 1) =41 and A(at_¢;,¢;) = —1, yielding 0.

We conclude that the coefficients a; must satisfy the equations

Za7 : 7/17 =0

for every j =1,...,n.

Deductive Verification in Action, Weizmann, Spring, 2002 50

Lecture 6

Computing the Bodies

Solve and find a basis of independent solution to the set of linear equations

Zaz : 1/1 = 0.

Any such solution provides a possible body.

Deductive Verification in Action, Weizmann, Spring, 2002

Deductive Verification in Action, Weizmann, Spring, 2001

51

Lecture 6 Deductive Verification in Action, Weizmann, Spring, 2001

Example: Mutual Exclusion with Two Semaphores

Consider program TWO-SEM:

y1,y2: natural initially y; =1,y =10

lo: loop forever do mg : loop forever do
¢1: Non-critical m1 : Non-critical
lo : request y; | mg: request yo
£3: Critical ms : Critical
£y : release yo my: release y;

This program has the linear variables 31, y2. Their process-accumulated increments
Al(y;, P;) are given by

U1 Y2
Pyl —1]+1
P | +1|—1

This gives rise to the following set of equations:

—ay +(12 = 0
ay —Qa = 0

whose solution basis can be given by a1 = ao = 1. Thus, any linear invariant for
this program will be of the form

pitpt =K

Deductive Verification in Action, Weizmann, Spring, 2002 52

Lecture 6 Deductive Verification in Action, Weizmann, Spring, 2001

Computing the Compensation Expressions

Let EZ be a location within process P;. Assuming that we have already computed
a body B=73"!_,a; -y, then the coefficient b; is given by

bi=—-A(B, & ;)

Going back to program TwO-SEM with the body B = y; + 32, we compute the
accumulated increments A(y; + yo, ¢} ,_;) as follows:

A(yr +y2,00.i-1) | Alyr +y2,mo.i-1)
1=1 0 0
1=2 0 0
1 =3 —1 —1
1 =4 —1 —1

It follows that

b(lo) = b(mo) = b(£1) = b(m)

1

Thus, the left-hand side of the linear invariant for program TWO-SEM has the form

Y1+ Y2+ at_l3 4+ at_mg 4

Deductive Verification in Action, Weizmann, Spring, 2002 53

Lecture 6 Deductive Verification in Action, Weizmann, Spring, 2001

Computing the Right-Hand-Side Constant

Assume that the initial values of the linear variables yi,...,y, are given,
respectively, by 71 ..., 7. Then, the right-hand-side constant K is given by

KZXT:%'?%
i—1

Thus, for program TwO-SEM, the full linear invariant is given by

Y1+ Y2 + at,€374 +at-m3zs=1

since the initial values are 71 = 1 and 12 = 0. This together with the obvious
invariants y; > 0 and ys > 0 are sufficient in order to establish mutual exclusion.

Deductive Verification in Action, Weizmann, Spring, 2002 54

Lecture 6 Deductive Verification in Action, Weizmann, Spring, 2001
Example: Producer-Consumer
Consider the following program PROD-CONS:

local r,ne,nf: natural where r=1,ne=N,nf =0

L: list of natural where L = ()
[local z : natural [local y : natural i
lo : loop forever do mg : loop forever do
(¢, : Produce z] [m1: request nf i
f5: request ne mo : request r
Prod :: l3: request r I Cons = ms: (y,L):= (hd(L),t(L))
ly: L:=Lox my : release r
l5 : release r ms : release ne
|46 : release nf | |me : Consume y]

Process Prod produces values and moves them to process Cons for consumption.
The values are transferred via the buffer L. We wish to guarantee that the
size of the buffer never exceeds the constant V. For that purpose, we maintain
the semaphore ne which counts the number of empty slots within L and the
semaphore nf which maintains the number of occupied slots within .. Formally,
the requirements are

w1: —(at Ly N at_mg) Locations ¢4 and mg are exclusive.
Yo at_ly — |L| <N Never attempt to add a value to a full buffer.
w3: at_mz— |L| >0 Never attempt to dequeue an empty buffer.

Deductive Verification in Action, Weizmann, Spring, 2002 55

Deductive Verification in Action, Weizmann, Spring, 2001

Computing Linear Invariants for PROD-CONS

Lecture 6

As linear variables we take {r, ne,nf,|L|}. The process-accumulated increments
for these four variables are given by

v=r|lv=mne|v=nf|v=]|L[]
A(v, Py) 0 -1 +1 +1
A(v, Py) 0 +1 -1 -1
This gives rise to the following set of equations:
0-a, —ane +ay +agp = 0
0-a, +an. —ay —agrp = 0

Since we have 4 variables and 1 independent equation, there is a solution basis
containing 3 independent solutions. These can be given as

[larfan]ayap]

a || 1|0 0 0
a || 0] 1 0 1
as | 0] 0 | -1 1

Leading to the bodies:

B1 LT
By: ne+ |L|
Bs: —nf +|L]

Deductive Verification in Action, Weizmann, Spring, 2002 56

Deductive Verification in Action, Weizmann, Spring, 2001

Computation Continued

Lecture 6

To determine the coefficients b,, we compute the accumulated increments
A(Bi,f()“]'_l) and A(Bi,g()“]‘_l) as follows:

7:217:3j:4|75:5]|7:6
A(B1,4y._j-1) 0 0 -1 -1 0
A(B%EO..jfl) 0 -1 -1 0
A(Bs, ly._j-1) 0 0 0 1 1

J:2|7:37:417:5]75:6
A(Bl,mouj,l) 0 -1 -1 0 0
A(Bg,m(]__jfl) 0 0 -1 -1 0
A(Bs,mo ;1) | 1 1 0 0 0

After computing the right-hand-constants, we conclude with the following three
invariants:

Ii: r+ at,€415 + at_m34 =1

In: ne+|L|+ at_l3 4+ at_mys = N

13 : —nf + |L‘ - at,€576 - at,m273 = 0

Deductive Verification in Action, Weizmann, Spring, 2002 57

Lecture 6 Deductive Verification in Action, Weizmann, Spring, 2001

Drawing Conclusions

The three obtained linear invariants

Ii: r+at_lys+ at_msy = 1
Io: ne+|L|+ at_ls s+ at_mys = N
Ig : 7’]7f + ‘L| — (],t_€516 — (J,t_m2’3 = 0

imply the main safety properties of program PROD-CONS.

e Property ¢1 : =(at £y N at_ms3) follows from Iy, because at {4y = at_mg =1
implies » = —1 which is impossible.

e From I, we obtain

|IL|] = N —ne—at_lss—at_mys < N —at_ly
which implies 5 : at_l4 — |L| < N since, when at ¢4 =1, |[L| < N — 1.
e From I3, we obtain

|IL| = nf+ at_{ls6+ at_mas > at_mg

which implies ¢3 : at_mg — |L| > 0 since, when at_mg =1, |L| > 1.

Deductive Verification in Action, Weizmann, Spring, 2002 58

Lecture 6 Deductive Verification in Action, Weizmann, Spring, 2001

Proving Liveness Properties

The main liveness property we will be interested in is specified by the response
formula

p=>gq

claiming that every p is eventually followed by a g.

Rule ABS-CHAIN

For justice requirements Jq, ..., J,,,
and assertions p,q = hg, h1,...,h;,
m
C1 P = \/ h;
§=0
Fori=1,...,m
2. hinp = (hA-T) v\ R
j<i
p=<4q
Deductive Verification in Action, Weizmann, Spring, 2002 59

Lecture 6 Deductive Verification in Action, Weizmann, Spring, 2001

Soundness of Rule ABS-CHAIN

Claim 5. Rule ABS-CHAIN is sound for proving the response property p = Q q.

Proof Assume that the premises of rule ABS-CHAIN are valid. Let o : s, s1,...
be a computation of D and let p hold at position j. We have to show that there
exists a position £ > j such that g holds at position k.

Assume to the contrary, that no position beyond j satisfies g. By premise C1,
state s; must satisfy h;, for some ¢ > 0. Since ¢ never holds beyond j, we must
have i > 0. Let us denote by i; the index 7 > 0 such that h; holds at state s;. By
premise C2, the successor state s;1 must also satisfy h;, for some 4, 0 <1 <.
Denote this index by ¢;.;. By argument similar to the above, i;;1 > 0. In this way
we proceed to establish an infinite sequence of indices i; > 4.1 > --- where, for
each k > j, ix > 0 and s, [= h;,. Since this is an infinite non-increasing sequence,
there must exist an index n, such that i,, = i,.1 = ---

By premise C2, we can have iy = iy only if s, 1 = —=J;,. Thus, justice
requirement .J; is never satisfied beyond position n. It follows that o is not a
computation, contrary to our original assumption.

We conclude that there must exists a position k& > j satisfying g. Jd

Deductive Verification in Action, Weizmann, Spring, 2002 60

Lecture 6 Deductive Verification in Action, Weizmann, Spring, 2001

Rule cuAIN for Programs

For the case that the considered FDs is derived from a program, it is possible to
present a concrete version of rule CHAIN which utilizes the fact that all justice
requirements are derived from transitions (statements). Recall that, in such a
system, any justice requirement is the negation of an enabling condition of some
transition. In the following, we denote the enabling condition of transition ¢; by
En(ti).

Rule cHAIN
For just transitions t1, -y tm,
and assertions p,q = ho,h1, ..., hm

Cl. p = {n/ hj
j=0

Fori=1,....,m

C2. hiAps = \/ b} For every t # t;
Jj<i
j<i

Ca. h; = En(t)

p = g

It can be shown that rule CHAIN is a special case of rule ABS-CHAIN.

Deductive Verification in Action, Weizmann, Spring, 2002 61

Lecture 6 Deductive Verification in Action, Weizmann, Spring, 2001

Apply to BAKERY-2

local y;,y2 :natural initially y; =y, =0

4o : loop forever do [myg : loop forever do

/1 : Non-Ciritical m1 : Non-Critical
by =y +1 my iy =y1+1
Py £3:await yo =0 V y1 < yo | P2 = mg:await y; =0 V yo < 14
44 : Critical my : Critical
Uy :y1:=0 ms :ys =0

The desired response properties for program BAKERY-2 are individual accessibility
for the two processes

1/}1 D oat_ly = Oat,&;,
vy at_mg = Qat_m4

Let us present a heuristic by which we can systematically derive the auxiliary
constructs required by rule CHAIN, in order to prove property ;. Thus, we
consider the case that p = at_/s and g = at_/,.

Deductive Verification in Action, Weizmann, Spring, 2002 62

Lecture 6 Deductive Verification in Action, Weizmann, Spring, 2001

Identifying ¢; and h;

Recalling that the condition f A p; — g can be rewritten as f — pre(t, g), we can
summarize premises C2—C4 for the case i = 1 into the single implication

Imp(ho): h — —=hg A En(t) A pre(t,hg) A /\pre(T,h\/ho)
T#t

where we take hg = ¢ = at_/l4. The conjunct —hg has been added in order to
guarantee that all the h;'s will be exclusive.

I'mp(hg) can be viewed as an inequality with the unknown h. For a given ¢, we
can try to solve such an inequality by forming the iteration sequence

o = =—ho A En(t) N pre(t, ho),
Y1 = Yo N Ny pre(T.tho V ho),

Yo = 1 A N\ pre(r.91V ho),

until it converges.

Deductive Verification in Action, Weizmann, Spring, 2002 63

Lecture 6 Deductive Verification in Action, Weizmann, Spring, 2001

Computation of h; Continued

Let us form the recommended iteration sequence for the case that hg = at_¢, and
t = /3. We obtain
'l/)() = T = 3 A (yg =0V Y1 < y2) N En(fg,) — at,&;[ﬂ'l — 4}
En(£3) pre(/.g,(llt_e4)
= at_ls N (y2=0V y1 <o)

In principle, we should now compute 91 = 1)y A /\Tﬂ3 pre(T,1o V hg). However,
since we can show that every transition different from /3 preserves 1g, this
computation will produce an assertion equivalent to t,. Thus, the iteration
sequence converges in a single step, and produce ¢; = /3 and

hi: at-ls A (y2=0V y1 <o)
Why did we choose ¢ = /37

We can try different transitions. However, the computation shows that —hy A
En(t) A pre(t,hg) for any t # {3 yields 0 (the empty assertion). Therefore,
t1 = /3 is the only helpful transition which yields a non-trivial h;.

Deductive Verification in Action, Weizmann, Spring, 2002 64

Lecture 6 Deductive Verification in Action, Weizmann, Spring, 2001

Proceeding to ¢, and ho

Once we identified hy, the search for hy can be based on a solution of the
implication Imp(ho \VV hq) for an appropriately chosen ¢ = t;. Repeating the
specified procedure, we end up computing the following sequence of h; and ¢;:

ti h; |
- at,&;

l3 |at_ls N (y2=0 V y1 <o)

ms | at_lz N at_ms

at_ls N at_my

ms | at_ls A at_mg A (y1 =0V y2 < 1)
£2 at,£2

QY | W N = O -
N

In the computation of this table, we made free use of the relevant invariants which
correlate the values of y; and y; to the locations of the processes, i.e.

D (’1/1 =0 & (lt,EO._Q) and D (UQ =0 < (lt,mong)

Deductive Verification in Action, Weizmann, Spring, 2002 65

