Lecture 7 Deductive Verification in Action, Weizmann, Spring, 2001

Response Rules with Variable Number of Intermediate Stages

The family of CHAIN rules is adequate for dealing with cases in which the number
of intermediate stages in the progress from p to ¢ is bounded by a constant (5 for
the case of BAKERY-2).

However, there are cases in which the number of intermediate stages cannot be
bounded by a constant. Consider the trivial case of a sequential terminating loop.

local y natural

£y : while y > 0 do
bi: y=y-—1

EQ :

Termination of this program cam be specified by the response formula
at_tly = <> at_Vlo
How can we prove it?

Obviously, rule CHAIN cannot be used, because the number of intermediate
stages depend on the initial value of variable y.

There are however, some principles which are retained from rule cHAIN. We
would like to have some measure of progress in the journey from p to q. Every
intermediate stage should be associated with a helpful transition ¢ such that
activation of ¢ decreases the measured distance to ¢, and activation of any 7 # ¢
at least does not increase the distance. In rule CHAIN, the distance was measured
by the index of the assertion h; holding at the current state. In more general rules,
we will introduce an explicit distance (also called ranking) function.

Deductive Verification in Action, Weizmann, Spring, 2002 66

Lecture 7 Deductive Verification in Action, Weizmann, Spring, 2001

Possible Domains for the Ranking Function

In the example of the terminating loop, it is possible to take y as the ranking
function. It's range is the natural numbers. This is not always adequate.

We define a well-founded domain to be a pair (A, >) consisting of a domain A
and an ordering relation > over A such that there does not exist an infinitely
descending sequence

ap > ai > ---
of A-elements.

For example, the natural numbers with the > ordering forms a well-founded
domain, denoted (IN, >). When there is no danger of confusion, we refer to the
well-founded domain (A,), simply as A. For elements a,b € A, we write a = b
if either a = b or a = b.

Deductive Verification in Action, Weizmann, Spring, 2002 67

Lecture 7 Deductive Verification in Action, Weizmann, Spring, 2001

Composite Well-Founded Domains

Given two well-founded domains (A, >1) and (As, =2), we introduce two ways to
construct a composite well-founded domain.

The cross product A; x As is the well-founded domain (A, >-), where A = A; x A

and
(al,ag) > (b],b2) <~ (CLl 1 bl N as 7o bg) Vv (a1 ~1 b1 N ag >so bg)

The lexicographic product A; X, Ay is the well-founded domain (A, >), where
.A = .Al X .Ag and
(al,ag) > lex (bl, bg) <~ ((L] 1 bl) V (a1 =b; N ag =9 bg)

Claim 6. [/f both (Aq,>1) and (As, =2) are well-founded, then so are A; x As
and A] Xlex ./42.

Proof It is sufficient to show that A; x,., A> is well-founded.
Assume to the contrary, that there exists an infinitely descending sequence
((11, bl) > lex ((],2, b?) lex "

From the definition of =, it follows that the sequence of first pair members satisfies

ay =1 as =1 ---. Since A; is well founded, it follows that there exists some position
k such that ap = apy1 = - --. Therefore, the sequence by >3 bit1 =2 - - - must be
infinitely descending, contradicting the well-foundedness of A;. Jd

Deductive Verification in Action, Weizmann, Spring, 2002 68

Lecture 7

Rule wWELL

Deductive Verification in Action, Weizmann, Spring, 2001

Rule WELL
For a well-founded domain (A,)
For just statements
assertions p,q = ho,h1,..., hm,
and ranking functions 64, .. .,

W1. p = \m/ hj
j=0

t,y eyt

Fori=1,....m

W2, hiAp, = (kL AG;=6)V

WS3. hi A Pt

W4, h; = En (ti)

Oom 2 — A

.= V() A G-y

K A 6 - 6;) For every t = t;

p = g

Deductive Verification in Action, Weizmann, Spring, 2002

69

Lecture 7 Deductive Verification in Action, Weizmann, Spring, 2001

Soundness of Rule wELL

Claim 7. Rule WELL is sound for proving the response property p = <> q.

Proof Assume that the premises of rule WELL are valid. Let o : sg,51,... be a
computation of D and let p hold at position j. We have to show that there exists
a position k£ > j such that ¢ holds at position k.

Assume to the contrary, that no position beyond j satisfies g. By premise W1,
state s; must satisfy h;, for some ¢ > 0. Since ¢ never holds beyond j, we must
have i > 0. Let us denote by 7; the index < > 0 such that h; holds at state s;, and
by d; € A the value of §;, at state s;. By premise W2, the successor state s;.1
must also satisfy /;, for some 7. Denote this index by ;1. By argument similar
to the above, ij;; > 0. In this way we proceed to establish an infinite sequence
of indices i;,i,1,... where, for each k& > j, iy, > 0 and s; = h;,. Let us denote
by dj,djy1,... the sequence of values of the corresponding ranking functions at
the respective states. By premises W2 and W3, the sequence d; = dj1q1 = - is
non-increasing. Since this is an infinite non-increasing sequence over a well-founded
domain, there must exist an index n, such that d,, = d,,1 = - - -, and consequently
(due to W2) 4,, = ipyq =+

By premise W3, we can have i, = i,,1 = --- = ¢ only if statement ¢; is
never executed beyond position n. On the other hand, due to W4, statement
t; is continuously enabled beyond n. Thus, o violates the justice requirement
associated with statement 7;, and therefore is not a computation, contrary to our
original assumption.

We conclude that there must exists a position k& > j satisfying g. J

Deductive Verification in Action, Weizmann, Spring, 2002 70

Lecture 7 Deductive Verification in Action, Weizmann, Spring, 2001

Application to Program UP-DOWN

z, y: natural initially z =y =0

ly: while z =0 do

[br: y:=y+1] o
Py £y : while y > 0 do I Py :: {ZO' x.—l}

[l5: y:=y—1] !

642

We wish to prove, using rule WELL, the response property
at_ly A at_mg = > (at_ly N at_my)

As a well-founded domain, we choose A = IN x,., IN X, IN. The other constructs
are given by:

L]t] hi [4]
0| — | at_ly A at_m;, (0,0,0)
1|43 |at ls N at-my A y>0 (0,y,1)
2|0y | at_ly N at_my (0,y,2)
3141 |at by A at-my AN (z=1)](2,0,0)
414y |at-ly A at-my A (z=1)](1,0,0)
5|mo | at-ly1 N at_mg (3,0,0)

Deductive Verification in Action, Weizmann, Spring, 2002 71

Deductive Verification in Action, Weizmann, Spring, 2001

A Rule with Distributed Ranking

Lecture 7

In many cases of parameterized systems Py ||---|| P,, it is possible to identify a
global ranking which can be presented as the cross-product é; x -+ x §,,. This
leads to the following rule DISTR-RANK.

Lecture 7

Rule DISTR-RANK
For a well-founded domain (A,)

For just statements %1,...,%m,
assertions p,q = hg,h1,...,hm,
and ranking functions d1,...,0, : X — A
m
WI1. p = \/ by
§=0

Fori=1,...,m

W2, h;Aps = hlvV (\/ h;) A (\/((5j>6;-)) For every t # t;
7=0 7=1
W3, hinp, = (\/ 1) ~ (\/(6=35)
j=0 j=1
W4 hinp = N\(©G=6)
j=1

W5, h/i = En (fz)

Deductive Verification in Action, Weizmann, Spring, 2002 72

Deductive Verification in Action, Weizmann, Spring, 2001

Example: Mutual Exclusion by Token Passing

local o : array[1..N] of boolean where o[l] =1,a2] =--- =a[N] =0
[{o : loop forever do
£y request «fi]
S Ly i if at_msl[i] then
[£5: await at_my[i]]
4y : release afi @ 1]

Pld] = [
i=1 myg : loop forever do
my : Non-critical
C:: mo: await at {3[i]

mg : Critical
my: await —at {3[i]

Deductive Verification in Action, Weizmann, Spring, 2002 73

Lecture 7 Deductive Verification in Action, Weizmann, Spring, 2001 Lecture 7 Deductive Verification in Action, Weizmann, Spring, 2001

First Some Invariants Now to Liveness

local o : array[1..N] of boolean where 1] = 1,a[2] = -+ = a[N] =0 Accessibility can be specified by
lo : loop forever do

i it
{1 : request ali] at-malz] = < at_mslz]

S £y 1 if at_moli] then for some process z : [1..N].
[£3: await at_myli]]
ly: release afi @ 1] We define the cyclic distance between j and z as
| Pl [A(j,z) = (z — j) mod N
i=1 mg : loop forever do
my : Non-critical This is the number of times j is incremented by 1 modulo NV until it reaches z.
C mgy: await at {3[i]
ms: Critical The choice of helpful transitions and ranking functions for use in rule WELL is
my: await —at_ls]i] given by the following table:
The following are invariants of TOKEN-RING: Trans. ¢ h(t) o(t) Successors
Lold] at_melz] A at_Lyli] N] (A(i,2),6) 444
(P ZZ]\;(()/M + at_tly 4[i]) =1 444 at_mslz] A at_l1]i] N] (A(i,2),5) 230
0o 1 at_mgli] — at_Ls[i]) 20 at—malz] A at_{s]i] (A(7, 2),4) L4]7], mali]
: . moli] | at—malz] A at_moli] A at_l3[i] | (A(,2),3) ms[i, at_ms|z]
|
Together they imply mutual exclusion! mali] [atmale] A at_mali (A6,2),2) %l
l3]1] at_malz] N at_tls[i] A at—mali] | (A(4,2),1) £4]7]
64[2} at,mg[z] A at,fg[i] (A(Z ®1, Z), 7) Eo[Z D 1], Kl[l D 1}

Deductive Verification in Action, Weizmann, Spring, 2002 74 Deductive Verification in Action, Weizmann, Spring, 2002 75

Deductive Verification in Action, Weizmann, Spring, 2001

The BAKERY Algorithm

Lecture 7

N :natural where N >0
y :array[l..N] of natural where y =0

[4y: loop forever do
/1: Non-critical

N Oy yli] = max(y[1],...,y[N]) +1
NPl ey await Vi # s yl] =0 Vgl < ylj]
l4: Critical
ls: yli] =0

Program BAKERY: the Bakery Algorithm.

Some useful invariants:
©q: ym > (0 — at,£3,,5[i]
wo i at_lasli] > ViFiy[i]l =0 V yli] < y[j]
(i)

Together, they imply mutual exclusion.

Deductive Verification in Action, Weizmann, Spring, 2002 76

Deductive Verification in Action, Weizmann, Spring, 2001

Verifying Accessibility

Lecture 7

Next, let us verify accessibility, specifiable by
at_l[z] = > at_ly]2]
We intend to use rule DISTR-RANK. For a transition ¢, we will define

0(t) =1 |If tis currently enabled. This is also the case that ¢ is helpful.
0(t) =2 If tis currently disabled, but may become helpful on the way from

p to q.
0(t) =0 If tis disabled and can never become helpful before ¢ is achieved.

The following table identifies for all transitions ¢ when they are helpful (and
therefore §(¢) = 1):

t h(t)

£5 [Z] at,€3 [Z} N at,/5 [Z}

/4[2] at,ﬂg[z} N at,/4[ﬂ

U3]i] | at_ls[z] N at_tl3[i] A (i)
Lli] | i=2 N at_lsi]

The next table identifies for all transitions ¢ when they have the distributed rank
0(t) = 2, and may therefore become helpful in the future:

t o(t) =2

Usli] | at_Lalz] V at_Ls]z] A at_ls4[i] N y[i] < ylz]

i) | at_La]z] V at_Ls]z] N at_L3i] A y[i] < ylz]

U3]i] | at_la[z] V oat_l3[z] A at_tl3[i] A —p(i) A (=2 V yli] <ylz])

For all other transitions and all other cases, 6(¢) = 0.

Deductive Verification in Action, Weizmann, Spring, 2002 77

Lecture 7 Deductive Verification in Action, Weizmann, Spring, 2001

Alternately, Using Rule WELL

We can also use rule WELL for proving the accessibility property
at_loz] = > at_{y]2]

for the BAKERY algorithm.

Define a ranking function
A = [{i]0 <yl <ylz]}

which counts the number of processes with positive tickets whose values do not
exceed the value of y[z].

The following table summarizes the helpful transitions and their rankings as required
by rule WELL:

) Successors
1,0,0) [{lsa5[j]}
0,A,2) | L4]i], at_L4]2]
0,A,1) | £s[i

0,A,0) | {45]5]}

t h(t) a(t
Uo]2] | at—tyz (
L3[i] | at_Ls]z] AN at L3[i] A p(i) | (
(
(

£4Z' at,€3 FARA (J,t,&;i
/5[2] at,ég[z] N at,[ig)[i]

Deductive Verification in Action, Weizmann, Spring, 2002 78

