Lecture 8 Deductive Verification in Action, Weizmann, Spring, 2001

Verification Diagrams

Up to now, we have presented the constituents of a proof by rules CHAIN, WELL,
or DISTR-RANK by tables. An alternate presentation is provided by verification
diagrams. A verification diagram is a directed graph such that:

e Nodes contain labeled assertions, identifying helpful situations.

e There exists a single node with no successors, called the terminal node, and
labeled by the goal assertion q.

e Every node has a distinguished edge departing from it, and labeled by a transition
which is helpful for this node. A node may have additional multiple unhelpful
(indifferent) edges departing from it.

Diagrams differ by the rule they are supposed to represent.
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Chain Diagrams
It is required that

e The terminal node is labeled by hg : g.

e If there is an edge connecting node h; to node h;, then ¢ > j.

Assume that non-terminal node h; has the helpful transition ¢; which connects it
to node h; and the unhelpful successors hy,, ..., hg,. This implies the following
verification conditions:
C2. hiNpy = h;V hj V -
C3. hiNp, = h;-

V' hy,~ Forevery t # t;

A CcHAIN diagram is defined to be D-valid if all the verification conditions associated
with its nodes are D-valid.

Claim 8. [If a verification diagram with nodes hy, . .., h,, is D-valid then so is the
temporal formula

\/ h; = 0 ho
i=0
Corollary 9. If, in addition, we establish the D-validity of
p = \/ h; and hy = ¢
i=0

then we can conclude

p = g
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Example: BAKERY-2

local yq,y2 :natural initially y1 =y, =0

[4o : loop forever do i [myo : loop forever do
/1 : Non-Critical my : Non-Critical
P biyr=ya+1 Py my iy = y1 +1
L3 :await yo =0 V y1 < o 2 mg:await y1 =0 V y2 <yp
44 : Critical my : Critical
i ls:y1:=0 | i ms Yo :=0
[ hy:at_ts ]%
2
[ hg:at_ls N at_msz A ya <11 ]«—
ims
[ hg:at_f3 N at_my ]4—
fms
[ ho :at_l3 N at_ms ]<—
ims
[ hi:at_ls A (y2=0 V y1 < y2) ]<—J
Vs
ho : at_t,
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Encapsulation (Statecharts) Conventions
There are several conventions which make visual presentation more effective.

We introduce compound nodes which may contains several internal nodes. The
following graphical equivalences explain the conventions:

T
(BT~

Departing Edges:
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Encapsulated Verification Diagram for BAKERY-2

local y1,y2 :natural initially y1 =y, =0

[4o : loop forever do 1 [myg : loop forever do 1
/1 : Non-Critical m1 : Non-Critical
o || s ||
g:await yo =0 V 31 < 4o mg:await y1 =0 V vy < g
44 : Critical my : Critical
_£5zy1::() | _m5:y2::0 |
hs : at_ts
Ly
(at_ 45 )
[ hy:at-mz N y2 <y ]
ims
[ hs : at_my ]
i
[ hs : at_ms ]
ims
[ hi:y2=0V y1 <y ]
L3
| ho : at_ty I
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WELL Diagrams

Node h; contains also a ranking function §;. It is required that 6y = 0.

Assume that non-terminal node h; has the helpful transition ¢; which connects
it to node h; and the unhelpful successors hy,, ..., hy,. This implies the following
verification conditions:

W2. hiANpe = (h; Ab; = (5:) V
(hl’,ﬂ/\&%(s;ﬁ) Vo
W3. h; A pt; = h; A6 = (5;

vV (h;m Ab; = 5;67,,) For every t # t;

A WELL diagram is defined to be D-valid if all the verification conditions associated
with its nodes are D-valid.

Claim 10. I/f a WELL verification diagram with nodes hy, . ..
so is the temporal formula

\n/ hl‘ = O ho
=0

, h,, is D-valid then

Corollary 11. [f, in addition, we establish the D-validity of
p = \/h and he = ¢
i=0

then we can conclude

p = g
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Apply to Program UP-DOWN Encapsulation Conventions Concerning Ranking
z, y: natural initially z =y =0 We adopt the additional conventions:

fo: while z =0 do e In case node h; does not have an explicit ranking labeling, it is as though it had

[br: y =y +1] e the label 6 : 7.
Py ly : while y > 0 do | P, {mo. m.—l}
[l3: y:=y—1] m e In case a compound node has the transcription § : f at its top left corner, the

Ly : factor f is added as a left lexicographic component to all the rankings of the
contained nodes.

[ hs:at_lo1 N at_mg, 0:3 ] [ hs:at_lo1 N at_mg ]
| I | [
atmq A z=1 (at_mq A z=1 )
hatat b, §:2 ) ( ha:at_t, )
1[1 lél 05: B
[ hg:at £y, §:1 ] [ h : at_{, ] 04: 4

o bo gg : ?0 2)

Y4 / N 2 ' Yy

2 h,g : at—f% 6 : (Ovy7 2) ] 2 (S : (0’ U) 51 : (O7y7 1)
2 0

[hl:atfﬁg ANy>0, 0:(0,y9,1)

ho : at_fs ],_ b 8o :
I ]
[hl:at,ﬂg/\y>0]—

[ ho : at_f, ]

[ ho: at_fy, 4:0 ]
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Diagrams for Parameterized Systems

Lecture 8

To deal with parameterized systems, we introduce the inscription Ai : [1..NV]
labeling a compound node. This is equivalent to having IV copies of this node,

one for each value of i € [1..N]. Assertions and transitions within the node may -
. . fo: loop forever do
be parameterized by . -
/1: Non-critical
N ly: yli] == max(y[1],...,y[N]) +1
I Pl by await Vj # i y[j] = 0 V yli] < y[j]
- ¢y Critical
s yli] ==
h4 at,b[z]
£o]z]
Xi:[L.N]:p(i) N at_ts[z], 0:|{i|0<yli] <ylzl}
h3 at_fg[l]
£3[i] £3[i]
hg at,&;[z]
£4i]
5] [ hy:at ts [i]
ho : at_{4]z] -
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Example: a Diagram for BAKERY

N : natural where N > 0
y :array[l..N] of natural where y =0
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Apply to TOKEN-RING

local o : array[1..N] of boolean where a[l] =1,a[2] =--- =a[N] =0
[ £y : loop forever do
£1: request i
S Ly = if at_my[i] then
[f5: await at_m4l[i]]
£y : release afi ® 1]
| Plil |
i=1 mg : loop forever do
my : Non-critical
C my @ await at_/3[i]
mg : Critical
my : await —|U,t_£3 [Z}
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Diagram for TOKEN-RING

(i : [1..N] : at_ma[z] §:A(,z) )

)

|

>|h7 : at_£4[i S) 1] <

|

Lliel
( a[i} )
h6 : at_éo[i]
boli]
hlg at,fl[z]

82[1]
r(lt,£3 ) )
‘ hs : at_moli] mali
hs : at_mgli]
' ma]i]
falil o hi 1 at_myli]
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