Lecture 9 Deductive Verification in Action, Weizmann, Spring, 2001

Response Under Compassion

So far, we only considered proofs of response properties under the fairness
requirements of justice. Consider now the more general case, where also compassion
requirements are included. The following rule can be used to establish response
properties for this general case:

Rule RESP

For a well-founded domain (A,),

fair transitions t1, .- tm,

assertions p,q = ho,h1, ..., hm,

and ranking functions 61,...,0,,: X — A
m

RI1. p = \/h
3=0

Fori=1,....,m

m

R2. hiAps = (b A S&;=6)V \/(h; A 0; = 0;) For every t #

i=0
R3. h; A Py, = \/ (h; A O; = (5;)
7=0
RA4. h; = En(t;) If #; is a just transition
R5. h; = En(t;) If t; is a compassionate transition
p = g

Thus, while for a just transition ¢;, h; should imply that #; is enabled now, in the
compassionate case, h; only implies that ¢; will be eventually enabled.

Deductive Verification in Action, Weizmann, Spring, 2002 91

Lecture 9 Deductive Verification in Action, Weizmann, Spring, 2001

Justification of the Rule

On the face of it, rule RESP may appear to be circular. In order to prove a response
property it requires, as a premise, another response property.

However, there is a certain reduction between the conclusion and the temporal
premise. Namely, when establishing the eventual enableness of #; we only consider
computations which never activate t; itself.

Deductive Verification in Action, Weizmann, Spring, 2002 92

Lecture 9 Deductive Verification in Action, Weizmann, Spring, 2001

Example: MUXx-SEM for 2 Processes

y: natural initially y = 1

lo : loop forever do mo : loop forever do
/1 : Non-critical m1 : Non-critical
P £y request y | Po:: me : request y
£3 : Critical ms : Critical
ly: release y my: release y

Following is a verification diagram for the property at (> = > at /s:

[hy : at_ts }4?-[ho : at_ts]

All the verification conditions generated by this verification diagram are non-
temporal, except for the instance of premise R5 for transition /5 which has the form
at_ly = > (at_ls A y). Using the auxiliary invariant at 34+ at_mss+y =1,
the required temporal property can be established by the following verification
diagram:

at_ls N —y
[hs : at_ms]
ims
my
[hl : at,m4 ho . at,EQ A Y
Deductive Verification in Action, Weizmann, Spring, 2002 93

Lecture 9 Deductive Verification in Action, Weizmann, Spring, 2001

The Dining Philosophers Metaphor

Consider n philosophers arranged around a table.

Py

The life of a philosopher alternates between a thinking phase (a non-critical
activity) and an eating phase. In order to eat, a philosopher needs both forks.

Deductive Verification in Action, Weizmann, Spring, 2002 94

Lecture 9 Deductive Verification in Action, Weizmann, Spring, 2001

Program Dine

A first attempt yields the following program Dine:

in n :integer initially n > 2
local f :array [1..n] of integer initially f =1
[¢, : loop forever do i
[¢, : Non-Critical

Ly : request f[j]

ﬁ Pj] :: l3: request f[j @, 1]
=t £y : Critical

L5 : release f[j]

ls: release f[j ®, 1]

It is not difficult to verify the following safety property

D_‘(at,£4[1} AN at,€4[2]),

stating that philosophers P[1] and P[2] can never eat at the same time.

Deductive Verification in Action, Weizmann, Spring, 2002 95

Lecture 9 Deductive Verification in Action, Weizmann, Spring, 2001

Accessibility not Guaranteed

Unfortunately, Dine cannot ensure accessibility for P[1], specifiable by
O (at_65[1] = O at_L4]1])

Because all philosophers may deadlock together.

Deductive Verification in Action, Weizmann, Spring, 2002

96

Lecture 9

Solution: One Contrary Philosopher

Deductive Verification in Action, Weizmann, Spring, 2001 Lecture 9 Deductive Verification in Action, Weizmann, Spring, 2001

Pln] :: ls

[4, : loop forever do

Non-Critical
request f/j]
request f[j+1]
Critical
release f[j]

release f[j+1] |

[4, : loop forever do

Non-Critical |
request f[1]
request f[n]
Critical
release f[1]
release f[n]

local f :array [1..n] of natural initially f =1

Wish to establish accessibility, expressible by

Yace: O (at—tolj] = < (at-La[j]))

Deductive Verification in Action, Weizmann, Spring, 2002

Prove A Chain of Eventualities

Before proving accessibility for arbitrary j, we will establish
A374[75] : at,&;[i} = O at,€4[i}
by induction for i =n,n—1,...,1.

Induction Base: Aj4[n]: at_l3ln] = > at_l4n]
[hy : at_f3[n] }43—[@]-[ho : at_f4]n]]

Premise R5 for £3[n] requires showing at_/3[n] = <> (at_{3[n] A f[n]). Using the
invariant at {4 g[n] + at {4 g[n—1] + f[n] = 1, this can be established by the
following verification diagram:

at_L3[n] A — f[n]

[h3 s at_Lly[n—1])M[he : at_{ls[n—1] JM—[hi : at_Lg[n—1]]
ZG[TL—].}
(1o = at_ts[n] A £In])

97 Deductive Verification in Action, Weizmann, Spring, 2002 98

Lecture 9 Deductive Verification in Action, Weizmann, Spring, 2001

The Induction Step

We will now show that, assuming Az s[j+1] : at_{3[j+1] = > at_Ly]j+1], we
can establish A3 4[j] : at {3]j] = <> at_{4]j], for every j < n. This is established
by the following verification dlagram

h,l : (Jf_gs[j] h() : (lf_£4[j}

Premise R5 for /3[j] requires showing at_ /3[j] = <> (at_£3[j] A f[j+1]). Using
the invariant at /{4 ¢[j] + at 05 5[j+1] + f[j+1} =1, we construct the following
proof:

1. at_L3[j] = at_l3[j+1] V at,£4,5[j+1] Vo fli+1]
According to the invariant

2. at_ls3[j+1] = <> al_lyj+1] By induction hypothesis
3. atlys[j+1] = O fli+1] Verification diagram below
4. at_l3]]) = O fli+1] Temporal reasoning on 1-3

(s at et PO g e)

Deductive Verification in Action, Weizmann, Spring, 2002 99

Lecture 9 Deductive Verification in Action, Weizmann, Spring, 2001

Verifying Accessibility
= O at,&[j],

Finally, we verify at /5[] for all j, 1 < j < n. The proof

follows:

1. at_ty[j] = <> at_l3]j] Verification diagram below
2. at_t3[j] = <> at_Lyj] Proven by induction
3. at_tli)j] = <> at_L4[j] Temporal reasoning on 1-2

The verification diagram for at_/5[j] = <> at_£3[7]

[AT } -[ho-af_é3]

Premise R5 for (5[;] requires showing at_/5[j] = <> (at_l5[j] A f[]). Using the
invariant at /s s|j] + at {4 g[j—1] + flj] = 1, this can be established by the
following verification diagram:

is given by:

d LA |

[h3 cat_Ly[j—1]]M[he : at_L5[j—1]]M—[hy :at_lg[j—1]]
le[i—1]
(o : at 62051 A f151)

Deductive Verification in Action, Weizmann, Spring, 2002 100

Lecture 9 Deductive Verification in Action, Weizmann, Spring, 2001 Lecture 9

A Distributed Rank Justice-Base Rule

Deductive Verification in Action, Weizmann, Spring, 2001

Reducing Compassion to Justice

In some cases there is no 1-1 correspondence between justice requirements and An alternative approach to the verification of reponse properties over systems with
transitions. In this case, we have to go back to a rule which is based on justice compassion requirements is based on the reduction of compassion into justice.

requirements rather than on transitions.

Rule DISTR-JUST
For a well-founded domain (A, >
For justice requirements Jy, ..., J,,
assertions p.q = hg,h1,..., hp,
and ranking functions dy,...,0, : 2 — A
D1. p = \/ hj
§=0
Fori=1,...,m
D2. hinp = hiv [(\/R) A (=05
j=0 j=1
D3. hinp = N\(5=5)
j=1
D4. h; = J;
p = g

Deductive Verification in Action, Weizmann, Spring, 2002

Let D : (V,0,p,7,C) be an ¥Ds with a non=empty set of compassion
requirements. We construct a system D : <Vj,®J,pJ,jj,@> which contains
no compassion requirements. Its constituents are give by:

V,: V U {nevermore; : boolean | (p;,q;) € C}
©,: ©A /\ —nevermore;
(pira;)€C
Pyt PV \/ (nevermore; :== 1)
(pira:)€C
J,: T U {nevermore; V q; | (pi,q:) € C}

C,: 0
Then, we can use the following reduction:
In order to prove D = ¢ = <> 1), it is sufficient to prove

D, F ¢=>20W v \/ (pi N mevermore;)).

(pirai)€C

101 Deductive Verification in Action, Weizmann, Spring, 2002 102

